

Content adapted from the web series on:

ComeauSoftware.com

Updated June 2025

Copyright © 2025, Andrew Comeau
All Rights Reserved

Rogue C#: Creating Your Own Roguelike in C#

1

Table of Contents

Introduction ... 8

"Oh, yeah, Rogue! … Wait, what???"... 8

Who is this series for? ... 9

What you need for this series ... 10

What this series is not … .. 11

Notes on the PDF Edition ... 12

Choosing a Programming Language ... 13

What language should I learn? ... 13

What else should I learn? What will I need to know tomorrow? 14

Exploring Further ... 14

Writing the Program Requirements .. 16

Introduction .. 16

A Closer Look at Rogue .. 16

The Requirements Process .. 17

Initial Requirements .. 18

Exploring Further ... 20

Working with ASCII Graphics in C# .. 22

A little history … .. 22

Drawing boxes ... 22

Unicode .. 24

Exploring Further ... 24

Creating the Game Project .. 26

Introduction .. 26

Understanding C# and .NET ... 26

Getting Started .. 27

Exploring Further ... 29

C# Form Controls and Properties .. 31

Introduction .. 31

Setting up the game map … ... 31

Form properties .. 32

Adding form controls ... 33

Rogue C#: Creating Your Own Roguelike in C#

2

Exploring Further ... 35

Algorithms .. 37

You’re now the teacher .. 37

Creating the Map ... 38

Exploring Further ... 40

Working with Classes and Objects ... 41

Classes .. 41

Benefits of OOP .. 42

Adding the first classes .. 42

Exploring Further ... 45

Using Constants in C# .. 47

Introduction .. 47

ASCII Characters ... 47

Room Dimensions ... 48

Probabilities .. 49

Exploring Further ... 50

Class Properties and Constructors .. 51

Constructors ... 51

Properties ... 52

Constructor Overloading ... 53

Exploring Further ... 55

Creating Roguelike Map Rooms ... 57

It’s time to start mapping … ... 57

The Algorithm .. 58

The Code .. 59

Arrays ... 59

The FOR loop .. 60

Plotting the room ... 63

Enumerations and Dictionaries in C# ... 64

Enumerations ... 64

So … why do we have all those separate constants? ... 65

Dictionaries .. 65

Plotting the Rooms .. 66

Rogue C#: Creating Your Own Roguelike in C#

3

Making some exits ... 68

Corners .. 70

Adding the Stairway ... 71

Exploring Further ... 71

Concatenation and the StringBuilder Class .. 73

Going Back to the Form ... 73

Walking the Array – Method #1 ... 74

Escape Characters .. 75

Walking the Array – Method #2 ... 76

Which is Better? .. 76

DoEvents .. 77

Exploring Further ... 78

Connecting Rooms on the Game Map ... 79

The Algorithm .. 79

The Code .. 80

Another Search ... 83

Drawing the Hallways .. 85

Verifying the Map ... 87

Verifying the Game Map .. 88

Coding Decisions .. 88

The Algorithm .. 89

The Code .. 90

Calling the Function .. 91

Exploring Further ... 91

Building the Class Structure .. 93

Adding Classes ... 93

Calling the Classes.. 97

Gold Rush .. 99

Requirements and Decisions ... 99

The Code .. 99

Responding to Key Events in C# ... 102

Starting a New Game ... 102

The Panel Control .. 103

Rogue C#: Creating Your Own Roguelike in C#

4

Capturing Keystrokes .. 105

Wandering the Map ... 111

Laying the foundation … .. 111

Setting some boundaries … ... 113

What about the requirements map? ... 115

Searching a C# Array with LINQ ... 116

What is LINQ? ... 116

Querying the Map .. 116

More Search Functions .. 119

Eliminating Steps .. 120

Exploring Further ... 121

Leveling Up ... 122

Going for the Gold ... 122

Going to the Next Level .. 123

Changing Levels .. 126

Almost there! .. 129

Coding the “Fog of War” .. 130

The Rules .. 130

The Algorithm .. 131

The Code .. 133

Outputting the Text .. 136

Finishing Touches .. 137

Hidden Doorways ... 139

The Algorithm .. 139

The Code .. 139

Hiding the Doorway ... 140

Finding the Doorway .. 142

Exploring Further ... 144

First Project Review .. 146

Walking the Project Map .. 146

Foundations and Options .. 147

What’s Next? ... 149

Turns and Cheatcodes .. 151

Rogue C#: Creating Your Own Roguelike in C#

5

Counting the Turns .. 151

Cheat codes ... 152

MapLevel Revisited ... 155

The Inventory Class... 158

Requirements ... 158

Basic Requirements .. 159

Rings .. 161

Potions and Scrolls ... 161

Weapons .. 162

Armor ... 162

Inheritance ... 162

Building the Inventory ... 164

The Requirements ... 164

Specifications ... 164

The Algorithm .. 164

The Code .. 165

Production .. 168

Acquisition and Storage ... 169

Exploring Further ... 171

Displaying and Selecting Inventory .. 172

Displaying Inventory .. 172

Selecting the Items ... 175

“A mango a day …” .. 179

A Programmable Feast .. 179

Check Your Hunger.. 182

This is where it gets real … ... 184

Now that we have your attention … .. 185

Speed it up! .. 189

Adding a Help Screen .. 189

Player Stats ... 190

Fast Play ... 192

A few other recent changes … .. 195

Inventory Revisited ... 198

Rogue C#: Creating Your Own Roguelike in C#

6

Christmas in the Dungeon ... 198

It’s all about organization … ... 200

That’s not just any crossbow! ... 200

“I’ll take a dozen.”.. 203

The Amulet ... 205

“Here there be monsters.” ... 206

It’s a whole new game …. ... 206

The Monster class ... 206

Adding the monsters to the map .. 207

Everyone gets a turn .. 207

Rogue Fight Club ... 207

Player Stats ... 208

Monster Gallery ... 208

Building the Monster Class .. 210

What are little monsters made of? ... 210

Drawing up the guest list .. 212

There’s plenty of room for everyone. ... 214

Let’s get this party started! ... 215

The Monster ShuƯle .. 216

The Algorithm .. 216

The Code .. 217

It’s getting crowded in here … ... 218

… and then everything changed. .. 219

What’s next? ... 222

The Monsters Strike Back .. 223

Getting things in order ... 223

Updating the Player Stats ... 226

Experience Level ... 227

Hit Points .. 228

Strength .. 230

Display Issues ... 230

What’s next? ... 232

Building on the Foundation ... 233

Rogue C#: Creating Your Own Roguelike in C#

7

Bugfix – Disappearing player .. 233

Expanding the inventory .. 234

Fights.. 235

Mystery Items ... 236

A Few Random Updates .. 239

“Play Again?” .. 239

Bugfix – Falling oƯ the map .. 240

The Great Refactoring – I missed a spot. ... 241

Spawning new monsters .. 241

Adding Scrolls and Potions .. 244

Reading Scrolls ... 244

Identify Scrolls .. 246

Magic Mapping .. 246

Other Scrolls ... 247

Drinking Potions .. 248

Postscript to the PDF Edition ... 249

Rogue C#: Creating Your Own Roguelike in C#

8

Introduction
A few years ago, when I was teaching a college course in database programming, I
remember one of the students looking at a sample program and wondering out loud "How
does anyone actually put something like this together?". I knew what he was asking - it's a
long way from playing around with some code snippets to actually organizing and building
an application from the ground up. It can be as much work as writing a novel or building a
work shed or any other major project.

I don't say any of this to discourage anyone from programming. I've been doing it oƯ and on
since I was a teenager. Even as a student, I was coming up with ideas of my own for projects
and hammering away at them for hours after school. It was often frustrating but I kept doing
it because the high that comes when something finally works like you want it to feels like
nothing else.

By the time I was teaching, I'd decided that the best way to learn programming was mainly
through practice. Systematic study of a language is great to get a handle on the syntax but
it's a waste of time without the continued practice that will commit the ideas to memory.
The class I taught ended up being about 90% workshop as I threw one challenge after
another at the students and made them research solutions on their own. Software
development is not just about knowing the language elements; it's about breaking problems
down into pieces and learning to use the programming tools to create a solution. That only
comes with experience, research and lots of practice.

So, for this demo, I'm accepting a single, epic challenge - the rebuilding of a classic role-
playing game called ... Rogue.

"Oh, yeah, Rogue! … Wait, what???"
Rogue is a role-playing game (RPG) that was first released in 1980 for Unix-based systems
and then ported to other operating systems, including the up-and-coming MS-DOS. It's a 2-
D game where your character wanders around dungeons fighting monsters, picking up gold
and other items and trying to find the Amulet of Yendor so you can escape the dungeon and
win the game.

Rogue is turn-based so every time you move, so do the monsters. If your character dies then
you start the game over, the graphics are entirely made up of text characters and it doesn't
look much like the sophisticated games of today.

Rogue is also a classic game that inspired an entire genre of other roguelike games and
even a set of standards by which to measure these games. Designing a Rogue clone is a
complex programming challenge involving graphics design, game logic, the management of
many elements and the consistent display of those elements on screen.

As a game, Rogue is incredibly addictive. Dennis Ritchie, the creator of the C programming
language, joked that it was "the biggest waste of CPU cycles in history". Jerry Pournelle,
scientist and sci-fi author, called it his "game of the month". In 2009, it was #6 on PC World's

Rogue C#: Creating Your Own Roguelike in C#

9

list of the ten greatest PC games ever. I personally deleted all my copies of it at one point
just to stay away from it.

Since this is an RPG with character stats and "dice" rolls, you'll see how to program those
calculations and apply them within the game. Every turn involves multiple decisions to
update the game board and character stats. You'll also learn how to load and save game
data.

Despite the retro appearance of the game, every skill mentioned above is still essential to
modern gaming and software development. The lack of modern graphics will let you focus
on learning and applying the actual C# language and concepts to design your own
application. During this series, you'll also learn something about software requirements,
testing and troubleshooting - important skills in a software development career.

Rogue was originally developed in C as, essentially, a console application. As of Windows
10, the original game is no longer playable on Windows unless you use a virtual machine
but you can get a version from Steam that runs through DOSBox. For this course, I'm re-
creating the game using a Windows Forms application while trying to keep as much of the
original look and feel as possible.

Of course, cloning a game doesn't mean that I can't throw in a few new features. Every
Rogue clone that's been designed over the years has added its own style and there are a
couple of things that I'd like to change. The original Rogue didn't have any options for the
user to customize and I'd like to add a couple. Hopefully, by the end of this course, you'll be
able to program in your own features.

Who is this series for?
I've tried to make these articles as friendly for newcomers as possible but it's not a language
reference. There are already plenty of online tutorials and references that do a fine job of
teaching C# basics. W3Schools.com has great references for C# and many other languages
that will present the language in bite-size chunks and let you practice it right on their site. I'll
frequently reference their site and others if there's something you need to be familiar with
when going through one of the chapters in this course.

Rogue C#: Creating Your Own Roguelike in C#

10

The idea behind this series is to learn how to actually use the language to build a fully-
featured application using the best practices and techniques available to you. When I do
talk about the basics, it will be in the context of building the application. Along the way, you
will see many concepts and language features demonstrated and will hopefully get a better
grasp on how to use the diƯerent parts of the language. Hopefully, over the course of this
series, you'll see the overall strategy and organization involved in planning and building a
piece of software.

When I reference another programming resource, I strongly suggest you check it out and
bookmark the site. Even as an experienced programmer, I frequently turn to Google for
answers on how to use specific functions. With a language as large as C#, being able to
research and find information is actually more important than memorizing the language.

If you get a couple chapters in and find you need something more basic first, check out the
following and then come back and try again:

C# Fundamentals for Absolute Beginners
(https://learn.microsoft.com/en-us/shows/csharp-fundamentals-for-absolute-beginners/)

Wise Owl series on YouTube
(https://www.youtube.com/playlist?list=PLanFskMAuuGduNf07DthlWaix6WT4rUMD)

What you need for this series
I'm developing this demo right here on ComeauSoftware.com where you'll be able to follow
it for free as I release new chapters. I originally envisioned it as a project where readers
could code along with me and develop their own roguelike from the ground up. That proved
to be impractical because of the amount of code involved and the ongoing development of
the game. A single change or new feature can aƯect enough points in the project that
expecting you as the reader to recreate all the changes would be unrealistic.

To get the most out of Rogue C#, you should first download the current source code
from Github where I've made it available for your reference. You can also view it
directly on the site if you would rather not download it.

https://github.com/ajcomeau/RogueGameDev

If you're not familiar with Github, it really is one of the first things you should learn as an
aspiring software developer. In simplest terms, Git is a gigantic repository for source code
and software projects. Developers of all kinds can upload their source code, track changes
and allow other developers to share in the development eƯort. The Github website is the
online graphical interface for the Git service. Check out the video below for more of an
explanation.

https://youtu.be/2ReR1YJrNOM

To use the code, you should have already installed Visual Studio 2022 Community Edition or
higher. The Community edition is a free installation from Microsoft and I'm using it myself so
it has everything you'll need to follow along.

Rogue C#: Creating Your Own Roguelike in C#

11

Installing Visual Studio
https://learn.microsoft.com/en-us/shows/csharp-fundamentals-for-absolute-
beginners/installing-visual-studio

After that, all you need is the time and commitment to read through the chapters and try
things out for yourself. The first part of the course deals with the construction of the game
map and, as far as possible, I provide step-by-step instructions on how to apply the settings
and enter the code. There is a lot of code, however, and the later chapters tend to focus on
explaining the algorithms and decision processes behind the development.

I still recommend that you create your own version of the game and follow along as much as
possible. It's also good to have an extra "sandbox" project where you can try things out
without disrupting the main demo project. Every new function or code element you see is
another tool that you can learn to use. You should pay close attention to the code samples
and the explanations behind them and think of ways that you can try them on your own.

What this series is not …
This series will help you learn the C# programming language using a single, large game
project. Unlike a formal course, it will demonstrate language features as they can be
applied in the project and not in a specific order.

 This is a demonstration, not a systematic tutorial. I will present the basic parts of
programming that every beginner should learn, either through the main project or as
side explanations. I cannot promise that I will address every subject in C# that you
might expect or to give them equal time.

 Unless otherwise stated, the programming solutions I show are specific to this
project and are not necessarily the best in all situations. This is especially true as
I am replicating the look and feel of a 40-year old PC console game in a modern
Windows Forms application. Any given challenge can be solved in a variety of ways
with a language as rich and varied as C# and I emphasize my own solutions that will
best accomplish the goals of the program.

 Because I am developing the game and writing the chapters of this demo at the
same time, It's entirely possible that I will discover that something I did earlier in
the series doesn't work. Depending on the problem and its usefulness as a lesson,
I will either go back and change the earlier chapter(s) or I will write it up as a change.
If you find something in here that doesn't work, please let me know.

 The game developed in this project is inspired by the original Rogue DOS game but I
don't guarantee it will fit any specific "roguelike" or "roguelite" standard.

My goal in this series is to demonstrate the C# language and programming in a way that will
enable you to carry on with your own projects afterward … and have fun doing it!

Rogue C#: Creating Your Own Roguelike in C#

12

Notes on the PDF Edition
The PDF version of this series that you're reading is a quick conversion of the original web
articles to PDF with no extra content added. This is simply a bonus feature of the series for
those who might like all the content in this portable format.

As of June 2025, I am reviewing the series with an eye toward finishing it in book form or at
least bringing it to some kind of conclusion. I recommend that you bookmark my site at
ComeauSoftware.com to keep up to date on any new developments.

With that in mind, let's get started.

Andrew Comeau
Comeau Software Solutions
June 2025

Rogue C#: Creating Your Own Roguelike in C#

13

Choosing a Programming Language
The choice of programming language and other technologies is one of the first steps in
building software. With the variety of languages and the overlap between them, the choice
often depends on the preferred environment (i.e. desktop vs. web), operating system and
personal preferences of the developer or company. For the individual programmer, the
choice of a first programming language can be confusing but is ultimately less important
than the continued dedication to developing your skills and knowledge of overall
programming concepts with whatever language you choose.

What language should I learn?
That’s the first question that I often see from aspiring programmers which is
understandable. With all the technologies out there, it’s easy to get lost in all the choices
and spend too much time agonizing over the decision and second-guessing yourself.

There are two basic questions you should ask yourself when deciding on a first language –

1. What kind of programming do I want to do?

2. What language am I most comfortable with?

That’s really what it comes down to. I’m not going to defend C# as the best first language to
learn because it might not be the best for any given person. It’s simply the language that I
find most useful at this point and the one I’m choosing to teach here. If you’re looking at
this course, you probably have more than a passing interest in learning it, too, and I’ll do the
best I can to guide you.

What do you want to create?

To answer the first question, C# is a general purpose language derived from C++ as so many
languages are. As a general purpose language, I’ve used it to code everything from Windows
Forms apps to web applications with ASP.NET to Windows services. That’s something I like
about it as I have one major language that I can do just about anything with. I’ve also seen
the tendency for people, including myself, to get distracted by every new popular
programming technology that comes along and to believe that they have to know a lot of
diƯerent languages in order to be real programmers. This is not true.

Of course, if your main language is no longer in demand and you want to stay in the job
market, it’s a good idea to pick up something new and popular to stay in the game. As long
as you’re working with useful tools, though, there’s nothing wrong with just mastering those
tools as thoroughly as possible. Certainly, there’s more than enough in a language like C# to
keep you busy doing that, especially as it’s now being updated every year.

It’s great to have some experience with two or three languages for the sake of perspective
but, if you really enjoy programming, you’ll probably pick that up naturally as you go. You
don’t need to be fluent in a variety of human languages to communicate with others and you
don’t need to know a variety of computer languages to call yourself a programmer.

Rogue C#: Creating Your Own Roguelike in C#

14

What language are you comfortable with?

If I was choosing a language just based on popularity and marketability, I might go
with JavaScript but I don’t really enjoy working with JavaScript. I’ve played with it here and
there and even used it for a couple of projects so I’m confident that I can learn it as I need to
but I’ve never really needed to. I personally prefer a compiled language over an interpreted
browser language and the strong typing and strict structure of C# over the more casual
attitude of JavaScript. I like the development tools for C# better and Microsoft’s Visual
Studio has come so far that it’s just fun to use.

Again, it never hurts to investigate a new language because you just might find that you
really like it. I was a Visual Basic programmer until I found myself on a team that used C#. I
was productive with it within a couple of weeks and have never gone back although I still
enjoy working with Visual Basic for Applications (VBA) when I need to.

As a programmer, you’ll spend enough time and energy mastering various concepts such as
object orientation and data management no matter what language you use. As long as
you’re reaching your personal goals and creating great things, forcing yourself to learn a
diƯerent language for any other reason is often a distraction and will take the fun out of
programming.

Above all, use a language that will help you keep programming.

What else should I learn? What will I need to know tomorrow?
C# is not going anywhere. I’m confident that the language will be around for many years to
come and it’s used enough that, even after something else takes its place, there will be
plenty of code that needs to be maintained. Still, there are other concepts such as user
interface standards and error handling that apply no matter what technology you’re using
and I’ll do my best to present as many of these as I can during this course.

C# is the chosen language in this course and I want you to be comfortable with it by the end
but I also want you to know how to design great, robust solutions. While there are
guidelines that you can follow, there is no checklist. It really comes down to understanding
how the technology works and caring about the outcome so that you can make the right
decisions at each point in a project.

Exploring Further
Throughout this series, I will encourage you to explore certain subjects further on your own.
I’ll be sharing links and encouraging you to do your own searches on specific subjects. This
is an essential skill for programmers but, unfortunately, its one that aspiring programmers
sometimes lack. So many people will spend tens of thousands of dollars on bootcamps and
classroom instruction when there are endless resources of all types online, even free
college courses. Technology is constantly evolving and finding a new classroom course or
bootcamp for every new subject would soon become impractical.

I encourage you to pay close attention to the external links that I feature throughout the
course. I enjoy sharing quality resources and I will do that here as well. Take a moment to

Rogue C#: Creating Your Own Roguelike in C#

15

bookmark some of the sites that I refer to as they might come in very handy as you progress
in your own programming journey.

JavaScript introduction at developer.mozilla.org
https://developer.mozilla.org/en-US/docs/Web/JavaScript

FreeCodeCamp.org – Interpreted vs. Compiled Languages
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/

Harvard University – CS50x: Introduction to Computer Science through OpenCourseWare
https://cs50.harvard.edu/x/2022/

See the online version of this chapter with links to more resources here:
https://www.comeausoftware.com/c-sharp/rogue-csharp-choosing-a-language/

Github repository:
https://github.com/ajcomeau/RogueGameDev

Rogue C#: Creating Your Own Roguelike in C#

16

Writing the Program Requirements
Requirements analysis and writing lays the foundation for building a good piece of software.
The requirements defined for a program form the outline on which the rest of the project can
be built. It’s usually a cooperative and ongoing process involving many conversations
between the developers and intended users. Requirements documentation can take
diƯerent forms depending on the intended audience and use.

While the requirements for this project are demonstrated through the original Rogue game,
it is still important to review the expected performance of the new game. This gives a
general idea of how the application will need to be organized in order to perform as needed
while staying maintainable and open to later expansion. This chapter finishes by looking at
some of the most basic features of the original console game from 1980 and how they’ll
translate into a modern Windows application.

Introduction
One of the most important tasks in software development is defining the
software requirements – in detail. Architects have blueprints, writers develop outlines and
smart programmers get an idea of what the finished program is supposed to look like before
they start programming. It might be a basic version of the program that handles only basic
functions and the requirements might change during development but they still work out
the requirements up front. This prevents misunderstandings and other problems that can
crop up.

Requirements analysis is often done through conversations and meetings with the
customer. The customer can be an outside company or people from other departments
within the same company. This can take weeks or more, especially if the software needs to
work with other systems or if the people involved realize that some of the requirements
need to be changed in order for the software to be usable or even safe. Once the
requirements are complete, they’re often documented in diƯerent ways for use by the
programmer and others in the process.

A Closer Look at Rogue
For this project, the requirements are actually demonstrated through two MS-DOS versions
of Rogue – a public domain version released in 1984 and the commercial version released
by Epyx, Inc. in 1985. The Epyx version is still available and playable through Steam for a
small fee. Another online version was created by Donnie Russell II, an independent
programmer, and is still available (http://donnierussellii.github.io/JSRogue.html). The
versions are mostly the same except for minor diƯerences in graphics and names. You can
also view playthroughs on YouTube.

Before we start developing our own roguelike game, we still need to look at the existing
game and put together an outline of its rules and gameplay in order to make one that’s
similar. This is sometimes called reverse engineering – analyzing a finished product in order
to create a new version. Reverse engineering is sometimes explicitly prohibited in software
user agreements but, since there is no user agreement for this public domain game and

