

Retrofit: Love Working with APIs on Android
Take delight in building API clients on Android.

Marcus Pöhls

This book is for sale at http://leanpub.com/retrofit-love-working-with-apis-on-android

This version was published on 2019-02-17

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2019 Future Studio

http://leanpub.com/retrofit-love-working-with-apis-on-android
http://leanpub.com/
http://leanpub.com/manifesto

Also By Marcus Pöhls
Picasso: Easy Image Loading on Android

Glide: Customizable Image Loading on Android

Gson: Enjoy JSON (De-)Serialization in Java

Gson Workbook

http://leanpub.com/u/futurestudio
http://leanpub.com/picasso-image-loading-on-android
http://leanpub.com/glide-image-loading-on-android
http://leanpub.com/gson-enjoy-json-deserialization-in-java
http://leanpub.com/gson-workbook

Contents

Introduction . i
What Topics Are Waiting for You? . i
Who Is This Book For? . ii
The Source Code . iii
Retrofit Book for Version 1.9 . iii

Chapter 1 — Quick Start & Create a Sustainable REST Client 1
Retrofit Overview . 1
Why Use Retrofit? . 1
Retrofit vs. OkHttp . 2
Quick Start: Add Retrofit to Your Project . 2
Sustainable Android REST Client . 5
The ServiceGenerator . 5
Retrofit in Use . 10

Outro . 13

Introduction
Due to the popularity of the Retrofit blog post series¹ published in the Future Studio blog, we’ve
decided write a book on Retrofit. We’re delighted about the amazing popularity of the Retrofit series!
Thanks a lot for all of the positive feedback, comments and encouragement! Your kind words
go a long way and keep us motivated to publish more content on Retrofit.

This is the second edition of our Retrofit book. We’ve updated the content including code examples
to address Retrofit 2. The first edition was completely geared towards Retrofit 1. If you’re using
Retrofit 1 and want to read the first edition of this book, please visit this book’s extras on Leanpub
to download the package with PDF, mobi and epub files.

Within this book, we keep the kind of techy style from the tutorials tomake this book a great resource
for every developer working with Retrofit.

What Topics Are Waiting for You?

You probably scanned the table of contents and know what to expect. Let me describe the chapters
in short before we move on and dig deeper into Retrofit and its functionality.

Covered Topics:

• Introduction to Retrofit
• Quick Start Guide to jump right into Retrofit
• Create a Sustainable Android REST Client
• Extensive manipulation and customization of requests
• Comprehensive overview of response converters and data mapping
• Handling Authentication on Android (Basic, Token, OAuth, Hawk)
• Advanced File Handling, like File Up- and Download
• How to handle errors in your Android app
• Debug requests and response using logging
• App release preparation including ProGuard configuration

Covered Topics: Give Me the Details

The book starts out with an overview about what Retrofit is and how to prepare your Android project
to use Retrofit. Further, we’ll walk you through the setup on how to create a sustainable REST client
basis. Additionally, we’ll dive into the basics on how responses get mapped to Java objects and create

¹https://futurestud.io/blog/retrofit-getting-started-and-android-client

https://futurestud.io/blog/retrofit-getting-started-and-android-client
https://futurestud.io/blog/retrofit-getting-started-and-android-client

Introduction ii

the first client to perform a request against the GitHub API (learning by doing is an effective method
:)).

Once we managed the jumpstart, we show you the details about Retrofit’s requests: how to perform
them synchronous and asynchronous and how to manipulate requests to your personal needs, like
adding request parameters, path parameters, request payload and a lot more!

We’ll also walk you through Retrofit responses, show you how to change the response converter and
how to mock an API on Android itself.

Knowing the basics about Retrofit, we touch a common use case: authentication. Besides basic and
token authentication, we’ll explain how to use Retrofit for OAuth (including OAuth 2) and how to
use OAuth’s refresh token to get back a valid access token.

File handling can be kind of tricky, so let’s take the road together! We guide you through file up-
and downloads with Retrofit and show the actions required to send and receive different types of
files like images and compressed packages (e.g. ZIP).

Last but not least: once you get your app (using Retrofit) out the door, you need to prepare the
release for Google Play. This chapter digs into the correct configuration of ProGuard for Android
projects integrating Retrofit and presents examplary rules to keep your app working correctly after
distributing via Google Play.

Who Is This Book For?

In short: this book is for you. We believe that every developer reading this book will take away new
ideas on how to optimize their Android apps in the sense of interacting with API’s or webservices
using Retrofit. You’ll recognize goodies that are applicable for the projects you’re working on.

This book is for Android developers who want to receive a substantial overview and reference book
on Retrofit. You’ll benefit from clearly recognizable code examples related to your daily work with
Retrofit.

Rookie

If you’re just starting out with Retrofit (or coming from another HTTP library like Android
Asynchronous Http Client or even Volley) this book will show you all important parts on how
to create sustainable REST clients on Android. The provided code snippets let you jumpstart and
create your first successful API client within minutes!

Expert

If you’ve already worked with Retrofit, you’ll profit from our extensive code snippets and apply the
learnings to your existing code base. Additionally, the book illustrates various use cases for different
functionalities and setups like authentication against different backends, request composition, file
up- and downloads, etc.!

Introduction iii

The Source Code

With the purchase of this book, you benefit from the sample project that await your downloadwithin
the extras section on Leanpub. The sample project is an Android project based on gradle. You can
directly touch and use classes that are only illustrated in excerpts within this book.

Check your Leanpub Library² and select Retrofit: Love working with APIs on Android to
download the sample code base.

Retrofit Book for Version 1.9

This is the second edition of the Retrofit book. It’s fully focussed on Retrofit 2, no hint or code snippet
that points to Retrofit 1. If you’re interested in the first version of the book that based on Retrofit 1,
please visit this book’s extras page on Leanpub. As a reader of this book, the first version is — of
course — also available for you!

Now, let’s jump right in and get started with Retrofit!

²https://leanpub.com/user_dashboard/library

https://leanpub.com/user_dashboard/library
https://leanpub.com/user_dashboard/library

Chapter 1 — Quick Start & Create a
Sustainable REST Client
Within this chapter we’re going through the basics of Retrofit, give a brief overview to jump-start
with Retrofit in your project and create a REST client foundation that we’ll enhance and apply within
multiple chapters of this book.

Precisely, we start with a short overview of the Retrofit project and why you should make use of
it. Afterwards, we show you how to prepare your Android project to utilize Retrofit. To get you
hooked on the Retrofit train, we create a sustainable Android REST client including the assignment
of a JSON response converter.

To clarify our usage of the term Retrofit throughout this book: we always refer to Retrofit 2. The
content completely gears toward Retrofit 2 and we just keep it short by using Retrofit.

Remember, as already mentioned in the Introduction chapter: if you’re interested in the previous
book version on Retrofit 1.9, we’ve added the book’s PDF, mobi and ePub files within the extras of
this book on Leanpub³.

Retrofit Overview

Retrofit is a »type-safe REST client for Android and Java«⁴.

Retrofit abstracts your REST API into Java interfaces. You’ll use annotations to describe your
individual API endpoints and their HTTP requests. Support for URL parameter replacement (like
query and path parameter) is integrated by default, as well as functionality for form-urlencoded
and multipart requests. You can of course execute requests using the HTTP methods GET, POST, PUT,
PATCH, DELETE. Anyway, this is literally just the tip of the iceberg and there’s a lot more to discover
behind Retrofit’s scenes.

Why Use Retrofit?

Working with APIs can cause a lot headaches due to various scenarios and edge cases. Problems
already arise when just giving the low-level networking some thoughts. Handling connections and
interruptions, caching, request retries and SSL handshakes. Also, the worry about worker threads
or runnables or even lovely AsyncTasks definitely causes a lot pain in the a**! Think about the pain
and effort you need to put into your own implementation.

³https://leanpub.com/user_dashboard/library
⁴http://square.github.io/retrofit/

https://leanpub.com/user_dashboard/library
http://square.github.io/retrofit/
https://leanpub.com/user_dashboard/library
http://square.github.io/retrofit/

Chapter 1 — Quick Start & Create a Sustainable REST Client 2

You’ll save yourself a lot of time and anger when leveraging a well thought-out and tested library
like Retrofit. If you scrolled through the outline of this book, you’ve already an impression about the
functionality and flexibility that comes with Retrofit. Benefit from the library and put your work to
pieces where your attention is actually needed!

Retrofit vs. OkHttp

Downright this book, we’ll make use of OkHttp and show you how to achieve a solution leveraging
the functionality of OkHttp. And the reason is simple: OkHttp is a pure HTTP/SPDY client
responsable for any low-level network operation, caching, request and response manipulation, and
many more. In contrast, Retrofit is a high-level REST abstraction build on top of OkHttp. Retrofit 2
is strongly coupled with OkHttp and makes intensive use of it. That’s the reason why we sometimes
need to borrow OkHttp’s classes to accomplish the solution.

Quick Start: Add Retrofit to Your Project

Now let’s get our hands dirty and back to the keyboard. If you already created your Android project,
just go ahead and start from the next paragraph („Internet Permission in Android’s Manifest“). If not,
create a new Android project in your favorite IDE. We use Android Studio⁵ and prefer the Gradle
build system, but you surely can use Maven as well.

Internet Permission in Android’s Manifest

We use Retrofit to perform HTTP requests against an API running on a server somewhere in the
Internet. Executing those requests from an Android application requires the Internet permission
to open network sockets. You need to define the permission within the AndroidManifest.xml file.
If you didn’t set the Internet permission yet, please add the following line within your manifest
definition:

1 <uses-permission android:name="android.permission.INTERNET" />

A common practice is, to add your app permissions as the first elements in your manifest file. The
following snippet is an excerpt from the sample project you can find within the extras of this book
on Leanpub.

⁵https://developer.android.com/sdk/index.html

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html

Chapter 1 — Quick Start & Create a Sustainable REST Client 3

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest package="android.retrofitbook.futurestud.io.fsretrofitbook"

3 xmlns:android="http://schemas.android.com/apk/res/android">

4

5 <uses-permission android:name="android.permission.INTERNET"/>

6

7 …

Define Dependency: Gradle or Maven

Now let’s define Retrofit as a dependency for your project. Depending on your used build system,
define Refrofit in your build.gradle or pom.xml file. When running the command to build your
code, the build system will download and provide the library for your project.

At the time of this book beingwritten, the latest Retrofit version is 2.0.0. There has been a lot activity
in the Retrofit repository on GitHub during the last weeks to finish the second major release. We’ll
keep this book update to future versions of Retrofit.

Ok, now let’s add Retrofit as a dependency to our project:

build.gradle

1 dependencies {

2 // Retrofit & OkHttp

3 implementation 'com.squareup.retrofit2:retrofit:2.5.0'

4 }

pom.xml

1 <dependency>

2 <groupId>com.squareup.retrofit2</groupId>

3 <artifactId>retrofit</artifactId>

4 <version>2.5.0</version>

5 </dependency>

Sync your Gradle or Maven project to import the required packages for Retrofit. Retrofit 2 doesn’t
ship with an integrated response converter anymore. We need to manually add the desired response
converters as a dependency to our project. The following section will show you how to add Gson
for JSON response mapping to your project.

Chapter 1 — Quick Start & Create a Sustainable REST Client 4

JSON Response Mapping

As already mentioned, by default Retrofit 2 doesn’t come with any response converter integrated.
To add Google’s Gson for JSON to Java object mapping, we need to add another Gradle or Maven
dependency to our project. Update your build.gradle or pom.xml file appropriately to import
Retrofit’s Gson converter besides Retrofit.

build.gradle

1 dependencies {

2 // Retrofit & Gson

3 implementation 'com.squareup.retrofit2:retrofit:2.5.0'

4 implementation 'com.squareup.retrofit2:converter-gson:2.5.0'

5 }

pom.xml

1 <dependency>

2 <groupId>com.squareup.retrofit2</groupId>

3 <artifactId>retrofit</artifactId>

4 <version>2.5.0</version>

5 </dependency>

6 <dependency>

7 <groupId>com.squareup.retrofit2</groupId>

8 <artifactId>converter-gson</artifactId>

9 <version>2.5.0</version>

10 </dependency>

Once again, synchronize your project to import the Gson converter for Retrofit. In the following,
you’ll learn how to define a service interface to map a given API endpoint.

Declare an API Interface

This part of the quick start guide is intended to get you kickstarted and how applicable Retrofit is
for your Android app. Let’s directly jump in and use a code example to make things approachable:

1 public interface GitHubService {

2 @GET("users/{user}/repos")

3 Call<List<GitHubRepo>> reposForUser(@Path("user") String username);

4 }

Chapter 1 — Quick Start & Create a Sustainable REST Client 5

The snippet above defines a Java interface called GitHubService having only one method
reposForUser(…). The method and its parameters have Retrofit annotations which describe the
behavior of this method.

The @GET() annotation explicitly defines that a GET request will be executed once the method gets
called. Further, the @GET() definition takes a string parameter representing the endpoint url of your
API. Additionally, the endpoint url can be defined with placeholders which get substituted by path
parameters.

The method signature contains a @Path() annotation for the user parameter. This @Path annotation
maps the provided parameter value during the method call to the path within the request url. The
declared {user} part within the endpoint url will be replaced by the provided value of username.
We’ll catch up path parameters in more detail in a later chapter.

The snippet above only describes how to define your API on the client side. That’s fine for now.
We’ll have a look at the practical example in a second. There, we’re going to execute the actual API
request.

Sustainable Android REST Client

Retrofit offers a wide range of functionalities and there are a lot of possible configurations. A lot of
larger applications will require some specific setup, for example for OAuth authentication. In order
to achieve a clean and stable project, we’ll introduce you our idea of a sustainable Android client:
the ServiceGenerator.

The ServiceGenerator

As you know from our the quick start above, the Retrofit object and its builder are the heart of
all requests. Here you configure and prepare your requests, responses, authentication, logging and
error handling. Unfortunately, we’ve seen too many developers just copy-and-pasting these parts
instead of separating into one clean class. The ServiceGenerator will give you our solution, which
is based on Bart Kiers’ idea⁶.

Let’s start with the simple code. In its current state, it only defines one method to create a basic
REST client for a given class/interface, which returns a service class from the interface.

⁶https://github.com/bkiers/retrofit-oauth/tree/master/src/main/java/nl/bigo/retrofitoauth

https://github.com/bkiers/retrofit-oauth/tree/master/src/main/java/nl/bigo/retrofitoauth
https://github.com/bkiers/retrofit-oauth/tree/master/src/main/java/nl/bigo/retrofitoauth

Chapter 1 — Quick Start & Create a Sustainable REST Client 6

1 public class ServiceGenerator {

2

3 private static final String BASE_URL = "https://api.github.com/";

4

5 private static Retrofit.Builder builder =

6 new Retrofit.Builder()

7 .baseUrl(BASE_URL)

8 .addConverterFactory(GsonConverterFactory.create());

9

10 private static Retrofit retrofit = builder.build();

11

12 private static OkHttpClient.Builder httpClient =

13 new OkHttpClient.Builder();

14

15 public static <S> S createService(

16 Class<S> serviceClass) {

17 return retrofit.create(serviceClass);

18 }

19 }

The ServiceGenerator class uses Retrofit’s Retrofit builder to create a new REST client with the
givenAPI base url (BASE_URL). For example, GitHub’s API base url is located at https://api.github.com/
and you must update the provided example url with your own url to call your API instead of
GitHub’s.

The createServicemethod takes a serviceClass, which is the annotated interface for API requests,
as a parameter and creates a usable client from it. On the resulting client you’ll be able to execute
your network requests.

Why Is Everything Declared Static Within the ServiceGenerator?

You might wonder why we use static fields and methods within the ServiceGenerator class.
Actually, it has one simple reason: we want to use the same objects (OkHttpClient, Retrofit, …)
throughout the app to just open one socket connection that handles all the request and responses
including caching and many more. It’s common practice to just use one OkHttpClient instance to
reuse open socket connections. That means, we either need to inject the OkHttpClient to this class
via dependency injection or use a static field. As you can see, we chose to use the static field. And
because we use the OkHttpClient throughout this class, we need to make all fields and methods
static.

Additionally to speeding things up, we can save a little bit of valuable memory on mobile devices
when we don’t have to recreate the same objects over and over again.

Chapter 1 — Quick Start & Create a Sustainable REST Client 7

Using the ServiceGenerator

Have you seen Retrofit request code? It would look like this:

1 String API_BASE_URL = "https://api.github.com/";

2

3 OkHttpClient.Builder httpClient = new OkHttpClient.Builder();

4

5 Retrofit.Builder builder =

6 new Retrofit.Builder()

7 .baseUrl(API_BASE_URL)

8 .addConverterFactory(

9 GsonConverterFactory.create()

10);

11

12 Retrofit retrofit =

13 builder

14 .client(

15 httpClient.build()

16)

17 .build();

18

19 GitHubClient client = retrofit.create(GitHubClient.class);

For one request, this looks fine. But if you have dozens of network requests throughout your app,
it’ll be a nightmare to manage. With our ServiceGenerator, you only need a single line:

1 GitHubClient client = ServiceGenerator.createService(GitHubClient.class);

All of the preparations were moved into our ServiceGenerator.

Unfortunately, in most cases the ServiceGenerator cannot stay this simple. Thus, the code from
above only gives you a starting point. You’ll need to adapt it to your needs just like we’ll do in other
chapters. Nevertheless, in the next two sections we’ll explore a few possible changes.

Preparing Logging

One of the most common wishes for developers is to know what kind of data is actually being sent
and received by Retrofit. We have an entire chapter dedicated on logging with Retrofit, where you
can learn more.

Logging with Retrofit 2 is done by an interceptor called HttpLoggingInterceptor. You’ll need to add
an instance of this interceptor to the OkHttpClient. For example, you could solve it the following
way:

Chapter 1 — Quick Start & Create a Sustainable REST Client 8

1 public class ServiceGenerator {

2

3 private static final String BASE_URL = "https://api.github.com/";

4

5 private static Retrofit.Builder builder =

6 new Retrofit.Builder()

7 .baseUrl(BASE_URL)

8 .addConverterFactory(GsonConverterFactory.create());

9

10 private static Retrofit retrofit = builder.build();

11

12 private static HttpLoggingInterceptor logging =

13 new HttpLoggingInterceptor()

14 .setLevel(HttpLoggingInterceptor.Level.BODY);

15

16 private static OkHttpClient.Builder httpClient =

17 new OkHttpClient.Builder();

18

19 public static <S> S createService(

20 Class<S> serviceClass) {

21 if (!httpClient.interceptors().contains(logging)) {

22 httpClient.addInterceptor(logging);

23 builder.client(httpClient.build());

24 retrofit = builder.build();

25 }

26

27 return retrofit.create(serviceClass);

28 }

29 }

There are a few things you’ve to be aware of. Firstly, make sure you’re not accidentally adding the
interceptor multiple times! We check with httpClient.interceptors().contains(logging) if the
logging interceptor is already present. Secondly, make sure to not build the retrofit object on every
createService call. Otherwise the entire purpose of the ServiceGenerator is defeated.

Prepare Authentication

The requirements for authentication are a little bit different. You can learn more in our sections
on Basic Authentication, Token Authentication, OAuth, or even Hawk Authentication. While the
details are a little different for each authentication implementation, you probably will have to
change the ServiceGenerator. One of the changes is that you need to pass additional parameters to
createService to create a client.

Let’s look at an example for Hawk authentication:

Chapter 1 — Quick Start & Create a Sustainable REST Client 9

1 public class ServiceGenerator {

2

3 private static final String BASE_URL = "https://api.github.com/";

4

5 private static Retrofit.Builder builder =

6 new Retrofit.Builder()

7 .baseUrl(BASE_URL)

8 .addConverterFactory(GsonConverterFactory.create());

9

10 private static Retrofit retrofit = builder.build();

11

12 private static HttpLoggingInterceptor logging =

13 new HttpLoggingInterceptor()

14 .setLevel(HttpLoggingInterceptor.Level.BODY);

15

16 private static OkHttpClient.Builder httpClient =

17 new OkHttpClient.Builder();

18

19 public static <S> S createService(

20 Class<S> serviceClass, final HawkCredentials credentials) {

21 if (credentials != null) {

22 HawkAuthenticationInterceptor interceptor =

23 new HawkAuthenticationInterceptor(credentials);

24

25 if (!httpClient.interceptors().contains(interceptor)) {

26 httpClient.addInterceptor(interceptor);

27

28 builder.client(httpClient.build());

29 retrofit = builder.build();

30 }

31 }

32

33 return retrofit.create(serviceClass);

34 }

35 }

Our createService now has a second parameter for the HawkCredentials. If you pass a non-null
value, it’ll create the necessary Hawk authentication interceptor and add it to the Retrofit client. We
also need to rebuild Retrofit to apply our changes to the next request.

One more heads-up, you probably will see slightly different versions of the ServiceGenerator in
future chapters. Don’t be confused! We recommend that you also keep your ServiceGenerator slim
and specialized for the use case!

Chapter 1 — Quick Start & Create a Sustainable REST Client 10

In this section you’ve learned why centralizing your Retrofit client generation makes sense and is
recommended. You’ve seen one approach how you can implement it with the ServiceGenerator

class. Nevertheless, you probably will have to adjust it to your purposes.

Retrofit in Use

Ok, let’s use an example and define a REST client to request data from GitHub. First, we have to
create an interface and define the required methods.

GitHub Client

We’ll use the already defined GitHubService interface from above that has only one method
to request the repositories for a given user. Remember that we’re replacing the path parameter
placeholder ({user}) with the actual value of user when calling this method.

1 public interface GitHubService {

2 @GET("users/{user}/repos")

3 Call<List<GitHubRepo>> reposForUser(@Path("user") String user);

4 }

The interface above defines a GitHubRepo class. This class includes the required object properties
to map the response data. For illustration purposes, we just define the repository’s id and name

properties. GitHub’s API response for this endpoint has a lot more data, but is sufficient to show
you how things work.

1 public class GitHubRepo {

2 private int id;

3 private String name;

4

5 public GitHubRepo() {}

6

7 public int getId() {

8 return id;

9 }

10

11 public String getName() {

12 return name;

13 }

14 }

Chapter 1 — Quick Start & Create a Sustainable REST Client 11

With regard to the previously mentioned JSON mapping: the created GitHubService defines a
method named reposForUser with the return type List<GitHubRepo>. The List<GitHubRepo> is
wrapped into a Call. We’ll cover the Call within the next chapter. For now it’s ok to know that you
need wrap your response into a call object.

If an appropriate response converter is present, Retrofit ensures that the server’s JSON response gets
mapped correctly to Java objects (assuming that the JSON data matches the given Java class).

API Example Request

The snippet below illustrates the usage of the ServiceGenerator to instantiate your client, specifi-
cally the GitHubService, and the method call to get a user’s repositories via that client. This snippet
is a modified version of provided Retrofit github-client example⁷.

1 @Override

2 protected void onCreate(final Bundle savedInstanceState) {

3 super.onCreate(savedInstanceState);

4 setContentView(R.layout.activity_main);

5

6 // Change base url to GitHub API

7 ServiceGenerator.changeApiBaseUrl("https://api.github.com/");

8

9 // Create a simple REST adapter which points to GitHub’s API

10 GitHubService service =

11 ServiceGenerator.createService(GitHubService.class);

12

13 // Fetch and print a list of repositories for user “fs-opensource”

14 Call<List<GitHubRepo>> call = service.reposForUser("fs-opensource");

15 call.enqueue(new Callback<List<GitHubRepo>>() {

16 @Override

17 public void onResponse(Call<List<GitHubRepo>> call,

18 Response<List<GitHubRepo>> response) {

19 if (response.isSuccess()) {

20 for (GitHubRepo repo : response.body()) {

21 Log.d("Repo: ",

22 repo.getName() + " (ID: " + repo.getId() + ")");

23 }

24 } else {

25 Log.e("Request failed: ",

26 "Cannot request GitHub repositories");

27 }

28 }

⁷https://github.com/square/retrofit/blob/master/samples/src/main/java/com/example/retrofit/SimpleService.java

https://github.com/square/retrofit/blob/master/samples/src/main/java/com/example/retrofit/SimpleService.java
https://github.com/square/retrofit/blob/master/samples/src/main/java/com/example/retrofit/SimpleService.java

Chapter 1 — Quick Start & Create a Sustainable REST Client 12

29

30 @Override

31 public void onFailure(Call<List<GitHubRepo>> call, Throwable t) {

32 Log.e("Error fetching repos", t.getMessage());

33 }

34 });

35 }

You’ve got a first impression of Retrofit and know how to define an interface which represents your
API endpoints on client side. Besides that, you know how to create the API client with the help of
Retrofit’s Retrofit class and how to create a generic ServiceGenerator for static service creation.

We’ll update the ServiceGenerator in the following chapters within this book with examples for
authentication.

The next chapter shows you how to define and manipulate requests with Retrofit.

Chapter Summary

You’ve mastered your first steps to become a proficient developer using Retrofit. Within this chapter,
you got an overview on Retrofit and we walked through a practice related example. You should have
learned

• [x] What is Retrofit
• [x] Why use Retrofit
• [x] How to define a service interface representing an API endpoint
• [x] How to create an instance of the service interface
• [x] How to execute an API request

The next chapter is all about requests. We’ll guide you through the setup of Retrofit to receive and
send data with your request.

Outro
Our goal is to truly help you getting started and ultimately master Retrofit. We hope you learned
many new things throughout this book. We want you to save time while learning the basics
and details about Retrofit. The existing Retrofit documentation lacks various information and
this book should help you to gain extensive in-depth knowledge without loosing time searching
StackOverflow for correct answers.

We’re currently planning new chapters and sections on Retrofit that will be added within the
upcoming months. We feel the need for an extra chapter about reactive extensions on Android
using RxAndroid/RxJava. That is the current high priority item on our idea list. Besides that, we
plan to add content on the testing chapter.

Nonetheless, we’ll update the content of this book to later Retrofit versions as new releases become
available. However, it will take some time to update the code for breaking changes introduced to
Retrofit. Of course, we’ll let you about any book updates.

As a reader of this book, we’ll always reward your loyalty by publishing exclusive content and any
future update will —of course— be free for you!

For us it’s really important to exceed our reader’s expectations. In all our products and guides we
aim for a high quality. If you feel like a section or chapter in this book wasn’t clear or extensive
enough, please let us know at info@futurestud.io⁸. We always love hearing back from you, so if
you have anything to say, don’t hesitate to shoot us an email. We welcome any feedback, critic,
suggestions for new topics or whatever is currently on your Retrofit mind!

Don’t forget, we’re publishing new tutorials everyWednesday and Thursday, mainly about Android
andNode.js within the Future Studio University. Feel free to visit our homepage⁹ and the University¹⁰
:)

Finally, we’re also releasing YouTube videos in 4k resolution every Monday and Friday. We just
started publishing a 20-part series on Retrofit. Feel free to check out our Future Studio YouTube
channel¹¹.

Thanks a lot for reading this book! We truly appreciate your interest and hope you learned a lot
from reading this book! <3

— Marcus & Norman

⁸mailto:info@futurestud.io
⁹https://futurestud.io
¹⁰https://futurestud.io/blog
¹¹https://www.youtube.com/c/FutureStudio

mailto:info@futurestud.io
https://futurestud.io/
https://futurestud.io/blog
https://www.youtube.com/c/FutureStudio
https://www.youtube.com/c/FutureStudio
mailto:info@futurestud.io
https://futurestud.io/
https://futurestud.io/blog
https://www.youtube.com/c/FutureStudio

	Table of Contents
	Introduction
	What Topics Are Waiting for You?
	Who Is This Book For?
	The Source Code
	Retrofit Book for Version 1.9

	Chapter 1 — Quick Start & Create a Sustainable REST Client
	Retrofit Overview
	Why Use Retrofit?
	Retrofit vs. OkHttp
	Quick Start: Add Retrofit to Your Project
	Sustainable Android REST Client
	The ServiceGenerator
	Retrofit in Use

	Outro

