

Requirements-Skills erfolgreicher
Softwareteams
Praxisbuch zum iSAQB CPSA-Advanced Req4Arc

Peter Hruschka und Gernot Starke

Dieses Buch wird verkauft unter http://leanpub.com/requirements-skills

Diese Version wurde veröffentlicht am 2020-05-12

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Möglichkeiten des Publizierens. Lean Publishing bedeutet
die wiederholte Veröffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschließenden Vermarktung des Buches. Lean
Publishing unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen
wird.

© 2020 Peter Hruschka und Gernot Starke

http://leanpub.com/requirements-skills
http://leanpub.com/
http://leanpub.com/manifesto

Inhaltsverzeichnis

Als Entwicklungsteam im Stich gelassen? . i
Unsere Annahmen über Sie . ii
Über dieses Buch . ii
iSAQB und IREB . iii
Danksagung . iii

1. Einführung und Ziele . 1
Entwicklungsteams benötigen adäquate Anforderungen 1
Lernziele . 5

2. Clean Start . 6
Visionen und Ziele . 7
Stakeholder . 9
Scope . 10
Weiterer Input . 18
Bleiben Sie dran . 19
Lernziele . 20

3. Bis hierhin… . 22

Glossar . 23

Literatur . 29

Über uns . 34

Als Entwicklungsteam im Stich
gelassen?
Sie arbeiten engagiert und gerne als Teil eines Software-Entwicklungsteam an span-
nenden Systemen oder Produkten. Haben Sie öfter den Eindruck, Ihre Requirements-
Engineers, Product-Owner oder Produktmanager haben Sie bezüglich klarer An-
forderungen im Stich gelassen? Leiden Sie unter fehlenden, vagen oder unklaren
Anforderungen, ohne konsistente Prioritäten? Willkommen im Club der “Im Stich
Gelassenen”.

Für Software- und Systemarchitektur stellen „gute” Anforderungen und Randbedin-
gungen die Basis vieler Entscheidungen dar. Alle Beteiligten geben vor, das Prinzip
“garbage-in, garbage-out” zu kennen, aber von der Anforderungsseite scheinen sich
in der Praxis doch eher wenige dran zu halten.

Da braucht es konstruktive Abhilfe: Nehmen Sie als pragmatische Architekt(inn)en
das Heft selbst in die Hand! Nein, Sie wollen auf keinen Fall die Rolle von Product
Owner, Business-Analysten und Requirements-Engineers noch zusätzlich überneh-
men - sondern lediglich die architekturrelevanten Anforderungen so weit klären,
dass Sie auf dieser Basis robuste Architekturentscheidungen treffen können.

In diesem Buch behandeln wir die Grundsätze von “Anforderungsklärung” für
Softwarearchitektur. Wir starten bei grundlegendem Scoping und der Kontextab-
grenzung, kümmern uns um Ermittlung (architekturrelevanter) funktionaler Anfor-
derungen und tauchen dann in die kritischen Qualitätsziele und -anforderungen ab.
Sie bekommen zahlreiche methodische Tipps, gepaart mit Beispielen aus dem echten
Leben.

Als Entwicklungsteam im Stich gelassen? ii

Unsere Annahmen über Sie

Ohne Sie persönlich zu kennen, haben wir beim Schreiben dieses Buches einige
Annahmen über Sie getroffen:

• Sie arbeiten in der Softwareentwicklung,möglicherweise in einer Entwicklungs-
oder Architekturrolle. In dieser Rolle haben Sie schon mal unter schlechten
Anforderungen gelitten. Vermutlich waren Sie der klassischen Regel „Garbage-
in, Garbage-out“ ausgeliefert.

• Sie arbeiten als Product-Owner, Business-Analyst(in) oder im Requirements-
Engineering, und möchten gerne besser verstehen, welche Anforderungen Ihr
Entwicklungsteam genau benötigt, wann, in welcher Form, und in welchem
Detailgrad.

• Sie tragen Verantwortung für die Erstellung eines softwareintensiven Systems,
und möchten sicherstellen, dass Ihre fachlichen und technischen Stakeholder
(Fachseite und Entwicklungsteam) sich bezüglich Anforderungen bestens ver-
stehen.

Über dieses Buch

Wir Autoren, Peter und Gernot, arbeiten seit vielen Jahren als Consultants, Coaches
und Trainer in der praktischen Softwareentwicklung und -architektur. Allzu oft
mussten wir erleben, dass trotz großartiger, kreativer und kundiger Entwicklungs-
teams dabei Produkte entstanden, die leider nicht die wahren Bedürfnisse der
BenutzerInnen erfüllt haben.

Dieses Buch orientiert sich von Struktur und Inhalt am iSAQB Advanced-Modul
„Req4Arc“ (Requirements for Architects). Deswegen finden Sie in den Kapiteln
jeweils einen Extrakt der zum Kapitel gehörigen Lernziele dieses Lehrplans.

Sie können Requirements-Engineering auch in Trainings von uns lernen.

Peter bietet unter https://req42.de Seminare undConsulting an. Peter undGernot ver-
anstalten gemeinsam (als „dynamisches Duo“) interaktive Workshops zu Req4Arc,
siehe https://arc42.de

Als Entwicklungsteam im Stich gelassen? iii

iSAQB und IREB

Schon seit langer Zeit bietet das „International Requirements Engineering Board“
(IREB, siehe https://ireb.org) zahlreiche Trainings und Ausbildungen im Bereich
„Requirements Engineering“ an. Mehrere Zig-Tausend Personen arbeiten als IREB
zertifizierte Requirements-Engineers. Trotzdem kommt in manchen Entwicklungs-
projekten von diesem wichtigen Wissen und den zugehörigen praktischen Fähigkei-
ten zu wenig an. Daher haben wir uns entschlossen, das Thema Anforderungen von
Seiten der Softwarearchitektur aufzugreifen und es auch in das Portfolio des iSAQB
aufzunehmen.

Wenn Sie (professioneller) Requirements-Engineer werden möchten, dann führt an
der Ausbildung des IREB praktisch kein Weg vorbei: IREB deckt im Requirements
Engineering sowohl in der Breite wie auch in der Tiefe mehr ab, als wir das im
kompakten Req4Arc schaffen. Für viele Projekte wäre es jedoch schon ein Erfolg,
wenn wenigstens unsere Vorschläge aus diesem Buch Eingang in die Praxis finden
würden.

Danksagung

Wir danken allen Freiwilligen, die bei Planung und Entwicklung des Req4Arc-
Lehrplans aktiv mitgewirkt und sich an der Diskussion über die Inhalte beteiligt
haben, insbesondere Ali Akbarian, Wolfgang Fahl, Mahbouba Gharbi, Sebastian
Hirschmeier, Wolfgang Keller, Roger Rhoades, Dr. Michael Sperber, Prof. Hartmut
Schirmacher sowie Stefan Zörner. Danke auch an die übrigen Mitwirkenden der
Advanced-Level-Working-Group des iSAQB für eure moralische Unterstützung so-
wie an Sebastian Eberstaller für das Buch-Cover.

Peter: Danke an Monika – die schon wieder ein Buchprojekt durch moralischen
Beistand, kritische Fragen und Gewährung von Freizeit zum Schreiben unterstützt
hat. Danke an meine agileExperts Kollegen Markus Meuten und Dirk Fritsch für die
fruchtbringenden Diskussion beim Aufbau des req42.de Portals.

Gernot: Danke an meine Traumfrau Cheffe Uli, für unglaublich viel positive Energie
und Verständnis – und natürlich Deine perfekte Urlaubsplanung. Danke an meine
KollegInnen der INNOQ – von Euch lerne ich jeden Tag.

https://ireb.org

1. Einführung und Ziele
Softwarearchitekten und Entwicklungsteams leiden häufig unter schlechten bezie-
hungsweise fehlenden Anforderungen für ihre Arbeit. Dabei finden Entwicklungs-
teams für praktisch jedes Problem eine vernünftige Lösung – sofern sie wissen, was
genau das Problem liegt [Hruschka-19].

Gutes Requirements Engineering respektive Business-Analyse zählen nach wie vor
zu den wichtigen Erfolgsfaktoren für erfolgreiche Systeme und Produkte. Hier zeigen
wir Ihnen praktische Wege auf, wie Sie Ihre Anforderungen in den Griff bekommen.

Entwicklungsteams benötigen adäquate
Anforderungen

Unklare Anforderungen führen in der Entwicklung oftmals zu übermäßig flexiblen
und komplexen Lösungen [Starke&Hruschka-17]. Und wer nachfragt, ist feige –
oder?

Als Architekten und Entwickler sollten Sie eine der beiden Alternativen aus Abbil-
dung 1.1 wählen: Entweder Sie klären die schlechten Anforderungen selbst (Pfeil
2 im Bild), indem Sie das Gespräch mit den Stakeholdern suchen, die mit dem
Produkt arbeiten wollen oder für die es geschäftlichen Wert bringen soll. Alternativ
muss das Entwicklungsteam diejenigen Personen identifizieren, die eigentlich dafür
zuständig wären, klare Anforderungen zu liefern – und diese dann motivieren, ihren
Job ordentlich zu erledigen. (Pfeil 1 im Bild).

Für die Personen, die eigentlich zuständig für gute Anforderungen wären, gibt es
unterschiedliche Berufsbezeichnungen. Wir verwenden im Folgenden den Scrum-
Begriff „Product Owner“. Er drückt genau das aus, was wir wichtig finden: Jemand
fühlt sich als „Eigner“ für ein Produkt oder ein System verantwortlich. Dieser Rolle
obliegt es, das Produkt kurz- und langfristig erfolgreich zu machen. Sie subsummiert,
was früher einerseits Projektleitung (Entscheider) und andererseits Requirements

Einführung und Ziele 2

Engineers beziehungsweise Systemanalytiker oder Business-Analysten gemeinsam
erledigen mussten: Sowohl gute Anforderungen ausarbeiten und kommunizieren,
aber auch Entscheidungen darüber zu treffen, was früher oder später implementiert
werden sollte.

Abb. 1.1: Zwei Möglichkeiten für bessere Anforderungen

Unsere Präferenz in Abbildung 1.1 lautet recht eindeutig Alternative 1. Erzieht
Eure Product Owner! Im rauen Praxisalltag allerdings finden Sie immer wieder
die Notwendigkeit für Alternative 2, wenn Product Owner überfordert sind oder
schlichtweg fehlen.

Modernes Requirements Engineering …

… ist ein kooperativer, iterativer und inkrementeller Prozess. Alle am Produkt
Beteiligten arbeiten eng und vertrauensvoll zusammen. Sie sorgen dafür, dass in einer

Einführung und Ziele 3

Folge von Releases das Produkt immer besser wird. Die Zeiten, in denen wir über
Monate und Jahre dicke Pflichten- und Lastenhefte geschrieben haben, sind – zum
Glück – für die meisten von uns vorbei. Unser Ziel ist es heute, zunächst einen groben
Überblick über alles zu bekommen, was das Produkt leisten soll. Anschließendwollen
wir sehr schnell diejenigen Teile genauer spezifizieren und implementieren, die
frühen Geschäftswert (oder Risikoreduzierung) versprechen. Das gibt uns Zeit, die
weniger wichtigen Themen erst dann zu präzisieren, wenn sie aktuell werden.

Der „geordnete“ Backlog

AgileMethodenwie Scrum ersetzen die klassischen Requirements-Dokumente durch
einen ständig gepflegten und nach Prioritäten geordneten Product Backlog. Das
Wichtige und Dringende steht weiter oben und ist hoffentlich bis in die Details
verstanden und präzisiert. Das weniger Wichtige steht weiter unten und darf durch-
aus noch vage und unscharf formuliert sein. Job des Product Owners ist es, immer
genügend Details zu haben, die das Entwicklungsteam für die nächsten Iterationen
oder Releases benötigt (vgl. Abb. 1.2).

Der Product Backlog ist ein Arbeitsinstrument, um mit funktionalen Anforderungen
auf unterschiedlichem Präzisionsgrad arbeiten zu können. Für uns als Architekten
sind jedoch oft auch die geforderten Qualitäten extremwichtig. Aber Anforderungen
wie „Das System soll maximal zweimal pro Jahr ausfallen und im Falle eines Ausfalls
nach zehn Minuten wieder voll funktionsfähig sein“ bzw. „Das Produkt soll alle
Bestimmungen der DSGVO einhalten“ sind querschnittlicher Natur. Sie lassen sich
nicht einfach in so einen Backlog irgendwo einordnen. Wir werden Ihnen im Kapitel
4 noch viele Hinweise geben, wie Sie solche Aspekte erarbeiten können.

Viele spannende Themen

In den kommenden Kapiteln greifen wir jeweils einen anderen Aspekt für gutes
Requirements Engineering auf und geben Ihnen praktische und pragmatische Tipps,
wie Sie zu „just enough“ Requirements kommen.

Einführung und Ziele 4

Abb. 1.2: Product Backlog statt dicker Dokumente

Zunächst adressieren wir den „Clean
Start“: Die Tatsache, dass auch hoch-
gradig agile Projekte wenigstens ihre
Ziele explizit kennen sollten und wis-
sen, wer wozu etwas zu sagen hat.

Dann betrachten wir unterschiedliche
Möglichkeiten, funktionale Anforde-
rungen auf den Punkt zu bringen.
Gutes Verständnis Ihrer Business-
Prozesse und Ihrer Domänen-Objekte,
sowie der Trend zu „Specification by
Example“ stehen im Mittelpunkt.

Ausführlich widmen wir uns dem
Kernthema „Qualitätsanforderungen“.
Sie wissen ja, dass diese die Archi-
tektur stärker und nachhaltiger beein-
flussen können als die funktionalen
Anforderungen. Wir zeigen, wie man
auch im agilen Umfeld damit ver-
nünftig umgehen kann und widmen uns insbesondere auch den Themen Szenarien
und Behavior Driven Development (BDD).

Dann stellen wir dann das engere Zusammenspiel und die stärkere Verzahnung
zwischen Business und IT vor. Wir sprechen Methoden wie „Design Thinking“ oder
„Design Sprints“ und „Discover to deliver“ Gottesdiener-12 an.

Schließlich bliebt auch die leidige Frage des Toolings: Mit welchen Werkzeugen
erfassen und kommunizieren wir Anforderungen? Wir geben Ihnen in Kapitel 8
einen kleinen Marktüberblick, angefangen von Kärtchen an der Wand über Wikis
und Modellierungswerkzeuge bis zu spezialisierten Requirements-Tools.

Innerhalb der folgenden Kapitel vermitteln wir Ihnen als Architekt(inn)en und
Entwickler(innen) das passende Requirements-Know-how, so dass Sie trotz oftmals
schlechtem (Requirements-)Input Ihre Produkte zielsicher entwickeln können. Ne-
benbei erfahren Sie, wie Sie Ihre Product Owner oder Requirements-Verantwortlichen
durch gezieltere Nachfragen zu besseren Vorgaben bewegen können, damit Sie sich
noch mehr auf Ihre Kernaufgabe konzentrieren und spannende Produkte bauen

Einführung und Ziele 5

können, die dann exakt die Bedürfnisse Ihrer Stakeholder oder des Marktes treffen.

Requirements Engineering Skills aufbauen

Die gute Nachricht: modernes Requirements-Engineering können Sie lernen. Unter
anderemhat das International Requirements Engineering Board IREB (www.ireb.org¹)
ein Advanced Modul „RE@Agile“ freigegeben [IREB], das gutes Requirements-
Engineering in einer agilen Welt behandelt.

Unter www.req42.de² finden Sie dazu eine Reihe von Online-Goodies wie Blog-
Beiträge, ein Glossar zu den wichtigsten REQ4ARC-Begriffen, eine kommentierte
Literaturliste, sowie ausführlichere Beispiele zu den einzelnen Themen.

Lernziele

Wir haben dieses Buch anhand des iSAQB Lehrplans³ „Req4Arc“ (Requirements for
Software Architects) gegliedert.

In den folgenden Kapiteln stellen wir Ihnen an dieser Stelle jeweils die zugehören
Lernziele dieses Curriculum vor. Den kompletten Lehrplan finden Sie unter Req4Arc⁴

¹http://www.ireb.org
²https://www.req42.de
³Diesen Lehrplan haben wir, in aller Bescheidenheit, maßgeblich mitgestaltet.
⁴https://isaqb-org.github.io/curriculum-req4arc/

http://www.ireb.org/
https://www.req42.de/
https://isaqb-org.github.io/curriculum-req4arc/
http://www.ireb.org/
https://www.req42.de/
https://isaqb-org.github.io/curriculum-req4arc/

2. Clean Start
Ein bisschen Input für Ihre Arbeit dürfen Sie als Entwicklungsteam schon erwarten.
In dem zweiten Kapitel stellen wir Ihnen drei Zutaten vor, die Sie als Architekt(in)
von anderen auf jeden Fall einfordern sollten. Wir nennen das zusammenfassend
einen „Clean Start“ für Ihr Projekt oder Ihre Produktentwicklung. Für den Fall,
dass das nicht klappt, kennen Sie ja Ihr Schicksal: dann müssen Sie diese Teile der
Analysearbeit auch noch selbst in die Hand nehmen.

1. Jedes Unterfangen sollte eine klare Vision und/oder klare Ziele haben
2. Die „Mitspieler“ sollten bekannt sein (neudeutsch: Ihre Stakeholder)
3. Und Sie sollten Ihre Spielwiese kennen, die Gebiete, die Ihr Team beeinflussen

kann (neudeutsch: Ihren Scope)

Abb. 2.1: Drei Zutaten für den erfolgreichen Start

Die drei Aspekte beeinflussen einander gegenseitig: Je ehrgeiziger Ihre Ziele, desto
mehr Mitspieler; je größer der Scope, desto vielfältiger die Ziele. Es spielt daher keine
Rolle, in welcher Reihenfolge Sie als Architekt(in) das angehen oder einfordern – Sie
benötigen grundsätzlich alle drei.

Clean Start 7

Visionen und Ziele

Sie müssen damit leben, dass sich Anforderungen mit durchschnittlich 1 – 3% pro
Monat ändern. Wir definieren Vision oder Ziele als denjenigen Teil der Require-
ments, die sich in dem geplanten Zeithorizont möglich NICHT ändern sollen; also
als das, was wir in einer Iteration oder Entwicklungsphase wirklich anstreben.

Ein Projekt kann Ziele für unterschiedliche Zeithorizonte definieren, die aufeinander
abgestimmt werden sollten. Für große Systeme haben wir drei unterschiedliche
Zeithorizonte kennen gelernt:

• strategische Ziele gelten für teilweise für 3 – 5 Jahre
• Ziele für den Budgetzyklus von Firmen gelten üblicherweise 1 Jahr
• Release-Ziele geltenWochen bis wenige Monate (unter der Voraussetzung, dass
Sie innerhalb eines Jahres mehrere Releases liefern)

Abb. 2.2: Änderungstoleranz bis zum Release

Innerhalb der Iterationen, die zu einem Release führen, sollten Sie dafür sorgen,
dass die Anforderungen möglichst stabil bleiben. An den Übergängen zwischen
Iterationen gibt es jedoch Zeitfenster, in denen Sie Ziele, Inhalte und Umfang den
geänderten Wünschen oder Randbedingungen anpassen können. Tom de Marco &
Co nennen das in [DeMarco-07] „Zeit für Änderungen“. Die Toleranz gegenüber
Änderungen sollte einen Verlauf ähnlich Abbildung 2.2 nehmen: Je näher Sie einem
Release kommen, desto stabiler sollten Anforderungen bleiben.

Clean Start 8

Wie kommuniziert man Visionen und Ziele

Die klassische Art ist es Ziele einfach umgangssprachlich festzuhalten. Dafür hat sich
die Formel „PAM“ bewährt. Legen Sie pro Ziel Purpose, Advantage undMetrik fest.

• „Purpose“ beschreibt, was Sie erreichen wollen,
• Advantage motiviert, warum man dieses Ziel anstrebt, und die
• Metrik gibt vor, wie man Zielerreichung überprüfen möchte.

Ein Projekt sollte höchstens eine Handvoll solcher Ziele haben. Sorgen Sie also dafür,
dass Sie von Ihren Managern oder Analytikern 3 – 5 solche Aussagen (natürlich
abgestimmt mit den wichtigsten Stakeholdern) bekommen. Sie wollen definitiv ohne
Zielkonflikte starten können.

In der agilen Welt finden Sie einige weitere Spielarten von Zieldefinitionen. Eine
davon ist die Erstellung eines „Produktkoffers“ (vgl. Abbildung 2.3). Neben dem
Namen des Produkts und einem Logo, das allen Beteiligten das Gefühl vermittelt
„Das sind wir“, „Das ist unser Baby“ sollten darauf 3 – 5 Haupteigenschaften des
geplanten Produkts stehen, möglichst so formuliert, dass die Kunden oder Nutzer
das Produkt unbedingt haben wollen.

Abb. 2.3: Varianten der Zielfestlegung

Eine Alternative dazu sind die „News from the Future“. Schreiben Sie am Anfang
eines Projektes einen kurzen Zeitungsartikel, von dem Sie annehmen, dass er am Tag

Clean Start 9

nach der Freigabe auf der Titelseite Ihrer Lieblingszeitung erscheint. Darin wird –
vor Beginn der Entwicklung – festgehalten, was Sie als Lobeshymne auf Ihr Produkt
am Tag nach dem Release lesen wollen.

Alle drei Arten der Zieldefinition finden Sie in [IREB] ausführlicher beschrieben. Die
Notation spielt keine Rolle, aber als Architekt sollten Sie die Ziele des Business auf
jeden Fall kennen.

Stakeholder

Der zweite wesentlich Einflussfaktor, den Projektmanagement und Analytiker be-
reits geklärt haben sollen, bevor Sie zu arbeiten beginnen, sind die Stakeholder Ihres
Vorhabens. Wer hat welchen Einfluss? Wer kann wobei helfen oder hindern? Und
auf dieser Liste sollte viel mehr stehen als nur der Sponsor des Vorhabens und
Ihre potentiellen Kunden oder Nutzer. Die allerwichtigsten Ihrer Stakeholder haben
erheblichen Einfluss auf die Ziele und den Scope des Vorhabens.

Eine solche Liste zu erstellen, ist kein Hexenwerk. Setzen Sie eine kleine Gruppe
von Projektbeteiligten an einen Tisch und lassen Sie diese 15 Minuten brainstormen.
Dann haben Sie wahrscheinlich schon 20 bis 30 Stakeholder identifiziert. Nun
schicken Sie diese Liste an alle gefundenen Personen und fragen, wen Sie noch
vergessen haben. Mit diesem „Schneeballeffekt“ wird Ihre Stakeholderliste schnell
vollständig.

Warum ist die Kenntnis der Stakeholder so wichtig? Sowohl für Analyse wie
auch für Architektur und Entwicklung gilt: Vergessene Stakeholder sind vergessene
Requirements! Damit ist nicht gesagt, dass Sie alle Stakeholder, die Sie finden,
auch intensiv am Projekt beteiligten müssen. Wenn Sie alle wichtigen potentiellen
Interessenten kennen, dann können Sie aktiv entscheiden, wie viel oder wenig Sie
diese in das Projekt einbinden wollen oder müssen.

Bezüglich der Form gilt – ähnlich wie für die Ziele: Sie haben Freiheiten. Nehmen Sie
eine einfache Tabelle und führen Sie untern den Überschriften „Rolle“, „Ansprech-
partner“, „Einfluss“,… Ihre Stakeholder einfach linear auf. Oder zeichnen Sie eine
Stakeholder-Map, in der Sie Stakeholder und deren Abhängigkeiten bzw. Kommu-
nikationskanäle visualisieren. Hilfreich ist oft auch eine Stakeholder-Matrix (vgl.
Abbildung 2.4), um das Verhältnis zwischen Einfluss und Interesse auszudrücken.

Clean Start 10

Für Ihre Architekturarbeit kommen dann sicherlich noch viele weitere Stakeholder
hinzu: alle, die mit der Lösung zu tun haben bzw. Teilsysteme oder Technologien
zuliefern. Diese spielten eventuell für Ihr Management und die Analytiker noch
keine Rolle. Als Architekt(in) müssen Sie aber all diese Personen und Organisation
identifizieren.

Abb. 2.4: Stakeholder-Matrix

Weitere Tipps zum Umgang mit Stakeholdern haben wir online unter [Stakeholder]
oder in [Starke&Hruschka-16] für Sie zusammengestellt.

Scope

Der dritte Bestandteil eines „Clean Start“ wird oft in der Praxis ignoriert, obwohl
doch die Festlegung von Scope und Kontext den weiteren Verlauf des Projekts er-
heblich beeinflussen. Die Definitionen der beiden Begriffe sind einfach: Scope ist der
Bereich, den das Projekt aktiv gestalten kann – ihre Spielweise. ZumKontext gehören
alle Personen und IT-Systeme (evtl. auch Hardware-Sensorik und Aktuatorik), über
die Sie nicht alleine entscheiden können (vgl. Abbildung 2.5). Wenn Sie im Kontext
bzw. an den Schnittstellen zwischen Scope und Kontext etwas ändern wollen, dann
müssen Sie mit den Nachbarn darüber verhandeln. Wenn Sie nicht verhandeln

Clean Start 11

können oder dürfen, dann gelten die Festlegungen aus dem Kontext für Sie einfach
als nicht beeinflussbare Randbedingungen.

Abb. 2.5: Abgrenzung von Scope und Kontext

Die Scope-Festlegung sollte erfolgen, um „innen“ von „außen“ unterscheiden zu
können und die Schnittstellen zwischen „innen“ und „außen“ zu identifizieren. Eine
einfache Notation dafür ist das sogenannte Kontextdiagramm (vgl. [Hruschka-19]),
das nur aus drei Elementen besteht: Ihr System oder Produkt in derMitte, rundherum
alle Personen oder Systeme im Kontext, und allen Informationen, die aus dem
Kontext in den Scope fließen bzw. aus dem Scope in den Kontext – kurz gesagt:
die Ein- und Ausgaben Ihres Systems. Für Analytiker und Projektmanager reicht es
aus, früh im Projekt über die ein- und ausgehenden Daten Bescheid zu wissen. Sie
als Architekt(in) werden die Schnittstellen später noch sehr viel genauer betrachten
müssen (Technologie, Protokolle, Push- oder Pull, Mengengerüste, Vertrauen in die
Schnittstelle, …). Als Einstieg gilt aber: Schnittstelle erkannt, Gefahr halbwegs ge-
bannt. Vergessene Schnittstellen gehören zu den Dingen, die Ihnen als Architekt(in)
das Leben erschweren.

Clean Start 12

Erfahrungsgemäß tun sich viele Projekte und/oder Teams schwer damit, diese
einfache Abgrenzung präzise vorzunehmen: Was gehört in unseren Scope und mit
wem müssen wir verhandeln? Deshalb wollen wir im folgenden genauer auf die
Feinheiten der Scope-Festlegung eingehen.

Produktscope und Projektscope

Wenn man von Produkt oder System spricht, ist meist ein IT-Produkt oder ein IT-
System gemeint. Sollte Ihre Aufgaben also darin bestehen, ein (einziges) neues IT-
System zu schaffen, so sind Produktscope und Projektscope identisch. In der Praxis
betreffen Projekte manchmal auchmehrere vorhandene IT-Systeme. Möglicherweise
müssen Sie ein System neu entwickeln oder kräftig modifizieren, und im Rahmen
dessen auch notwendige Anpassungen anderer IT-Systeme gleich mit erledigen
(siehe Abbildung 2.6).

Wie Sie an der Abbildung 2.6 erkennen müssen Sie sowohl die Schnittstellen des
neuen (oder zu modifizierenden) Systems zu den Benutzern und zu IT-System 2
festlegen, als auch die Leistungen, Funktionalität und Schnittstellen innerhalb der
IT-Systeme 1, 3 und 4 identifizieren, die angepasst werden müssen.

Sollten Sie als Projektverantwortlicher keine Entscheidungsgewalt über die notwen-
digen Änderungen an den IT-Systemen 1, 3 und 4 haben, so ist Ihr Projekterfolg vom
guten Willen dieser drei Nachbarsysteme abhängig: Sie brauchen dort Änderungen,
dürfen die aber nicht selbst ausführen oder anordnen, sondern müssen mit den
Verantwortlichen dieser Systeme verhandeln.

Nutzen Sie in einer für die Scopefestlegung Ihres Projektes eine visuelle Gesamtüber-
sicht („Kontextdiagramm“) des neuen oder zu modifizierenden Systems, zusammen
mit den Nachbarsystemen 1 bis 4. Wir mögen dazu Komponentendiagramme mit
einer kurzen (tabellarischen) Erklärung der Funktionalitäten und Schnittstellen. Das
erleichtert die Diskussion über alle notwendigen Änderungen und Anpassungen.

Clean Start 13

Abb. 2.6: Projektscope vs. Produktscope

Notationen für Scope und Kontext

Requirements-Analysten können Schnittstellen einfach vorgeben – in der Ent-
wicklung bereiten diese den Entwicklungsteams möglicherweise viel Aufwand und
beinhalten hohe Risiken.

Zur Festlegung der Grenze zwischen Scope und Kontext reicht anfangs die Betrach-
tung der ein- und ausgehenden Daten Ihres Systems. Die klassische Darstellungswei-
se dafür ist ein sogenanntes „fachliches Kontextdiagramm“, [Hruschka-19], wie Sie es
als Beispiel für einen Bordcomputer eines PKWs in Abbildung 2.7 sehen. Das System
soll den Fahrer mit typischen Informationen wie Durchschnittsgeschwindigkeit,
Treibstoffverbrauch, Außentem-peratur, etc. versorgen, wie auch Navigation ermög-
lichen, einen Tempomaten zur Verfügung stellen, Wartungsintervalle überwachen
und den Fahrer über Radiosender und Telefonanrufe informieren.

Clean Start 14

Sie sollten in einem Kontextdiagramm ALLE Nachbarsysteme identifizieren und für
jedes davon die Ein- und Ausgaben benennen. Eine Aufzählung von Funktionen
(oder Features und Epics) genügt meist nicht, um den Scope des Produktes festzule-
gen!

Abb. 2.7: Kontextdiagramm mit Ein- und Ausgaben des Systems

Falls Sie übrigens Diagramme nicht mögen, so schlägt [Hruschka-19] eine ganze
Menge an alternativen Notationen dafür vor, im einfachsten Fall eine Tabellenmit
allen Nachbarsystemen und deren Schnittstellen.

Wichtig ist, dass Sie

1. Ihr System klar identifiziert haben,
2. alle Nachbarn kennen und
3. die komplette Ein- und Ausgabe auf fachlicher Ebene verstanden haben.

Clean Start 15

Entwicklung braucht (Schnittstellen-)Details

Als Ergebnis einer Anforderungsanalyse genügt es, Ein- und Ausgaben von und
zu den Nachbarn zu erkennen. Diese Schnittstellen explizit identifiziert zu haben,
bedeutet mehr als die halbe Miete.

Bei Entwurf und Entwicklung des Systems müssen Sie bei jeder dieser externen
Schnittstellen alle notwendigen Details entweder hinterfragen oder entscheiden.
[Starke&Hruschka-16] gibt dazu viele pragmatische Hinweise. Sie müssen z.B. festle-
gen, wer der aktive Partner ist (Push oder Pull), wie die Handshakes oder Protokolle
aussehen, die an der Schnittstelle einzuhalten sind, welche zeitlichen, technischen
oder organisatorischen Randbedingungen einzuhalten sind, etc.

Im arc42-Termplate [arc42] haben wir Abschnitt 3 („Kontextabgrenzung“) für diese
wichtigen Informationen vorgesehen. Abschnitt 3.1 enthält das fachliche Kontext-
diagramm. Falls nötig können Sie in Abschnitt 3.2. noch das technische Kontextdia-
gramm aufnehmen, das die technischen Kanäle zeigt, über die fachliche Informatio-
nen fließen. Im obigen Beispiel würde man für das Fahrerinterface vielleicht sowohl
Spracheingabe wie auch Tastatureingabe technisch zulassen. Viele der anderen
Schnittstellen laufen vielleicht über den CAN-Bus. arc42-Abschnitt 3.2 enthält dann
auch ein Mapping, welcher fachliche Input/Output über welchen technischen Kanal
läuft.

Alternativ können Sie Details von Schnittstellen auch als technische oder quer-
schnittliche Konzepte in Abschnitt 8 des Templates beschreiben – falls Sie beispiels-
weise viele Schnittstellen nach demselben Schema behandeln möchten.

Falls Sie auf die grafische Variante stehen: Die UML bietet Ihnen viele Möglichkeiten,
Schnittstellen genauer festzulegen. Abbildung 2.8 zeigt zu obigem Beispiel jetzt die
Verwendung von Ball- und Socket-Notation, bzw. die Einführung von Ports.

Wir Autoren vertreten diesbezüglich unterschiedliche Meinungen: Peter mag UML,
Gernot eher die text- oder tabellenorientierte Beschreibung von Schnittstellen. Beides
funktioniert.

Clean Start 16

Abb. 2.8: Notation für Schnittstellendetails

Abbildung 2.8 zeigt noch eine Empfehlung: Wenn ein Produkt viele Schnittstellen
aufweist, könnten Sie diese als Analyseergebnis bündeln. Abbildung 2.8 zeigt nur
zwei Sensoren (Temp- und Durchfluss). Stellen Sie sich aber vor, dass Sie mehrere
Dutzend Sensoren als Schnittstellen haben. Dann lohnt es sich, anfänglich in der
Analyse nur über ein Sensorinterface zu sprechen (dargestellt als Sensor-Port) und
das erst in Laufe der Entwicklung detailliert aufzuspalten. Als weiteres Beispiel.
Nehmen Sie im Telekommunikationsbereich die Schnittstellen zu Roaming Partnern.
Das sind vielleicht einige Hunderte, die teilweise ganz unterschiedliche Protokolle
nutzen oder unterschiedliche Formate liefern. Trotzdem kann man sie anfangs
zu einem „Roaming-Partner-Interface“ zusammenfassen. Wie gesagt: Schnittstelle
erkannt, Gefahr halbwegs gebannt.

Damit sind Sie in den weitaus meisten Fällen mit Scope und Kontext fertig. Ein i-
Tüpfelchen aber hätten wir noch für Sie.

Business- und Produktscope

Gründliche Requirements-Engineers unterscheiden zwischen Business-Scope und
Produktscope: Der Business-Scope ist der Bereich Ihres Unternehmens oder Orga-

Clean Start 17

nisation, in dem Sie im Zuge Ihrer Software- oder Systementwicklung Entschei-
dungen treffen oder vorschlagen dürfen, also beispielsweise Ihr Fachbereich oder
Ihre Abteilung. Normalerweise ist der Business-Scope um einiges größer als der
Produktscope, weil Sie vielleicht nicht alles, was in Ihren Entscheidungsbereich fällt,
auch automatisieren wollen. Sie können also in Zusammenarbeit von Analytikern
und Architekten festlegen, welche Teile von Geschäftsprozessen automatisiert und
welche Schritte vielleicht noch längere Zeit manuell durchgeführt werden sollen.

Abb. 2.9: Business- und Produktscope

Abbildung 2.9 zeigt eine solche Situation. „User 1“ und „User 2a“, sowie „IT-
System 1“ befinden sich außerhalb Ihres Business-Scopes. Dort haben Sie keinen
direkten Einfluss. „User 2b“ und „User 3“, sowie „IT-System 2“ gehören in Ihren
Business-Scope. Daher sollte es relativ leicht sein, diese bei der Neuentwicklung eines
Produktes zu berücksichtigen. „IT-System n“ gehört Ihnen nicht alleine, sondern es
sind auch andere Verantwortliche im Business-Kontext mit im Spiel.

Clean Start 18

Für „User 2a“ können Sie zum Beispiel entscheiden, dass Anfragen zunächst an „User
2b“ in Ihrer Abteilung gehen und dieser mit dem neuen Produkt diesen Request
erfüllt. Später erhält „User 2a“ vielleicht direkter Zugriff zu dem neuen System.

Unsere Empfehlung ist es, in der Anforderungsanalyse die Scheuklappen grundsätz-
lich etwas weiter aufzumachen und an die Schnittstellen Ihres Business zu denken,
statt an die möglicherweise eingeschränkten Schnittstellen eines Produktes.

Sie sehen schon: Scope und Kontextabgrenzung sind in vielen Fällen nicht trivial.
Und wenn Sie diesen Input nicht von Requirements-Engineering oder Business-
Analysts bekommen, dann ist das ein ganz wichtiger, früher Schritt bei Ihrer
Architekturarbeit.

Empfehlungen

Nehmen Sie die Festlegung von Scope und Kontext ernst. Im Entwicklungsteam
müssen Sie manchmal „nacharbeiten“, weil die Anforderungsanalyse oder Ihre
Product-Owner Sie diesbezüglich im Stich gelassen haben.

Nutzen Sie bereits frühzeitig in Ihrem Projekt oder Vorhaben ein Kontextdia-
gramm als Kommunikationshilfsmittel, um Feedback Ihrer Stakeholder über die
wichtigen Außenschnittstellen ihres Systems einzuholen – lange bevor Sie interne
Entscheidungen treffen. Legen Sie besonderes Augenmerk auf volatile oder kritische
Schnittstellen, die sich oft und ohne ihr Zutun ändern können.

Weiterer Input

Mit den Klärungen von Zielen, Stakeholdern und Scope haben Sie die wichtigsten
Voraussetzungen für einen Clean Start erfüllt. Schön wäre es auch, wenn Sie einen
groben Überblick über die gewünschte Funktionalität erhalten würden (z.B. in Form
von Epics oder Feature-Listen), wenn man Ihnen die allerwichtigsten Qualitätsziele
für das Produkt verrät (z.B. die Top 3 Qualitätsanforderungen). Sicherlich sollten
Sie auch über die wichtigsten Randbedingungen klargestellt werden. Das T-Stich-
Modelle in Abbildung 2.10 fasst das grafisch zusammen. Wenn der Aufwand für
die komplette Klärung der Requirements 5% beträgt, dann reichen am Anfang 1 –
2 % davon aus, um volle Breite vor Tiefe zu eruieren. Parallel zu dieser Arbeit der

Clean Start 19

Analytiker können Sie als Architekt(in) ja schon wichtige Eckpfeiler der Architektur
festlegen (möglichst mit Ihrem Team zusammen) und auch schon erste Prototypen
oder Minimal Viable Products (MVPs) implementieren. Ausgestattet mit demWissen
bohren Sie dann iterativ da in die Tiefe, wo es sich am ehesten lohnt.

Abb. 2.10: Das T-Modell mit den wichtigsten Artefakten

Bleiben Sie dran

Lassen Sie uns zusammenfassend unsere Empfehlung wiederholen: Bringen Sie
Ihrem Management, den Product Ownern oder Business Analysts bei, dass sowohl
Ziele, Scope und Stakeholder auf jeden Fall in deren Aufgabenbereich fallen. Viel-
leicht können diese Stakeholder Ihnen zusätzlich noch einen groben Überblick über
die gewünschte Funktionalität des Systems, die dringendsten Erwartungshaltungen

Clean Start 20

bezüglich Qualität sowie die härtesten Randbedingungen liefern. Dann haben Sie in
Ihrer Rolle als Architekten einen entspannten Arbeitsbeginn. In diesem Sinne: Keep
educating your product owners and business analysts!

Lernziele

Der [Req4Arc] Lehrplan sieht zu diesem Themenbereich folgende Lernziele vor:

LZ 2-1: Verstehen der Notwendigkeit einiger (begrenzter) Vorleistungen

• Verstehen, dass selbst bei iterativer Entwicklung einige Vorleistungen erforder-
lich sind.

• Wissen, dass explizite Kenntnisse über Visionen, Ziele und relevante Stakehol-
der erforderlich sind, damit das Entwicklungsteam fundierte Entscheidungen
über die Systemarchitektur treffen kann.

• Verstehen, dass eine Vereinbarung über Umfang und Kontext erforderlich ist,
insbesondere über die Schnittstellen zwischen Umfang und Kontext (d.h. die
externen Schnittstellen des Produkts).

LZ 2-2: Verständnis für die Notwendigkeit von (high-level) Visionen und
Geschäftszielen

• Verstehen, dass Visionen oder Geschäftsziele Ihre höchsten Anforderungen
sind, d.h. die Anforderungen, die (hoffentlich) während eines Projekts nicht
geändert werden.

• Verstehen, dass Visionen und Ziele quantifiziert und messbar gemacht werden
sollten, um den Erfolg in Bezug auf den Geschäftswert überprüfen zu können.

LZ 2-3: Verschiedene Möglichkeiten und Notationen, um Visionen und

Unternehmensziele auszudrücken

• verschiedeneMöglichkeiten kennen, umVision und Ziele zu definieren (explizi-
te Zielerklärungen, Wertversprechen für verschiedene Stakeholder, Visionsfeld,
“Neuigkeiten aus der Zukunft”)

• Mnemotechnik für Visionen oder Geschäftszielsetzungen kennen (SMART,
PAM)

Clean Start 21

LZ 2-4: Die Bedeutung der verschiedenen Stakeholder und ihr Einfluss auf
das Produkt oder System

• Wissen, dass die Stakeholder die wichtigsten Quellen für Anforderungen sind.
• Verstehen, dass fehlende Stakeholder fehlende Anforderungen bedeuten kön-
nen.

• Verstehen, dass Architekten sich bewusst sein sollten, dass die Stakeholder auf
spezifische, angemessene Weise angesprochen werden müssen.

LZ 2-5: Unterschiedliche Bedürfnisse und Werte der verschiedenen
Stakeholder (“Value Propositions”)

• Verstehen, dass verschiedene Interessengruppen unterschiedliche Bedürfnisse
haben und unterschiedliche Meinungen darüber haben können, was an einem
Produkt wertvoll ist.

• Wissen, dass eine priorisierte Stakeholderliste hilft, Anforderungen nach Ge-
schäftswert zu priorisieren

• Wissen, dass Architekten mit Zielkonflikten zwischen den Bedürfnissen der
Stakeholder umgehen müssen

LZ 2-6: Umfang und Abgrenzung vom Systemkontext

• Unterscheidung zwischen Geschäfts- und Produktumfang kennen
• Wissen über die Bedeutung externer Schnittstellen
• Unterscheiden zwischen verschiedenen Ebenen der Externalität (extern zum
System, extern zur Geschäftseinheit, extern zum Unternehmen)

• verschiedene Möglichkeiten und Notationen kennen, um Umfang und Kontext
auszudrücken, z.B. Kontextdiagramme

3. Bis hierhin…
… reicht unser kleiner Auszug. Auf den folgenden Seiten finden Sie noch unser
Glossar sowie die Literatur- und Quellenangaben.

Im gesamten Buch folgen an dieser Stelle noch einige spannende und hilfreiche
Kapitel:

1. Umgang mit funktionalen Anforderungen
2. Qualitätsanforderungen
3. Behavior-Driven Development (BDD)
4. Priorisierung von Anforderungen
5. Vorgehen
6. Werkzeuge
7. Ausblick

Glossar
Affinitätsschätzung

Schätztechnik agiler Teams, um schnell eine große Anzahl von Anforderungen
(etwa: User Stories) zu schätzen. Dabei ordnet das Team die Stories in aufstei-
gender Reihenfolge auf einer horizontalen Skala an.

Agile Requirements Engineering
(adaptiert vom IREB): ein kooperativer, iterativer und inkrementeller Ansatz
mit vier Zielen:

1. Kenntnis der relevanten Anforderungen auf einem angemessenen Detail-
lierungsgrad (zu jedem Zeitpunkt der Systementwicklung),

2. Erzielung einer ausreichenden Übereinstimmung der relevanten Stakehol-
der über die Anforderungen,

3. Erfassung (und Dokumentation) der Anforderungen entsprechend den
Vorschriften der Organisation,

4. Durchführung aller anforderungsbezogenen Aktivitäten nach den Prinzi-
pien des agilen Manifests.

Aktivitätsdiagramm
Ein Ausdrucksmittel der UML (Unified Modeling Language) zur grafischen
Darstellung von Prozessschritten. Im Gegensatz zu →Datenflussdiagrammen
konzentrieren sich Aktivitätsdiagramme auf die Ablaufreihenfolge von Schrit-
ten.

Akzeptanzkriterien
(adaptiert vom IREB): Eine Reihe von Bedingungen (typischerweise mit ei-
ner Anforderung verbunden), die von jeder Implementierung erfüllt werden
müssen. Solche Bedingungen können z.B. die erwarteten Ergebnisse für die
Eingangsdaten der Stichprobe oder die erwartete Geschwindigkeit oder das zu
erreichende Volumen sein.

ASR (Architecturally Significant Requirements)
Architekturrelevante Anforderungen sind die Teilmenge der Anforderungen,
die einen starken Einfluss auf architektonische Entscheidungen haben (jene

Glossar 24

Anforderungen, die insbesondere architektonische Entscheidungen prägen oder
beeinflussen).

ATDD
Acceptance Test Driven Development

BDD
(Behavior Driven Development) Ein agiler Software-entwicklungsprozess, der
die Zusammenarbeit zwischen Entwicklern, der Qualitätssicherung und nicht-
technischen oder geschäftlichen Teilnehmern eines Softwareprojekts fördert.
Er ermutigt Teams, Gespräche und konkrete Beispiele zu nutzen, um ein
gemeinsames Verständnis darüber zu formalisieren, wie sich die Anwendung
verhalten sollte, was zu ausführbaren Spezifikationen führt, z.B. in der Syntax
von → Gherkin.

Bounded Context
In Domain Driven Design (DDD) ein Begriff für einen inhaltlich stark zu-
sammenhängenden Bereich des Systems, der wenig Schnittstellen zu anderen
solchen Bereichen aufweist und daher relativ unabhängig von den anderen
implementiert werden kann.

BPMN (Business Process Model & Notation)
Ein von der OMG (Object Management Group) standardisierte Notation zur
Beschreibung von Geschäftsprozessen.

Cost-of-Delay (Kosten der Verzögerung)
Eine Schätzgröße, die ausdrückt, wie viel Wert verloren geht, wenn ein Produkt
zu spät geliefert wird. Anders ausgedrückt: Was könnten wir einnehmen, wenn
das Produkt früher am Markt wäre.

Datenflussdiagramm
Ein Ausdrucksmittel aus der Strukturierten Analyse zur grafischen Darstellung
von Prozessabläufen. Im Gegensatz zu→Aktivitätsdiagrammen konzentrieren
sich Datenflussdiagramme auf die Ein- und Ausgaben der einzelnen Prozess-
schritte, den Fluss der Daten.

Definition of Ready
(DoR) (adaptiert vom IREB): eine Reihe von Kriterien, die eine Anforderung
erfüllen muss, bevor sie in einer kommende n Iteration implementiert werden.

Domain-Driven Design (DDD)
Eine Methode zur Modellierung komplexer Systeme, die sich maßgeblich auf
die umzusetzende Fachlichkeiten der Anwendungsdomäne stützt.

Glossar 25

Epic
(adaptiert vom IREB): Eine abstrakte Beschreibung eines Stakeholderbedarfs,
der in dem zu entwickelnden Produkt berücksichtigt werden muss. Epics sind
typischerweise größer als das, was in einer einzigen Iteration umgesetzt werden
kann.

Feature
Die Spezifikation eines Service, das einen Wunsch oder Bedarf eines Stake-
holders erfüllt. Jedes Feature sollte eine Aussage über den Nutzen für den
Stakeholder, sowie ein Akzeptanzkriterien enthalten.

Fibonacci-Schätzung
→Planning-Poker verwendet (leicht modifizierte) Fibonacci-Zahlen (0, ½, 1,
2, 3, 5, 8, 13, 20, 40, 100) zur relativen Schätzung der Schwierigkeit von
Anforderungen. Bedeutung: 0: Aufgabe bereits erledigt, 100: hoch komplexe
Aufgabe, noch keine genauere Schätzung möglich. ½: sehr kleine Aufgabe, 1-5:
eher kleinere, 8 und 13mittlere Aufgaben. 13 oft für Aufgaben, die noch in einen
einzigen Sprint passen. 20 und 40: zu umfangreich, brauchen noch Detaillierung
der Anforderungen.

Funktionale Anforderung
Eine Anforderung bezüglich eines Ergebnisses, das durch eine Funktion des
Systems (oder einer Komponente oder eines Dienstes) bereitgestellt werden soll.

Geschäftsziel (Business Goal)
Ein gewünschter Zustand (den ein Stakeholder erreichen möchte). Geschäfts-
ziele beschreiben Absichten von Stakeholdern. Sie können zueinander in Kon-
flikt stehen.

Gherkin
Eine domänenspezifische Sprache zum Schreiben von →BDD Szenarien in
→GWT-Syntax.

GWT-Syntax
Given, When, Then: Eine halbformale Notation zum Schreiben von Testfällen
oder Verhaltensspezifikationen. Erfunden von Dan North als Teil von →BDD
(behavior-driven development).

INVEST
Ein Akronym für die Eigenschaften eine guten →(User) Story. Sie sollte
unabhängig (I = independent), verhandelbar (N = negotiable), wertvoll (V =
valuable), schätzbar (E = estimable), klein genug für die Umsetzung in einem
Sprint (S = small) und testbar (T = testable) sein.

Glossar 26

IREB
International Requirements Engineering Board. Siehe https://ireb.org

iSAQB
International Software Architecture Qualification Board. Siehe https://isaqb.
org

MoSCoW-Priorisierung
Ein Akronym für vier Prioritätsstufen von Anforderungen: Must have, Should
have, Could have, Won’t Have. Die “o” sind nur Füllbuchstaben, um das Wort
aussprechbar zu machen.

Nichtfunktionale Anforderung (NFA)
Ein Sammelbegriff für eine → Qualitätsanforderungen oder eine → Randbe-
dingung.

PAM
Ein Akronym für Purpose, Advantage, Metric, das dabei hilft, sich auf diese
drei wichtigen Aspekte beim Formulieren von Geschäftszielen oder Visionen
zu konzentrieren.

Planning Poker
Ein agiles Schätzverfahren,mit demMitglieder des Software-Entwicklungsteam
die Größe von vorgestellten Epics, Features oder Stories schätzt. Vgl. → Wall-
Estimation zur Beschleunigung der Schätzungen.

Product Owner
In Scrum die Rolle, die im Rahmen einer Produktentwicklung für die Erhebung,
Verwaltung, Verfeinerung und Priorisierung von Anforderungen zuständig ist.
Der Product Owner prüft auch am Ende einer Iteration die Erreichung der
Anforderungen.

Qualitätsanforderung (Quality Requirement)
(nach IREB) Eine Anforderung, die sich auf eine Qualitätseigenschaft bezieht,
die nicht durch funktionale Anforderungen abgedeckt ist.

Randbedingung (Constraint)
Eine Anforderung, die den Lösungsraum mehr einschränkt als es für die Er-
reichung von funktionalen Anforderungen oder Qualitätsanforderungen nötig
wäre.

Scenario
Eine Beschreibung einer möglichen Folge von Ereignissen, die zu einem ge-
wünschten (oder nicht gewünschten) Ergebnis führen.\ Alternativ: eine geord-

https://ireb.org
https://isaqb.org
https://isaqb.org

Glossar 27

nete Folge von Interaktionen zwischen Partnern, insbesondere zwischen einem
System und externen Akteuren.

Scope
Diejenigen Dinge, die Sie bei der Entwicklung eines Systems formen, gestalten
und entscheiden können.

SLA (Service Level Agreement)
Ein Rahmenvertrag zwischen Auftraggebern und Dienstleistern für wiederkeh-
rende Dienstleistungen.

SMART
Ein Akronym (Specific, Measurable, Achievable, Realistic, and Timely), das
Hilfestellung bei der Formulierung von Geschäftszielen gibt.

Stakeholders
Eine Person oder Organisation, die einen direkten oder indirekten Einfluss auf
die Anforderungen und/oder die Entwicklung eines Systems hat. Indirekter
Einfluss umfasst auch Situationen, in denen eine Person oder Organisation
durch das System beeinflusst wird.

Story Points
In agilen Schätzmethoden eine (fiktive) Einheit zur Beschreibung der Größe
einer User Story.

(User) Story
Eine Beschreibung eines Bedarfs aus der Sicht eines Benutzers zusammen mit
dem erwarteten Nutzen, wenn dieser Bedarf erfüllt ist. User Stories werden
typischerweise in natürlicher Sprache geschrieben, oft unter Verwendung einer
vorgegebenen Satzvorlage.

Use Case (deutsch: Anwendungsfall)
Eine Beschreibung der möglichen Interaktionen zwischen den Akteuren und
einem System, die, wenn sie ausgeführt werden, einen Mehrwert bieten.

Use Cases spezifizieren ein System aus der Perspektive eines Benutzers (oder
eines anderen externen Akteurs): Jeder Use Case beschreibt einige Funktionen,
die das System für die am Use Case beteiligten Akteure bereitstellen muss.

Vision
Die Vision ist eine Beschreibung des gewünschten zukünftigen Zustands. Sie
spiegelt die Bedürfnisse wesentlicher Stakeholder wider, sowie die Funktionen,
die zur Erfüllung dieser Bedürfnisse notwendig sind.

Wall Estimation
Im Gegensatz zu → Planning Poker ein beschleunigtes Schätzverfahren, bei

Glossar 28

dem eine Skala von Größenordnungen (z.B. Fibonacci, T-Shirt-Sizes) an die
Wand gehängt wird und das Team rasch alle Epics oder Stories in den ent-
sprechenden Spalten darunter anordnet statt jeweils einzelne Backlog-Items zu
schätzen.

WSJF (Weighted Shortest Job First)
Vorschlag zur Priorisierung von Anforderungen aus dem SAFE Framework:
Gewichteter kürzester Job zuerst. Die Gewichtung berechnet sich aus →Cost
of Delay.

Literatur
Adzic-11: Goyko Adzic: Specification by Example. Manning, 2011. Mehr Infos: https:
//gojko.net/books/specification-by-example/

Adzic-12: Gojko Adzic, Impact Mapping. https://www.impactmapping.org/

Adzic-14: Goyko Adzic: 50 Quick Ideas to Improve Your User Stories.

arc42: Das freie Portal für Softwarearchitktur: https://arc42.de und https://arc42.org

arc42-Quality: Frei verfügbare Beispiele für Qualitätsanforderungen: https://github.
com/arc42/quality-requirements/

ATAM: Rick Kazman: ATAM Method for Architecture Evaluation, (Architecture
Tradeoff Analysis Method), SEI Technical Report, https://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=5177

Banfield-16: Richart Banfield: Design sprint: a practical guidebook for building great
digital products, O’Reilly, 2016

Brandolini: Alberto Brandolini: Event Storming. https://leanpub.com/introducing_
eventstorming. Schöne Darstellung der interaktiven Workshops zum besseren Ver-
stehen komplexer Domänen.

Clegg-94: Dai Clegg and Richard Barker (1994). Case Method Fast-Track: A RAD
Approach. Addison-Wesley.

Cohn-04: Mike Cohn: User Stories Applied, Addison Wesley, 2004

Crunch: Knowledge Crunching, erklärt in Eric Evans: Domain-Driven Design –
Tackling Complexity in the Heart of Software. Addison-Wesley, 2003.

Cucumber: Das vermutlich am weitesten verbreitete Toolset für BDD. Implementie-
rungen für viele Programmiersprachen verfügbar. https://cucumber.io/

DeMarco-07: Tom DeMarco, et. al: Adrenalin Junkies und Formular Zombies,

https://gojko.net/books/specification-by-example/
https://gojko.net/books/specification-by-example/
https://www.impactmapping.org/
https://arc42.de
https://arc42.org
https://github.com/arc42/quality-requirements/
https://github.com/arc42/quality-requirements/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://leanpub.com/introducing_eventstorming
https://leanpub.com/introducing_eventstorming
https://cucumber.io/

Literatur 30

Pattern 78, Hanser-Verlag, 2007

DomainStories: Domain Storytelling: http://www.domainstorytelling.org/

Evans: Eric Evans: DDD Referenz. Überblick über alle DDD-Praktiken und Patterns;.
Online: https://ddd-referenz.de/, inclusive Links zu Print-Versionen.

Gerstbach-16: Ingrid Gerstbach: Design Thinking im Unternehmen: Ein Workbook
für die Einführung von Design Thinking, GABAL Verlag, 2016

Gherkin: Die Sprache Gherkin definiert die Syntax, in der wir Features in (fast)
ausführbare Szenarien herunterbrechen können. Eine Einführung finden Sie unter
https://cucumber.io/docs/gherkin/

Gottesdiener-12: Ellen Gottesdiener: Discover to Deliver: Agile Product Planning
and Analysis, EGB Consulting, 2012

Hathaway-19: Angela + Tom Hathaway: Getting and Writing IT-Requirements in a
Lean and Agile World. Self-published, https://leanpub.com/lean-requirements-user-
stories-agile

Hofer: Stefan Hofer und Henning Schwentner: Domain Storytelling online auf
jax.de¹

Hruschka-19: Peter Hruschka: Business Analysis und Requirements Engineering, 2.
Auflage, Hanser Verlag

Hruschka+Starke-18: Peter Hruschka und Gernot Starke: Knigge für Softwarearchi-
tekten, 3. überarbeitete und ergänzte Auflage, entwickler.press, 2018. Kurzfassungen
finden Sie online unter https://softwareknigge.de

IREB: International Requirements Engineering Board: Handbook Advanced Modu-
le “RE@Agile”, online: https://www.ireb.org/de/downloads/tag:advanced-level-re-
agile

iSAQB-Foundation Level: Curriculum: https://isaqb-org.github.io/curriculum-foundation/

ISO-25010: Standard for Systems and software Quality Requirements and Evaluation
(SQuaRE), definiert ein generisches Modell für Software(produkt)qualität. https://

¹https://jax.de/blog/microservices/domain-driven-design-wie-domain-storytelling-fachexperten-und-entwickler-
zusammenbringt/

http://www.domainstorytelling.org/
https://ddd-referenz.de/
https://cucumber.io/docs/gherkin/
https://leanpub.com/lean-requirements-user-stories-agile
https://leanpub.com/lean-requirements-user-stories-agile
https://jax.de/blog/microservices/domain-driven-design-wie-domain-storytelling-fachexperten-und-entwickler-zusammenbringt/
https://jax.de/blog/microservices/domain-driven-design-wie-domain-storytelling-fachexperten-und-entwickler-zusammenbringt/
https://softwareknigge.de
https://www.ireb.org/de/downloads/tag:advanced-level-re-agile
https://www.ireb.org/de/downloads/tag:advanced-level-re-agile
https://isaqb-org.github.io/curriculum-foundation/
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html

Literatur 31

www.iso.org/standard/35733.html

ISO-26262: Standard für functional safety for road vehicles. https://en.wikipedia.org/
wiki/ISO_26262

ISO-27001: ISO Standard zu Informationssicherheit, https://en.wikipedia.org/wiki/
ISO/IEC_27001

Jacobson-11: Ivar Jacobson, Ian Spence, Kurt Bittner: Use-Case 2.0: The Guide
to Succeeding with Use-Cases. Online: https://www.ivarjacobson.com/publications/
white-papers/use-case-ebook

JBehave: JBehave – ein Framework für Behaviour-Driven Development: https://
jbehave.org/.

Lawrence: Richard Lawrence: How to split a story, https://agileforall.com/resources/
how-to-split-a-story

McGreal: DonMcGreal, Ralph Jocham: The Professional Product Owner: Leveraging
Scrum as a Competitive Advantage. Addison-Wesley, 2018

McMenamin-84: Stephen McMenamin, John Palmer: Structured Design. Yourdon-
Press 1984. Uralt. Immer noch gut, um “Fachlichkeit” sinnvoll zu strukturieren.
Nimmt viele Aspekte vorweg, die in der DDD-Community als “Event-Storming”
propagiert werden.

Millet-17: Scott Millet: The Anatomy of Domain-Driven Design. Leanpub, 2017.
Grafisch großartig aufgemacht, leider sehr abstrakt und (wie leider diemeistenDDD-
Bücher ohne durchgängiges Beispiel).

North: Dan North: Introducing Behavior Driven Development, https://dannorth.net/
introducting.bdd

Patton-15: Jeff Patton: User Story Mapping: Discover the Whole Story, Build the
Right Product, O’Reilly, 2015

Pichler-10: Roman Pichler: Agile Product Management with Scrum: Creating Pro-
ducts that Customers Love. Addison-Wesley, 2010

Plöd: Michael Plöd: Hands-On Domain-Driven Design by Example. http://leanpub.
com/ddd-by-example. Endlich mal ein DDD-Buch mit durchgängigem Beispiel.

Poppendieck-03: Mary und Tom Poppendieck: Lean Software Development: An

https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/ISO/IEC_27001
https://en.wikipedia.org/wiki/ISO/IEC_27001
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://jbehave.org/
https://jbehave.org/
https://agileforall.com/resources/how-to-split-a-story
https://agileforall.com/resources/how-to-split-a-story
https://dannorth.net/introducting.bdd
https://dannorth.net/introducting.bdd
http://leanpub.com/ddd-by-example
http://leanpub.com/ddd-by-example

Literatur 32

Agile Toolkit. Addison-Wesley Professional, 2003. Online²

Ries-11: Eric Ries: The Lean Startup, Crown Business, 2011

Req4Arc: Lehrplan des iSAQB zum Advanced Modul REQ4ARC, online³

Req42: Das Portal für agiles Requirements Management https://req42.de.

Robertson-12: Suzanne und James Robertson: Mastering the Requirements Process:
Getting Requirements Right. Addison Wesley; 3rd edition 2012. Online⁴

Robertson-19: Suzanne und James Robertson: Business Analysis Agility. Addison
Wesley, 2019

SEI: Das Software-Engineering Institute gehört zur Carnegie-Mellon University in
USA. Qualitätsszenarien finden sich u.a. in „Software Architecture in Practice” von
Len Bass et al, oder auch in diversen Technical Reports⁵

Serenity: Serenity BDD, „automatisierte Akzeptanztests mit Stil“: integriert die Idee
von Living-Documentation mit BDD. Online⁶ und bei thucydides⁷. Die von Serenity
generierte Dokumentation finden wir super-hilfreich.

Smart-14: John Smart: BDD in Action, Behavior-Driven Development for the whole
software lifecycle. Manning 2014. Siehe https://www.manning.com/books/bdd-in-
action

Smart-Amigo: John Smart: The Anatomy of a Three Amigo requirements dis-
covery Session. Siehe https://johnfergusonsmart.com/three-amigos-requirements-
discovery/

Spockframework: Spockframework gehört zu unseren persönlichen Favoriten der
BDD-Frameworks: – Open-Source, auf Basis Groovy: Riesiges Lob und Danke an
seinen Schöpfer Peter Niederwieser. Damit macht Spezifikationen schreiben wirklich
Spaß! http://spockframework.org

Stakeholder: arc42 gibt einige Tipps zum Umgang mit Stakeholdern in der (techni-
schen) Dokumentation: https://docs.arc42.org/keywords/#stakeholder

Starke-Hruschka-16: Gernot Starke und Peter Hruschka: arc42 in Aktion - Prak-
²https://books.google.com/books?id=hQk4S7asBi4C&pg=PA182
³https://isaqb-org.github.io/curriculum-req4arc/
⁴https://www.volere.org/mastering-the-requirements-process-getting-requirements-right/
⁵https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14249.pdf
⁶https://serenity-bdd.github.io/theserenitybook/latest/index.html
⁷https://www.thucydides.info

https://books.google.com/books?id=hQk4S7asBi4C&pg=PA182
https://isaqb-org.github.io/curriculum-req4arc/
https://req42.de
https://www.volere.org/mastering-the-requirements-process-getting-requirements-right/
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14249.pdf
https://serenity-bdd.github.io/theserenitybook/latest/index.html
https://www.thucydides.info/
https://www.manning.com/books/bdd-in-action
https://www.manning.com/books/bdd-in-action
https://johnfergusonsmart.com/three-amigos-requirements-discovery/
https://johnfergusonsmart.com/three-amigos-requirements-discovery/
http://spockframework.org
https://docs.arc42.org/keywords/#stakeholder
https://books.google.com/books?id=hQk4S7asBi4C&pg=PA182
https://isaqb-org.github.io/curriculum-req4arc/
https://www.volere.org/mastering-the-requirements-process-getting-requirements-right/
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14249.pdf
https://serenity-bdd.github.io/theserenitybook/latest/index.html
https://www.thucydides.info/

Literatur 33

tische Tipps zur Architekturdokumentation, Hanser 2016. Viele Tipps auch online
unter https://docs.arc42.org

Starke-Hruschka: Gernot Starke und Peter Hruschka: Communicating Software
Architectures: lean, effective and painless documentation. Leanpub https://leanpub.
com/arc42inpractice

Starke-Hruschka-17: Gernot Starke und Peter Hruschka: Der Flexibilisator, https:
//jaxenter.de/flexibilisator-51170

TDD-BDD: Seb Rose: Introduction to TDD and BDD. https://cucumber.io/blog/
intro-to-bdd-and-tdd/

Toth-19: Stefan Toth: Vorgehensmuster in der Softwarearchitektur. Carl Hanser
Verlag, 3.te Auflage 2019. Geht besonders auf “Architekturrelevante Anforderungen”
ein.

UL: Ubiquitous Language in der DDD-Referenz: https://leanpub.com/ddd-referenz/
read#ubiquitous-language

VOLERE: Umfangreiches und ausgereiftes Template für Anforderungen, http://
www.volere.co.uk

Wake-03: Wake, Bill: INVEST in good stories and SMART Tasks, http://xp123.com/
Articles/invest-in-good-stories-and-smart-tasks, 2003

Wlaschin-18: Scott Wlaschin: Domain Modeling Made Functional - Tackle Software
Complexity with Domain-Driven Design and F#. Pragmatic Programmers, 2018. Auf
den ersten 50 Seiten dieses Buches stellt Scott die Grundlagen von DDD vor, so
kompakt und verständlich wie aus unserer Sicht sonst bisher keines der (vielen) DDD
Bücher. Auch ohne F# Ambitionen oder Erfahrungen sehr lesenswert!

Why-the-name: Die (nette) Geschichte, warum Cucumber⁸ so heisst wie ein Gemü-
se.

Wynn: Matt Wynn: Introducing Example Mapping: Online⁹

Yatspec: YatSpec – ein (moderneres) Framework für BDD, das sich gut in eine JUnit
Infrastruktur einfügt: https://github.com/bodar/yatspec

⁸https://www.quora.com/Why-is-the-Cucumber-tool-for-BDD-named-as-such
⁹https://cucumber.io/blog/example-mapping-introduction

https://docs.arc42.org
https://leanpub.com/arc42inpractice
https://leanpub.com/arc42inpractice
https://jaxenter.de/flexibilisator-51170
https://jaxenter.de/flexibilisator-51170
https://cucumber.io/blog/intro-to-bdd-and-tdd/
https://cucumber.io/blog/intro-to-bdd-and-tdd/
https://leanpub.com/ddd-referenz/read#ubiquitous-language
https://leanpub.com/ddd-referenz/read#ubiquitous-language
http://www.volere.co.uk
http://www.volere.co.uk
http://xp123.com/Articles/invest-in-good-stories-and-smart-tasks
http://xp123.com/Articles/invest-in-good-stories-and-smart-tasks
https://www.quora.com/Why-is-the-Cucumber-tool-for-BDD-named-as-such
https://cucumber.io/blog/example-mapping-introduction
https://github.com/bodar/yatspec
https://www.quora.com/Why-is-the-Cucumber-tool-for-BDD-named-as-such
https://cucumber.io/blog/example-mapping-introduction

Über uns
Peter (links) und Gernot (rechts)

Gründer und Maintainer/Committer
von arc42¹⁰, dem freien Portal für
Softwarearchitektur, -dokumentation
und -entwurf. Mitgründer und akti-
ve Mitglieder des International Soft-
ware Architecture Qualification Board
(iSAQB¹¹).

Gernot wirkt dort in den Arbeitsgrup-
pen „Foundation Level” und “Advan-
ced Level“, Peter engagiert sich für
Zertifizierungen im Foundation Level.

Wir haben mehrere Bücher gemeinsam geschrieben: „arc42 in Aktion“ (Hanser
Verlag), „Software-Architektur kompakt“ (Spektrum Verlag), „Knigge für Software-
architekten“ (Entwickler Press), “Zertifizierung für Softwarearchitekten” (Entwickler
Press) sowie eine Reihe von eBooks.

Dr. Peter Hruschka

Informatikstudium an der TUWien, Promotion über Echtzeit-Programmiersprachen.

18 Jahre im Rahmen eines großen deutschen Software-Hauses verantwortlich für
Software Engineering. Initiator, Programmierer und weltweiter Prediger und Ver-
markter eines der ersten Modellierungstools.

Seit 1994 selbstständig als Trainer und Berater mit den Schwerpunkten Software-
/System-Architekturen, Business Analysis und Requirements Engineering, oft im

¹⁰Siehe https://www.arc42.de und https://www.arc42.org;
¹¹http://www.isaqb.org/

http://www.isaqb.org/
https://www.arc42.de
https://www.arc42.org
http://www.isaqb.org/

Über uns 35

Umfeld technischer Systeme (Embedded Real-Time Systems). Peter ist Gründungs-
und Boardmitglied des IREB (International Requirements Engineering Board).

Gebürtiger Österreicher, aber seit 1976 Wahl-Aachener. In seiner kargen Freizeit
Nordic-Walker, Kanute, Golfer und Keyboardspieler.

Peter ist Fellow von Agile Experts (www.agile-experts.ch), mit denen er das agile
Requirements-Portal www.req42.de betreibt. Und er ist Principal der Atlantic Sys-
tems Guild (www.systemsguild.com) – trotz seiner moderaten Mitgliederanzahl seit
mehr als 40 Jahren wegweisend in der Methodenentwicklung. Auf dieser Website
finden Sie auch die vielen Bücher, die Peter und die Gilde in den letzten 40 Jahren
geschrieben haben.

Dr. Gernot Starke

INNOQ-Fellow. Informatikstudium an der RWTHAachen, Promotion über Software-
Engineering an der J. Kepler Universität Linz. Langjährige Tätigkeit bei mehreren
Software- und Beratungsunternehmen als Softwareentwickler, -architekt, und tech-
nischer Projektleiter.

1996 Mitgründer und technischer Direktor des „Object Reality Center“, einer Ko-
operation mit Sun Microsystems. Dort Entwickler und technischer Leiter des ersten
offizielle Java-Projekts von Sun in Deutschland. Gründer der Architecture Impro-
vement Method (aim42), dem freien und systematischen Ansatz zur Verbesserung
bestehender Systeme.

Gernot lebt mit seiner Traumfrau Cheffe Uli in Köln und verbringt seine Freizeit mit
Kochen, Jogging, Fitness- oder Kraftausdauertraining (am liebsten unter Anleitung
seiner Frau oder erwachsenen Kinder), Bücher schreiben oder grillen.

Einige Bücher aus seiner Feder:

• Gernot Starke: „Effektive Software-Architektur – Ein praktischer Leitfaden“.
Carl Hanser Verlag,

• Karl Eilebrecht und Gernot Starke: „Patterns kompakt.“ Spektrum Akademi-
scher Verlag,

• Gernot Starke, Michael Simons, Stefan Zörner, Ralf Müller: arc42 by Example,
Leanpub, 2nd Edition 2019, https://leanpub.com/arc42byexample

https://leanpub.com/arc42byexample

	Inhaltsverzeichnis
	Als Entwicklungsteam im Stich gelassen?
	Unsere Annahmen über Sie
	Über dieses Buch
	iSAQB und IREB
	Danksagung

	Einführung und Ziele
	Entwicklungsteams benötigen adäquate Anforderungen
	Lernziele

	Clean Start
	Visionen und Ziele
	Stakeholder
	Scope
	Weiterer Input
	Bleiben Sie dran
	Lernziele

	Bis hierhin…
	Glossar
	Literatur
	Über uns

