arc? INNOQ

PETER HRUSCHKA
GERNOT STARKE

Requirements-Skills erfolgreicher
Softwareteams
Praxisbuch zum iSAQB CPSA-Advanced Reg4Arc

Peter Hruschka und Gernot Starke

Dieses Buch wird verkauft unter http://leanpub.com/requirements-skills

Diese Version wurde veroffentlicht am 2020-05-12

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Moglichkeiten des Publizierens. Lean Publishing bedeutet
die wiederholte Veroffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschlieenden Vermarktung des Buches. Lean
Publishing unterstiitzt den Autor darin ein Buch zu schreiben, das auch gelesen
wird.

© 2020 Peter Hruschka und Gernot Starke

http://leanpub.com/requirements-skills
http://leanpub.com/
http://leanpub.com/manifesto

Inhaltsverzeichnis

Als Entwicklungsteam im Stich gelassen? i
Unsere Annahmen tiber Sie. ii
Uber dieses Buch ii
iSAQBuUndIREB iii
Danksagung iii

1. EinfihrungundZiele 1
Entwicklungsteams bendtigen addquate Anforderungen
Lernziele 5

2. Clean Start 6
Visionen und Ziele 7
Stakeholder 9
Scope . . . e 10
Weiterer Input L 18
Bleiben Siedran 19
Lernziele 20

3. Bishierhin... 22

Glossar 23

Literatur e 29

UbBEr UnsS o o e 34

Als Entwicklungsteam im Stich
gelassen?

Sie arbeiten engagiert und gerne als Teil eines Software-Entwicklungsteam an span-
nenden Systemen oder Produkten. Haben Sie 6fter den Eindruck, Ihre Requirements-
Engineers, Product-Owner oder Produktmanager haben Sie beziiglich klarer An-
forderungen im Stich gelassen? Leiden Sie unter fehlenden, vagen oder unklaren
Anforderungen, ohne konsistente Prioritdten? Willkommen im Club der “Im Stich
Gelassenen”.

Fiir Software- und Systemarchitektur stellen ,gute” Anforderungen und Randbedin-
gungen die Basis vieler Entscheidungen dar. Alle Beteiligten geben vor, das Prinzip
“garbage-in, garbage-out” zu kennen, aber von der Anforderungsseite scheinen sich
in der Praxis doch eher wenige dran zu halten.

Da braucht es konstruktive Abhilfe: Nehmen Sie als pragmatische Architekt(inn)en
das Heft selbst in die Hand! Nein, Sie wollen auf keinen Fall die Rolle von Product
Owner, Business-Analysten und Requirements-Engineers noch zuséatzlich tiberneh-
men - sondern lediglich die architekturrelevanten Anforderungen so weit kléren,
dass Sie auf dieser Basis robuste Architekturentscheidungen treffen konnen.

In diesem Buch behandeln wir die Grundsitze von “Anforderungsklarung” fiir
Softwarearchitektur. Wir starten bei grundlegendem Scoping und der Kontextab-
grenzung, kimmern uns um Ermittlung (architekturrelevanter) funktionaler Anfor-
derungen und tauchen dann in die kritischen Qualitétsziele und -anforderungen ab.
Sie bekommen zahlreiche methodische Tipps, gepaart mit Beispielen aus dem echten
Leben.

Als Entwicklungsteam im Stich gelassen? ii

Unsere Annahmen uber Sie

Ohne Sie personlich zu kennen, haben wir beim Schreiben dieses Buches einige
Annahmen iiber Sie getroffen:

« Sie arbeiten in der Softwareentwicklung, moglicherweise in einer Entwicklungs-
oder Architekturrolle. In dieser Rolle haben Sie schon mal unter schlechten
Anforderungen gelitten. Vermutlich waren Sie der klassischen Regel ,,Garbage-
in, Garbage-out” ausgeliefert.

« Sie arbeiten als Product-Owner, Business-Analyst(in) oder im Requirements-
Engineering, und moéchten gerne besser verstehen, welche Anforderungen Ihr
Entwicklungsteam genau benétigt, wann, in welcher Form, und in welchem
Detailgrad.

« Sie tragen Verantwortung fiir die Erstellung eines softwareintensiven Systems,
und mochten sicherstellen, dass Thre fachlichen und technischen Stakeholder
(Fachseite und Entwicklungsteam) sich beziiglich Anforderungen bestens ver-
stehen.

Uber dieses Buch

Wir Autoren, Peter und Gernot, arbeiten seit vielen Jahren als Consultants, Coaches
und Trainer in der praktischen Softwareentwicklung und -architektur. Allzu oft
mussten wir erleben, dass trotz grofartiger, kreativer und kundiger Entwicklungs-
teams dabei Produkte entstanden, die leider nicht die wahren Bedirfnisse der
BenutzerInnen erfillt haben.

Dieses Buch orientiert sich von Struktur und Inhalt am iSAQB Advanced-Modul
~Req4Arc” (Requirements for Architects). Deswegen finden Sie in den Kapiteln
jeweils einen Extrakt der zum Kapitel gehorigen Lernziele dieses Lehrplans.

Sie konnen Requirements-Engineering auch in Trainings von uns lernen.

Peter bietet unter https://req42.de Seminare und Consulting an. Peter und Gernot ver-
anstalten gemeinsam (als ,dynamisches Duo®) interaktive Workshops zu Req4Arec,
siehe https://arc42.de

Als Entwicklungsteam im Stich gelassen? iii

ISAQB und IREB

Schon seit langer Zeit bietet das ,International Requirements Engineering Board®
(IREB, siehe https://ireb.org) zahlreiche Trainings und Ausbildungen im Bereich
»Requirements Engineering” an. Mehrere Zig-Tausend Personen arbeiten als IREB
zertifizierte Requirements-Engineers. Trotzdem kommt in manchen Entwicklungs-
projekten von diesem wichtigen Wissen und den zugehorigen praktischen Fahigkei-
ten zu wenig an. Daher haben wir uns entschlossen, das Thema Anforderungen von
Seiten der Softwarearchitektur aufzugreifen und es auch in das Portfolio des iSAQB
aufzunehmen.

Wenn Sie (professioneller) Requirements-Engineer werden mochten, dann fithrt an
der Ausbildung des IREB praktisch kein Weg vorbei: IREB deckt im Requirements
Engineering sowohl in der Breite wie auch in der Tiefe mehr ab, als wir das im
kompakten Req4Arc schaffen. Fir viele Projekte wire es jedoch schon ein Erfolg,
wenn wenigstens unsere Vorschlage aus diesem Buch Eingang in die Praxis finden
wiirden.

Danksagung

Wir danken allen Freiwilligen, die bei Planung und Entwicklung des Req4Arc-
Lehrplans aktiv mitgewirkt und sich an der Diskussion iiber die Inhalte beteiligt
haben, insbesondere Ali Akbarian, Wolfgang Fahl, Mahbouba Gharbi, Sebastian
Hirschmeier, Wolfgang Keller, Roger Rhoades, Dr. Michael Sperber, Prof. Hartmut
Schirmacher sowie Stefan Zorner. Danke auch an die tibrigen Mitwirkenden der
Advanced-Level-Working-Group des iSAQB fiir eure moralische Unterstiitzung so-
wie an Sebastian Eberstaller fiir das Buch-Cover.

Peter: Danke an Monika - die schon wieder ein Buchprojekt durch moralischen
Beistand, kritische Fragen und Gewéhrung von Freizeit zum Schreiben unterstiitzt
hat. Danke an meine agileExperts Kollegen Markus Meuten und Dirk Fritsch fiir die
fruchtbringenden Diskussion beim Aufbau des req42.de Portals.

Gernot: Danke an meine Traumfrau Cheffe Uli, fiir unglaublich viel positive Energie
und Verstdndnis — und natiirlich Deine perfekte Urlaubsplanung. Danke an meine
KollegInnen der INNOQ — von Euch lerne ich jeden Tag.

https://ireb.org

1. EinfUhrung und Ziele

Softwarearchitekten und Entwicklungsteams leiden héaufig unter schlechten bezie-
hungsweise fehlenden Anforderungen fiir ihre Arbeit. Dabei finden Entwicklungs-
teams fiir praktisch jedes Problem eine verniinftige Losung — sofern sie wissen, was
genau das Problem liegt [Hruschka-19].

Gutes Requirements Engineering respektive Business-Analyse zéhlen nach wie vor
zu den wichtigen Erfolgsfaktoren fiir erfolgreiche Systeme und Produkte. Hier zeigen
wir Thnen praktische Wege auf, wie Sie Ihre Anforderungen in den Griff bekommen.

Entwicklungsteams benotigen adaquate
Anforderungen

Unklare Anforderungen fithren in der Entwicklung oftmals zu ibermaf3ig flexiblen
und komplexen Losungen [Starke&Hruschka-17]. Und wer nachfragt, ist feige —
oder?

Als Architekten und Entwickler sollten Sie eine der beiden Alternativen aus Abbil-
dung 1.1 wahlen: Entweder Sie klaren die schlechten Anforderungen selbst (Pfeil
2 im Bild), indem Sie das Gespriach mit den Stakeholdern suchen, die mit dem
Produkt arbeiten wollen oder fiir die es geschaftlichen Wert bringen soll. Alternativ
muss das Entwicklungsteam diejenigen Personen identifizieren, die eigentlich dafiir
zustandig waren, klare Anforderungen zu liefern — und diese dann motivieren, ihren
Job ordentlich zu erledigen. (Pfeil 1 im Bild).

Fiir die Personen, die eigentlich zustandig fiir gute Anforderungen waren, gibt es
unterschiedliche Berufsbezeichnungen. Wir verwenden im Folgenden den Scrum-
Begriff ,Product Owner®. Er driickt genau das aus, was wir wichtig finden: Jemand
fiihlt sich als ,Eigner” fir ein Produkt oder ein System verantwortlich. Dieser Rolle
obliegt es, das Produkt kurz- und langfristig erfolgreich zu machen. Sie subsummiert,
was frither einerseits Projektleitung (Entscheider) und andererseits Requirements

Einfithrung und Ziele 2

Engineers beziehungsweise Systemanalytiker oder Business-Analysten gemeinsam
erledigen mussten: Sowohl gute Anforderungen ausarbeiten und kommunizieren,

aber auch Entscheidungen dariiber zu treffen, was frither oder spater implementiert
werden sollte.

Requirements-Verantwortliche
(Business Analysts, Product Owner,
Requirements Engineers, ...)

Development Team

Stakeholder (Architekten, Entwickler,
(Nutzer, Auftraggeber, Kunden Tester, ...}
Security-Verantwortliche, Juristen,

Datenschitzer, ...)

Abb. 1.1: Zwei Moglichkeiten fiir bessere Anforderungen

Unsere Praferenz in Abbildung 1.1 lautet recht eindeutig Alternative 1. Erzieht
Eure Product Owner! Im rauen Praxisalltag allerdings finden Sie immer wieder

die Notwendigkeit fiir Alternative 2, wenn Product Owner iiberfordert sind oder
schlichtweg fehlen.

Modernes Requirements Engineering ...

. ist ein kooperativer, iterativer und inkrementeller Prozess. Alle am Produkt
Beteiligten arbeiten eng und vertrauensvoll zusammen. Sie sorgen dafiir, dass in einer

Einfithrung und Ziele 3

Folge von Releases das Produkt immer besser wird. Die Zeiten, in denen wir {iber
Monate und Jahre dicke Pflichten- und Lastenhefte geschrieben haben, sind — zum
Gliick - fiir die meisten von uns vorbei. Unser Ziel ist es heute, zunéchst einen groben
Uberblick iiber alles zu bekommen, was das Produkt leisten soll. AnschlieBend wollen
wir sehr schnell diejenigen Teile genauer spezifizieren und implementieren, die
frithen Geschéftswert (oder Risikoreduzierung) versprechen. Das gibt uns Zeit, die
weniger wichtigen Themen erst dann zu prazisieren, wenn sie aktuell werden.

Der ,geordnete” Backlog

Agile Methoden wie Scrum ersetzen die klassischen Requirements-Dokumente durch
einen stdndig gepflegten und nach Priorititen geordneten Product Backlog. Das
Wichtige und Dringende steht weiter oben und ist hoffentlich bis in die Details
verstanden und prazisiert. Das weniger Wichtige steht weiter unten und darf durch-
aus noch vage und unscharf formuliert sein. Job des Product Owners ist es, immer
geniigend Details zu haben, die das Entwicklungsteam fiir die nachsten Iterationen
oder Releases benotigt (vgl. Abb. 1.2).

Der Product Backlog ist ein Arbeitsinstrument, um mit funktionalen Anforderungen
auf unterschiedlichem Prézisionsgrad arbeiten zu konnen. Fiir uns als Architekten
sind jedoch oft auch die geforderten Qualitaten extrem wichtig. Aber Anforderungen
wie ,Das System soll maximal zweimal pro Jahr ausfallen und im Falle eines Ausfalls
nach zehn Minuten wieder voll funktionsfihig sein“ bzw. ,,Das Produkt soll alle
Bestimmungen der DSGVO einhalten® sind querschnittlicher Natur. Sie lassen sich
nicht einfach in so einen Backlog irgendwo einordnen. Wir werden Thnen im Kapitel
4 noch viele Hinweise geben, wie Sie solche Aspekte erarbeiten kénnen.

Viele spannende Themen

In den kommenden Kapiteln greifen wir jeweils einen anderen Aspekt fiir gutes
Requirements Engineering auf und geben Thnen praktische und pragmatische Tipps,
wie Sie zu ,just enough“ Requirements kommen.

Einfithrung und Ziele 4

Zunachst adressieren wir den ,Clean

Start“: Die Tatsache, dass auch hoch-

gradig agile Projekte wenigstens ihre

Ziele explizit kennen sollten und wis- S ——

sen, wer wozu etwas zu sagen hat. } fir die nahe Zukunft

Dann betrachten wir unterschiedliche
Moglichkeiten, funktionale Anforde- - y;r;:;zgf"“'a”tét’
rungen auf den Punkt zu bringen.

Gutes Verstandnis Threr Business-
Prozesse und Ihrer Doménen-Objekte,
sowie der Trend zu ,Specification by Sehr grobkérnig
Example” stehen im Mittelpunkt. ™ oder ungenau

Ausfithrlich widmen wir uns dem
Kernthema ,Qualititsanforderungen®. J
Sie wissen ja, dass diese die Archi-

tektur starker und nachhaltiger beein-

flussen konnen als die funktionalen

Anforderungen. Wir zeigen, wie man

auch im agilen Umfeld damit ver-

ninftig umgehen kann und widmen uns insbesondere auch den Themen Szenarien
und Behavior Driven Development (BDD).

Abb. 1.2: Product Backlog statt dicker Dokumente

Dann stellen wir dann das engere Zusammenspiel und die starkere Verzahnung
zwischen Business und IT vor. Wir sprechen Methoden wie ,,Design Thinking” oder
,Design Sprints“ und ,Discover to deliver” Gottesdiener-12 an.

Schlief3lich bliebt auch die leidige Frage des Toolings: Mit welchen Werkzeugen
erfassen und kommunizieren wir Anforderungen? Wir geben lhnen in Kapitel 8
einen kleinen Marktiiberblick, angefangen von Kartchen an der Wand tiber Wikis
und Modellierungswerkzeuge bis zu spezialisierten Requirements-Tools.

Innerhalb der folgenden Kapitel vermitteln wir Thnen als Architekt(inn)en und
Entwickler(innen) das passende Requirements-Know-how, so dass Sie trotz oftmals
schlechtem (Requirements-)Input Ihre Produkte zielsicher entwickeln konnen. Ne-
benbei erfahren Sie, wie Sie Thre Product Owner oder Requirements-Verantwortlichen
durch gezieltere Nachfragen zu besseren Vorgaben bewegen konnen, damit Sie sich
noch mehr auf Thre Kernaufgabe konzentrieren und spannende Produkte bauen

Einfithrung und Ziele 5

konnen, die dann exakt die Bedurfnisse Threr Stakeholder oder des Marktes treffen.

Requirements Engineering Skills aufbauen

Die gute Nachricht: modernes Requirements-Engineering konnen Sie lernen. Unter
anderem hat das International Requirements Engineering Board IREB (www.ireb.org")
ein Advanced Modul ,RE@Agile” freigegeben [IREB], das gutes Requirements-
Engineering in einer agilen Welt behandelt.

Unter www.req42.de” finden Sie dazu eine Reihe von Online-Goodies wie Blog-
Beitrage, ein Glossar zu den wichtigsten REQ4ARC-Begriffen, eine kommentierte
Literaturliste, sowie ausfiihrlichere Beispiele zu den einzelnen Themen.

Lernziele

Wir haben dieses Buch anhand des iSAQB Lehrplans® ,Req4Arc” (Requirements for
Software Architects) gegliedert.

In den folgenden Kapiteln stellen wir IThnen an dieser Stelle jeweils die zugehoren
Lernziele dieses Curriculum vor. Den kompletten Lehrplan finden Sie unter Req4Arc*

'http://www.ireb.org

*https://www.req42.de

*Diesen Lehrplan haben wir, in aller Bescheidenheit, mafigeblich mitgestaltet.
“https://isaqb-org.github.io/curriculum-req4arc/

http://www.ireb.org/
https://www.req42.de/
https://isaqb-org.github.io/curriculum-req4arc/
http://www.ireb.org/
https://www.req42.de/
https://isaqb-org.github.io/curriculum-req4arc/

2. Clean Start

Ein bisschen Input fiir Ihre Arbeit diirfen Sie als Entwicklungsteam schon erwarten.
In dem zweiten Kapitel stellen wir Thnen drei Zutaten vor, die Sie als Architekt(in)
von anderen auf jeden Fall einfordern sollten. Wir nennen das zusammenfassend
einen ,,Clean Start® fir Thr Projekt oder Thre Produktentwicklung. Fir den Fall,
dass das nicht klappt, kennen Sie ja Ihr Schicksal: dann miissen Sie diese Teile der
Analysearbeit auch noch selbst in die Hand nehmen.

1. Jedes Unterfangen sollte eine klare Vision und/oder klare Ziele haben

2. Die ,Mitspieler” sollten bekannt sein (neudeutsch: Thre Stakeholder)

3. Und Sie sollten Thre Spielwiese kennen, die Gebiete, die Thr Team beeinflussen
kann (neudeutsch: Thren Scope)

 Vision /Ziele

1

Stakeholder

Abb. 2.1: Drei Zutaten fiir den erfolgreichen Start

Die drei Aspekte beeinflussen einander gegenseitig: Je ehrgeiziger Ihre Ziele, desto
mehr Mitspieler; je grof3er der Scope, desto vielfiltiger die Ziele. Es spielt daher keine
Rolle, in welcher Reihenfolge Sie als Architekt(in) das angehen oder einfordern — Sie
benétigen grundsatzlich alle drei.

Clean Start 7

Visionen und Ziele

Sie miissen damit leben, dass sich Anforderungen mit durchschnittlich 1 - 3% pro
Monat dndern. Wir definieren Vision oder Ziele als denjenigen Teil der Require-
ments, die sich in dem geplanten Zeithorizont moglich NICHT &ndern sollen; also
als das, was wir in einer Iteration oder Entwicklungsphase wirklich anstreben.

Ein Projekt kann Ziele fiir unterschiedliche Zeithorizonte definieren, die aufeinander
abgestimmt werden sollten. Fir grofle Systeme haben wir drei unterschiedliche
Zeithorizonte kennen gelernt:

- strategische Ziele gelten fiir teilweise fiir 3 - 5 Jahre

« Ziele fur den Budgetzyklus von Firmen gelten iiblicherweise 1 Jahr

« Release-Ziele gelten Wochen bis wenige Monate (unter der Voraussetzung, dass
Sie innerhalb eines Jahres mehrere Releases liefern)

Anderungstoleranz

a)@
q)’b
¢

lteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration.S Iteration I6

Abb. 2.2: Anderungstoleranz bis zum Release

Innerhalb der Iterationen, die zu einem Release fithren, sollten Sie dafiir sorgen,
dass die Anforderungen moglichst stabil bleiben. An den Ubergingen zwischen
Iterationen gibt es jedoch Zeitfenster, in denen Sie Ziele, Inhalte und Umfang den
geanderten Wiinschen oder Randbedingungen anpassen kénnen. Tom de Marco &
Co nennen das in [DeMarco-07] ,Zeit fir Anderungen®. Die Toleranz gegentiber
Anderungen sollte einen Verlauf ahnlich Abbildung 2.2 nehmen: Je néher Sie einem
Release kommen, desto stabiler sollten Anforderungen bleiben.

Clean Start 8

Wie kommuniziert man Visionen und Ziele

Die klassische Art ist es Ziele einfach umgangssprachlich festzuhalten. Dafiir hat sich
die Formel ,PAM® bewéhrt. Legen Sie pro Ziel Purpose, Advantage und Metrik fest.

« ,Purpose” beschreibt, was Sie erreichen wollen,
« Advantage motiviert, warum man dieses Ziel anstrebt, und die
+ Metrik gibt vor, wie man Zielerreichung iiberpriifen mochte.

Ein Projekt sollte hochstens eine Handvoll solcher Ziele haben. Sorgen Sie also dafiir,
dass Sie von Thren Managern oder Analytikern 3 — 5 solche Aussagen (natiirlich
abgestimmt mit den wichtigsten Stakeholdern) bekommen. Sie wollen definitiv ohne
Zielkonflikte starten konnen.

In der agilen Welt finden Sie einige weitere Spielarten von Zieldefinitionen. Eine
davon ist die Erstellung eines ,Produktkoffers® (vgl. Abbildung 2.3). Neben dem
Namen des Produkts und einem Logo, das allen Beteiligten das Gefiihl vermittelt
,Das sind wir, ,Das ist unser Baby“ sollten darauf 3 — 5 Haupteigenschaften des
geplanten Produkts stehen, moglichst so formuliert, dass die Kunden oder Nutzer
das Produkt unbedingt haben wollen.

PAM-Kartchen Produktkoffer News from the Future

Business News Juli 2019

Unser

PRODUKT /g)— Lorem Ipsum
req-

¢ Verkaufsargument 1
e Verkaufsargument 2
e Verkaufsargument 3

Abb. 2.3: Varianten der Zielfestlegung

Eine Alternative dazu sind die ,News from the Future®. Schreiben Sie am Anfang
eines Projektes einen kurzen Zeitungsartikel, von dem Sie annehmen, dass er am Tag

Clean Start 9

nach der Freigabe auf der Titelseite Ihrer Lieblingszeitung erscheint. Darin wird -
vor Beginn der Entwicklung — festgehalten, was Sie als Lobeshymne auf Thr Produkt
am Tag nach dem Release lesen wollen.

Alle drei Arten der Zieldefinition finden Sie in [IREB] ausfiihrlicher beschrieben. Die
Notation spielt keine Rolle, aber als Architekt sollten Sie die Ziele des Business auf
jeden Fall kennen.

Stakeholder

Der zweite wesentlich Einflussfaktor, den Projektmanagement und Analytiker be-
reits geklart haben sollen, bevor Sie zu arbeiten beginnen, sind die Stakeholder Ihres
Vorhabens. Wer hat welchen Einfluss? Wer kann wobei helfen oder hindern? Und
auf dieser Liste sollte viel mehr stehen als nur der Sponsor des Vorhabens und
Thre potentiellen Kunden oder Nutzer. Die allerwichtigsten Threr Stakeholder haben
erheblichen Einfluss auf die Ziele und den Scope des Vorhabens.

Eine solche Liste zu erstellen, ist kein Hexenwerk. Setzen Sie eine kleine Gruppe
von Projektbeteiligten an einen Tisch und lassen Sie diese 15 Minuten brainstormen.
Dann haben Sie wahrscheinlich schon 20 bis 30 Stakeholder identifiziert. Nun
schicken Sie diese Liste an alle gefundenen Personen und fragen, wen Sie noch
vergessen haben. Mit diesem ,Schneeballeffekt® wird Thre Stakeholderliste schnell
vollstandig.

Warum ist die Kenntnis der Stakeholder so wichtig? Sowohl fiir Analyse wie
auch fir Architektur und Entwicklung gilt: Vergessene Stakeholder sind vergessene
Requirements! Damit ist nicht gesagt, dass Sie alle Stakeholder, die Sie finden,
auch intensiv am Projekt beteiligten miissen. Wenn Sie alle wichtigen potentiellen
Interessenten kennen, dann kdnnen Sie aktiv entscheiden, wie viel oder wenig Sie
diese in das Projekt einbinden wollen oder missen.

Beziiglich der Form gilt — ahnlich wie fiir die Ziele: Sie haben Freiheiten. Nehmen Sie
eine einfache Tabelle und fiihren Sie untern den Uberschriften ,Rolle®, ,,Ansprech-
partner®, ,Einfluss®,... Thre Stakeholder einfach linear auf. Oder zeichnen Sie eine
Stakeholder-Map, in der Sie Stakeholder und deren Abhangigkeiten bzw. Kommu-
nikationskanéle visualisieren. Hilfreich ist oft auch eine Stakeholder-Matrix (vgl.
Abbildung 2.4), um das Verhéltnis zwischen Einfluss und Interesse auszudriicken.

Clean Start 10

Fir Thre Architekturarbeit kommen dann sicherlich noch viele weitere Stakeholder
hinzu: alle, die mit der Losung zu tun haben bzw. Teilsysteme oder Technologien
zuliefern. Diese spielten eventuell fiir Thr Management und die Analytiker noch
keine Rolle. Als Architekt(in) miissen Sie aber all diese Personen und Organisation
identifizieren.

W
[75]
|
E zufrieden Key Player
halten
beachten
beobachten und
informieren
Interesse

Abb. 2.4: Stakeholder-Matrix

Weitere Tipps zum Umgang mit Stakeholdern haben wir online unter [Stakeholder]
oder in [Starke&Hruschka-16] fir Sie zusammengestellt.

Scope

Der dritte Bestandteil eines ,Clean Start” wird oft in der Praxis ignoriert, obwohl
doch die Festlegung von Scope und Kontext den weiteren Verlauf des Projekts er-
heblich beeinflussen. Die Definitionen der beiden Begriffe sind einfach: Scope ist der
Bereich, den das Projekt aktiv gestalten kann — ihre Spielweise. Zum Kontext gehoren
alle Personen und I'T-Systeme (evtl. auch Hardware-Sensorik und Aktuatorik), tiber
die Sie nicht alleine entscheiden kénnen (vgl. Abbildung 2.5). Wenn Sie im Kontext
bzw. an den Schnittstellen zwischen Scope und Kontext etwas dndern wollen, dann
miissen Sie mit den Nachbarn dariiber verhandeln. Wenn Sie nicht verhandeln

Clean Start 11

konnen oder diirfen, dann gelten die Festlegungen aus dem Kontext fiir Sie einfach
als nicht beeinflussbare Randbedingungen.

Kontext:
kann nicht ohne Verhandlung beeinflusst werden

1

IT-System1

IT-System 2

Scope:
Kann in dem Vorhaben
aktiv gestaltet werden

IT-System n

Abb. 2.5: Abgrenzung von Scope und Kontext

Die Scope-Festlegung sollte erfolgen, um ,innen“ von ,auflen” unterscheiden zu
konnen und die Schnittstellen zwischen ,innen® und ,auflen“ zu identifizieren. Eine
einfache Notation dafiir ist das sogenannte Kontextdiagramm (vgl. [Hruschka-19]),
das nur aus drei Elementen besteht: Thr System oder Produkt in der Mitte, rundherum
alle Personen oder Systeme im Kontext, und allen Informationen, die aus dem
Kontext in den Scope flieBen bzw. aus dem Scope in den Kontext — kurz gesagt:
die Ein- und Ausgaben Ihres Systems. Fiir Analytiker und Projektmanager reicht es
aus, frih im Projekt Giber die ein- und ausgehenden Daten Bescheid zu wissen. Sie
als Architekt(in) werden die Schnittstellen spater noch sehr viel genauer betrachten
miissen (Technologie, Protokolle, Push- oder Pull, Mengengeriiste, Vertrauen in die
Schnittstelle, ...). Als Einstieg gilt aber: Schnittstelle erkannt, Gefahr halbwegs ge-
bannt. Vergessene Schnittstellen gehoren zu den Dingen, die Thnen als Architekt(in)
das Leben erschweren.

Clean Start 12

Erfahrungsgemafy tun sich viele Projekte und/oder Teams schwer damit, diese
einfache Abgrenzung prézise vorzunehmen: Was gehort in unseren Scope und mit
wem miissen wir verhandeln? Deshalb wollen wir im folgenden genauer auf die
Feinheiten der Scope-Festlegung eingehen.

Produktscope und Projektscope

Wenn man von Produkt oder System spricht, ist meist ein IT-Produkt oder ein I'T-
System gemeint. Sollte Thre Aufgaben also darin bestehen, ein (einziges) neues I'T-
System zu schaffen, so sind Produktscope und Projektscope identisch. In der Praxis
betreffen Projekte manchmal auch mehrere vorhandene IT-Systeme. Moglicherweise
miissen Sie ein System neu entwickeln oder kraftig modifizieren, und im Rahmen
dessen auch notwendige Anpassungen anderer IT-Systeme gleich mit erledigen

(siehe Abbildung 2.6).

Wie Sie an der Abbildung 2.6 erkennen miissen Sie sowohl die Schnittstellen des
neuen (oder zu modifizierenden) Systems zu den Benutzern und zu IT-System 2
festlegen, als auch die Leistungen, Funktionalitat und Schnittstellen innerhalb der
IT-Systeme 1, 3 und 4 identifizieren, die angepasst werden miissen.

Sollten Sie als Projektverantwortlicher keine Entscheidungsgewalt iiber die notwen-
digen Anderungen an den I'T-Systemen 1, 3 und 4 haben, so ist Thr Projekterfolg vom
guten Willen dieser drei Nachbarsysteme abhangig: Sie brauchen dort Anderungen,
diirfen die aber nicht selbst ausfithren oder anordnen, sondern miissen mit den
Verantwortlichen dieser Systeme verhandeln.

Nutzen Sie in einer fiir die Scopefestlegung Ihres Projektes eine visuelle Gesamtiiber-
sicht (,Kontextdiagramm®) des neuen oder zu modifizierenden Systems, zusammen
mit den Nachbarsystemen 1 bis 4. Wir mdgen dazu Komponentendiagramme mit
einer kurzen (tabellarischen) Erklarung der Funktionalitaten und Schnittstellen. Das
erleichtert die Diskussion iiber alle notwendigen Anderungen und Anpassungen.

Clean Start 13

Projektkontext

IT-System1

Projektscope

Neues oder zu \

modifizierendes |¢— —>| |T-System
System '/ 2
J IT-System 3

IT-System 4

N

Abb. 2.6: Projektscope vs. Produktscope

Notationen fiir Scope und Kontext

Requirements-Analysten konnen Schnittstellen einfach vorgeben — in der Ent-
wicklung bereiten diese den Entwicklungsteams méglicherweise viel Aufwand und
beinhalten hohe Risiken.

Zur Festlegung der Grenze zwischen Scope und Kontext reicht anfangs die Betrach-
tung der ein- und ausgehenden Daten Thres Systems. Die klassische Darstellungswei-
se dafiir ist ein sogenanntes ,fachliches Kontextdiagramm®, [Hruschka-19], wie Sie es
als Beispiel fiir einen Bordcomputer eines PKWs in Abbildung 2.7 sehen. Das System
soll den Fahrer mit typischen Informationen wie Durchschnittsgeschwindigkeit,
Treibstoffverbrauch, Auflentem-peratur, etc. versorgen, wie auch Navigation ermég-
lichen, einen Tempomaten zur Verfiigung stellen, Wartungsintervalle iiberwachen
und den Fahrer tiber Radiosender und Telefonanrufe informieren.

Clean Start

14

Sie sollten in einem Kontextdiagramm ALLE Nachbarsysteme identifizieren und fiir

jedes davon

die Ein- und Ausgaben benennen. Eine Aufzahlung von Funktionen

(oder Features und Epics) geniigt meist nicht, um den Scope des Produktes festzule-

gen!
Rad-
Anzeigekommando, aibae Motor-
Tempomatkommando, / steuerung
Navi-kommando
Fahrer \ : Motor-/
\ Fahrtziel Getriebe
N N Drehzahl
Fahrerinformationen rossel-
Mandovervorschlage, Klappen-
Wartungshinweise stellung
Temp- AuBentemperatur Bord- Serviceintervall- %
Sensor computer Reset
Momentaner Werkstatt
Verbrauch
Durchfluss- | _— Talafar.
Sensor Sender- informationen
informationen
GPS-Position
Verkehrs-
meldungen
) Telefon
GPS- Radio
System Verkehrs-
leitzentrale

Abb. 2.7: Kontextdiagramm mit Ein- und Ausgaben des Systems

Falls Sie tibrigens Diagramme nicht mogen, so schldgt [Hruschka-19] eine ganze
Menge an alternativen Notationen dafiir vor, im einfachsten Fall eine Tabellenmit
allen Nachbarsystemen und deren Schnittstellen.

Wichtig ist, dass Sie

1. Thr System klar identifiziert haben,
2. alle Nachbarn kennen und
3. die komplette Ein- und Ausgabe auf fachlicher Ebene verstanden haben.

Clean Start 15

Entwicklung braucht (Schnittstellen-)Details

Als Ergebnis einer Anforderungsanalyse geniigt es, Ein- und Ausgaben von und
zu den Nachbarn zu erkennen. Diese Schnittstellen explizit identifiziert zu haben,
bedeutet mehr als die halbe Miete.

Bei Entwurf und Entwicklung des Systems miissen Sie bei jeder dieser externen
Schnittstellen alle notwendigen Details entweder hinterfragen oder entscheiden.
[Starke&Hruschka-16] gibt dazu viele pragmatische Hinweise. Sie miissen z.B. festle-
gen, wer der aktive Partner ist (Push oder Pull), wie die Handshakes oder Protokolle
aussehen, die an der Schnittstelle einzuhalten sind, welche zeitlichen, technischen
oder organisatorischen Randbedingungen einzuhalten sind, etc.

Im arc42-Termplate [arc42] haben wir Abschnitt 3 (,Kontextabgrenzung®) fiir diese
wichtigen Informationen vorgesehen. Abschnitt 3.1 enthalt das fachliche Kontext-
diagramm. Falls nétig konnen Sie in Abschnitt 3.2. noch das technische Kontextdia-
gramm aufnehmen, das die technischen Kanile zeigt, iiber die fachliche Informatio-
nen flielen. Im obigen Beispiel wiirde man fiir das Fahrerinterface vielleicht sowohl
Spracheingabe wie auch Tastatureingabe technisch zulassen. Viele der anderen
Schnittstellen laufen vielleicht iiber den CAN-Bus. arc42-Abschnitt 3.2 enthalt dann
auch ein Mapping, welcher fachliche Input/Output tiber welchen technischen Kanal
lauft.

Alternativ konnen Sie Details von Schnittstellen auch als technische oder quer-
schnittliche Konzepte in Abschnitt 8 des Templates beschreiben — falls Sie beispiels-
weise viele Schnittstellen nach demselben Schema behandeln méochten.

Falls Sie auf die grafische Variante stehen: Die UML bietet Ihnen viele Moglichkeiten,
Schnittstellen genauer festzulegen. Abbildung 2.8 zeigt zu obigem Beispiel jetzt die
Verwendung von Ball- und Socket-Notation, bzw. die Einfithrung von Ports.

Wir Autoren vertreten diesbeziiglich unterschiedliche Meinungen: Peter mag UML,
Gernot eher die text- oder tabellenorientierte Beschreibung von Schnittstellen. Beides
funktioniert.

Clean Start 16

Motor-
steuerung

Motor IF

Sensor-

Temp- -

Sensor

Durchfluss-
sensor /-/
/C> GPS-Interface
GPS-

System

Bord-
Computer

Abb. 2.8: Notation fiir Schnittstellendetails

Abbildung 2.8 zeigt noch eine Empfehlung: Wenn ein Produkt viele Schnittstellen
aufweist, konnten Sie diese als Analyseergebnis biindeln. Abbildung 2.8 zeigt nur
zwei Sensoren (Temp- und Durchfluss). Stellen Sie sich aber vor, dass Sie mehrere
Dutzend Sensoren als Schnittstellen haben. Dann lohnt es sich, anfinglich in der
Analyse nur iiber ein Sensorinterface zu sprechen (dargestellt als Sensor-Port) und
das erst in Laufe der Entwicklung detailliert aufzuspalten. Als weiteres Beispiel.
Nehmen Sie im Telekommunikationsbereich die Schnittstellen zu Roaming Partnern.
Das sind vielleicht einige Hunderte, die teilweise ganz unterschiedliche Protokolle
nutzen oder unterschiedliche Formate liefern. Trotzdem kann man sie anfangs
zu einem ,Roaming-Partner-Interface® zusammenfassen. Wie gesagt: Schnittstelle
erkannt, Gefahr halbwegs gebannt.

Damit sind Sie in den weitaus meisten Fillen mit Scope und Kontext fertig. Ein i-
Tiipfelchen aber hatten wir noch fiir Sie.

Business- und Produktscope

Griindliche Requirements-Engineers unterscheiden zwischen Business-Scope und
Produktscope: Der Business-Scope ist der Bereich Thres Unternehmens oder Orga-

Clean Start 17

nisation, in dem Sie im Zuge Ihrer Software- oder Systementwicklung Entschei-
dungen treffen oder vorschlagen diirfen, also beispielsweise Thr Fachbereich oder
Thre Abteilung. Normalerweise ist der Business-Scope um einiges grofler als der
Produktscope, weil Sie vielleicht nicht alles, was in Thren Entscheidungsbereich fillt,
auch automatisieren wollen. Sie konnen also in Zusammenarbeit von Analytikern
und Architekten festlegen, welche Teile von Geschaftsprozessen automatisiert und
welche Schritte vielleicht noch ldngere Zeit manuell durchgefiihrt werden sollen.

T

Business-Kontext IT-System1
L |

Business-Scope
= Produkt-Kontext

% %} IT-System 2
User 2a User 2

Produkt-Scope
U% g

User 1

IT-System n

Abb. 2.9: Business- und Produktscope

Abbildung 2.9 zeigt eine solche Situation. ,User 1° und ,User 2a“, sowie ,IT-
System 1 befinden sich auflerhalb Thres Business-Scopes. Dort haben Sie keinen
direkten Einfluss. ,User 2b“ und ,User 3% sowie ,IT-System 2“ gehoren in Thren
Business-Scope. Daher sollte es relativ leicht sein, diese bei der Neuentwicklung eines
Produktes zu beriicksichtigen. ,JT-System n“ gehort Thnen nicht alleine, sondern es
sind auch andere Verantwortliche im Business-Kontext mit im Spiel.

Clean Start 18

Fur ,User 2a“ konnen Sie zum Beispiel entscheiden, dass Anfragen zunichst an ,,User
2b” in Threr Abteilung gehen und dieser mit dem neuen Produkt diesen Request
erfillt. Spater erhalt ,User 2a“ vielleicht direkter Zugriff zu dem neuen System.

Unsere Empfehlung ist es, in der Anforderungsanalyse die Scheuklappen grundséatz-
lich etwas weiter aufzumachen und an die Schnittstellen Thres Business zu denken,
statt an die moglicherweise eingeschrankten Schnittstellen eines Produktes.

Sie sehen schon: Scope und Kontextabgrenzung sind in vielen Fallen nicht trivial.
Und wenn Sie diesen Input nicht von Requirements-Engineering oder Business-
Analysts bekommen, dann ist das ein ganz wichtiger, frither Schritt bei Threr
Architekturarbeit.

Empfehlungen

Nehmen Sie die Festlegung von Scope und Kontext ernst. Im Entwicklungsteam
miissen Sie manchmal ,nacharbeiten®, weil die Anforderungsanalyse oder Thre
Product-Owner Sie diesbeziiglich im Stich gelassen haben.

Nutzen Sie bereits frithzeitig in Threm Projekt oder Vorhaben ein Kontextdia-
gramm als Kommunikationshilfsmittel, um Feedback Ihrer Stakeholder tber die
wichtigen Aufienschnittstellen ihres Systems einzuholen - lange bevor Sie interne
Entscheidungen treffen. Legen Sie besonderes Augenmerk auf volatile oder kritische
Schnittstellen, die sich oft und ohne ihr Zutun dndern koénnen.

Weiterer Input

Mit den Klarungen von Zielen, Stakeholdern und Scope haben Sie die wichtigsten
Voraussetzungen fiir einen Clean Start erfiillt. Schon ware es auch, wenn Sie einen
groben Uberblick iiber die gewiinschte Funktionalitit erhalten wiirden (z.B. in Form
von Epics oder Feature-Listen), wenn man Thnen die allerwichtigsten Qualitatsziele
fir das Produkt verrét (z.B. die Top 3 Qualitidtsanforderungen). Sicherlich sollten
Sie auch iber die wichtigsten Randbedingungen klargestellt werden. Das T-Stich-
Modelle in Abbildung 2.10 fasst das grafisch zusammen. Wenn der Aufwand fiir
die komplette Klarung der Requirements 5% betragt, dann reichen am Anfang 1 -
2 % davon aus, um volle Breite vor Tiefe zu eruieren. Parallel zu dieser Arbeit der

Clean Start 19

Analytiker konnen Sie als Architekt(in) ja schon wichtige Eckpfeiler der Architektur
festlegen (moglichst mit IThrem Team zusammen) und auch schon erste Prototypen
oder Minimal Viable Products (MVPs) implementieren. Ausgestattet mit dem Wissen
bohren Sie dann iterativ da in die Tiefe, wo es sich am ehesten lohnt.

/ 2]
—+
]
%]
) o
Projektumfang = =4
y [T =
- T . > |7 [@
Vision/Ziele, Stakeholder, Scopeabgrenzung =
Uberblick iber Funktionalitit, Top-Qualititsziele = o >
) und hdrteste Randbedingungen % cl=
= < = 1= (3D
“ o o < = |+
Y o o ol|o o
= Y = n |24
© e = o
o+ wn 1] o
[} N 3 =]
(a)] c)
- = 3
5 3
© 3 /
(= o /
o
Q
wn
o
w
Y

Abb. 2.10: Das T-Modell mit den wichtigsten Artefakten

Bleiben Sie dran

Lassen Sie uns zusammenfassend unsere Empfehlung wiederholen: Bringen Sie
Threm Management, den Product Ownern oder Business Analysts bei, dass sowohl
Ziele, Scope und Stakeholder auf jeden Fall in deren Aufgabenbereich fallen. Viel-
leicht konnen diese Stakeholder Thnen zusatzlich noch einen groben Uberblick tiber
die gewiinschte Funktionalitat des Systems, die dringendsten Erwartungshaltungen

Clean Start 20

beziiglich Qualitat sowie die héartesten Randbedingungen liefern. Dann haben Sie in
Threr Rolle als Architekten einen entspannten Arbeitsbeginn. In diesem Sinne: Keep
educating your product owners and business analysts!

Lernziele

Der [Req4Arc] Lehrplan sieht zu diesem Themenbereich folgende Lernziele vor:
LZ 2-1: Verstehen der Notwendigkeit einiger (begrenzter) Vorleistungen

« Verstehen, dass selbst bei iterativer Entwicklung einige Vorleistungen erforder-
lich sind.

« Wissen, dass explizite Kenntnisse {iber Visionen, Ziele und relevante Stakehol-
der erforderlich sind, damit das Entwicklungsteam fundierte Entscheidungen
tiber die Systemarchitektur treffen kann.

« Verstehen, dass eine Vereinbarung tiber Umfang und Kontext erforderlich ist,
insbesondere tiber die Schnittstellen zwischen Umfang und Kontext (d.h. die
externen Schnittstellen des Produkts).

LZ 2-2: Verstandnis fir die Notwendigkeit von (high-level) Visionen und
Geschaftszielen

« Verstehen, dass Visionen oder Geschéftsziele Thre hochsten Anforderungen
sind, d.h. die Anforderungen, die (hoffentlich) wihrend eines Projekts nicht
geandert werden.

« Verstehen, dass Visionen und Ziele quantifiziert und messbar gemacht werden
sollten, um den Erfolg in Bezug auf den Geschéftswert iiberpriifen zu konnen.

LZ 2-3: Verschiedene Moéglichkeiten und Notationen, um Visionen und

Unternehmensziele auszudricken

« verschiedene Moglichkeiten kennen, um Vision und Ziele zu definieren (explizi-
te Zielerklarungen, Wertversprechen fiir verschiedene Stakeholder, Visionsfeld,
“Neuigkeiten aus der Zukunft”)

« Mnemotechnik fiir Visionen oder Geschéftszielsetzungen kennen (SMART,
PAM)

Clean Start 21

LZ 2-4: Die Bedeutung der verschiedenen Stakeholder und ihr Einfluss auf
das Produkt oder System

« Wissen, dass die Stakeholder die wichtigsten Quellen fiir Anforderungen sind.

« Verstehen, dass fehlende Stakeholder fehlende Anforderungen bedeuten kon-
nen.

« Verstehen, dass Architekten sich bewusst sein sollten, dass die Stakeholder auf
spezifische, angemessene Weise angesprochen werden miissen.

LZ 2-5: Unterschiedliche Beduirfnisse und Werte der verschiedenen
Stakeholder (“Value Propositions”)

« Verstehen, dass verschiedene Interessengruppen unterschiedliche Bediirfnisse
haben und unterschiedliche Meinungen dariiber haben kénnen, was an einem
Produkt wertvoll ist.

« Wissen, dass eine priorisierte Stakeholderliste hilft, Anforderungen nach Ge-
schaftswert zu priorisieren

« Wissen, dass Architekten mit Zielkonflikten zwischen den Bedirfnissen der
Stakeholder umgehen miissen

LZ 2-6: Umfang und Abgrenzung vom Systemkontext

« Unterscheidung zwischen Geschafts- und Produktumfang kennen

« Wissen tber die Bedeutung externer Schnittstellen

« Unterscheiden zwischen verschiedenen Ebenen der Externalitit (extern zum
System, extern zur Geschiftseinheit, extern zum Unternehmen)

« verschiedene Moglichkeiten und Notationen kennen, um Umfang und Kontext
auszudricken, z.B. Kontextdiagramme

3. Bis hierhin...

.. reicht unser kleiner Auszug. Auf den folgenden Seiten finden Sie noch unser
Glossar sowie die Literatur- und Quellenangaben.

Im gesamten Buch folgen an dieser Stelle noch einige spannende und hilfreiche
Kapitel:

Umgang mit funktionalen Anforderungen
Qualitatsanforderungen

Behavior-Driven Development (BDD)
Priorisierung von Anforderungen
Vorgehen

Werkzeuge

Ausblick

N N e

Glossar

Affinititsschitzung
Schatztechnik agiler Teams, um schnell eine grof3e Anzahl von Anforderungen
(etwa: User Stories) zu schétzen. Dabei ordnet das Team die Stories in aufstei-
gender Reihenfolge auf einer horizontalen Skala an.

Agile Requirements Engineering
(adaptiert vom IREB): ein kooperativer, iterativer und inkrementeller Ansatz
mit vier Zielen:

1. Kenntnis der relevanten Anforderungen auf einem angemessenen Detail-

lierungsgrad (zu jedem Zeitpunkt der Systementwicklung),
2. Erzielung einer ausreichenden Ubereinstimmung der relevanten Stakehol-

der iber die Anforderungen,
3. Erfassung (und Dokumentation) der Anforderungen entsprechend den

Vorschriften der Organisation,
4. Durchfithrung aller anforderungsbezogenen Aktivitaten nach den Prinzi-

pien des agilen Manifests.

Aktivitatsdiagramm
Ein Ausdrucksmittel der UML (Unified Modeling Language) zur grafischen
Darstellung von Prozessschritten. Im Gegensatz zu —Datenflussdiagrammen
konzentrieren sich Aktivitatsdiagramme auf die Ablaufreihenfolge von Schrit-
ten.

Akzeptanzkriterien
(adaptiert vom IREB): Eine Reihe von Bedingungen (typischerweise mit ei-
ner Anforderung verbunden), die von jeder Implementierung erfiillt werden
miissen. Solche Bedingungen konnen z.B. die erwarteten Ergebnisse fir die
Eingangsdaten der Stichprobe oder die erwartete Geschwindigkeit oder das zu
erreichende Volumen sein.

ASR (Architecturally Significant Requirements)
Architekturrelevante Anforderungen sind die Teilmenge der Anforderungen,
die einen starken Einfluss auf architektonische Entscheidungen haben (jene

Glossar 24

Anforderungen, die insbesondere architektonische Entscheidungen préagen oder
beeinflussen).

ATDD
Acceptance Test Driven Development

BDD
(Behavior Driven Development) Ein agiler Software-entwicklungsprozess, der
die Zusammenarbeit zwischen Entwicklern, der Qualitatssicherung und nicht-
technischen oder geschéftlichen Teilnehmern eines Softwareprojekts fordert.
Er ermutigt Teams, Gesprache und konkrete Beispiele zu nutzen, um ein
gemeinsames Verstandnis dariiber zu formalisieren, wie sich die Anwendung
verhalten sollte, was zu ausfiihrbaren Spezifikationen fithrt, z.B. in der Syntax
von — Gherkin.

Bounded Context
In Domain Driven Design (DDD) ein Begriff fiir einen inhaltlich stark zu-
sammenhéingenden Bereich des Systems, der wenig Schnittstellen zu anderen
solchen Bereichen aufweist und daher relativ unabhéngig von den anderen
implementiert werden kann.

BPMN (Business Process Model & Notation)
Ein von der OMG (Object Management Group) standardisierte Notation zur
Beschreibung von Geschéftsprozessen.

Cost-of-Delay (Kosten der Verzogerung)
Eine Schatzgrofie, die ausdriickt, wie viel Wert verloren geht, wenn ein Produkt
zu spét geliefert wird. Anders ausgedriickt: Was konnten wir einnehmen, wenn
das Produkt frither am Markt wére.

Datenflussdiagramm
Ein Ausdrucksmittel aus der Strukturierten Analyse zur grafischen Darstellung
von Prozessabldufen. Im Gegensatz zu — Aktivitatsdiagrammen konzentrieren
sich Datenflussdiagramme auf die Ein- und Ausgaben der einzelnen Prozess-
schritte, den Fluss der Daten.

Definition of Ready
(DoR) (adaptiert vom IREB): eine Reihe von Kriterien, die eine Anforderung
erfiillen muss, bevor sie in einer kommende n Iteration implementiert werden.

Domain-Driven Design (DDD)
Eine Methode zur Modellierung komplexer Systeme, die sich maf3geblich auf
die umzusetzende Fachlichkeiten der Anwendungsdomaéne stiitzt.

Glossar 25

Epic
(adaptiert vom IREB): Eine abstrakte Beschreibung eines Stakeholderbedarfs,
der in dem zu entwickelnden Produkt beriicksichtigt werden muss. Epics sind
typischerweise grofier als das, was in einer einzigen Iteration umgesetzt werden
kann.

Feature
Die Spezifikation eines Service, das einen Wunsch oder Bedarf eines Stake-
holders erfiillt. Jedes Feature sollte eine Aussage tiber den Nutzen fiir den
Stakeholder, sowie ein Akzeptanzkriterien enthalten.

Fibonacci-Schitzung
—Planning-Poker verwendet (leicht modifizierte) Fibonacci-Zahlen (0, %, 1,
2, 3, 5, 8, 13, 20, 40, 100) zur relativen Schiatzung der Schwierigkeit von
Anforderungen. Bedeutung: 0: Aufgabe bereits erledigt, 100: hoch komplexe
Aufgabe, noch keine genauere Schatzung moglich. %: sehr kleine Aufgabe, 1-5:
eher kleinere, 8 und 13 mittlere Aufgaben. 13 oft fiir Aufgaben, die noch in einen
einzigen Sprint passen. 20 und 40: zu umfangreich, brauchen noch Detaillierung
der Anforderungen.

Funktionale Anforderung
Eine Anforderung beziiglich eines Ergebnisses, das durch eine Funktion des
Systems (oder einer Komponente oder eines Dienstes) bereitgestellt werden soll.

Geschiiftsziel (Business Goal)
Ein gewiinschter Zustand (den ein Stakeholder erreichen mochte). Geschafts-
ziele beschreiben Absichten von Stakeholdern. Sie konnen zueinander in Kon-
flikt stehen.

Gherkin
Eine domanenspezifische Sprache zum Schreiben von —BDD Szenarien in
—GWT-Syntax.

GWT-Syntax
Given, When, Then: Eine halbformale Notation zum Schreiben von Testfallen
oder Verhaltensspezifikationen. Erfunden von Dan North als Teil von —BDD
(behavior-driven development).

INVEST
Ein Akronym fiir die Eigenschaften eine guten —(User) Story. Sie sollte
unabhingig (I = independent), verhandelbar (N = negotiable), wertvoll (V =
valuable), schéatzbar (E = estimable), klein genug fiir die Umsetzung in einem
Sprint (S = small) und testbar (T = testable) sein.

Glossar 26

IREB
International Requirements Engineering Board. Siehe https://ireb.org

iSAQB
International Software Architecture Qualification Board. Siehe https://isaqb.
org

MoSCoW-Priorisierung
Ein Akronym fiir vier Prioritatsstufen von Anforderungen: Must have, Should
have, Could have, Won’t Have. Die “0” sind nur Fiillbuchstaben, um das Wort
aussprechbar zu machen.

Nichtfunktionale Anforderung (NFA)
Ein Sammelbegriff fiir eine — Qualitatsanforderungen oder eine — Randbe-
dingung.

PAM
Ein Akronym fiir Purpose, Advantage, Metric, das dabei hilft, sich auf diese
drei wichtigen Aspekte beim Formulieren von Geschéftszielen oder Visionen
zu konzentrieren.

Planning Poker
Ein agiles Schatzverfahren, mit dem Mitglieder des Software-Entwicklungsteam
die Grofle von vorgestellten Epics, Features oder Stories schétzt. Vgl. — Wall-
Estimation zur Beschleunigung der Schatzungen.

Product Owner
In Scrum die Rolle, die im Rahmen einer Produktentwicklung fiir die Erhebung,
Verwaltung, Verfeinerung und Priorisierung von Anforderungen zustandig ist.
Der Product Owner priift auch am Ende einer Iteration die Erreichung der
Anforderungen.

Qualititsanforderung (Quality Requirement)
(nach IREB) Eine Anforderung, die sich auf eine Qualitatseigenschaft bezieht,
die nicht durch funktionale Anforderungen abgedeckt ist.

Randbedingung (Constraint)
Eine Anforderung, die den Losungsraum mehr einschréankt als es fiir die Er-
reichung von funktionalen Anforderungen oder Qualitatsanforderungen nétig
ware.

Scenario
Eine Beschreibung einer moglichen Folge von Ereignissen, die zu einem ge-
wiinschten (oder nicht gewiinschten) Ergebnis fithren.\ Alternativ: eine geord-

https://ireb.org
https://isaqb.org
https://isaqb.org

Glossar 27

nete Folge von Interaktionen zwischen Partnern, insbesondere zwischen einem
System und externen Akteuren.

Scope
Diejenigen Dinge, die Sie bei der Entwicklung eines Systems formen, gestalten
und entscheiden konnen.

SLA (Service Level Agreement)
Ein Rahmenvertrag zwischen Auftraggebern und Dienstleistern fiir wiederkeh-
rende Dienstleistungen.

SMART
Ein Akronym (Specific, Measurable, Achievable, Realistic, and Timely), das
Hilfestellung bei der Formulierung von Geschiftszielen gibt.

Stakeholders
Eine Person oder Organisation, die einen direkten oder indirekten Einfluss auf
die Anforderungen und/oder die Entwicklung eines Systems hat. Indirekter
Einfluss umfasst auch Situationen, in denen eine Person oder Organisation
durch das System beeinflusst wird.

Story Points
In agilen Schatzmethoden eine (fiktive) Einheit zur Beschreibung der Grofie
einer User Story.

(User) Story
Eine Beschreibung eines Bedarfs aus der Sicht eines Benutzers zusammen mit
dem erwarteten Nutzen, wenn dieser Bedarf erfillt ist. User Stories werden
typischerweise in natiirlicher Sprache geschrieben, oft unter Verwendung einer
vorgegebenen Satzvorlage.

Use Case (deutsch: Anwendungsfall)
Eine Beschreibung der moglichen Interaktionen zwischen den Akteuren und
einem System, die, wenn sie ausgefithrt werden, einen Mehrwert bieten.

Use Cases spezifizieren ein System aus der Perspektive eines Benutzers (oder
eines anderen externen Akteurs): Jeder Use Case beschreibt einige Funktionen,
die das System fiir die am Use Case beteiligten Akteure bereitstellen muss.
Vision
Die Vision ist eine Beschreibung des gewiinschten zukiinftigen Zustands. Sie
spiegelt die Bediirfnisse wesentlicher Stakeholder wider, sowie die Funktionen,
die zur Erfiilllung dieser Bediirfnisse notwendig sind.
Wall Estimation
Im Gegensatz zu — Planning Poker ein beschleunigtes Schatzverfahren, bei

Glossar 28

dem eine Skala von Groflenordnungen (z.B. Fibonacci, T-Shirt-Sizes) an die
Wand gehéngt wird und das Team rasch alle Epics oder Stories in den ent-
sprechenden Spalten darunter anordnet statt jeweils einzelne Backlog-Items zu
schatzen.
WSJF (Weighted Shortest Job First)
Vorschlag zur Priorisierung von Anforderungen aus dem SAFE Framework:
Gewichteter kiirzester Job zuerst. Die Gewichtung berechnet sich aus —Cost
of Delay.

Literatur

Adzic-11: Goyko Adzic: Specification by Example. Manning, 2011. Mehr Infos: https:
//gojko.net/books/specification-by-example/

Adzic-12: Gojko Adzic, Impact Mapping. https://www.impactmapping.org/
Adzic-14: Goyko Adzic: 50 Quick Ideas to Improve Your User Stories.
arc42: Das freie Portal fiir Softwarearchitktur: https://arc42.de und https://arc42.org

arc42-Quality: Frei verfiigbare Beispiele fiir Qualitatsanforderungen: https://github.
com/arc42/quality-requirements/

ATAM: Rick Kazman: ATAM Method for Architecture Evaluation, (Architecture
Tradeoff Analysis Method), SEI Technical Report, https://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=5177

Banfield-16: Richart Banfield: Design sprint: a practical guidebook for building great
digital products, O’Reilly, 2016

Brandolini: Alberto Brandolini: Event Storming. https://leanpub.com/introducing_
eventstorming. Schone Darstellung der interaktiven Workshops zum besseren Ver-
stehen komplexer Domanen.

Clegg-94: Dai Clegg and Richard Barker (1994). Case Method Fast-Track: A RAD
Approach. Addison-Wesley.

Cohn-04: Mike Cohn: User Stories Applied, Addison Wesley, 2004

Crunch: Knowledge Crunching, erklart in Eric Evans: Domain-Driven Design -
Tackling Complexity in the Heart of Software. Addison-Wesley, 2003.

Cucumber: Das vermutlich am weitesten verbreitete Toolset fiir BDD. Implementie-
rungen fiir viele Programmiersprachen verfiigbar. https://cucumber.io/

DeMarco-07: Tom DeMarco, et. al: Adrenalin Junkies und Formular Zombies,

https://gojko.net/books/specification-by-example/
https://gojko.net/books/specification-by-example/
https://www.impactmapping.org/
https://arc42.de
https://arc42.org
https://github.com/arc42/quality-requirements/
https://github.com/arc42/quality-requirements/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://leanpub.com/introducing_eventstorming
https://leanpub.com/introducing_eventstorming
https://cucumber.io/

Literatur 30

Pattern 78, Hanser-Verlag, 2007
DomainStories: Domain Storytelling: http://www.domainstorytelling.org/

Evans: Eric Evans: DDD Referenz. Uberblick iiber alle DDD-Praktiken und Patterns;.
Online: https://ddd-referenz.de/, inclusive Links zu Print-Versionen.

Gerstbach-16: Ingrid Gerstbach: Design Thinking im Unternehmen: Ein Workbook
fiir die Einfithrung von Design Thinking, GABAL Verlag, 2016

Gherkin: Die Sprache Gherkin definiert die Syntax, in der wir Features in (fast)
ausfithrbare Szenarien herunterbrechen konnen. Eine Einfithrung finden Sie unter
https://cucumber.io/docs/gherkin/

Gottesdiener-12: Ellen Gottesdiener: Discover to Deliver: Agile Product Planning
and Analysis, EGB Consulting, 2012

Hathaway-19: Angela + Tom Hathaway: Getting and Writing IT-Requirements in a
Lean and Agile World. Self-published, https://leanpub.com/lean-requirements-user-
stories-agile

Hofer: Stefan Hofer und Henning Schwentner: Domain Storytelling online auf

jax.de!

Hruschka-19: Peter Hruschka: Business Analysis und Requirements Engineering, 2.
Auflage, Hanser Verlag

Hruschka+Starke-18: Peter Hruschka und Gernot Starke: Knigge fiir Softwarearchi-
tekten, 3. iiberarbeitete und erginzte Auflage, entwickler.press, 2018. Kurzfassungen
finden Sie online unter https://softwareknigge.de

IREB: International Requirements Engineering Board: Handbook Advanced Modu-
le “RE@Agile”, online: https://www.ireb.org/de/downloads/tag:advanced-level-re-
agile

iSAQB-Foundation Level: Curriculum: https://isagb-org.github.io/curriculum-foundation/

ISO-25010: Standard for Systems and software Quality Requirements and Evaluation
(SQuaRE), definiert ein generisches Modell fiir Software(produkt)qualitit. https://

'https://jax.de/blog/microservices/domain-driven-design-wie-domain-storytelling-fachexperten-und-entwickler-
zusammenbringt/

http://www.domainstorytelling.org/
https://ddd-referenz.de/
https://cucumber.io/docs/gherkin/
https://leanpub.com/lean-requirements-user-stories-agile
https://leanpub.com/lean-requirements-user-stories-agile
https://jax.de/blog/microservices/domain-driven-design-wie-domain-storytelling-fachexperten-und-entwickler-zusammenbringt/
https://jax.de/blog/microservices/domain-driven-design-wie-domain-storytelling-fachexperten-und-entwickler-zusammenbringt/
https://softwareknigge.de
https://www.ireb.org/de/downloads/tag:advanced-level-re-agile
https://www.ireb.org/de/downloads/tag:advanced-level-re-agile
https://isaqb-org.github.io/curriculum-foundation/
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html

Literatur 31

www.iso.org/standard/35733.html

ISO-26262: Standard fiir functional safety for road vehicles. https://en.wikipedia.org/
wiki/ISO_26262

ISO-27001: ISO Standard zu Informationssicherheit, https://en.wikipedia.org/wiki/
ISO/IEC_27001

Jacobson-11: Ivar Jacobson, Ian Spence, Kurt Bittner: Use-Case 2.0: The Guide
to Succeeding with Use-Cases. Online: https://www.ivarjacobson.com/publications/
white-papers/use-case-ebook

JBehave: JBehave — ein Framework fiir Behaviour-Driven Development: https://
jbehave.org/.

Lawrence: Richard Lawrence: How to split a story, https://agileforall.com/resources/
how-to-split-a-story

McGreal: Don McGreal, Ralph Jocham: The Professional Product Owner: Leveraging
Scrum as a Competitive Advantage. Addison-Wesley, 2018

McMenamin-84: Stephen McMenamin, John Palmer: Structured Design. Yourdon-
Press 1984. Uralt. Immer noch gut, um “Fachlichkeit” sinnvoll zu strukturieren.
Nimmt viele Aspekte vorweg, die in der DDD-Community als “Event-Storming”
propagiert werden.

Millet-17: Scott Millet: The Anatomy of Domain-Driven Design. Leanpub, 2017.
Grafisch grof3artig aufgemacht, leider sehr abstrakt und (wie leider die meisten DDD-
Biicher ohne durchgéingiges Beispiel).

North: Dan North: Introducing Behavior Driven Development, https://dannorth.net/
introducting.bdd

Patton-15: Jeff Patton: User Story Mapping: Discover the Whole Story, Build the
Right Product, O’Reilly, 2015

Pichler-10: Roman Pichler: Agile Product Management with Scrum: Creating Pro-
ducts that Customers Love. Addison-Wesley, 2010

P16d: Michael P16d: Hands-On Domain-Driven Design by Example. http://leanpub.
com/ddd-by-example. Endlich mal ein DDD-Buch mit durchgangigem Beispiel.

Poppendieck-03: Mary und Tom Poppendieck: Lean Software Development: An

https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/ISO/IEC_27001
https://en.wikipedia.org/wiki/ISO/IEC_27001
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://jbehave.org/
https://jbehave.org/
https://agileforall.com/resources/how-to-split-a-story
https://agileforall.com/resources/how-to-split-a-story
https://dannorth.net/introducting.bdd
https://dannorth.net/introducting.bdd
http://leanpub.com/ddd-by-example
http://leanpub.com/ddd-by-example

Literatur 32

Agile Toolkit. Addison-Wesley Professional, 2003. Online?

Ries-11: Eric Ries: The Lean Startup, Crown Business, 2011

Req4Arc: Lehrplan des iSAQB zum Advanced Modul REQ4ARC, online’
Req42: Das Portal fiir agiles Requirements Management https://req42.de.

Robertson-12: Suzanne und James Robertson: Mastering the Requirements Process:
Getting Requirements Right. Addison Wesley; 3rd edition 2012. Online*

Robertson-19: Suzanne und James Robertson: Business Analysis Agility. Addison
Wesley, 2019

SEI: Das Software-Engineering Institute gehort zur Carnegie-Mellon University in
USA. Qualitatsszenarien finden sich u.a. in ,Software Architecture in Practice” von
Len Bass et al, oder auch in diversen Technical Reports®

Serenity: Serenity BDD, ,automatisierte Akzeptanztests mit Stil“: integriert die Idee
von Living-Documentation mit BDD. Online® und bei thucydides’. Die von Serenity
generierte Dokumentation finden wir super-hilfreich.

Smart-14: John Smart: BDD in Action, Behavior-Driven Development for the whole
software lifecycle. Manning 2014. Siehe https://www.manning.com/books/bdd-in-
action

Smart-Amigo: John Smart: The Anatomy of a Three Amigo requirements dis-
covery Session. Siehe https://johnfergusonsmart.com/three-amigos-requirements-
discovery/

Spockframework: Spockframework gehort zu unseren personlichen Favoriten der
BDD-Frameworks: — Open-Source, auf Basis Groovy: Riesiges Lob und Danke an
seinen Schopfer Peter Niederwieser. Damit macht Spezifikationen schreiben wirklich
Spafi! http://spockframework.org

Stakeholder: arc42 gibt einige Tipps zum Umgang mit Stakeholdern in der (techni-
schen) Dokumentation: https://docs.arc42.org/keywords/#stakeholder

Starke-Hruschka-16: Gernot Starke und Peter Hruschka: arc42 in Aktion - Prak-

*https://books.google.com/books?id=hQk4S7asBi4C&pg=PA182
*https://isaqb-org.github.io/curriculum-req4arc/

“https://www.volere.org/mastering-the- requirements-process- getting-requirements-right/
*https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14249.pdf
“https://serenity-bdd.github.io/theserenitybook/latest/index.html
"https://www.thucydides.info

https://books.google.com/books?id=hQk4S7asBi4C&pg=PA182
https://isaqb-org.github.io/curriculum-req4arc/
https://req42.de
https://www.volere.org/mastering-the-requirements-process-getting-requirements-right/
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14249.pdf
https://serenity-bdd.github.io/theserenitybook/latest/index.html
https://www.thucydides.info/
https://www.manning.com/books/bdd-in-action
https://www.manning.com/books/bdd-in-action
https://johnfergusonsmart.com/three-amigos-requirements-discovery/
https://johnfergusonsmart.com/three-amigos-requirements-discovery/
http://spockframework.org
https://docs.arc42.org/keywords/#stakeholder
https://books.google.com/books?id=hQk4S7asBi4C&pg=PA182
https://isaqb-org.github.io/curriculum-req4arc/
https://www.volere.org/mastering-the-requirements-process-getting-requirements-right/
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2003_005_001_14249.pdf
https://serenity-bdd.github.io/theserenitybook/latest/index.html
https://www.thucydides.info/

Literatur 33

tische Tipps zur Architekturdokumentation, Hanser 2016. Viele Tipps auch online
unter https://docs.arc42.org

Starke-Hruschka: Gernot Starke und Peter Hruschka: Communicating Software
Architectures: lean, effective and painless documentation. Leanpub https://leanpub.
com/arc42inpractice

Starke-Hruschka-17: Gernot Starke und Peter Hruschka: Der Flexibilisator, https:
//jaxenter.de/flexibilisator-51170

TDD-BDD: Seb Rose: Introduction to TDD and BDD. https://cucumber.io/blog/
intro-to-bdd-and-tdd/

Toth-19: Stefan Toth: Vorgehensmuster in der Softwarearchitektur. Carl Hanser
Verlag, 3.te Auflage 2019. Geht besonders auf “Architekturrelevante Anforderungen”
ein.

UL: Ubiquitous Language in der DDD-Referenz: https://leanpub.com/ddd-referenz/
read#ubiquitous-language

VOLERE: Umfangreiches und ausgereiftes Template fiir Anforderungen, http://
www.volere.co.uk

Wake-03: Wake, Bill: INVEST in good stories and SMART Tasks, http://xp123.com/
Articles/invest-in-good-stories-and-smart-tasks, 2003

Wlaschin-18: Scott Wlaschin: Domain Modeling Made Functional - Tackle Software
Complexity with Domain-Driven Design and F#. Pragmatic Programmers, 2018. Auf
den ersten 50 Seiten dieses Buches stellt Scott die Grundlagen von DDD vor, so
kompakt und verstiandlich wie aus unserer Sicht sonst bisher keines der (vielen) DDD
Biicher. Auch ohne F# Ambitionen oder Erfahrungen sehr lesenswert!

Why-the-name: Die (nette) Geschichte, warum Cucumber® so heisst wie ein Gemii-
se.

Wynn: Matt Wynn: Introducing Example Mapping: Online’

Yatspec: YatSpec — ein (moderneres) Framework fiir BDD, das sich gut in eine JUnit
Infrastruktur einfiigt: https://github.com/bodar/yatspec

®https://www.quora.com/Why-is-the- Cucumber-tool-for-BDD-named-as-such
*https://cucumber.io/blog/example-mapping-introduction

https://docs.arc42.org
https://leanpub.com/arc42inpractice
https://leanpub.com/arc42inpractice
https://jaxenter.de/flexibilisator-51170
https://jaxenter.de/flexibilisator-51170
https://cucumber.io/blog/intro-to-bdd-and-tdd/
https://cucumber.io/blog/intro-to-bdd-and-tdd/
https://leanpub.com/ddd-referenz/read#ubiquitous-language
https://leanpub.com/ddd-referenz/read#ubiquitous-language
http://www.volere.co.uk
http://www.volere.co.uk
http://xp123.com/Articles/invest-in-good-stories-and-smart-tasks
http://xp123.com/Articles/invest-in-good-stories-and-smart-tasks
https://www.quora.com/Why-is-the-Cucumber-tool-for-BDD-named-as-such
https://cucumber.io/blog/example-mapping-introduction
https://github.com/bodar/yatspec
https://www.quora.com/Why-is-the-Cucumber-tool-for-BDD-named-as-such
https://cucumber.io/blog/example-mapping-introduction

Uber uns

Peter (links) und Gernot (rechts)

Griinder und Maintainer/Committer
von arc42', dem freien Portal fur
Softwarearchitektur, -dokumentation
und -entwurf. Mitgriinder und akti-
ve Mitglieder des International Soft-
ware Architecture Qualification Board
(iSAQB").

Gernot wirkt dort in den Arbeitsgrup-
pen ,Foundation Level” und “Advan-
ced Level®, Peter engagiert sich fur
Zertifizierungen im Foundation Level.

Wir haben mehrere Biicher gemeinsam geschrieben: ,arc42 in Aktion“ (Hanser
Verlag), ,Software-Architektur kompakt“ (Spektrum Verlag), ,Knigge fiir Software-
architekten” (Entwickler Press), “Zertifizierung fiir Softwarearchitekten” (Entwickler
Press) sowie eine Reihe von eBooks.

Dr. Peter Hruschka

Informatikstudium an der TU Wien, Promotion iiber Echtzeit-Programmiersprachen.

18 Jahre im Rahmen eines grofien deutschen Software-Hauses verantwortlich fiir
Software Engineering. Initiator, Programmierer und weltweiter Prediger und Ver-
markter eines der ersten Modellierungstools.

Seit 1994 selbststdndig als Trainer und Berater mit den Schwerpunkten Software-
/System-Architekturen, Business Analysis und Requirements Engineering, oft im

“Siehe https://www.arc42.de und https://www.arc42.org;
http://www.isagb.org/

http://www.isaqb.org/
https://www.arc42.de
https://www.arc42.org
http://www.isaqb.org/

Uber uns 35

Umfeld technischer Systeme (Embedded Real-Time Systems). Peter ist Grindungs-
und Boardmitglied des IREB (International Requirements Engineering Board).

Gebiirtiger Osterreicher, aber seit 1976 Wahl-Aachener. In seiner kargen Freizeit
Nordic-Walker, Kanute, Golfer und Keyboardspieler.

Peter ist Fellow von Agile Experts (www.agile-experts.ch), mit denen er das agile
Requirements-Portal www.req42.de betreibt. Und er ist Principal der Atlantic Sys-
tems Guild (www.systemsguild.com) — trotz seiner moderaten Mitgliederanzahl seit
mehr als 40 Jahren wegweisend in der Methodenentwicklung. Auf dieser Website
finden Sie auch die vielen Bucher, die Peter und die Gilde in den letzten 40 Jahren
geschrieben haben.

Dr. Gernot Starke

INNOQ-Fellow. Informatikstudium an der RWTH Aachen, Promotion iiber Software-
Engineering an der J. Kepler Universitat Linz. Langjahrige Tatigkeit bei mehreren
Software- und Beratungsunternehmen als Softwareentwickler, -architekt, und tech-
nischer Projektleiter.

1996 Mitgrinder und technischer Direktor des ,Object Reality Center®, einer Ko-
operation mit Sun Microsystems. Dort Entwickler und technischer Leiter des ersten
offizielle Java-Projekts von Sun in Deutschland. Griinder der Architecture Impro-
vement Method (aim42), dem freien und systematischen Ansatz zur Verbesserung
bestehender Systeme.

Gernot lebt mit seiner Traumfrau Cheffe Uli in Kéln und verbringt seine Freizeit mit
Kochen, Jogging, Fitness- oder Kraftausdauertraining (am liebsten unter Anleitung
seiner Frau oder erwachsenen Kinder), Biicher schreiben oder grillen.

Einige Biicher aus seiner Feder:

« Gernot Starke: ,Effektive Software-Architektur — Ein praktischer Leitfaden®.
Carl Hanser Verlag,

« Karl Eilebrecht und Gernot Starke: ,Patterns kompakt.* Spektrum Akademi-
scher Verlag,

« Gernot Starke, Michael Simons, Stefan Zorner, Ralf Miiller: arc42 by Example,
Leanpub, 2nd Edition 2019, https://leanpub.com/arc42byexample

https://leanpub.com/arc42byexample

	Inhaltsverzeichnis
	Als Entwicklungsteam im Stich gelassen?
	Unsere Annahmen über Sie
	Über dieses Buch
	iSAQB und IREB
	Danksagung

	Einführung und Ziele
	Entwicklungsteams benötigen adäquate Anforderungen
	Lernziele

	Clean Start
	Visionen und Ziele
	Stakeholder
	Scope
	Weiterer Input
	Bleiben Sie dran
	Lernziele

	Bis hierhin…
	Glossar
	Literatur
	Über uns

