

[image: Requirements-Skills erfolgreicher Softwareteams]

 Requirements-Skills erfolgreicher Softwareteams

 Praxisbuch zum iSAQB CPSA-Advanced Req4Arc

 Peter Hruschka und Gernot Starke

 Dieses Buch wird verkauft unter http://leanpub.com/requirements-skills

 Diese Version wurde veröffentlicht am 12.05.2020

 [image: publisher's logo]

 * * * * *

 Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von Lean-Publishing, neue Möglichkeiten des Publizierens. Lean Publishing bedeutet die wiederholte Veröffentlichung neuer Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der Finalisierung und der anschließenden Vermarktung des Buches. Lean Publishing unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

 * * * * *

© 2020 Peter Hruschka und Gernot Starke

 Inhaltsverzeichnis

 	
 Als Entwicklungsteam im Stich gelassen?

 	
 Unsere Annahmen über Sie

 	
 Über dieses Buch

 	
 iSAQB und IREB

 	
 Danksagung

 	
 1. Einführung und Ziele

 	
 Entwicklungsteams benötigen adäquate Anforderungen

 	
 Lernziele

 	
 2. Clean Start

 	
 Visionen und Ziele

 	
 Stakeholder

 	
 Scope

 	
 Weiterer Input

 	
 Bleiben Sie dran

 	
 Lernziele

 	
 3. Bis hierhin…

 	
 Glossar

 	
 Literatur

 	
 Über uns

 	
 Anmerkungen

 Guide

 	
 Begin Reading

Als Entwicklungsteam im Stich gelassen?

Sie arbeiten engagiert und gerne als Teil eines Software-Entwicklungsteam an spannenden Systemen oder Produkten. Haben Sie öfter den Eindruck, Ihre Requirements-Engineers, Product-Owner oder Produktmanager haben Sie bezüglich klarer Anforderungen im Stich gelassen?
Leiden Sie unter fehlenden, vagen oder unklaren Anforderungen, ohne konsistente Prioritäten?
Willkommen im Club der “Im Stich Gelassenen”.

Für Software- und Systemarchitektur stellen „gute” Anforderungen und Randbedingungen die Basis vieler Entscheidungen dar.
Alle Beteiligten geben vor, das Prinzip “garbage-in, garbage-out” zu kennen, aber von der Anforderungsseite scheinen sich in der Praxis doch eher wenige dran zu halten.

Da braucht es konstruktive Abhilfe:
Nehmen Sie als pragmatische Architekt(inn)en das Heft selbst in die Hand!
Nein, Sie wollen auf keinen Fall die Rolle von Product Owner, Business-Analysten und Requirements-Engineers noch zusätzlich übernehmen -
sondern lediglich die architekturrelevanten Anforderungen so weit klären, dass Sie auf dieser Basis robuste Architekturentscheidungen treffen können.

In diesem Buch behandeln wir die Grundsätze von “Anforderungsklärung” für Softwarearchitektur.
Wir starten bei grundlegendem Scoping und der Kontextabgrenzung, kümmern uns um Ermittlung (architekturrelevanter)
funktionaler Anforderungen und tauchen dann in die kritischen Qualitätsziele und -anforderungen ab.
Sie bekommen zahlreiche methodische Tipps, gepaart mit Beispielen aus dem echten Leben.

Unsere Annahmen über Sie

Ohne Sie persönlich zu kennen, haben wir beim Schreiben dieses Buches einige Annahmen über Sie getroffen:

 	Sie arbeiten in der Softwareentwicklung, möglicherweise in einer Entwicklungs- oder Architekturrolle.
In dieser Rolle haben Sie schon mal unter schlechten Anforderungen gelitten. Vermutlich waren Sie der klassischen Regel „Garbage-in, Garbage-out“ ausgeliefert.

 	Sie arbeiten als Product-Owner, Business-Analyst(in) oder im Requirements-Engineering, und möchten gerne besser verstehen,
welche Anforderungen Ihr Entwicklungsteam genau benötigt, wann, in welcher Form, und in welchem Detailgrad.

 	Sie tragen Verantwortung für die Erstellung eines softwareintensiven Systems, und möchten sicherstellen, dass Ihre fachlichen und technischen Stakeholder (Fachseite und Entwicklungsteam) sich bezüglich Anforderungen bestens verstehen.

Über dieses Buch

Wir Autoren, Peter und Gernot, arbeiten seit vielen Jahren als Consultants, Coaches und Trainer in der praktischen Softwareentwicklung und -architektur.
Allzu oft mussten wir erleben, dass trotz großartiger, kreativer und kundiger Entwicklungsteams dabei Produkte entstanden,
die leider nicht die wahren Bedürfnisse der BenutzerInnen erfüllt haben.

Dieses Buch orientiert sich von Struktur und Inhalt am iSAQB Advanced-Modul „Req4Arc“ (Requirements for Architects).
Deswegen finden Sie in den Kapiteln jeweils einen Extrakt der zum Kapitel gehörigen Lernziele dieses Lehrplans.

Sie können Requirements-Engineering auch in Trainings von uns lernen.

Peter bietet unter https://req42.de Seminare und Consulting an.
Peter und Gernot veranstalten gemeinsam (als „dynamisches Duo“) interaktive Workshops zu Req4Arc, siehe https://arc42.de

iSAQB und IREB

Schon seit langer Zeit bietet das „International Requirements Engineering Board“ (IREB, siehe https://ireb.org) zahlreiche Trainings und Ausbildungen im Bereich „Requirements Engineering“ an.
Mehrere Zig-Tausend Personen arbeiten als IREB zertifizierte Requirements-Engineers.
Trotzdem kommt in manchen Entwicklungsprojekten von diesem wichtigen Wissen und den zugehörigen praktischen Fähigkeiten zu wenig an.
Daher haben wir uns entschlossen, das Thema Anforderungen von Seiten der Softwarearchitektur aufzugreifen und es auch in das Portfolio des iSAQB aufzunehmen.

Wenn Sie (professioneller) Requirements-Engineer werden möchten, dann führt an der Ausbildung des IREB praktisch kein Weg vorbei:
IREB deckt im Requirements Engineering sowohl in der Breite wie auch in der Tiefe mehr ab, als wir das im kompakten Req4Arc schaffen.
Für viele Projekte wäre es jedoch schon ein Erfolg, wenn wenigstens unsere Vorschläge aus diesem Buch Eingang in die Praxis finden würden.

Danksagung

Wir danken allen Freiwilligen, die bei Planung und Entwicklung des Req4Arc-Lehrplans aktiv mitgewirkt
und sich an der Diskussion über die Inhalte beteiligt haben, insbesondere
Ali Akbarian, Wolfgang Fahl, Mahbouba Gharbi, Sebastian Hirschmeier, Wolfgang Keller, Roger Rhoades, Dr. Michael Sperber,
Prof. Hartmut Schirmacher sowie Stefan Zörner.
Danke auch an die übrigen Mitwirkenden der Advanced-Level-Working-Group des iSAQB für eure moralische Unterstützung sowie an Sebastian Eberstaller für das Buch-Cover.

Peter: Danke an Monika – die schon wieder ein Buchprojekt durch moralischen Beistand, kritische Fragen und Gewährung von Freizeit zum Schreiben unterstützt hat. Danke an meine agileExperts Kollegen Markus Meuten und Dirk Fritsch für die fruchtbringenden Diskussion beim Aufbau des req42.de Portals.

Gernot: Danke an meine Traumfrau Cheffe Uli, für unglaublich viel positive Energie und Verständnis –
und natürlich Deine perfekte Urlaubsplanung. Danke an meine KollegInnen der INNOQ – von Euch lerne ich jeden Tag.

1. Einführung und Ziele

Softwarearchitekten und Entwicklungsteams leiden häufig unter schlechten
beziehungsweise fehlenden Anforderungen für ihre Arbeit. Dabei finden
Entwicklungsteams für praktisch jedes Problem eine vernünftige Lösung –
sofern sie wissen, was genau das Problem liegt [Hruschka-19].

Gutes Requirements Engineering respektive Business-Analyse zählen nach
wie vor zu den wichtigen Erfolgsfaktoren für erfolgreiche Systeme und
Produkte. Hier zeigen wir Ihnen praktische Wege auf, wie Sie Ihre
Anforderungen in den Griff bekommen.

Entwicklungsteams benötigen adäquate Anforderungen

Unklare Anforderungen führen in der Entwicklung oftmals zu übermäßig
flexiblen und komplexen Lösungen [Starke&Hruschka-17]. Und wer
nachfragt, ist feige – oder?

Als Architekten und Entwickler sollten Sie eine der beiden Alternativen
aus Abbildung 1.1 wählen: Entweder Sie klären die schlechten
Anforderungen selbst (Pfeil 2 im Bild), indem Sie das Gespräch mit den
Stakeholdern suchen, die mit dem Produkt arbeiten wollen oder für die es
geschäftlichen Wert bringen soll. Alternativ muss das Entwicklungsteam
diejenigen Personen identifizieren, die eigentlich dafür zuständig
wären, klare Anforderungen zu liefern – und diese dann motivieren, ihren
Job ordentlich zu erledigen. (Pfeil 1 im Bild).

Für die Personen, die eigentlich zuständig für gute Anforderungen wären,
gibt es unterschiedliche Berufsbezeichnungen. Wir verwenden im Folgenden
den Scrum-Begriff „Product Owner“. Er drückt genau das aus, was wir
wichtig finden: Jemand fühlt sich als „Eigner“ für ein Produkt oder ein
System verantwortlich. Dieser Rolle obliegt es, das Produkt kurz- und
langfristig erfolgreich zu machen. Sie subsummiert, was früher
einerseits Projektleitung (Entscheider) und andererseits Requirements
Engineers beziehungsweise Systemanalytiker oder Business-Analysten
gemeinsam erledigen mussten: Sowohl gute Anforderungen ausarbeiten und
kommunizieren, aber auch Entscheidungen darüber zu treffen, was früher
oder später implementiert werden sollte.

 [image: Abb. 1.1: Zwei Möglichkeiten für bessere Anforderungen]
 Abb. 1.1: Zwei Möglichkeiten für bessere Anforderungen

Unsere Präferenz in Abbildung 1.1 lautet recht eindeutig Alternative 1.
Erzieht Eure Product Owner! Im rauen Praxisalltag allerdings finden Sie
immer wieder die Notwendigkeit für Alternative 2, wenn Product Owner
überfordert sind oder schlichtweg fehlen.

Modernes Requirements Engineering …

… ist ein kooperativer, iterativer und inkrementeller Prozess. Alle am
Produkt Beteiligten arbeiten eng und vertrauensvoll zusammen. Sie sorgen
dafür, dass in einer Folge von Releases das Produkt immer besser wird.
Die Zeiten, in denen wir über Monate und Jahre dicke Pflichten- und
Lastenhefte geschrieben haben, sind – zum Glück – für die meisten von
uns vorbei. Unser Ziel ist es heute, zunächst einen groben Überblick
über alles zu bekommen, was das Produkt leisten soll. Anschließend
wollen wir sehr schnell diejenigen Teile genauer spezifizieren und
implementieren, die frühen Geschäftswert (oder Risikoreduzierung)
versprechen. Das gibt uns Zeit, die weniger wichtigen Themen erst dann
zu präzisieren, wenn sie aktuell werden.

Der „geordnete“ Backlog

Agile Methoden wie Scrum ersetzen die klassischen Requirements-Dokumente
durch einen ständig gepflegten und nach Prioritäten geordneten Product Backlog.
Das Wichtige und Dringende steht weiter oben und ist hoffentlich bis in die Details verstanden und präzisiert.
Das weniger Wichtige steht weiter unten und darf durchaus noch vage und unscharf formuliert sein. Job des Product Owners ist es, immer genügend Details zu haben, die das Entwicklungsteam für die nächsten Iterationen oder Releases benötigt (vgl. Abb. 1.2).

 [image: Abb. 1.2: Product Backlog statt dicker Dokumente]
 Abb. 1.2: Product Backlog statt dicker Dokumente

Der Product Backlog ist ein Arbeitsinstrument, um mit funktionalen
Anforderungen auf unterschiedlichem Präzisionsgrad arbeiten zu können.
Für uns als Architekten sind jedoch oft auch die geforderten Qualitäten
extrem wichtig. Aber Anforderungen wie „Das System soll maximal zweimal
pro Jahr ausfallen und im Falle eines Ausfalls nach zehn Minuten wieder
voll funktionsfähig sein“ bzw. „Das Produkt soll alle Bestimmungen der
DSGVO einhalten“ sind querschnittlicher Natur. Sie lassen sich nicht
einfach in so einen Backlog irgendwo einordnen. Wir werden Ihnen im
Kapitel 4 noch viele Hinweise geben, wie Sie solche Aspekte erarbeiten
können.

Viele spannende Themen

In den kommenden Kapiteln greifen wir jeweils einen anderen Aspekt für
gutes Requirements Engineering auf und geben Ihnen praktische und
pragmatische Tipps, wie Sie zu „just enough“ Requirements kommen.

Zunächst adressieren wir den „Clean Start“: Die Tatsache, dass auch
hochgradig agile Projekte wenigstens ihre Ziele explizit kennen sollten
und wissen, wer wozu etwas zu sagen hat.

Dann betrachten wir unterschiedliche Möglichkeiten, funktionale
Anforderungen auf den Punkt zu bringen. Gutes Verständnis Ihrer
Business-Prozesse und Ihrer Domänen-Objekte, sowie der Trend zu
„Specification by Example“ stehen im Mittelpunkt.

Ausführlich widmen wir uns dem Kernthema „Qualitätsanforderungen“. Sie
wissen ja, dass diese die Architektur stärker und nachhaltiger
beeinflussen können als die funktionalen Anforderungen. Wir zeigen, wie
man auch im agilen Umfeld damit vernünftig umgehen kann und widmen uns
insbesondere auch den Themen Szenarien und Behavior Driven Development
(BDD).

Dann stellen wir dann das engere Zusammenspiel und die stärkere
Verzahnung zwischen Business und IT vor. Wir sprechen Methoden wie
„Design Thinking“ oder „Design Sprints“ und „Discover to deliver“
Gottesdiener-12 an.

Schließlich bliebt auch die leidige Frage des Toolings: Mit welchen
Werkzeugen erfassen und kommunizieren wir Anforderungen? Wir geben Ihnen
in Kapitel 8 einen kleinen Marktüberblick, angefangen von Kärtchen an
der Wand über Wikis und Modellierungswerkzeuge bis zu spezialisierten
Requirements-Tools.

Innerhalb der folgenden Kapitel vermitteln wir Ihnen als
Architekt(inn)en und Entwickler(innen) das passende
Requirements-Know-how, so dass Sie trotz oftmals schlechtem
(Requirements-)Input Ihre Produkte zielsicher entwickeln können.
Nebenbei erfahren Sie, wie Sie Ihre Product Owner oder
Requirements-Verantwortlichen durch gezieltere Nachfragen zu besseren
Vorgaben bewegen können, damit Sie sich noch mehr auf Ihre Kernaufgabe
konzentrieren und spannende Produkte bauen können, die dann exakt die
Bedürfnisse Ihrer Stakeholder oder des Marktes treffen.

Requirements Engineering Skills aufbauen

Die gute Nachricht: modernes Requirements-Engineering können Sie lernen.
Unter anderem hat das International Requirements Engineering Board IREB
(www.ireb.org) ein Advanced Modul „RE@Agile“
freigegeben [IREB], das gutes Requirements-Engineering in einer agilen
Welt behandelt.

Unter www.req42.de finden Sie dazu eine Reihe von
Online-Goodies wie Blog-Beiträge, ein Glossar zu den wichtigsten
REQ4ARC-Begriffen, eine kommentierte Literaturliste, sowie
ausführlichere Beispiele zu den einzelnen Themen.

Lernziele

Wir haben dieses Buch anhand des iSAQB Lehrplans1 „Req4Arc“
(Requirements for Software Architects) gegliedert.

In den folgenden Kapiteln stellen wir Ihnen an dieser Stelle jeweils die
zugehören Lernziele dieses Curriculum vor. Den kompletten Lehrplan
finden Sie unter Req4Arc

2. Clean Start

Ein bisschen Input für Ihre Arbeit dürfen Sie als Entwicklungsteam schon
erwarten. In dem zweiten Kapitel stellen wir Ihnen drei Zutaten vor, die
Sie als Architekt(in) von anderen auf jeden Fall einfordern sollten. Wir
nennen das zusammenfassend einen „Clean Start“ für Ihr Projekt oder
Ihre Produktentwicklung. Für den Fall, dass das nicht klappt, kennen Sie
ja Ihr Schicksal: dann müssen Sie diese Teile der Analysearbeit auch
noch selbst in die Hand nehmen.

 	Jedes Unterfangen sollte eine klare Vision und/oder klare Ziele
haben

 	Die „Mitspieler“ sollten bekannt sein (neudeutsch: Ihre Stakeholder)

 	Und Sie sollten Ihre Spielwiese kennen, die Gebiete, die Ihr Team
beeinflussen kann (neudeutsch: Ihren Scope)

 [image: Abb. 2.1: Drei Zutaten für den erfolgreichen Start]
 Abb. 2.1: Drei Zutaten für den erfolgreichen Start

Die drei Aspekte beeinflussen einander gegenseitig: Je ehrgeiziger Ihre
Ziele, desto mehr Mitspieler; je größer der Scope, desto vielfältiger
die Ziele. Es spielt daher keine Rolle, in welcher Reihenfolge Sie als
Architekt(in) das angehen oder einfordern – Sie benötigen grundsätzlich
alle drei.

Visionen und Ziele

Sie müssen damit leben, dass sich Anforderungen mit durchschnittlich 1 –
3% pro Monat ändern. Wir definieren Vision oder Ziele als denjenigen
Teil der Requirements, die sich in dem geplanten Zeithorizont möglich
NICHT ändern sollen; also als das, was wir in einer Iteration oder
Entwicklungsphase wirklich anstreben.

Ein Projekt kann Ziele für unterschiedliche Zeithorizonte definieren,
die aufeinander abgestimmt werden sollten. Für große Systeme haben wir
drei unterschiedliche Zeithorizonte kennen gelernt:

 	strategische Ziele gelten für teilweise für 3 – 5 Jahre

 	Ziele für den Budgetzyklus von Firmen gelten üblicherweise 1 Jahr

 	Release-Ziele gelten Wochen bis wenige Monate (unter der
Voraussetzung, dass Sie innerhalb eines Jahres mehrere Releases
liefern)

 [image: Abb. 2.2: Änderungstoleranz bis zum Release]
 Abb. 2.2: Änderungstoleranz bis zum Release

Innerhalb der Iterationen, die zu einem Release führen, sollten Sie
dafür sorgen, dass die Anforderungen möglichst stabil bleiben. An den Übergängen zwischen Iterationen gibt es jedoch Zeitfenster, in denen Sie Ziele, Inhalte und Umfang den geänderten Wünschen oder Randbedingungen anpassen können. Tom de Marco & Co nennen das in [DeMarco-07] „Zeit für Änderungen“. Die Toleranz gegenüber Änderungen sollte einen Verlauf ähnlich Abbildung 2.2 nehmen: Je näher Sie einem Release kommen, desto stabiler sollten Anforderungen bleiben.

Wie kommuniziert man Visionen und Ziele

Die klassische Art ist es Ziele einfach umgangssprachlich festzuhalten.
Dafür hat sich die Formel „PAM“ bewährt. Legen Sie pro Ziel Purpose,
Advantage und Metrik fest.

 	„Purpose“ beschreibt, was Sie erreichen wollen,

 	Advantage motiviert, warum man dieses Ziel anstrebt, und die

 	Metrik gibt vor, wie man Zielerreichung überprüfen möchte.

Ein Projekt sollte höchstens eine Handvoll solcher Ziele haben. Sorgen
Sie also dafür, dass Sie von Ihren Managern oder Analytikern 3 – 5
solche Aussagen (natürlich abgestimmt mit den wichtigsten Stakeholdern)
bekommen. Sie wollen definitiv ohne Zielkonflikte starten können.

In der agilen Welt finden Sie einige weitere Spielarten von
Zieldefinitionen. Eine davon ist die Erstellung eines „Produktkoffers“
(vgl. Abbildung 2.3). Neben dem Namen des Produkts und einem Logo, das
allen Beteiligten das Gefühl vermittelt „Das sind wir“, „Das ist unser
Baby“ sollten darauf 3 – 5 Haupteigenschaften des geplanten Produkts
stehen, möglichst so formuliert, dass die Kunden oder Nutzer das Produkt
unbedingt haben wollen.

 [image: Abb. 2.3: Varianten der Zielfestlegung]
 Abb. 2.3: Varianten der Zielfestlegung

Eine Alternative dazu sind die „News from the Future“. Schreiben Sie am Anfang eines Projektes einen kurzen Zeitungsartikel, von dem Sie annehmen, dass er am Tag nach der Freigabe auf der Titelseite Ihrer Lieblingszeitung erscheint. Darin wird – vor Beginn der Entwicklung – festgehalten, was Sie als Lobeshymne auf Ihr Produkt am Tag nach dem Release lesen wollen.

Alle drei Arten der Zieldefinition finden Sie in [IREB] ausführlicher beschrieben. Die Notation spielt keine Rolle, aber als Architekt sollten Sie die Ziele des Business auf jeden Fall kennen.

Stakeholder

Der zweite wesentlich Einflussfaktor, den Projektmanagement und
Analytiker bereits geklärt haben sollen, bevor Sie zu arbeiten beginnen, sind die Stakeholder Ihres Vorhabens. Wer hat welchen Einfluss? Wer kann wobei helfen oder hindern? Und auf dieser Liste sollte viel mehr stehen als nur der Sponsor des Vorhabens und Ihre potentiellen Kunden oder Nutzer. Die allerwichtigsten Ihrer Stakeholder haben erheblichen Einfluss auf die Ziele und den Scope des Vorhabens.

Eine solche Liste zu erstellen, ist kein Hexenwerk. Setzen Sie eine
kleine Gruppe von Projektbeteiligten an einen Tisch und lassen Sie diese 15 Minuten brainstormen. Dann haben Sie wahrscheinlich schon 20 bis 30 Stakeholder identifiziert. Nun schicken Sie diese Liste an alle gefundenen Personen und fragen, wen Sie noch vergessen haben. Mit diesem „Schneeballeffekt“ wird Ihre Stakeholderliste schnell vollständig.

Warum ist die Kenntnis der Stakeholder so wichtig? Sowohl für Analyse wie auch für Architektur und Entwicklung gilt: Vergessene Stakeholder sind vergessene Requirements! Damit ist nicht gesagt, dass Sie alle Stakeholder, die Sie finden, auch intensiv am Projekt beteiligten müssen. Wenn Sie alle wichtigen potentiellen Interessenten kennen, dann können Sie aktiv entscheiden, wie viel oder wenig Sie diese in das Projekt einbinden wollen oder müssen.

Bezüglich der Form gilt – ähnlich wie für die Ziele: Sie haben
Freiheiten. Nehmen Sie eine einfache Tabelle und führen Sie untern den Überschriften „Rolle“, „Ansprechpartner“, „Einfluss“,… Ihre
Stakeholder einfach linear auf. Oder zeichnen Sie eine Stakeholder-Map, in der Sie Stakeholder und deren Abhängigkeiten bzw.
Kommunikationskanäle visualisieren. Hilfreich ist oft auch eine
Stakeholder-Matrix (vgl. Abbildung 2.4), um das Verhältnis zwischen
Einfluss und Interesse auszudrücken.

Für Ihre Architekturarbeit kommen dann sicherlich noch viele weitere Stakeholder hinzu: alle, die mit der Lösung zu tun haben bzw. Teilsysteme oder Technologien zuliefern. Diese spielten eventuell für Ihr Management und die Analytiker noch keine Rolle. Als Architekt(in) müssen Sie aber all diese Personen und Organisation identifizieren.

 [image: Abb. 2.4: Stakeholder-Matrix]
 Abb. 2.4: Stakeholder-Matrix

Weitere Tipps zum Umgang mit Stakeholdern haben wir online unter
[Stakeholder] oder in [Starke&Hruschka-16] für Sie zusammengestellt.

Scope

Der dritte Bestandteil eines „Clean Start“ wird oft in der Praxis
ignoriert, obwohl doch die Festlegung von Scope und Kontext den weiteren Verlauf des Projekts erheblich beeinflussen. Die Definitionen der beiden Begriffe sind einfach: Scope ist der Bereich, den das Projekt aktiv gestalten kann – ihre Spielweise. Zum Kontext gehören alle Personen und IT-Systeme (evtl. auch Hardware-Sensorik und Aktuatorik), über die Sie nicht alleine entscheiden können (vgl. Abbildung 2.5). Wenn Sie im Kontext bzw. an den Schnittstellen zwischen Scope und Kontext etwas ändern wollen, dann müssen Sie mit den Nachbarn darüber verhandeln. Wenn
Sie nicht verhandeln können oder dürfen, dann gelten die Festlegungen aus dem Kontext für Sie einfach als nicht beeinflussbare Randbedingungen.

 [image: Abb. 2.5: Abgrenzung von Scope und Kontext]
 Abb. 2.5: Abgrenzung von Scope und Kontext

Die Scope-Festlegung sollte erfolgen, um „innen“ von „außen“
unterscheiden zu können und die Schnittstellen zwischen „innen“ und
„außen“ zu identifizieren. Eine einfache Notation dafür ist das
sogenannte Kontextdiagramm (vgl. [Hruschka-19]), das nur aus drei
Elementen besteht: Ihr System oder Produkt in der Mitte, rundherum alle Personen oder Systeme im Kontext, und allen Informationen, die aus dem Kontext in den Scope fließen bzw. aus dem Scope in den Kontext – kurz gesagt: die Ein- und Ausgaben Ihres Systems. Für Analytiker und Projektmanager reicht es aus, früh im Projekt über die ein- und ausgehenden Daten Bescheid zu wissen. Sie als Architekt(in) werden die Schnittstellen später noch sehr viel genauer betrachten müssen (Technologie, Protokolle, Push- oder Pull, Mengengerüste, Vertrauen in die Schnittstelle, …). Als Einstieg gilt aber: Schnittstelle erkannt, Gefahr halbwegs gebannt. Vergessene Schnittstellen gehören zu den Dingen, die Ihnen als Architekt(in) das Leben erschweren.

Erfahrungsgemäß tun sich viele Projekte und/oder Teams schwer damit, diese einfache Abgrenzung präzise vorzunehmen: Was gehört in unseren Scope und mit wem müssen wir verhandeln? Deshalb wollen wir im folgenden genauer auf die Feinheiten der Scope-Festlegung eingehen.

Produktscope und Projektscope

Wenn man von Produkt oder System spricht, ist meist ein IT-Produkt oder
ein IT-System gemeint. Sollte Ihre Aufgaben also darin bestehen, ein
(einziges) neues IT-System zu schaffen, so sind Produktscope und
Projektscope identisch. In der Praxis betreffen Projekte manchmal auch
mehrere vorhandene IT-Systeme. Möglicherweise müssen Sie ein System neu
entwickeln oder kräftig modifizieren, und im Rahmen dessen auch
notwendige Anpassungen anderer IT-Systeme gleich mit erledigen (siehe
Abbildung 2.6).

Wie Sie an der Abbildung 2.6 erkennen müssen Sie sowohl die
Schnittstellen des neuen (oder zu modifizierenden) Systems zu den
Benutzern und zu IT-System 2 festlegen, als auch die Leistungen,
Funktionalität und Schnittstellen innerhalb der IT-Systeme 1, 3 und 4 identifizieren, die angepasst werden müssen.

Sollten Sie als Projektverantwortlicher keine Entscheidungsgewalt über die notwendigen Änderungen an den IT-Systemen 1, 3 und 4 haben, so ist Ihr Projekterfolg vom guten Willen dieser drei Nachbarsysteme abhängig: Sie brauchen dort Änderungen, dürfen die aber nicht selbst ausführen oder anordnen, sondern müssen mit den Verantwortlichen dieser Systeme verhandeln.

Nutzen Sie in einer für die Scopefestlegung Ihres Projektes eine visuelle Gesamtübersicht („Kontextdiagramm“) des neuen oder zu modifizierenden Systems, zusammen mit den Nachbarsystemen 1 bis 4.
Wir mögen dazu Komponentendiagramme mit einer kurzen (tabellarischen) Erklärung der Funktionalitäten und Schnittstellen. Das erleichtert die Diskussion über alle notwendigen Änderungen und Anpassungen.

 [image: Abb. 2.6: Projektscope vs. Produktscope]
 Abb. 2.6: Projektscope vs. Produktscope

Notationen für Scope und Kontext

Requirements-Analysten können Schnittstellen einfach vorgeben – in der Entwicklung bereiten diese den Entwicklungsteams möglicherweise viel Aufwand und beinhalten hohe Risiken.

Zur Festlegung der Grenze zwischen Scope und Kontext reicht anfangs die Betrachtung der ein- und ausgehenden Daten Ihres Systems. Die klassische Darstellungsweise dafür ist ein sogenanntes „fachliches
Kontextdiagramm“, [Hruschka-19], wie Sie es als Beispiel für einen Bordcomputer eines PKWs in Abbildung 2.7 sehen. Das System soll den Fahrer mit typischen Informationen wie Durchschnittsgeschwindigkeit, Treibstoffverbrauch, Außentem-peratur, etc. versorgen, wie auch Navigation ermöglichen, einen Tempomaten zur Verfügung stellen, Wartungsintervalle überwachen und den Fahrer über Radiosender und Telefonanrufe informieren.

Sie sollten in einem Kontextdiagramm ALLE Nachbarsysteme identifizieren
und für jedes davon die Ein- und Ausgaben benennen. Eine Aufzählung von
Funktionen (oder Features und Epics) genügt meist nicht, um den Scope
des Produktes festzulegen!

 [image: Abb. 2.7: Kontextdiagramm mit Ein- und Ausgaben des Systems]
 Abb. 2.7: Kontextdiagramm mit Ein- und Ausgaben des Systems

Falls Sie übrigens Diagramme nicht mögen, so schlägt [Hruschka-19]
eine ganze Menge an alternativen Notationen dafür vor, im einfachsten
Fall eine Tabellenmit allen Nachbarsystemen und deren Schnittstellen.

Wichtig ist, dass Sie

 	Ihr System klar identifiziert haben,

 	alle Nachbarn kennen und

 	die komplette Ein- und Ausgabe auf fachlicher Ebene verstanden haben.

Entwicklung braucht (Schnittstellen-)Details

Als Ergebnis einer Anforderungsanalyse genügt es, Ein- und Ausgaben von
und zu den Nachbarn zu erkennen. Diese Schnittstellen explizit
identifiziert zu haben, bedeutet mehr als die halbe Miete.

Bei Entwurf und Entwicklung des Systems müssen Sie bei jeder dieser
externen Schnittstellen alle notwendigen Details entweder hinterfragen
oder entscheiden. [Starke&Hruschka-16] gibt dazu viele pragmatische
Hinweise. Sie müssen z.B. festlegen, wer der aktive Partner ist (Push
oder Pull), wie die Handshakes oder Protokolle aussehen, die an der
Schnittstelle einzuhalten sind, welche zeitlichen, technischen oder
organisatorischen Randbedingungen einzuhalten sind, etc.

Im arc42-Termplate [arc42] haben wir Abschnitt 3 („Kontextabgrenzung“)
für diese wichtigen Informationen vorgesehen. Abschnitt 3.1 enthält das
fachliche Kontextdiagramm. Falls nötig können Sie in Abschnitt 3.2. noch
das technische Kontextdiagramm aufnehmen, das die technischen Kanäle
zeigt, über die fachliche Informationen fließen. Im obigen Beispiel
würde man für das Fahrerinterface vielleicht sowohl Spracheingabe wie
auch Tastatureingabe technisch zulassen. Viele der anderen
Schnittstellen laufen vielleicht über den CAN-Bus. arc42-Abschnitt 3.2
enthält dann auch ein Mapping, welcher fachliche Input/Output über
welchen technischen Kanal läuft.

Alternativ können Sie Details von Schnittstellen auch als technische
oder querschnittliche Konzepte in Abschnitt 8 des Templates beschreiben
– falls Sie beispielsweise viele Schnittstellen nach demselben Schema
behandeln möchten.

Falls Sie auf die grafische Variante stehen: Die UML bietet Ihnen viele
Möglichkeiten, Schnittstellen genauer festzulegen. Abbildung 2.8 zeigt
zu obigem Beispiel jetzt die Verwendung von Ball- und Socket-Notation,
bzw. die Einführung von Ports.

Wir Autoren vertreten diesbezüglich unterschiedliche Meinungen: Peter
mag UML, Gernot eher die text- oder tabellenorientierte Beschreibung von
Schnittstellen. Beides funktioniert.

 [image: Abb. 2.8: Notation für Schnittstellendetails]
 Abb. 2.8: Notation für Schnittstellendetails

Abbildung 2.8 zeigt noch eine Empfehlung: Wenn ein Produkt viele
Schnittstellen aufweist, könnten Sie diese als Analyseergebnis bündeln.
Abbildung 2.8 zeigt nur zwei Sensoren (Temp- und Durchfluss). Stellen
Sie sich aber vor, dass Sie mehrere Dutzend Sensoren als Schnittstellen
haben. Dann lohnt es sich, anfänglich in der Analyse nur über ein
Sensorinterface zu sprechen (dargestellt als Sensor-Port) und das erst
in Laufe der Entwicklung detailliert aufzuspalten. Als weiteres
Beispiel. Nehmen Sie im Telekommunikationsbereich die Schnittstellen zu
Roaming Partnern. Das sind vielleicht einige Hunderte, die teilweise
ganz unterschiedliche Protokolle nutzen oder unterschiedliche Formate
liefern. Trotzdem kann man sie anfangs zu einem
„Roaming-Partner-Interface“ zusammenfassen. Wie gesagt: Schnittstelle
erkannt, Gefahr halbwegs gebannt.

Damit sind Sie in den weitaus meisten Fällen mit Scope und Kontext
fertig. Ein i-Tüpfelchen aber hätten wir noch für Sie.

Business- und Produktscope

Gründliche Requirements-Engineers unterscheiden zwischen
Business-Scope und Produktscope: Der Business-Scope ist der Bereich
Ihres Unternehmens oder Organisation, in dem Sie im Zuge Ihrer Software-
oder Systementwicklung Entscheidungen treffen oder vorschlagen dürfen,
also beispielsweise Ihr Fachbereich oder Ihre Abteilung. Normalerweise
ist der Business-Scope um einiges größer als der Produktscope, weil Sie
vielleicht nicht alles, was in Ihren Entscheidungsbereich fällt, auch
automatisieren wollen. Sie können also in Zusammenarbeit von Analytikern
und Architekten festlegen, welche Teile von Geschäftsprozessen
automatisiert und welche Schritte vielleicht noch längere Zeit
manuell durchgeführt werden sollen.

 [image: Abb. 2.9: Business- und Produktscope]
 Abb. 2.9: Business- und Produktscope

Abbildung 2.9 zeigt eine solche Situation. „User 1“ und „User 2a“, sowie
„IT-System 1“ befinden sich außerhalb Ihres Business-Scopes. Dort haben
Sie keinen direkten Einfluss. „User 2b“ und „User 3“, sowie „IT-System
2“ gehören in Ihren Business-Scope. Daher sollte es relativ leicht sein,
diese bei der Neuentwicklung eines Produktes zu berücksichtigen.
„IT-System n“ gehört Ihnen nicht alleine, sondern es sind auch andere
Verantwortliche im Business-Kontext mit im Spiel.

Für „User 2a“ können Sie zum Beispiel entscheiden, dass Anfragen
zunächst an „User 2b“ in Ihrer Abteilung gehen und dieser mit dem neuen
Produkt diesen Request erfüllt. Später erhält „User 2a“ vielleicht
direkter Zugriff zu dem neuen System.

Unsere Empfehlung ist es, in der Anforderungsanalyse die Scheuklappen
grundsätzlich etwas weiter aufzumachen und an die Schnittstellen Ihres
Business zu denken, statt an die möglicherweise eingeschränkten
Schnittstellen eines Produktes.

Sie sehen schon: Scope und Kontextabgrenzung sind in vielen Fällen nicht
trivial. Und wenn Sie diesen Input nicht von Requirements-Engineering
oder Business-Analysts bekommen, dann ist das ein ganz wichtiger, früher
Schritt bei Ihrer Architekturarbeit.

Empfehlungen

Nehmen Sie die Festlegung von Scope und Kontext ernst. Im
Entwicklungsteam müssen Sie manchmal „nacharbeiten“, weil die
Anforderungsanalyse oder Ihre Product-Owner Sie diesbezüglich im Stich
gelassen haben.

Nutzen Sie bereits frühzeitig in Ihrem Projekt oder Vorhaben ein
Kontextdiagramm als Kommunikationshilfsmittel, um Feedback Ihrer
Stakeholder über die wichtigen Außenschnittstellen ihres Systems
einzuholen – lange bevor Sie interne Entscheidungen treffen. Legen Sie
besonderes Augenmerk auf volatile oder kritische Schnittstellen, die
sich oft und ohne ihr Zutun ändern können.

Weiterer Input

Mit den Klärungen von Zielen, Stakeholdern und Scope haben Sie die
wichtigsten Voraussetzungen für einen Clean Start erfüllt. Schön wäre es
auch, wenn Sie einen groben Überblick über die gewünschte Funktionalität
erhalten würden (z.B. in Form von Epics oder Feature-Listen), wenn man
Ihnen die allerwichtigsten Qualitätsziele für das Produkt verrät (z.B.
die Top 3 Qualitätsanforderungen). Sicherlich sollten Sie auch über die
wichtigsten Randbedingungen klargestellt werden. Das T-Stich-Modelle in
Abbildung 2.10 fasst das grafisch zusammen. Wenn der Aufwand für die
komplette Klärung der Requirements 5% beträgt, dann reichen am Anfang 1
– 2 % davon aus, um volle Breite vor Tiefe zu eruieren. Parallel zu
dieser Arbeit der Analytiker können Sie als Architekt(in) ja schon
wichtige Eckpfeiler der Architektur festlegen (möglichst mit Ihrem Team
zusammen) und auch schon erste Prototypen oder Minimal Viable Products
(MVPs) implementieren. Ausgestattet mit dem Wissen bohren Sie dann
iterativ da in die Tiefe, wo es sich am ehesten lohnt.

 [image: Abb. 2.10: Das T-Modell mit den wichtigsten Artefakten]
 Abb. 2.10: Das T-Modell mit den wichtigsten Artefakten

Bleiben Sie dran

Lassen Sie uns zusammenfassend unsere Empfehlung wiederholen: Bringen
Sie Ihrem Management, den Product Ownern oder Business Analysts bei,
dass sowohl Ziele, Scope und Stakeholder auf jeden Fall in deren
Aufgabenbereich fallen. Vielleicht können diese Stakeholder Ihnen
zusätzlich noch einen groben Überblick über die gewünschte
Funktionalität des Systems, die dringendsten Erwartungshaltungen
bezüglich Qualität sowie die härtesten Randbedingungen liefern. Dann
haben Sie in Ihrer Rolle als Architekten einen entspannten
Arbeitsbeginn. In diesem Sinne: Keep educating your product owners and business analysts!

Lernziele

Der [Req4Arc] Lehrplan sieht zu diesem Themenbereich folgende Lernziele vor:

LZ 2-1: Verstehen der Notwendigkeit einiger (begrenzter) Vorleistungen

 	Verstehen, dass selbst bei iterativer Entwicklung einige
Vorleistungen erforderlich sind.

 	Wissen, dass explizite Kenntnisse über Visionen, Ziele und relevante
Stakeholder erforderlich sind, damit das Entwicklungsteam fundierte
Entscheidungen über die Systemarchitektur treffen kann.

 	Verstehen, dass eine Vereinbarung über Umfang und Kontext
erforderlich ist, insbesondere über die Schnittstellen zwischen
Umfang und Kontext (d.h. die externen Schnittstellen des Produkts).

LZ 2-2: Verständnis für die Notwendigkeit von (high-level) Visionen und Geschäftszielen

 	Verstehen, dass Visionen oder Geschäftsziele Ihre höchsten
Anforderungen sind, d.h. die Anforderungen, die (hoffentlich)
während eines Projekts nicht geändert werden.

 	Verstehen, dass Visionen und Ziele quantifiziert und messbar gemacht
werden sollten, um den Erfolg in Bezug auf den Geschäftswert
überprüfen zu können.

LZ 2-3: Verschiedene Möglichkeiten und Notationen, um Visionen und

Unternehmensziele auszudrücken

 	verschiedene Möglichkeiten kennen, um Vision und Ziele zu definieren
(explizite Zielerklärungen, Wertversprechen für verschiedene
Stakeholder, Visionsfeld, “Neuigkeiten aus der Zukunft”)

 	Mnemotechnik für Visionen oder Geschäftszielsetzungen kennen (SMART,
PAM)

LZ 2-4: Die Bedeutung der verschiedenen Stakeholder und ihr Einfluss auf das Produkt oder System

 	Wissen, dass die Stakeholder die wichtigsten Quellen für
Anforderungen sind.

 	Verstehen, dass fehlende Stakeholder fehlende Anforderungen bedeuten
können.

 	Verstehen, dass Architekten sich bewusst sein sollten, dass die
Stakeholder auf spezifische, angemessene Weise angesprochen werden
müssen.

LZ 2-5: Unterschiedliche Bedürfnisse und Werte der verschiedenen Stakeholder (“Value Propositions”)

 	Verstehen, dass verschiedene Interessengruppen unterschiedliche
Bedürfnisse haben und unterschiedliche Meinungen darüber haben
können, was an einem Produkt wertvoll ist.

 	Wissen, dass eine priorisierte Stakeholderliste hilft, Anforderungen
nach Geschäftswert zu priorisieren

 	Wissen, dass Architekten mit Zielkonflikten zwischen den
Bedürfnissen der Stakeholder umgehen müssen

LZ 2-6: Umfang und Abgrenzung vom Systemkontext

 	Unterscheidung zwischen Geschäfts- und Produktumfang kennen

 	Wissen über die Bedeutung externer Schnittstellen

 	Unterscheiden zwischen verschiedenen Ebenen der Externalität (extern
zum System, extern zur Geschäftseinheit, extern zum Unternehmen)

 	verschiedene Möglichkeiten und Notationen kennen, um Umfang und
Kontext auszudrücken, z.B. Kontextdiagramme

3. Bis hierhin…

… reicht unser kleiner Auszug. Auf den folgenden Seiten finden Sie noch unser Glossar sowie die Literatur- und Quellenangaben.

Im gesamten Buch folgen an dieser Stelle noch einige spannende und hilfreiche Kapitel:

 	Umgang mit funktionalen Anforderungen

 	Qualitätsanforderungen

 	Behavior-Driven Development (BDD)

 	Priorisierung von Anforderungen

 	Vorgehen

 	Werkzeuge

 	Ausblick

Glossar

 	Affinitätsschätzung

 	Schätztechnik agiler Teams, um schnell eine große Anzahl von
Anforderungen (etwa: User Stories) zu schätzen. Dabei ordnet das Team
die Stories in aufsteigender Reihenfolge auf einer horizontalen Skala
an.

 	Agile Requirements Engineering

 	(adaptiert vom IREB): ein kooperativer, iterativer und inkrementeller
Ansatz mit vier Zielen:

 	Kenntnis der relevanten Anforderungen auf einem angemessenen Detaillierungsgrad (zu jedem Zeitpunkt der Systementwicklung),

 	Erzielung einer ausreichenden Übereinstimmung der relevanten Stakeholder über die Anforderungen,

 	Erfassung (und Dokumentation) der Anforderungen entsprechend den Vorschriften der Organisation,

 	Durchführung aller anforderungsbezogenen Aktivitäten nach den Prinzipien des agilen Manifests.

 	Aktivitätsdiagramm

 	Ein Ausdrucksmittel der UML (Unified Modeling Language) zur grafischen
Darstellung von Prozessschritten. Im Gegensatz zu →Datenflussdiagrammen
konzentrieren sich Aktivitätsdiagramme auf die Ablaufreihenfolge von
Schritten.

 	Akzeptanzkriterien

 	(adaptiert vom IREB): Eine Reihe von Bedingungen (typischerweise mit
einer Anforderung verbunden), die von jeder Implementierung erfüllt
werden müssen. Solche Bedingungen können z.B. die erwarteten Ergebnisse
für die Eingangsdaten der Stichprobe oder die erwartete Geschwindigkeit
oder das zu erreichende Volumen sein.

 	ASR (Architecturally Significant Requirements)

 	Architekturrelevante Anforderungen sind die Teilmenge der Anforderungen,
die einen starken Einfluss auf architektonische Entscheidungen haben
(jene Anforderungen, die insbesondere architektonische Entscheidungen
prägen oder beeinflussen).

 	ATDD

 	Acceptance Test Driven Development

 	BDD

 	(Behavior Driven Development) Ein agiler Software-entwicklungsprozess,
der die Zusammenarbeit zwischen Entwicklern, der Qualitätssicherung und
nicht-technischen oder geschäftlichen Teilnehmern eines Softwareprojekts
fördert. Er ermutigt Teams, Gespräche und konkrete Beispiele zu nutzen,
um ein gemeinsames Verständnis darüber zu formalisieren, wie sich die
Anwendung verhalten sollte, was zu ausführbaren Spezifikationen führt,
z.B. in der Syntax von → Gherkin.

 	Bounded Context

 	In Domain Driven Design (DDD) ein Begriff für einen inhaltlich stark
zusammenhängenden Bereich des Systems, der wenig Schnittstellen zu
anderen solchen Bereichen aufweist und daher relativ unabhängig von den
anderen implementiert werden kann.

 	BPMN (Business Process Model & Notation)

 	Ein von der OMG (Object Management Group) standardisierte Notation zur
Beschreibung von Geschäftsprozessen.

 	Cost-of-Delay (Kosten der Verzögerung)

 	Eine Schätzgröße, die ausdrückt, wie viel Wert verloren geht, wenn ein
Produkt zu spät geliefert wird. Anders ausgedrückt: Was könnten wir
einnehmen, wenn das Produkt früher am Markt wäre.

 	Datenflussdiagramm

 	Ein Ausdrucksmittel aus der Strukturierten Analyse zur grafischen
Darstellung von Prozessabläufen. Im Gegensatz zu →Aktivitätsdiagrammen
konzentrieren sich Datenflussdiagramme auf die Ein- und Ausgaben der
einzelnen Prozessschritte, den Fluss der Daten.

 	Definition of Ready

 	(DoR) (adaptiert vom IREB): eine Reihe von Kriterien, die eine
Anforderung erfüllen muss, bevor sie in einer kommende n Iteration
implementiert werden.

 	Domain-Driven Design (DDD)

 	Eine Methode zur Modellierung komplexer Systeme, die sich maßgeblich auf
die umzusetzende Fachlichkeiten der Anwendungsdomäne stützt.

 	Epic

 	(adaptiert vom IREB): Eine abstrakte Beschreibung eines
Stakeholderbedarfs, der in dem zu entwickelnden Produkt berücksichtigt
werden muss. Epics sind typischerweise größer als das, was in einer
einzigen Iteration umgesetzt werden kann.

 	Feature

 	Die Spezifikation eines Service, das einen Wunsch oder Bedarf eines
Stakeholders erfüllt. Jedes Feature sollte eine Aussage über den Nutzen
für den Stakeholder, sowie ein Akzeptanzkriterien enthalten.

 	Fibonacci-Schätzung

 	→Planning-Poker verwendet (leicht modifizierte) Fibonacci-Zahlen (0, ½,
1, 2, 3, 5, 8, 13, 20, 40, 100) zur relativen Schätzung der
Schwierigkeit von Anforderungen. Bedeutung: 0: Aufgabe bereits erledigt,
100: hoch komplexe Aufgabe, noch keine genauere Schätzung möglich. ½:
sehr kleine Aufgabe, 1-5: eher kleinere, 8 und 13 mittlere Aufgaben. 13
oft für Aufgaben, die noch in einen einzigen Sprint passen. 20 und 40:
zu umfangreich, brauchen noch Detaillierung der Anforderungen.

 	Funktionale Anforderung

 	Eine Anforderung bezüglich eines Ergebnisses, das durch eine Funktion
des Systems (oder einer Komponente oder eines Dienstes) bereitgestellt
werden soll.

 	Geschäftsziel (Business Goal)

 	Ein gewünschter Zustand (den ein Stakeholder erreichen möchte).
Geschäftsziele beschreiben Absichten von Stakeholdern. Sie können
zueinander in Konflikt stehen.

 	Gherkin

 	Eine domänenspezifische Sprache zum Schreiben von →BDD Szenarien in →GWT-Syntax.

 	GWT-Syntax

 	
Given, When, Then: Eine halbformale Notation zum Schreiben von
Testfällen oder Verhaltensspezifikationen. Erfunden von Dan North als
Teil von →BDD (behavior-driven development).

 	INVEST

 	Ein Akronym für die Eigenschaften eine guten →(User) Story. Sie sollte
unabhängig (I = independent), verhandelbar (N = negotiable), wertvoll (V
= valuable), schätzbar (E = estimable), klein genug für die Umsetzung in
einem Sprint (S = small) und testbar (T = testable) sein.

 	IREB

 	International Requirements Engineering Board. Siehe https://ireb.org

 	iSAQB

 	International Software Architecture Qualification Board. Siehe
https://isaqb.org

 	MoSCoW-Priorisierung

 	Ein Akronym für vier Prioritätsstufen von Anforderungen: Must have,
Should have, Could have, Won’t Have. Die “o” sind nur Füllbuchstaben, um
das Wort aussprechbar zu machen.

 	Nichtfunktionale Anforderung (NFA)

 	Ein Sammelbegriff für eine → Qualitätsanforderungen oder eine →
Randbedingung.

 	PAM

 	Ein Akronym für Purpose, Advantage, Metric, das dabei hilft, sich auf
diese drei wichtigen Aspekte beim Formulieren von Geschäftszielen oder
Visionen zu konzentrieren.

 	Planning Poker

 	Ein agiles Schätzverfahren, mit dem Mitglieder des
Software-Entwicklungsteam die Größe von vorgestellten Epics, Features
oder Stories schätzt. Vgl. → Wall-Estimation zur Beschleunigung der
Schätzungen.

 	Product Owner

 	In Scrum die Rolle, die im Rahmen einer Produktentwicklung für die
Erhebung, Verwaltung, Verfeinerung und Priorisierung von Anforderungen
zuständig ist. Der Product Owner prüft auch am Ende einer Iteration die
Erreichung der Anforderungen.

 	Qualitätsanforderung (Quality Requirement)

 	(nach IREB) Eine Anforderung, die sich auf eine Qualitätseigenschaft
bezieht, die nicht durch funktionale Anforderungen abgedeckt ist.

 	Randbedingung (Constraint)

 	Eine Anforderung, die den Lösungsraum mehr einschränkt als es für die
Erreichung von funktionalen Anforderungen oder Qualitätsanforderungen
nötig wäre.

 	Scenario

 	Eine Beschreibung einer möglichen Folge von Ereignissen, die zu einem
gewünschten (oder nicht gewünschten) Ergebnis führen.\
Alternativ: eine geordnete Folge von Interaktionen zwischen Partnern,
insbesondere zwischen einem System und externen Akteuren.

 	Scope

 	Diejenigen Dinge, die Sie bei der Entwicklung eines Systems formen,
gestalten und entscheiden können.

 	
SLA (Service Level Agreement)

 	Ein Rahmenvertrag zwischen Auftraggebern und Dienstleistern für
wiederkehrende Dienstleistungen.

 	SMART

 	Ein Akronym (Specific, Measurable, Achievable, Realistic, and Timely), das Hilfestellung bei der Formulierung von Geschäftszielen gibt.

 	Stakeholders

 	Eine Person oder Organisation, die einen direkten oder indirekten
Einfluss auf die Anforderungen und/oder die Entwicklung eines Systems
hat. Indirekter Einfluss umfasst auch Situationen, in denen eine Person
oder Organisation durch das System beeinflusst wird.

 	Story Points

 	In agilen Schätzmethoden eine (fiktive) Einheit zur Beschreibung der
Größe einer User Story.

 	(User) Story

 	Eine Beschreibung eines Bedarfs aus der Sicht eines Benutzers zusammen
mit dem erwarteten Nutzen, wenn dieser Bedarf erfüllt ist. User Stories
werden typischerweise in natürlicher Sprache geschrieben, oft unter
Verwendung einer vorgegebenen Satzvorlage.

 	
Use Case (deutsch: Anwendungsfall)

 	Eine Beschreibung der möglichen Interaktionen zwischen den Akteuren und
einem System, die, wenn sie ausgeführt werden, einen Mehrwert bieten.
 Use Cases spezifizieren ein System aus der Perspektive eines Benutzers (oder eines anderen externen Akteurs): Jeder Use Case beschreibt einige Funktionen, die das System für die am Use Case beteiligten Akteure bereitstellen muss.

 	Vision

 	Die Vision ist eine Beschreibung des gewünschten zukünftigen Zustands.
Sie spiegelt die Bedürfnisse wesentlicher Stakeholder wider, sowie die
Funktionen, die zur Erfüllung dieser Bedürfnisse notwendig sind.

 	Wall Estimation

 	Im Gegensatz zu → Planning Poker ein beschleunigtes Schätzverfahren, bei dem eine Skala von Größenordnungen (z.B. Fibonacci, T-Shirt-Sizes) an
die Wand gehängt wird und das Team rasch alle Epics oder Stories in den
entsprechenden Spalten darunter anordnet statt jeweils einzelne
Backlog-Items zu schätzen.

 	WSJF (Weighted Shortest Job First)

 	Vorschlag zur Priorisierung von Anforderungen aus dem SAFE Framework: Gewichteter kürzester Job zuerst.
Die Gewichtung berechnet sich aus →Cost of Delay.

Literatur

Adzic-11: Goyko Adzic: Specification by Example. Manning, 2011. Mehr Infos:
https://gojko.net/books/specification-by-example/

Adzic-12: Gojko Adzic, Impact Mapping.
https://www.impactmapping.org/

Adzic-14: Goyko Adzic: 50 Quick Ideas to Improve Your User Stories.

arc42: Das freie Portal für Softwarearchitktur: https://arc42.de und https://arc42.org

arc42-Quality: Frei verfügbare Beispiele für Qualitätsanforderungen:
https://github.com/arc42/quality-requirements/

ATAM: Rick Kazman: ATAM Method for Architecture Evaluation, (Architecture Tradeoff Analysis Method),
SEI Technical Report, https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177

Banfield-16: Richart Banfield: Design sprint: a practical guidebook
for building great digital products, O’Reilly, 2016

Brandolini: Alberto Brandolini: Event Storming.
https://leanpub.com/introducing_eventstorming. Schöne Darstellung der
interaktiven Workshops zum besseren Verstehen komplexer Domänen.

Clegg-94: Dai Clegg and Richard Barker (1994). Case Method Fast-Track: A RAD Approach. Addison-Wesley.

Cohn-04: Mike Cohn: User Stories Applied, Addison Wesley, 2004

Crunch: Knowledge Crunching, erklärt in Eric Evans: Domain-Driven
Design – Tackling Complexity in the Heart of Software. Addison-Wesley,
2003.

Cucumber: Das vermutlich am weitesten verbreitete Toolset für BDD.
Implementierungen für viele Programmiersprachen verfügbar.
https://cucumber.io/

DeMarco-07: Tom DeMarco, et. al: Adrenalin Junkies und Formular
Zombies, Pattern 78, Hanser-Verlag, 2007

DomainStories: Domain Storytelling: http://www.domainstorytelling.org/

Evans: Eric Evans: DDD Referenz. Überblick über alle DDD-Praktiken
und Patterns;. Online: https://ddd-referenz.de/, inclusive Links zu
Print-Versionen.

Gerstbach-16: Ingrid Gerstbach: Design Thinking im Unternehmen: Ein
Workbook für die Einführung von Design Thinking, GABAL Verlag, 2016

Gherkin: Die Sprache Gherkin definiert die Syntax, in der wir
Features in (fast) ausführbare Szenarien herunterbrechen können. Eine
Einführung finden Sie unter https://cucumber.io/docs/gherkin/

Gottesdiener-12: Ellen Gottesdiener: Discover to Deliver: Agile Product Planning and Analysis, EGB Consulting, 2012

Hathaway-19: Angela + Tom Hathaway: Getting and Writing IT-Requirements in a Lean and Agile World.
Self-published, https://leanpub.com/lean-requirements-user-stories-agile

Hofer: Stefan Hofer und Henning Schwentner: Domain Storytelling
online auf jax.de

Hruschka-19: Peter Hruschka: Business Analysis und Requirements
Engineering, 2. Auflage, Hanser Verlag

Hruschka+Starke-18: Peter Hruschka und Gernot Starke: Knigge für
Softwarearchitekten, 3. überarbeitete und ergänzte Auflage,
entwickler.press, 2018. Kurzfassungen finden Sie online unter
https://softwareknigge.de

IREB: International Requirements Engineering Board: Handbook Advanced Module “RE@Agile”,
online: https://www.ireb.org/de/downloads/tag:advanced-level-re-agile

iSAQB-Foundation Level: Curriculum: https://isaqb-org.github.io/curriculum-foundation/

ISO-25010: Standard for Systems and software Quality
Requirements and Evaluation (SQuaRE), definiert ein generisches Modell für Software(produkt)qualität.
https://www.iso.org/standard/35733.html

ISO-26262: Standard für functional safety for road vehicles.
https://en.wikipedia.org/wiki/ISO_26262

ISO-27001: ISO Standard zu Informationssicherheit,
https://en.wikipedia.org/wiki/ISO/IEC_27001

Jacobson-11: Ivar Jacobson, Ian Spence, Kurt Bittner: Use-Case 2.0: The Guide to Succeeding with Use-Cases.
Online: https://www.ivarjacobson.com/publications/white-papers/use-case-ebook

JBehave: JBehave – ein Framework für Behaviour-Driven Development:
https://jbehave.org/.

Lawrence: Richard Lawrence: How to split a story, https://agileforall.com/resources/how-to-split-a-story

McGreal: Don McGreal, Ralph Jocham: The Professional Product Owner: Leveraging
Scrum as a Competitive Advantage. Addison-Wesley, 2018

McMenamin-84: Stephen McMenamin, John Palmer: Structured Design. Yourdon-Press
1984. Uralt. Immer noch gut, um “Fachlichkeit” sinnvoll zu
strukturieren. Nimmt viele Aspekte vorweg, die in der DDD-Community als “Event-Storming” propagiert werden.

Millet-17: Scott Millet: The Anatomy of Domain-Driven Design.
Leanpub, 2017. Grafisch großartig aufgemacht, leider sehr abstrakt und (wie leider die meisten DDD-Bücher ohne durchgängiges Beispiel).

North: Dan North: Introducing Behavior Driven
Development, https://dannorth.net/introducting.bdd

Patton-15: Jeff Patton: User Story Mapping: Discover the Whole Story, Build the Right Product, O’Reilly, 2015

Pichler-10: Roman Pichler: Agile Product Management with Scrum:
Creating Products that Customers Love. Addison-Wesley, 2010

Plöd: Michael Plöd: Hands-On Domain-Driven Design by Example.
http://leanpub.com/ddd-by-example. Endlich mal ein DDD-Buch mit
durchgängigem Beispiel.

Poppendieck-03: Mary und Tom Poppendieck: Lean Software Development: An Agile
Toolkit. Addison-Wesley Professional, 2003.
Online

Ries-11: Eric Ries: The Lean Startup, Crown Business, 2011

Req4Arc: Lehrplan des iSAQB zum Advanced Modul REQ4ARC,
online

Req42: Das Portal für agiles Requirements Management https://req42.de.

Robertson-12: Suzanne und James Robertson: Mastering the Requirements
Process: Getting Requirements Right. Addison Wesley; 3rd edition
2012. Online

Robertson-19: Suzanne und James Robertson: Business Analysis Agility. Addison Wesley, 2019

SEI: Das Software-Engineering Institute gehört zur Carnegie-Mellon University in USA.
Qualitätsszenarien finden sich u.a. in „Software Architecture in Practice” von Len Bass et al, oder auch in diversen
Technical Reports

Serenity: Serenity BDD, „automatisierte Akzeptanztests mit Stil“: integriert die Idee von Living-Documentation mit BDD.
Online und
bei thucydides.
Die von Serenity generierte Dokumentation finden wir super-hilfreich.

Smart-14: John Smart: BDD in Action, Behavior-Driven Development for
the whole software lifecycle. Manning 2014.
Siehe https://www.manning.com/books/bdd-in-action

Smart-Amigo: John Smart: The Anatomy of a Three Amigo requirements discovery Session.
Siehe https://johnfergusonsmart.com/three-amigos-requirements-discovery/

Spockframework: Spockframework gehört zu unseren persönlichen Favoriten der BDD-Frameworks:
– Open-Source, auf Basis Groovy: Riesiges Lob und Danke an seinen
Schöpfer Peter Niederwieser. Damit macht Spezifikationen schreiben
wirklich Spaß! http://spockframework.org

Stakeholder: arc42 gibt einige Tipps zum Umgang mit Stakeholdern in der (technischen) Dokumentation:
https://docs.arc42.org/keywords/#stakeholder

Starke-Hruschka-16: Gernot Starke und Peter Hruschka: arc42 in Aktion - Praktische Tipps zur Architekturdokumentation, Hanser 2016. Viele Tipps auch online unter https://docs.arc42.org

Starke-Hruschka: Gernot Starke und Peter Hruschka: Communicating Software Architectures: lean, effective and painless documentation.
Leanpub https://leanpub.com/arc42inpractice

Starke-Hruschka-17: Gernot Starke und Peter Hruschka: Der Flexibilisator,
https://jaxenter.de/flexibilisator-51170

TDD-BDD: Seb Rose: Introduction to TDD and BDD.
https://cucumber.io/blog/intro-to-bdd-and-tdd/

Toth-19: Stefan Toth: Vorgehensmuster in der Softwarearchitektur.
Carl Hanser Verlag, 3.te Auflage 2019. Geht besonders auf
“Architekturrelevante Anforderungen” ein.

UL: Ubiquitous Language in der DDD-Referenz:
https://leanpub.com/ddd-referenz/read#ubiquitous-language

VOLERE: Umfangreiches und ausgereiftes Template für Anforderungen, http://www.volere.co.uk

Wake-03: Wake, Bill: INVEST in good stories and SMART Tasks,
http://xp123.com/Articles/invest-in-good-stories-and-smart-tasks, 2003

Wlaschin-18: Scott Wlaschin: Domain Modeling Made Functional - Tackle
Software Complexity with Domain-Driven Design and F#. Pragmatic
Programmers, 2018. Auf den ersten 50 Seiten dieses Buches stellt Scott
die Grundlagen von DDD vor, so kompakt und verständlich wie aus unserer
Sicht sonst bisher keines der (vielen) DDD Bücher. Auch ohne F#
Ambitionen oder Erfahrungen sehr lesenswert!

Why-the-name: Die (nette) Geschichte, warum Cucumber so heisst wie ein Gemüse.

Wynn: Matt Wynn: Introducing Example
Mapping: Online

Yatspec: YatSpec – ein (moderneres) Framework für BDD, das sich gut
in eine JUnit Infrastruktur einfügt: https://github.com/bodar/yatspec

Über uns

Peter (links) und Gernot (rechts)

 [image:]

Gründer und Maintainer/Committer von arc422, dem freien Portal für Softwarearchitektur, -dokumentation und -entwurf. Mitgründer und aktive Mitglieder des International Software Architecture Qualification Board (iSAQB).

Gernot wirkt dort in den Arbeitsgruppen „Foundation Level” und “Advanced Level“,
Peter engagiert sich für Zertifizierungen im Foundation Level.

Wir haben mehrere Bücher gemeinsam geschrieben: „arc42 in Aktion“ (Hanser Verlag), „Software-Architektur kompakt“ (Spektrum Verlag), „Knigge für Softwarearchitekten“ (Entwickler Press), “Zertifizierung für Softwarearchitekten” (Entwickler Press) sowie eine Reihe von eBooks.

Dr. Peter Hruschka

Informatikstudium an der TU Wien, Promotion über
Echtzeit-Programmiersprachen.

18 Jahre im Rahmen eines großen deutschen Software-Hauses verantwortlich
für Software Engineering. Initiator, Programmierer und weltweiter
Prediger und Vermarkter eines der ersten Modellierungstools.

Seit 1994 selbstständig als Trainer und Berater mit den Schwerpunkten
Software-/System-Architekturen, Business Analysis und Requirements
Engineering, oft im Umfeld technischer Systeme (Embedded Real-Time
Systems). Peter ist Gründungs- und Boardmitglied des IREB (International
Requirements Engineering Board).

Gebürtiger Österreicher, aber seit 1976 Wahl-Aachener. In seiner kargen
Freizeit Nordic-Walker, Kanute, Golfer und Keyboardspieler.

Peter ist Fellow von Agile Experts (www.agile-experts.ch), mit denen er
das agile Requirements-Portal www.req42.de betreibt. Und er ist
Principal der Atlantic Systems Guild (www.systemsguild.com) – trotz
seiner moderaten Mitgliederanzahl seit mehr als 40 Jahren wegweisend in
der Methodenentwicklung. Auf dieser Website finden Sie auch die vielen
Bücher, die Peter und die Gilde in den letzten 40 Jahren geschrieben
haben.

Dr. Gernot Starke

INNOQ-Fellow. Informatikstudium an der RWTH Aachen, Promotion über
Software-Engineering an der J. Kepler Universität Linz. Langjährige
Tätigkeit bei mehreren Software- und Beratungsunternehmen als
Softwareentwickler, -architekt, und technischer Projektleiter.

1996 Mitgründer und technischer Direktor des „Object Reality Center“,
einer Kooperation mit Sun Microsystems. Dort Entwickler und technischer
Leiter des ersten offizielle Java-Projekts von Sun in Deutschland.
Gründer der Architecture Improvement Method (aim42), dem freien und
systematischen Ansatz zur Verbesserung bestehender Systeme.

Gernot lebt mit seiner Traumfrau Cheffe Uli in Köln und verbringt
seine Freizeit mit Kochen, Jogging, Fitness- oder Kraftausdauertraining
(am liebsten unter Anleitung seiner Frau oder erwachsenen Kinder),
Bücher schreiben oder grillen.

Einige Bücher aus seiner Feder:

 	Gernot Starke: „Effektive Software-Architektur – Ein praktischer
Leitfaden“. Carl Hanser Verlag,

 	Karl Eilebrecht und Gernot Starke: „Patterns kompakt.“ Spektrum
Akademischer Verlag,

 	Gernot Starke, Michael Simons, Stefan Zörner, Ralf Müller: arc42 by
Example, Leanpub, 2nd Edition 2019,
https://leanpub.com/arc42byexample

Anmerkungen

1Diesen Lehrplan haben wir, in aller Bescheidenheit, maßgeblich mitgestaltet.↩

2Siehe https://www.arc42.de und https://www.arc42.org;↩

OEBPS/images/leanpub_warning.png

OEBPS/images/2-clean-start----Abb_2_6.jpeg
Projektkontext

UT-System1

Projektscope

Neues oder zu \
—>

modifizierendes |¢— IT-System
System / e
J IT-System 3

IT-System 4

N

OEBPS/images/2-clean-start----Abb_2_7.jpeg
Anzeigekommando,
Tempomatkommando,

\ Navi-Kommando
Fahrer\ Fahrtziel

NN

Fahrerinformationen

Manévervorschlage,
Wartungshinweise

- AuRentemperatur

Momentaner

GPS-Position

erkehrs-
/ meldungen

Motor-/
Getriebe
zustan

Drehzahl
rossel-
Klappen-
stellung

Serviceintervall-
Reset

Werkstatt

Telefon-
Sender- informationen

informationen

OEBPS/images/2-clean-start----Abb_2_8.jpeg
Motor IF

GPS-Interface

OEBPS/images/2-clean-start----Abb_2_2.jpeg
Anderungstoleranz

Q)m?@
&

Iteration 1

Iteration 2

Iteration 3 lteration 4

Iteration 5 lteration 6

OEBPS/images/2-clean-start----Abb_2_3.jpeg
PAM-Kéartchen

Produktkoffer

News from the Future

Unser

PRODUKT (q@‘

e Verkaufsargument 1
* Verkaufsargument 2
* Verkaufsargument 3

Business News Juli 2019

Lovem i

OEBPS/images/2-clean-start----Abb_2_4.jpeg
Einfluss

2ufrieden

e Key Player
beachten
beobachten und
informieren

Interesse

OEBPS/images/2-clean-start----Abb_2_5.jpeg
Kontext:
kann nicht ohne Verhandlung beeinflusst werden

1

IT-System1

IT-System 2

Scope:
Kann in dem Vorhaben
aktiv gestaltet werden

IT-System n

OEBPS/images/1-intro----Abb_1_1.jpg
Requirements-Verantwortliche
(Business Analysts, Product Owner,
Requirements Engineers, ...)

Development Team
Stakeholder (Architekten, Entwickler,
(Nutzer, Auftraggeber, Kunden Tester, ...)
Security-Verantwortliche, Juristen,
Datenschtzer, ...)

OEBPS/images/1-intro----Abb_1_2.jpg
Feingranular,
fir die nahe Zukunft

} Mittlere Granularitat,

detaillierter

Sehr grobkérnig
oder ungenau

OEBPS/images/2-clean-start----Abb_2_1.jpeg
Vision /Ziele

0.@ Stakeholder

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
arc? INNOQ

PETER HRUSCHKA
GERNOT STARKE

OEBPS/images/2-clean-start----Abb_2_9.jpeg
User 1

X

User 2a

Useri

Business-Kontext

Business-Scope
= Produkt-Kontext

Produkt-Scope

o N

IT-System1

IT-System 2

IT-System n

OEBPS/images/2-clean-start----Abb_2_10.jpeg
/ Projektumfang

Tiefgang, Detaillierung

Vision/Ziele, Stakeholder, Scopeabgrenzung
Uberblick iiber Funktionalitit, Top-Qualitatsziele
und héarteste Randbedingungen

sasea|ay uayn.y nz s|ielaq

sjuawalinbay

ugisaq 4nPPUYIIY

1san1un ‘Suniaipo)

15919 WYEUqy,/SUONEISaIU]

OEBPS/images/12-authors----peter_gernot.jpg

