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Preface

In this document, I discuss a portion of my studies on special relativity and gravity, focusing on
its greatest natural phenomenon - black holes’ effect on time and space. The goal, evidently, is
not to equip the reader with a proficient understanding of general relativity, but to expose them
to the counter-intuitive thinking process uniquely attributed to physics. To establish a general
comprehension of the subject, mathematical tools are also included, made as accessible as possible.
Again, all discussions are highly simplified, though they introduce the right amount of intuition.

Much of the material presented in this work is based on the concepts and explanations found in
the following excellent books:

• Classical Electrodynamics by John David Jackson [1] (special relativity)

• Exploring Black Holes: Introduction to General Relativity by Edwin F. Taylor and John
Archibald Wheeler [2] (general relativity of black holes)

© 2025 Yuval Rosen. All rights reserved - this is an original work.
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1 Special Relativity

1.1 Basic Observables

From special relativity (SR), we now understand that time and space are interconnected and
influence each other when objects move at high speeds. How high? When close enough to
the speed of light, which is postulated to be constant in every frame of reference (every observer
measures the speed of light to be the same, regardless of the motion of the source or the observer).
Under this assumption, it is clear that classical physics requires adjustments to accommodate this
principle, as space and time must adapt their definitions to maintain a constant speed across
various circumstances.

So, beginning the discussion on space-time curvature and its influence on physical observables,
one must first ask: what do we mean by length? This question may seem a little odd at first, but
already here, we take the opportunity to build a stronger (or more physically grounded) intuition
about something that has always felt universally agreed upon. In fact, we will see that length is
not always a universal measure - it can depend on the observer’s position, and in SR, it depends
on the observer’s velocity.

Note that we distinguish between "speed" and "velocity" when defining a rate of motion. These
are not the same: Speed provides no information about the direction of motion, as shown on
a speedometer, while velocity does! This is because velocity is a vector, meaning it has both
magnitude and direction (like position, momentum, etc.), while speed is a scalar, meaning it has
only magnitude (like time, mass, etc.). These are purely geometrical definitions, while advanced
topics in physics extend these concepts into a much broader framework (which we do not explore
here).

We define length as follows:

“Length is a quantity with a dimension of distance.”

This definition avoids the conflict we associated with the global nature of length, as it is conve-
niently general as needed. We also provide the common definition of time for completeness:

“Time is the continuous progression of events.”

These definitions are intentionally flavored to prepare for the incoming conclusions.

1.2 Minkowski Metric

Now, diving into what space-time curvature means, we introduce the Minkowski Metric:

ds2 = c2dt2 − dx2 − dy2 − dz2 (1.1)

Before simplifying the terror that was written above, take a look at 3.1 for a (really) short re-
minder on basic math notation, if needed. The variable s stands for the length (not quite the
way we know it - as it is now time-considered) that is measured by the observer, and x, y, z are
the coordinates in each axis that we live in (we see the world in 3D, of course), t stands for
the time. Both the spatial x, y, z and temporal t are measured in an inertial frame of reference.
What does it mean? Inertial frames of reference remains at rest or in constant velocity relative to
another frame unless acted upon by external forces. Physically, we may define an inertial frame
of reference as such that no corrections (due to acceleration) are needed when transforming to it.
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By frame of reference we equivalently argue, who measures? (from which position and what
velocity). Now, we explain the structure of that Metric - some may identify the similarity to
Pythagorean theorem (defined in 3.2 as a reminder). In fact, it is based on the same principles -
Measurements are made by constructing right triangles in space and calculating the hypotenuse.
However, here we apply this method on position-time space, or more common, spacetime. This
means that now, time constitutes an essential role in measuring distances! Here, ds is the hy-
potenuse, which stands for a length unit in spacetime. The unexpected minus sign on all spatial
coordinates will become clear later on1. c is the speed of light.

The only symbol left to describe is the prefix ′d′ in front of each term. It is there to notify that
the equation holds for infinitesimal translations of every variable - only for small translations of
each coordinate. The term "small" is a bit unclear, but it must stay so for now. This in fact
is the differential operator, not a multiplied variable! (Some might have seen it in derivatives or
integrals. But if not, that’s okay!). To consider a finite path, integrals come into play. Note that
the square operand acts after ’d’, namely dx2 = (dx)2 and not d(x)2.

1.3 The Power of Symmetry - Lorentz Transformation

Firstly, we turn to provide some key insights on some of the processes developing new physics, as
popular today. Modern research in theoretical physics engages in investigating symmetries. These
are transformations that, when applied, do not change the physical properties of the system. The
following example may clarify this proposition:

Imagine standing in the middle of a vast, barren desert under a star-studded night sky.
The sandy surface stretches endlessly, identical in every direction, offering no landmarks
to guide your way. As you walk in a straight line, nothing seems to change - the scenery
remains unwavering. The desert, or more formally its 3D subspace, could be described as
invariant under translations. But now, picture turning your gaze upward and rotating your
perspective. The stars above shift their positions, painting a different view with every turn.
In this way, the desert’s subspace reveals itself to be variant under rotations.

There are many applications for utilizing symmetries, like simplifying calculations, but the most
profound use is preserved for finding new physics. In fact, Noether’s theorem states that every
continuous symmetry of the action of a physical system with conservative forces has a correspond-
ing conservation law. Simplified, an action is a defined functional containing information on the
dynamics of the system (what forces act on it). For instance, one famous law that can be derived
from this theorem is conservation of energy. But what physical observable yields a symmetry of
the action (namely, the system for simplicity) to output this law? The answer to that question
is formally accompanied with intricate calculations, but they won’t be given here. This part is
where one may ponder a little before exposed to the solution (avoiding math does not supply an
excuse to suppress creative thinking!).

1It distinguishes spacetime intervals from Euclidean distances and ensures that time and space behave differently
in relativity. We could also put a ” − ” on the time term and ” + ” on all spatial coordinates instead, but this is
only a matter of convention. Here, we use what is called the mostly minus convention.
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