

Rector - The Power of Automated
Refactoring

Matthias Noback and Tomas Votruba

This book is available at
https://leanpub.com/rector-the-power-of-automated-refactoring

This version was published on 2025-11-18

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2020 - 2025 Matthias Noback and Tomas Votruba

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Preface . i
A Trainer’s Journey . i
The Other Side . ii
Who’s Fault is It? . ii
From Blame to Pain . ii
From Pain to Idea . iii
From Idea to First Real Reconstructor . iv
We’ve Just Started, Now You Get on Board iv

Introduction . v
What is Rector? . v
Who Should Read This Book? . vi
An Overview of the Contents . vi
About the Code Samples . vii
About the Authors . vii

Matthias Noback . vii
Tomas Votruba . viii

Acknowledgements . viii

Programmatically Modifying PHP Code . 1
Introduction . 1
Primitive Ways of Modifying Code . 1
Tokenizing PHP Code . 2
Parsing PHP Tokens: the Abstract Syntax Tree 2
Converting the AST Back to PHP Code . 2
Manipulating the AST . 2
Node Visitors . 2

CONTENTS

Manipulating the AST with a Node Visitor 2
Built-in Node Visitors . 3

Resolving Fully-qualified Names . 3
Finding Nodes . 3

Summary . 3

PHP Tools in the Game . 4
Introduction . 4
Working Together with Giants . 4
2007 - Now Timeline . 4
The Primary Feature . 5
1. Coding Standard Tools . 5

PHP_CodeSniffer . 5
PHP CS Fixer . 5
Easy Coding Standard . 5

2. Static Analyzers . 5
PHP-Parser . 5
PHPStan . 6
Psalm . 6

3. Instant Upgrade Tools . 6
Symfony-Upgrade-Fixer . 6
Rector . 6

When to Use Which Tool? . 6
Is Your Project Bare Without Any Tools? . 6
Run Rector First, Then Polish with Coding Standards 7
Recommended Tools . 7
Summary . 7

Creating Your First Rector Rule . 8
Introduction . 8
What’s a Rector Rule? . 8
Creating a Custom Rule . 9
Extending AbstractRector . 9

Finding the Right Node Class . 9
Expr vs Stmt . 9

Running a Single Rule . 9

CONTENTS

Refactoring the Method Call Node . 9
What Is the Type of a Variable? . 10

What if We Run Rector Twice? . 10
Effectivity Beats Perfection . 10

Summary . 10

Test-driven Rule Development . 11
Introduction . 11
Migrating from DateTime to DateTimeImmutable 12
Creating a Test Class . 14
Adding First Test Fixture . 14
Making the First Test Pass . 15
Narrowing the Scope of the Refactoring . 15
Capturing the Return Value of modify() . 15
Skipping Calls on Classes That Are Not DateTime 15
Summary . 15

More Testing Techniques . 16
Rules Should Be Idempotent . 16
Removing the Clone Step . 16
Low-Hanging Fruit First . 16
Create a Configurable Generic Rule . 16
Making Rule Behavior Configurable . 16
Configurable Rule Makes Hidden Assumptions Explicit 17
Using Supporting Classes in Fixtures . 17
Summary . 17

Continuous Rectifying . 18
Introduction . 18
The Next Member of Your Team . 19
Turning a Junior Into a Senior on Day 1 . 19
Who’s to Blame? . 19
What Does it Look Like to Work with Rector in CI? 20
How Rector is Rectifying Itself . 20
Removing Boring Work Opens Your Creativity 20
Summary . 20

CONTENTS

Rector + CI = Next Member of Your Team . 21
Introduction . 21
What are The Steps for a Rector Run? . 22
How to Add Rector to GitHub Actions . 22

1. Generic PHP Setup . 22
2. Rector Setup . 22

Allow Rector to contribute the Pull Request 22
Summary . 22

The Future of Instant Upgrades . 23
Introduction . 23
Removing Legacy . 23

How Can We Be So Confident? . 24
A Member of your Team That Sends Pull-Requests Daily 24
PHP Stands Out . 24

Epilogue . 25

Node Type and Refactor Examples . 26

Book Revisions . 27
Update 2025-11-18 . 27
Update 2025-03-07 . 27
Update 2024-12-09 and Rector 2.0 . 27
Update 2024-02-07 and Rector 1.0 . 27
Update 2024-01-30 and Rector 0.19.3 . 27

Preface
By Tomas

Working with old code is painful. In any framework, in any company, for you, and
for your employer. Nobody wants to ride a horse on the highway. But why are so
many people doing it? Why are there so many legacy PHP projects?

A Trainer’s Journey

I was asking myself this question 6 years ago, almost every day. I was doing trainings
on Nette, Symfony, or Doctrine. My usual training looked like this: I came to a
company, I gave a presentation about Symfony and its cool new features, we did
hands-on coding, and I answered curious questions. I had a good feeling about this
and feedback from participants was also positive. I gained a lot of experience from
trainings in 30+ different PHP companies and used it in every next training. I thought:
“That’s what trainers do, I finally made it; changing the life of others in just one or
two days.” Gosh, I was proud of myself. Helping others is my life-long passion, so I
was very happy, and also well paid. This feeling was soon to be changed.

I had one training about new features in PHP 7.0 for a project that was running PHP
5.4. After a year, the same company asked me for a fresh training about new features
in the PHP world. I asked them, what version do they have now, so I wouldn’t bore
them with something they already know.

Their answer: “This year we’ll definitely get to a new PHP version.” I asked: “Oh,
you’re up to PHP 7.2 already? Wow!” They replied: “No, we’re almost at the PHP 7.0.
That’s why we need you to help us!”

What? Mymind was shocked. Suddenly, I remembered another training I had, where
they asked for almost the same topic as a year before. No, that can’t be right, can it?

Preface ii

The Other Side

A trainer’s point of view, and one or two days of training, are just one side of the
story. A demo is easy to code. Everybody is happy because they work on 200 lines of
code and the progress is there. Then the developers have to go through a real code
base and make the change happen there as well. They have to evolve the project from
1.000.000 to 5.000.000 lines of code, help the business to grow, and add new features.
I realized that my trainings may expand knowledge by showing the hot news in the
PHP world or a particular framework. But barely 2% of this knowledge will last for
longer than a week after the training.

Who’s Fault is It?

I started to blame myself. My teaching methods were likely not very effective. I
tried to improve my presentation and learn more about the project beforehand, but
the results didn’t change much. Then I blamed the company business leaders. They
were nice to hire a trainer, but after he or she is gone, they’d force programmers
to work on that legacy code to add more features instead of refactoring it. Then I
blamed programmers, who are not willing to spend four hours after work to educate
themselves. They should be able to protest against legacy business and stop it, until
the code is clean and fun to work with.

Later I’ve learned, none of these targets are right.

From Blame to Pain

I stopped giving training so often because I felt like a failure. I was part of a system
that didn’t make much change for the better. The system repeated the same action
twice, with no gain. I couldn’t do it anymore. I mean, I physically could not do it.
Why not? Let me explain.

When I was 8 years old, I lost a cap while playing outside. In situations like these,
my father used to punish me with tasks involving lots of repetition. I always had to
write long sentences, a 100 times, like: “I will never go outside while playing and not

Preface iii

returning back without the hat again, or I will have to go out and look for it and
won’t return until I find it.”

At first it was an interesting exercise in writing. After the 30 sentences though, my
hand started to hurt. The text was supposed to be clear to read and without any
mistake, and there were 10 more sentences left to go. I remember a Saturday, when
I spent almost 4 hours on this, unable to do anything else. My mom was helping me
sometimes, adding 20 sentences herself.

This was repeated a couple times amonth. I became terrified to do anythingmy father
wouldn’t like. These punishments came out of the blue. Once my brother broke my
father’s tool and told it was me. I said I don’t know anything about it, so I got the-
100-sentences punishment not to lie ever again.

Thanks to these punishments, I’ve hardcoded in my brain that any repetition hurts
me and I’ll do anything to avoid it. That’s my personality trait. It took some time
but I’ve put some healthy boundaries on this and learned to use it to my advantage.

P.S. Don’t take me wrong: I love my father and we have a safe and warm relationship
now. I’m very grateful for the patience, attention, focus, and resilience he taught me.
Thanks to him I’m the man I want to be.

From Pain to Idea

Do you know when you look at the code, you feel it’s wrong, but you don’t know
what it is? I had this feeling. I knew there must be some better way to do this that is
cheaper, faster and re-usable. It won’t be easy to find it, but there must be a way to
solve this.

I started to share this pain and frustration in chats with my friends and I slowly
built up a vision. A vision of a world where all programmers are only thinking about
new algorithms, and where terms like “legacy code” and “technical debt” don’t exists.
Changing frameworks is a matter of a single click. Upgrades are as easy as composer
update. And it’s all open source, so anyone can use it.

Preface iv

From Idea to First Real Reconstructor

I had a weekend trip to Brno to visit a friend of mine, Petr Vacha. He encouraged me
to just give it a try, when I didn’t see the light yet. Thank you Peter. We went to a
Happy Tearoom on Freedom Square, I think Saturday Jul 15, 2017 it was, andwe spent
4 hours there. Petr doing his coding, and me, struggling with the abstract syntax tree
and nikic/php-parser, without any IT University education. It was stressful as hell.
That’s how the first commits to Reconstructor¹ (before it was shortened to “Rector”)
came to be.

We’ve Just Started, Now You Get on Board

That was 2017. Today it’s 2025 and legacy code is still a thing. Yes, we have the
technology to change the PHP world. Rector is maturing and has over 630 rules
that automate boring work. Hundreds of companies already use it to automate their
upgrades and improve code quality in their CI. But that’s not enough.

That’s the reason we’re writing this book. To empower you to both join the Rector
community, and write rules that help you with your problems. If you’re reading this
book, you probably have the same feeling I had: “There must be a better way.” There
is. We’ll show you the way, and we welcome you to get on board with us.

¹https://github.com/rectorphp/rector/commits/v0.1.0?after=0cc75d58bee80233531e5c1d41cd49fba9ca81bb+1084&
branch=v0.1.0

https://github.com/rectorphp/rector/commits/v0.1.0?after=0cc75d58bee80233531e5c1d41cd49fba9ca81bb+1084&branch=v0.1.0
https://github.com/rectorphp/rector/commits/v0.1.0?after=0cc75d58bee80233531e5c1d41cd49fba9ca81bb+1084&branch=v0.1.0
https://github.com/rectorphp/rector/commits/v0.1.0?after=0cc75d58bee80233531e5c1d41cd49fba9ca81bb+1084&branch=v0.1.0

Introduction
What is Rector?

Rector is a tool that came into existence because Tomas wanted to help developers
everywhere to:

• Prepare their code base for the latest PHP version
• Effortlessly upgrade to the next version of their current framework, or even
• Switch between frameworks if needed
• Improve their code quality without thinking about it
• Define their own automated refactoring procedures

The core abilities of a tool like this would be:

• Being able to understand PHP code
• Being able to manipulate PHP code without breaking it
• Being able to save the upgraded PHP code back to their locations on disk

Rector² can do all of this, and while it reads and parses your code, it will apply a
number of rules to it. By doing so, Rector improves and upgrades your code, without
human intervention. It won’t make the typical mistakes that a human being will
when they’re typing and copy/pasting code in a text editor.

Some concrete examples of what Rector can do for you:

• Upgrade Symfony from 2.8 all the way to the latest version
• Turn property annotations into actual property types, add return types, etc.
• Change nested ifs to early returns.
• Upgrade classic switch statements to PHP 8.0 match statements.
• And the list goes on and on³
²https://github.com/rectorphp/rector/
³https://getrector.com/find-rule

https://github.com/rectorphp/rector/
https://getrector.com/find-rule
https://github.com/rectorphp/rector/
https://getrector.com/find-rule

Introduction vi

Who Should Read This Book?

This is a book for PHP developers who want to modernize their project. Whether the
project consists of the worst case of legacy code, or is actually quite modern; knowing
how to work with and extend Rector is going to help your project move forward.

We’re assuming knowledge of object-oriented PHP programming and several years
of experience maintaining PHP projects.

An Overview of the Contents

In the first chapter, Matthias explores the topic of modifying PHP code with PHP
code, or Programmatically modifying PHP code. You’ll learn about the Abstract
Syntax Tree, and how to create andmodify it with PHP-Parser. Tomas continues with
a discussion of the various PHP tools in the game that can help you with modifying
code in an automated fashion. Next, Matthias shows you how to migrate from low-
level PHP-Parser node visitors to Rector rules. You’ll be Creating your first Rector
rule in this chapter.

Rector makes it easy to create rules, but the process will be challenging anyway.
Matthias continues with a demonstration of test-driven rule development. There are
several more testing techniques that need to be discussed, so Matthias adds one more
chapter about TDD in the context of Rector.

Now that you know how Rector works, how you can use and extend it, Tomas
helps you get your project to the next level. He shows you how you can not only
use Rector incidentally, but apply Continuous Rectifying to your project. In the
next chapter Tomas demonstrates how Rector combined with GitHub Actions can
become the Next Member of Your Team. The last chapter is connecting some dots:
with sophisticated tools Composer, PHP-Parser, and now Rector, we could get rid of
wasteful Backward-Compatibility promises, and free the world from legacy code.

We finish this book with the Epilogue, which is in the form of an interview with
Tomas. We’ll take a look at the vision for Rector and what we might expect from the
project in the long run.

Introduction vii

About the Code Samples

The code samples in this book aim to be as realistic as possible. In fact, we run the
following tools on them to ensure their correctness now and in the future:

• PHPUnit, for verifying our own assumptions, and the correctness of the code
samples.

• Rector, for automatic improvements, migrations to future PHP versions, li-
braries, etc.

• EasyCodingStandard, for applying a uniform coding style and to make all the
lines fit within a single page width.

The latter isn’t always possible, e.g. in the case of use statements which are some-
times quite long. In those cases we abbreviate the namespace and add a comment
(// (abbreviated)). When copy/paste-ing code samples into your own project this
means you sometimes have to manually expand these namespaces before you can
run the code.

When showing the code, we sometimes remove somewhat irrelevant parts so they
don’t take up too much space on the page. However, you should always be able to
figure out the full example based on the previous code samples. That way you can
follow along with the tutorial chapters in your own project.

If something doesn’t work in your project, please try the following options first:

• Upgrade Rector to its latest version (composer require --dev rector/rector).
• Run composer dump-autoload to let Composer regenerate its class loader.

About the Authors

Matthias Noback

Introduction viii

Matthias Noback has been building web applications since 2003. He
is the author of the Object Design Style Guide and Advanced Web
Application Architecture. He’s also a regular blogger, speaker and
trainer⁴.

Tomas Votruba

Tomas loves to combine open-source and innovations… yet he’s
super lazy. That’s why he always spends dozens of hours to au-
tomate problems that would take an hour or two to do manually.
Fortunately, he prefers those problems that can help the whole PHP
community. Tomas is a regular blogger, speaker and trainer⁵ as well.

Acknowledgements

Tomas
This book and its know-how is a team effort. That’s why we would like to thank a
few people - without them this book would never exist.

To Kerrial Beckett Newham for the tasty dinner where he made up the working
and final title of the book. To Petr Vacha for one day in a Brno teahouse, where he
supported my crazy idea of automated refactoring - there the first Rector commits
were made, 4 years ago. To Jan Mikes for the fastest framework migration in a
week. To Sebastian Schreiber for getting me back on track with a Rector vision and
great laughs. To Matthias Noback, my hero blogger who helped me to overcome
my scariest dream of writing a book like a walk in the park. Last but not least, to
my dad for being my very first supporter on Patreon, although he never paid by
card online before. It means the world to me.

Thank you, Tomas.

⁴https://matthiasnoback.nl
⁵https://tomasvotruba.com/

https://matthiasnoback.nl/
https://matthiasnoback.nl/
https://tomasvotruba.com/
https://matthiasnoback.nl/
https://tomasvotruba.com/

Introduction ix

Matthias
Publishing a book is a scary business. You put in a lot of time without knowing
how your work is going to be received. For Rector - The Power of Automated
Refactoring, your support, reviews, and suggestions have been very helpful. You
have successfully encouraged us to finish this project. Thanks a lot for that!

On a more personal note, thank you Tomas, for trusting me to write a book that
would do your project justice. Along the way you have been able to stir up my old-
fashioned ways of writing PHP. You’ve shownme somany newways to modernize,
and automate this project, and for making the tools that keep me on track. Thanks
for being my personal Rector.

Programmatically Modifying
PHP Code
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Introduction

In order to automatically refactor PHP code for you, Rector needs a safe way to
manipulate code. As a developer, you know it’s easy to break existing functionality
when you’re changing code manually. Rector has an advantage here: given that it’s a
program, when you give it the right instructions, it will not make the kind of human
errors that we tend to make.

How can Rector be so sure it’s making the right changes though? Part of this question
will be answered in the chapter about test-driven rule development. We have to
write tests to prove that Rector makes the right changes in any imaginable situation.
Besides an extensive test suite, Rector also relies on low-level language analysis tools
like PHP-Parser⁶ and PHPStan⁷. Using these tools Rector can, for instance, distinguish
a property name from a variable name, and derive its type.

This chapter is a discussion of the fundamentals of software that manipulates code.
It covers the concepts that are at the core of Rector itself: parsing PHP code, visiting
nodes of an abstract syntax tree, and manipulating them while visiting them.

Primitive Ways of Modifying Code

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

⁶https://github.com/nikic/PHP-Parser
⁷https://phpstan.org/

https://leanpub.com/rector-the-power-of-automated-refactoring
https://github.com/nikic/PHP-Parser
https://phpstan.org/
https://leanpub.com/rector-the-power-of-automated-refactoring
https://github.com/nikic/PHP-Parser
https://phpstan.org/

Programmatically Modifying PHP Code 2

Tokenizing PHP Code

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Parsing PHP Tokens: the Abstract Syntax Tree

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Converting the AST Back to PHP Code

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Manipulating the AST

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Node Visitors

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Manipulating the AST with a Node Visitor

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Programmatically Modifying PHP Code 3

Built-in Node Visitors

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Resolving Fully-qualified Names

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Finding Nodes

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

PHP Tools in the Game
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Introduction

Before we start to explore Rector internals and its powerful features, we’ll take a
broader look at the wider range of tools that can analyze and change your code.
Why do we talk about other tools in a book about Rector? Well, have you heard
about the Unix philosophy⁸? It’s nothing about free software or independence, but
rather about co-dependence:

Make each program do one thing well. To do a new job, build afresh rather
than complicate old programs by adding new “features”.

Rector is just one of the tools in the chain. It’s the most powerful one, but without
its friends it would be an utterly useless empty shell, like our body would be without
lungs.

Working Together with Giants

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

2007 - Now Timeline

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

⁸https://en.wikipedia.org/wiki/Unix_philosophy

https://leanpub.com/rector-the-power-of-automated-refactoring
https://en.wikipedia.org/wiki/Unix_philosophy
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://en.wikipedia.org/wiki/Unix_philosophy

PHP Tools in the Game 5

The Primary Feature

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

1. Coding Standard Tools

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

PHP_CodeSniffer

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

PHP CS Fixer

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Easy Coding Standard

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

2. Static Analyzers

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

PHP-Parser

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

PHP Tools in the Game 6

PHPStan

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Psalm

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

3. Instant Upgrade Tools

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Symfony-Upgrade-Fixer

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Rector

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

When to Use Which Tool?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Is Your Project Bare Without Any Tools?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://github.com/rectorphp/rector
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

PHP Tools in the Game 7

Run Rector First, Then Polish with Coding
Standards

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Recommended Tools

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Creating Your First Rector Rule
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Introduction

In the chapter Programmatically modifying PHP code we used PHP-Parser to load
a single PHP file, parse it, and manipulate some of its nodes if they matched certain
criteria. In this chapter we’ll take the next step: using Rector to load all PHP files in
a given project directory and modify the code according to certain rules.

What’s a Rector Rule?

A rule is an automated refactoring. It represents one particular thing that Rector
could change for all the PHP files in your project at once. Here are several examples
of rules that are already included in the Rector package:

• Rename method; e.g. call newMethod() instead of oldMethod() on SomeExample-

Class

• Encapsed strings to sprintf; e.g. replace return "Unsupported format {$for-

mat}"; with return sprintf('Unsupported format %s', $format);

• Finalize classes without children; if a class has no subclasses, make it final.

It’s always smart to scan the list of existing rules⁹ before you start implementing
your own rule. Chances are that what you’re looking for already exists, and in that
case it’s likely that the existing rule can deal with many edge cases you didn’t think
of yet.

⁹https://getrector.com/find-rule

https://leanpub.com/rector-the-power-of-automated-refactoring
https://getrector.com/find-rule
https://getrector.com/find-rule

Creating Your First Rector Rule 9

Creating a Custom Rule

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Extending AbstractRector

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Finding the Right Node Class

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Expr vs Stmt

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Running a Single Rule

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Refactoring the Method Call Node

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Creating Your First Rector Rule 10

What Is the Type of a Variable?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

What if We Run Rector Twice?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Effectivity Beats Perfection

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Test-driven Rule Development
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Introduction

In the previous chapter we’ve created our first Rector rule. We concluded that it was
a throw-away rule because it wasn’t generalized enough to use it in other situations.
It was also a single-use rule because we didn’t write tests for it. When you want
to maintain a rule for more than a couple of days, it won’t be enough to rely on
exploratory testing only. Running your rule on the code base of a real project gives
you great feedback about the quality of the rule; it gives you ideas for edge cases you
didn’t think of. But verifying the correctness of your rule manually, using only visual
verification, will be time-consuming and unreliable as well. Automated testing is the
easiest way to solve this problem.

Rector ships with some testing tools based on PHPUnit. There’s an AbstractRector-
TestCase class you can extend your test class from. In general each Rector rule you
create will have its own test class. This class should extend AbstractRectorTestCase
and it will be called [SomeName]RectorTest. When creating a rule you add several
before and after code snippets to demonstrate that your rule makes the correct trans-
formations. You also add examples of code snippets that should be left untouched by
your rule.

By adding many examples you can shape your rule gradually to match those
examples. Any edge case you encounter later on can be added as yet another example.
Doing so will save you a lot of stress: once an example is added as an automated test,
it will keep working forever. If not, you’ll know it because the test fails.

Although you can write tests for a rule that has already been created, the best time to
write tests is before you write your first line of code in the rule class. Doing so brings
you into the right mindset. You’ll think about the problem, while not worrying about

https://leanpub.com/rector-the-power-of-automated-refactoring

Test-driven Rule Development 12

the possible complexity of the solution. Just describe what you want, and have faith
in your ability to eventually come up with the solution.

Migrating from DateTime to
DateTimeImmutable

In this chapter we’ll test-drive the development of a Rector rule. We start with a
problem, describe in code what we want, and then we develop a rule (and eventually
a set of rules) that provide the solution to the problem. The problem I’m thinking
about is this: at some point PHP added the DateTimeImmutable class, which is an
immutable variant¹⁰ of the already existing DateTime class. First, let’s take a look at
the differences between DateTime and DateTimeImmutable.

use DateTime;

function nextMonday(DateTime $dt): DateTime

{

$modified = $dt->modify('next monday');

// The return value of `modify()` could be `false`

assert($modified instanceof DateTime);

return $modified;

}

$today = new DateTime();

$nextMonday = nextMonday($today);

echo $today->format('Y-m-d'), "\n";

echo $nextMonday->format('Y-m-d'), "\n";

Although the function nextMonday() seems to return a new instance of DateTime,
but modified to represent the next Monday, in reality this function also updates the

¹⁰https://derickrethans.nl/immutable-datetime.html

https://derickrethans.nl/immutable-datetime.html
https://derickrethans.nl/immutable-datetime.html

Test-driven Rule Development 13

original DateTime object passed to it. So running this script will just output the same
date twice. In code bases that use DateTime, this is a common problem that often goes
unnoticed, until one day it leads to hard-to-debug problems. The proposed solution
has always been to clone the provided instance before modifying it:

use DateTime;

function nextMonday(DateTime $dt): DateTime

{

$dt = clone $dt;

$dt->modify('next monday');

return $dt;

}

Doing so keeps the original object from being modified.

If we had used the “new” DateTimeImmutable class, we wouldn’t have had this
problem, and we wouldn’t have to clone the object:

use DateTimeImmutable;

function nextMonday(DateTimeImmutable $dt): DateTimeImmutable

{

$modified = $dt->modify('next monday');

assert($modified instanceof DateTimeImmutable);

return $modified;

}

If nextMonday() is the only function you’d need to adapt, it wouldn’t be a big deal.
But what if your code base has thousands of usages of DateTime and you want to
migrate to DateTimeImmutable? Rector is the perfect tool for this job. Let’s create a
Rector rule that can do at least part of the migration for us.

Test-driven Rule Development 14

What applies to other programming tasks, applies to creating Rector rules as well: a
problem that looks quite complex from the start should be subdivided into smaller
and simpler problems first. For instance, the seemingly complex migration from
DateTime to DateTimeImmutable consists of several smaller (and simpler) tasks:

1. Where the code uses DateTime as a type (e.g. as a parameter, return, or property
type) we should change it to DateTimeImmutable.

2. Where the code has a use-statement for DateTime, we should also change it to
DateTimeImmutable.

3. Where the code calls modify() on a DateTime instance we should capture the
result in a variable, e.g. $dt = $dt->modify('next monday');

4. Where the code clones a DateTime instance, we should no longer clone it.

It’s likely that we’ll come up with other tasks, but at least this seems like a list
of things we can solve with the knowledge acquired from previous chapters. This
attitude is what makes test-driven development so great: we can start small, and
cycle between adding another test and writing a bit of code to make that test
pass. Eventually we’ll be able to work ourselves up from the simple, somewhat
uninteresting tasks, accumulating smaller bits of behavior into bigger chunks of more
complex and powerful behavior. In order to be successful, don’t try to build too much
at once.

Creating a Test Class

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Adding First Test Fixture

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Test-driven Rule Development 15

Making the First Test Pass

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Narrowing the Scope of the Refactoring

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Capturing the Return Value of modify()

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Skipping Calls on Classes That Are Not
DateTime

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

More Testing Techniques
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Rules Should Be Idempotent

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Removing the Clone Step

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Low-Hanging Fruit First

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Create a Configurable Generic Rule

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Making Rule Behavior Configurable

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

More Testing Techniques 17

Configurable Rule Makes Hidden Assumptions
Explicit

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Using Supporting Classes in Fixtures

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Continuous Rectifying
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Introduction

PHPUnit is a tool that runs test on your code base; it makes sure the code still works
after you change it. PHPStan is a tool that detects the types of your variables, method
calls, arguments and so on; it makes sure your code does not make obvious mistakes
like calling a method on null. ECS is a tool that makes your code look standardized;
all of the spaces and brackets in every class and method will look the same.

It’s very nice to run these tools on the command-line and get instant feedback about
what is wrong and where. But their biggest added value is going to be somewhere
else in 2025…

Imagine a new developer will join the team. Every time it happens you need to give
them training about company standards: “No, we use tabs, not spaces. No, we don’t
use static service calls” etc. With all the right tools in place, instead of training we can
give the person access to our repository and just let them make a pull request. Then
continuous integration (CI) will become their trainer. They will get instant feedback
from a failed CI job. PHPUnit failed? They should fix the logic. PHPStan failed? They
should improve the types. ECS failed? There is a difference in code style. Just fix it
and push again.

So how does all this CI feedback relate to Rector? We’re glad you asked.

rectify verb

rectify something to put right something that is wrong

– Oxford Advanced Learner’s Dictionary¹¹

¹¹https://www.oxfordlearnersdictionaries.com/definition/english/rectify?q=rectify

https://leanpub.com/rector-the-power-of-automated-refactoring
https://www.oxfordlearnersdictionaries.com/definition/english/rectify?q=rectify
https://www.oxfordlearnersdictionaries.com/definition/english/rectify?q=rectify

Continuous Rectifying 19

We already know how to use Rector to change our code, how to write our own rule
and how to test it. You can also use Rector to upgrade to a new PHP version in
just a fraction of the time it would take when doing this work manually. You can
switch between frameworks over a weekend, or refactor from static service calls to
constructor dependency injection. That sounds exciting, right?

We bet you have ideas how Rector can help you get your project in shape again.

Certainly, some teams are using Rector this way: install it, handle a PHPUnit upgrade
and a Symfony upgrade, then remove it again. That’s quite sad, really. It’s like using
PhpStorm to open your project once and then switch back to Notepad again. The real
power of Rector is not in quick jobs. Its full potential can be unlocked if you make it
part of your project in the long run. When you work with Rector every day, it will
continue helping you out, shares its wisdom, and taking care of the project.

The Next Member of Your Team

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Turning a Junior Into a Senior on Day 1

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Who’s to Blame?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Continuous Rectifying 20

What Does it Look Like to Work with Rector in
CI?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

How Rector is Rectifying Itself

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Removing Boring Work Opens Your Creativity

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Rector + CI = Next Member of
Your Team
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Introduction

GitHub Actions¹² is a CI system fromGitHub. How is it different from other systems?

• It’s blazing fast
• It’s free for open-source
• It has prepared “recipes” for all the common operations you can think of

These recipes are called GitHub Actions. They wrap complex functionality and only
ask for a few configuration values. Do you need to push to remote SSH servers?
Just provide your email address and a public key and that’s it. Do you need to run
composer install with cache for parallel jobs? You only have to change one line in
your configuration file.

It’s really handy that actions are stored in public repositories on GitHub. If we need
to understand any action in depth, or want to learn how to use it, we just open the
repository, e.g. ramsey/composer-install¹³ and find out.

This whole architecture allows us to create combos with various workflows that we
stack upon each other: clone repository, generate the website, deploy the website,
and tweet about the new post. Boom!

Let’s add Rector to your project using GitHub Actions and see what it can do for us.

¹²https://github.com/features/actions
¹³https://github.com/ramsey/composer-install

https://leanpub.com/rector-the-power-of-automated-refactoring
https://github.com/features/actions
https://github.com/ramsey/composer-install
https://github.com/features/actions
https://github.com/ramsey/composer-install

Rector + CI = Next Member of Your Team 22

What are The Steps for a Rector Run?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

How to Add Rector to GitHub Actions

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

1. Generic PHP Setup

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

2. Rector Setup

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Allow Rector to contribute the Pull Request

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

The Future of Instant Upgrades
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Introduction

It takes time to fully grasp the power of new tools. We have to include them in our
workflow and see where they help.

It took Composer three years to get 66 millions downloads a month. In 2021, the same
number applies to daily downloads¹⁴.

When php-parser was introduced, no one really noticed. 3 years later it had only
14.000 daily downloads. Now in 2025 it’s 450.000+ downloads¹⁵.

It’s not about the tools themselves. It’s about the PHP community that finds new
ways to use these tools. Whether it’s a plugin or a tool built on top of it.

This is not a book on how to use Xth version of already established language
or framework. You have a unique advantage in your hands. We’re on the verge
of automated refactoring epoque. Only very few dozen people in the whole PHP
community have the power to reshape whole projects in minutes like you do now.

In this chapter we explore a few futuristic paths where building on top of Rector
could lead us.

Removing Legacy

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

¹⁴https://packagist.org/statistics
¹⁵https://packagist.org/packages/nikic/php-parser/stats

https://leanpub.com/rector-the-power-of-automated-refactoring
https://packagist.org/statistics
https://packagist.org/packages/nikic/php-parser/stats
https://leanpub.com/rector-the-power-of-automated-refactoring
https://packagist.org/statistics
https://packagist.org/packages/nikic/php-parser/stats

The Future of Instant Upgrades 24

How Can We Be So Confident?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

A Member of your Team That Sends
Pull-Requests Daily

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

PHP Stands Out

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

Epilogue
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring

Node Type and Refactor
Examples
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring

Book Revisions
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Update 2025-11-18

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Update 2025-03-07

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Update 2024-12-09 and Rector 2.0

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Update 2024-02-07 and Rector 1.0

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

Update 2024-01-30 and Rector 0.19.3

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/rector-the-power-of-automated-refactoring.

https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring
https://leanpub.com/rector-the-power-of-automated-refactoring

	Table of Contents
	Preface
	A Trainer's Journey
	The Other Side
	Who's Fault is It?
	From Blame to Pain
	From Pain to Idea
	From Idea to First Real Reconstructor
	We've Just Started, Now You Get on Board

	Introduction
	What is Rector?
	Who Should Read This Book?
	An Overview of the Contents
	About the Code Samples
	About the Authors
	Matthias Noback
	Tomas Votruba

	Acknowledgements

	Programmatically Modifying PHP Code
	Introduction
	Primitive Ways of Modifying Code
	Tokenizing PHP Code
	Parsing PHP Tokens: the Abstract Syntax Tree
	Converting the AST Back to PHP Code
	Manipulating the AST
	Node Visitors
	Manipulating the AST with a Node Visitor
	Built-in Node Visitors
	Resolving Fully-qualified Names
	Finding Nodes

	Summary

	PHP Tools in the Game
	Introduction
	Working Together with Giants
	2007 - Now Timeline
	The Primary Feature
	1. Coding Standard Tools
	PHP_CodeSniffer
	PHP CS Fixer
	Easy Coding Standard

	2. Static Analyzers
	PHP-Parser
	PHPStan
	Psalm

	3. Instant Upgrade Tools
	Symfony-Upgrade-Fixer
	Rector

	When to Use Which Tool?
	Is Your Project Bare Without Any Tools?
	Run Rector First, Then Polish with Coding Standards
	Recommended Tools
	Summary

	Creating Your First Rector Rule
	Introduction
	What's a Rector Rule?
	Creating a Custom Rule
	Extending AbstractRector
	Finding the Right Node Class
	Expr vs Stmt

	Running a Single Rule
	Refactoring the Method Call Node
	What Is the Type of a Variable?

	What if We Run Rector Twice?
	Effectivity Beats Perfection

	Summary

	Test-driven Rule Development
	Introduction
	Migrating from DateTime to DateTimeImmutable
	Creating a Test Class
	Adding First Test Fixture
	Making the First Test Pass
	Narrowing the Scope of the Refactoring
	Capturing the Return Value of modify()
	Skipping Calls on Classes That Are Not DateTime
	Summary

	More Testing Techniques
	Rules Should Be Idempotent
	Removing the Clone Step
	Low-Hanging Fruit First
	Create a Configurable Generic Rule
	Making Rule Behavior Configurable
	Configurable Rule Makes Hidden Assumptions Explicit
	Using Supporting Classes in Fixtures
	Summary

	Continuous Rectifying
	Introduction
	The Next Member of Your Team
	Turning a Junior Into a Senior on Day 1
	Who's to Blame?
	What Does it Look Like to Work with Rector in CI?
	How Rector is Rectifying Itself
	Removing Boring Work Opens Your Creativity
	Summary

	Rector + CI = Next Member of Your Team
	Introduction
	What are The Steps for a Rector Run?
	How to Add Rector to GitHub Actions
	1. Generic PHP Setup
	2. Rector Setup

	Allow Rector to contribute the Pull Request
	Summary

	The Future of Instant Upgrades
	Introduction
	Removing Legacy
	How Can We Be So Confident?

	A Member of your Team That Sends Pull-Requests Daily
	PHP Stands Out

	Epilogue
	Node Type and Refactor Examples
	Book Revisions
	Update 2025-11-18
	Update 2025-03-07
	Update 2024-12-09 and Rector 2.0
	Update 2024-02-07 and Rector 1.0
	Update 2024-01-30 and Rector 0.19.3

