

Relationale Datenbanken
Die alte Welt: Relationale Datenbanken, Konzepte,
Entwurf und Programmierung

Till Hänisch

This book is for sale at http://leanpub.com/realtionaledatenbanken

This version was published on 2015-03-09

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2014 - 2015 Till Hänisch

http://leanpub.com/realtionaledatenbanken
http://leanpub.com
http://leanpub.com/manifesto

Contents

Verteilte Datenbanken . 1

CONTENTS 1

Verteilte Datenbanken

Befindet sich eine Datenbank nicht auf einem einzelnen Rechner, sondern sind die Daten über
mehrere Rechner verteilt, spricht man von einer verteilten Datenbank. Dies ist ein theoretisch
ansprechendes Konzept, können doch die Daten je nach Lokalisierung der Nutzung, Organisation
von Verantwortlichkeiten, Verwendungszweck oder technologischer Anforderungen auf ver-
schiedene Systeme verteilt werden. Prinzipiell stellen auch verteilte Transaktionen kein Problem
dar. In den neunziger Jahren wurde auf diesem Gebiet umfangreich geforscht und entwickelt¹.

Eine verteilte Transaktion etwa lässt sich anschaulich mit dem Two Phase Commit (2PC)
Protokoll realisieren. Das Prinzip entspricht dem Vorgehen des Pfarrers bei einer Trauung: Der
Pfarrer (Transaction Coordinator) fragt zunächst alle Parteien (Datenbanken oder Resource
Manager) ob sie bereit sind (Prepare to commit). Antwortet eine Partei mit „Ja“, kann die
Zustimmung nicht mehr rückgängig gemacht werden. Antwortet eine Partei mit „Nein“ oder
überhaupt nicht, wird die Transaktion abgebrochen. Haben alle mit „Ja“ geantwortet, erklärt
der Pfarrer (Transaction Coordinator) die Transaktion für erfolgreich und teilt dies allen mit
(Commit).

Die Probleme zeigen sich im praktischen Betrieb. Eine Transaktion kann erst dann beendet
werden, wenn entweder alle Partner geantwortet haben oder ein entsprechender Timeout
entscheidet, dass einer der Partner nicht erreichbar ist. Für viele praktische Belange ist diese
Latenz zu groß. Deshalb werden in der Regel asynchrone Verfahren zur Kopplung verwendet ².

Aber auch ohne die Probleme verteilter Transaktionen sind verteilte Datenbanken hinsichtlich
der Performance problematisch. Die Optimierung verteilter Joins ist zwar theoretisch möglich,
aber in der Praxis nur schwer durchführbar.

Praktisch haben sich zwei einfache Spezialfälle verteilter Datenbanken durchgesetzt, Replikation
und Sharding.

Bei der Replikation werden die gleichen Daten auf mehrere Datenbanken dupliziert, beim
Sharding werden die Daten anhand eines Kriteriums auf mehrere Datenbanken aufgeteilt.

Master-Slave-Replikation

Der einfachere Fall von Replikation ist die Master-Slave-Replikation. Hier werden Schreibzu-
griffe nur auf dem Master durchgeführt, die geänderten Daten werden an die Slaves weit-
ergegeben, technisch in der Regel dadurch realisiert, dass die Log-Dateien des Masters kopiert
werden, die Slaves befinden sich ständig im Recovery-Modus. Das ist kein Problem, da auf den
Slaves nur Lesezugriffe ausgeführt werden.

¹Siehe etwa Dadam, Verteilte Datenbanken und Client/Server-Systeme, Springer, 1996.
²Siehe etwa G. Hohpe, Your Coffe Shop Doesn’t Use Two-Phase Commit, IEEE Software, Volume 22 Issue 2, March 2005 Page 64-66

CONTENTS 2

Diese Art der Replikation bietet einige Vorteile: Schreibzugriffe auf den Master sind genau so
schnell wie bei einer einzelnen Datenbank, Lesezugriffe können durch Zugriffe auf die Rep-
likate beschleunigt werden. Dies ist insbesondere interessant, wenn nur wenige Schreibzugriffe
erfolgen, die Nutzer aber weltweit verteilt sind. Bei einer einzelnen Datenbank wären hier die
Latenzen zum (Lese-) Zugriff auf den zentralen Datenbankserver langsam, werden die Replikate
geschickt verteilt, kann dieses Problem gelöst werden ³.

Problematisch ist diese Art der Replikation dann, wenn entweder viele, verteilte Schreibzugriffe
stattfinden oder zwar nur wenige Schreibzugriffe erfolgen, diese aber auch möglich sein müssen,
wenn die Verbindung zum zentralen Datenbankserver (kurzzeitig) ausfällt („always writeable“).
Der erste Fall kann in vielen Fällen durch Sharding gelöst werden, der zweite Fall ist schwierig.

Schwierig bedeutet hier, dass die ACID-Eigenschaften nicht eingehalten werden können, dies
ist die Aussage des CAP-Theorems. Das CAP-Theorem besagt, dass bei verteilten Datenbanken
entweder Konsistenz oder hohe Verfügbarkeit erreicht werden kann, nicht beides gleichzeitig ⁴.

Theoretisch gibt es auch noch die Multi-Master-Replikation, d.h. Schreibzugriffe sind auf
jeder Datenbank möglich und werden auf die anderen Knoten repliziert, dies ist aber unter
Beibehaltung der ACID-Eigenschaften nur in Spezialfällen mit akzeptabler Performance und
Verfügbarkeit möglich.

³Ganz so unproblematisch ist dieses Verfahren aber auch nicht: Liest etwa ein Client von einem der Slaves und schreibt dann auf den
Master und liest dann unmittelbar darauf folgend wieder vom Slave, erhält er unter Umständen die alten, also aus seiner Sicht falsche Werte.
Um dies zu vermeiden, müsste nach einem Schreibzugriff vom Master gelesen werden, um „read your writes“-Konsistenz zu erhalten. Gängige
Datenbank-Schnittstellen wie ORM-Mapping-Tools bieten diese Funktionen nicht von Haus aus. Die Implementierung von Konsistenz in
verteilten Datenbanken muss in der Anwendung selber realisiert werden. Selbst dann lesen verschiedene Clients von verschiedenen Slaves
unter Umständen unterschiedliche Daten.

⁴Genau genommen besagt das CAP-Theorem, dass von den drei Eigenschaften Konsistenz (Consistency), Verfügbarkeit (Availability)
und Unempfindlichkeit gegenüber Unterbrechungen der Netzwerkverbindung (Partition Tolerance) nur zwei gleichzeitig realisierbar sind.
Zumindest gelegentliche, kurzzeitige Unterbrechungen der Netzwerkverbindung sind aber bei verteilten Systemen unvermeidbar, deshalb die
einfachere Formulierung im Text. Man darf sich das aber nicht so vorstellen, dass es hier nur zwei Möglichkeiten (hohe Verfügbarkeit/keine
Konsistenz und Konsistenz/schlechte Verfügbarkeit gäbe), hier ist ein Spektrum anMöglichkeiten realisierbar. Für jede Anwendungmuss deshalb
definiert werden, welches Maß an Konsistenz notwendig ist und welche Verfügbarkeit dadurch erreicht werden kann, oder umgekehrt, welche
Verfügbarkeit gefordert ist und welche Konsistenzprobleme deshalb gelöst werden müssen. Die zweite Form ist in der Praxis häufiger als die
erste. In der Regel ist diese Entscheidung auch für verschiedene Daten innerhalb einer Anwendung unterschiedlich zu treffen: Bei amazon ist
beispielsweise der Warenkorb immer schreibbar, beim Auslösen einer Bestellung wird dann allerdings auf Konsistenz geachtet.

CONTENTS 3

Verschiedene Arten der Verteilung

Beim Shardingwerden gleichartige Daten aufmehrere Datenbanken aufgeteilt. Die Idee dabei ist,
dass Lese- und Schreibzugriffe gemeinsam auf zusammengehörigenDatensätzen stattfinden, sich
die Zugriffe aber annähernd gleichmäßig über die Gesamtdatenmenge verteilen. Insbesondere ist
dies der Fall, wenn die einzelnenNutzer jeweils auf unterschiedlicheDaten, also insbesondere auf
ihre eigenen, zugreifen. Ein Beispiel hierfür ist ein Messaging-System: Werden die Nutzerdaten
nach Regionen auf mehrere Datenbanken verteilt, bleiben die meisten Zugriffe lokal. So kann
sowohl eine im Mittel gute Performance, als auch eine hohe Verfügbarkeit erreicht werden.

Die beiden Verfahren können auch kombiniert werden, d.h. die einzelnen shards werden zur
Erhöhung der Verfügbarkeit und der Lese-Performance repliziert. GeradeWeb 2.0 Anwendungen
haben ein dieser Architektur entsprechendes Zugriffsmuster. Problematisch hierbei sind die
sogenannten Hotspots, also einzelne Datensätze, die von sehr vielen Nutzern gelesen werden.
Hier müssen geeignete, anwendungsspezifische Lösungen gefunden werden, eine allgemeine
Lösung existiert nicht ⁵.

Zur Verbesserung der Performance wird häufig zusätzlich zu Replikation und Sharding partition-
iert, es wird eine Aufteilung nach der Art der Daten vorgenommen. Bei einemMessaging-System
werden etwa in der einen Datenbank die Nutzerprofile, in einer anderen die Accounts, wieder in
einer anderen die Nachrichten usw. gespeichert. Wird diese Aufteilung geschickt gewählt, kann
in vielen Fällen erreicht werden, dass sich Zugriffe nicht über mehrere Datenbanken erstrecken,

⁵So werden bei Twitter etwa Tweets von Nutzern nicht (nur) bei den Nutzern selber gespeichert, sondern auch bei den Followern. Ansonsten
würde bei Nutzern mit sehr vielen Followern ein Performance-Problem entstehen, bei fast jedem Zugriff auf eine Timeline müssten diese
durchsucht werden.

CONTENTS 4

sondern lokal in einer Datenbank realisiert werden können ⁶.

Auch hier ist eine Kombination mit den anderen Verfahren möglich: Zunächst werden die Daten
nach Aggregates aufgeteilt, diese dann, etwa regional, durch Sharding verteilt und die einzelnen
shards schließlich repliziert. Diese Architektur ist bei Web (2.0) Anwendungen üblich.

Problematisch ist hierbei, dass bei dieser Architektur die meisten Vorteile relationaler Daten-
banken nicht genutzt werden können: Keine Transaktionen mehr, keine Gewährleistung von
semantischer oder referentieller Integrität, keine flexiblen Abfragen durch Joins (effizient nur
noch in den Aggregates) und so weiter. Da die Daten grade zur Verbesserung der Verfügbarkeit
und Performance verteilt werden, würde die Verwendung verteilter Zugriffe und Transaktionen
diese Architektur konterkarieren.

Letztlich wird in jeder Datenbank nur noch eine einzige Tabelle (ggf. mit einer komplexen, eher
objektrelationalen Struktur, möglicherweise aufgeteilt auf einige wenige Tabellen) gespeichert.
Da stellt sich schon die Frage, warum man dann noch eine relationale Datenbank braucht.

Zusammenfassung

Daten können über mehrere Rechner verteilt werden. Dies wird meistens zur Erhöhung der
Verfügbarkeit (mehrere Kopien der Daten auf mehreren Servern), der Performance (kleinere
Latenz beim Zugriff auf näher gelegene Server) oder beidem durchgeführt. Problematisch
sind verteilt realisierte Schreibzugriffe, hier können leicht Inkonsistenzen entstehen, wenn
die einzelnen Datenbanken nicht mittels Transaktionen synchron gehalten werden, was aber
wiederum der Performance und Verfügbarkeit sehr abträglich ist.

⁶Dies ist genau dann der Fall, wenn nicht nach einzelnen Tabellen, sondern nach Aggregates partitioniert wird. Diese Beobachtung stammt
von Eric Evans, Domain Driven Design: In der Anwendung wird meistens nicht auf einzelne Datensätze, sondern etwa bei Bestellungen fast
immer gemeinsam auf den Bestellkopf, die Bestellpositionen und die Artikeldetails zugegriffen. Diese sollten also auch zusammen verwaltet und
gespeichert werden.

	Table of Contents
	Verteilte Datenbanken

