L ¥

Datenbanken

....... Diealte Welds * * 0 0t

Relationale Datenbanken, Konzepte, Entwurf und
Programmierung

Relationale Datenbanken

Die alte Welt: Relationale Datenbanken, Konzepte,
Entwurf und Programmierung

Till Hanisch

This book is for sale at http://leanpub.com/realtionaledatenbanken

This version was published on 2015-03-09

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2014 - 2015 Till Hanisch

http://leanpub.com/realtionaledatenbanken
http://leanpub.com
http://leanpub.com/manifesto

Contents

Verteilte Datenbanken

CONTENTS 1

Verteilte Datenbanken

Befindet sich eine Datenbank nicht auf einem einzelnen Rechner, sondern sind die Daten tiber
mehrere Rechner verteilt, spricht man von einer verteilten Datenbank. Dies ist ein theoretisch
ansprechendes Konzept, konnen doch die Daten je nach Lokalisierung der Nutzung, Organisation
von Verantwortlichkeiten, Verwendungszweck oder technologischer Anforderungen auf ver-
schiedene Systeme verteilt werden. Prinzipiell stellen auch verteilte Transaktionen kein Problem
dar. In den neunziger Jahren wurde auf diesem Gebiet umfangreich geforscht und entwickelt'.

Eine verteilte Transaktion etwa lésst sich anschaulich mit dem Two Phase Commit (2PC)
Protokoll realisieren. Das Prinzip entspricht dem Vorgehen des Pfarrers bei einer Trauung: Der
Pfarrer (Transaction Coordinator) fragt zunachst alle Parteien (Datenbanken oder Resource
Manager) ob sie bereit sind (Prepare to commit). Antwortet eine Partei mit ,Ja“, kann die
Zustimmung nicht mehr riickgingig gemacht werden. Antwortet eine Partei mit ,Nein“ oder
tberhaupt nicht, wird die Transaktion abgebrochen. Haben alle mit ,Ja“ geantwortet, erklart
der Pfarrer (Transaction Coordinator) die Transaktion fiir erfolgreich und teilt dies allen mit
(Commit).

Die Probleme zeigen sich im praktischen Betrieb. Eine Transaktion kann erst dann beendet
werden, wenn entweder alle Partner geantwortet haben oder ein entsprechender Timeout
entscheidet, dass einer der Partner nicht erreichbar ist. Fiir viele praktische Belange ist diese
Latenz zu grof3. Deshalb werden in der Regel asynchrone Verfahren zur Kopplung verwendet °.

Aber auch ohne die Probleme verteilter Transaktionen sind verteilte Datenbanken hinsichtlich
der Performance problematisch. Die Optimierung verteilter Joins ist zwar theoretisch méglich,
aber in der Praxis nur schwer durchfiithrbar.

Praktisch haben sich zwei einfache Spezialfille verteilter Datenbanken durchgesetzt, Replikation
und Sharding.

Bei der Replikation werden die gleichen Daten auf mehrere Datenbanken dupliziert, beim
Sharding werden die Daten anhand eines Kriteriums auf mehrere Datenbanken aufgeteilt.

Master-Slave-Replikation

Der einfachere Fall von Replikation ist die Master-Slave-Replikation. Hier werden Schreibzu-
griffe nur auf dem Master durchgefiihrt, die geanderten Daten werden an die Slaves weit-
ergegeben, technisch in der Regel dadurch realisiert, dass die Log-Dateien des Masters kopiert
werden, die Slaves befinden sich stindig im Recovery-Modus. Das ist kein Problem, da auf den
Slaves nur Lesezugriffe ausgefiihrt werden.

ISiehe etwa Dadam, Verteilte Datenbanken und Client/Server-Systeme, Springer, 1996.
%Siche etwa G. Hohpe, Your Coffe Shop Doesn’t Use Two-Phase Commit, IEEE Software, Volume 22 Issue 2, March 2005 Page 64-66

CONTENTS 2

Diese Art der Replikation bietet einige Vorteile: Schreibzugriffe auf den Master sind genau so
schnell wie bei einer einzelnen Datenbank, Lesezugriffe konnen durch Zugriffe auf die Rep-
likate beschleunigt werden. Dies ist insbesondere interessant, wenn nur wenige Schreibzugriffe
erfolgen, die Nutzer aber weltweit verteilt sind. Bei einer einzelnen Datenbank waren hier die
Latenzen zum (Lese-) Zugriff auf den zentralen Datenbankserver langsam, werden die Replikate
geschickt verteilt, kann dieses Problem gelost werden °.

Problematisch ist diese Art der Replikation dann, wenn entweder viele, verteilte Schreibzugriffe
stattfinden oder zwar nur wenige Schreibzugriffe erfolgen, diese aber auch moglich sein miissen,
wenn die Verbindung zum zentralen Datenbankserver (kurzzeitig) ausfillt (,always writeable®).
Der erste Fall kann in vielen Fallen durch Sharding gelost werden, der zweite Fall ist schwierig.

Schwierig bedeutet hier, dass die ACID-Eigenschaften nicht eingehalten werden kénnen, dies
ist die Aussage des CAP-Theorems. Das CAP-Theorem besagt, dass bei verteilten Datenbanken
entweder Konsistenz oder hohe Verfiigbarkeit erreicht werden kann, nicht beides gleichzeitig *.

Theoretisch gibt es auch noch die Multi-Master-Replikation, d.h. Schreibzugriffe sind auf
jeder Datenbank méoglich und werden auf die anderen Knoten repliziert, dies ist aber unter
Beibehaltung der ACID-Eigenschaften nur in Spezialfallen mit akzeptabler Performance und
Verfiigbarkeit méglich.

*Ganz so unproblematisch ist dieses Verfahren aber auch nicht: Liest etwa ein Client von einem der Slaves und schreibt dann auf den
Master und liest dann unmittelbar darauf folgend wieder vom Slave, erhélt er unter Umstanden die alten, also aus seiner Sicht falsche Werte.
Um dies zu vermeiden, miisste nach einem Schreibzugriff vom Master gelesen werden, um ,read your writes“-Konsistenz zu erhalten. Gingige
Datenbank-Schnittstellen wie ORM-Mapping-Tools bieten diese Funktionen nicht von Haus aus. Die Implementierung von Konsistenz in
verteilten Datenbanken muss in der Anwendung selber realisiert werden. Selbst dann lesen verschiedene Clients von verschiedenen Slaves
unter Umstanden unterschiedliche Daten.

“Genau genommen besagt das CAP-Theorem, dass von den drei Eigenschaften Konsistenz (Consistency), Verfiigbarkeit (Availability)
und Unempfindlichkeit gegeniiber Unterbrechungen der Netzwerkverbindung (Partition Tolerance) nur zwei gleichzeitig realisierbar sind.
Zumindest gelegentliche, kurzzeitige Unterbrechungen der Netzwerkverbindung sind aber bei verteilten Systemen unvermeidbar, deshalb die
einfachere Formulierung im Text. Man darf sich das aber nicht so vorstellen, dass es hier nur zwei Moglichkeiten (hohe Verfiigbarkeit/keine
Konsistenz und Konsistenz/schlechte Verfiigbarkeit gabe), hier ist ein Spektrum an Méglichkeiten realisierbar. Fiir jede Anwendung muss deshalb
definiert werden, welches Maf} an Konsistenz notwendig ist und welche Verfiigbarkeit dadurch erreicht werden kann, oder umgekehrt, welche
Verfiigbarkeit gefordert ist und welche Konsistenzprobleme deshalb gelost werden miissen. Die zweite Form ist in der Praxis hiufiger als die
erste. In der Regel ist diese Entscheidung auch fiir verschiedene Daten innerhalb einer Anwendung unterschiedlich zu treffen: Bei amazon ist
beispielsweise der Warenkorb immer schreibbar, beim Auslosen einer Bestellung wird dann allerdings auf Konsistenz geachtet.

CONTENTS 3

Replikation sharding Partitionierung
Alle Daten
Daten aus Accounts
USA
— — —
Daten ()
Alle aus Profile
Daten X
Asien
S — — N —
Alle Daten
aus Messages
Daten EU
N — S — b 4
Bilder

Verschiedene Arten der Verteilung

Beim Sharding werden gleichartige Daten auf mehrere Datenbanken aufgeteilt. Die Idee dabei ist,
dass Lese- und Schreibzugriffe gemeinsam auf zusammengehorigen Datensatzen stattfinden, sich
die Zugriffe aber anndhernd gleichmafig iiber die Gesamtdatenmenge verteilen. Insbesondere ist
dies der Fall, wenn die einzelnen Nutzer jeweils auf unterschiedliche Daten, also insbesondere auf
ihre eigenen, zugreifen. Ein Beispiel hierfir ist ein Messaging-System: Werden die Nutzerdaten
nach Regionen auf mehrere Datenbanken verteilt, bleiben die meisten Zugriffe lokal. So kann
sowohl eine im Mittel gute Performance, als auch eine hohe Verfiigbarkeit erreicht werden.

Die beiden Verfahren konnen auch kombiniert werden, d.h. die einzelnen shards werden zur
Erhohung der Verfiigbarkeit und der Lese-Performance repliziert. Gerade Web 2.0 Anwendungen
haben ein dieser Architektur entsprechendes Zugriffsmuster. Problematisch hierbei sind die
sogenannten Hotspots, also einzelne Datensétze, die von sehr vielen Nutzern gelesen werden.
Hier miissen geeignete, anwendungsspezifische Losungen gefunden werden, eine allgemeine
Losung existiert nicht °.

Zur Verbesserung der Performance wird haufig zusatzlich zu Replikation und Sharding partition-
iert, es wird eine Aufteilung nach der Art der Daten vorgenommen. Bei einem Messaging-System
werden etwa in der einen Datenbank die Nutzerprofile, in einer anderen die Accounts, wieder in
einer anderen die Nachrichten usw. gespeichert. Wird diese Aufteilung geschickt gewéhlt, kann
in vielen Féllen erreicht werden, dass sich Zugriffe nicht iber mehrere Datenbanken erstrecken,

°So werden bei Twitter etwa Tweets von Nutzern nicht (nur) bei den Nutzern selber gespeichert, sondern auch bei den Followern. Ansonsten
wiirde bei Nutzern mit sehr vielen Followern ein Performance-Problem entstehen, bei fast jedem Zugriff auf eine Timeline miissten diese
durchsucht werden.

CONTENTS 4

sondern lokal in einer Datenbank realisiert werden konnen °.

Auch hier ist eine Kombination mit den anderen Verfahren moglich: Zunéchst werden die Daten
nach Aggregates aufgeteilt, diese dann, etwa regional, durch Sharding verteilt und die einzelnen
shards schlief3lich repliziert. Diese Architektur ist bei Web (2.0) Anwendungen iiblich.

Problematisch ist hierbei, dass bei dieser Architektur die meisten Vorteile relationaler Daten-
banken nicht genutzt werden kénnen: Keine Transaktionen mehr, keine Gewahrleistung von
semantischer oder referentieller Integritat, keine flexiblen Abfragen durch Joins (effizient nur
noch in den Aggregates) und so weiter. Da die Daten grade zur Verbesserung der Verfiigbarkeit
und Performance verteilt werden, wiirde die Verwendung verteilter Zugriffe und Transaktionen
diese Architektur konterkarieren.

Letztlich wird in jeder Datenbank nur noch eine einzige Tabelle (ggf. mit einer komplexen, eher
objektrelationalen Struktur, méglicherweise aufgeteilt auf einige wenige Tabellen) gespeichert.
Da stellt sich schon die Frage, warum man dann noch eine relationale Datenbank braucht.

Zusammenfassung

Daten konnen iiber mehrere Rechner verteilt werden. Dies wird meistens zur Erhéhung der
Verfiigbarkeit (mehrere Kopien der Daten auf mehreren Servern), der Performance (kleinere
Latenz beim Zugriff auf naher gelegene Server) oder beidem durchgefiihrt. Problematisch
sind verteilt realisierte Schreibzugriffe, hier konnen leicht Inkonsistenzen entstehen, wenn
die einzelnen Datenbanken nicht mittels Transaktionen synchron gehalten werden, was aber
wiederum der Performance und Verfiigbarkeit sehr abtréglich ist.

®Dies ist genau dann der Fall, wenn nicht nach einzelnen Tabellen, sondern nach Aggregates partitioniert wird. Diese Beobachtung stammt
von Eric Evans, Domain Driven Design: In der Anwendung wird meistens nicht auf einzelne Datensatze, sondern etwa bei Bestellungen fast
immer gemeinsam auf den Bestellkopf, die Bestellpositionen und die Artikeldetails zugegriffen. Diese sollten also auch zusammen verwaltet und
gespeichert werden.

	Table of Contents
	Verteilte Datenbanken

