BOOK CHAPTERS (SAMPLE)

The following chapters are included in this sample.

For a full list of the chapter included in the book, refer to the end of this document.

INTRODUCTION TO REACT

-

WHAT’S SO SPECIAL ABOUT REACT? 1
SO WHAT DOES REACT DO? 3
OTHER LIBRARIES 4
REACT ES5 & REACT ES6 5
EXERCISES WITH JSBIN.COM 6
INTRODUCTION 6
PRE-ES6 6
EXAMPLE - INTRODUCTION 6
EXAMPLE - INSTRUCTIONS 6
TIP - USE LINE NUMBERS 8
TIP - USE SYNTAX HIGHLIGHTING BY COPYING AND PASTING 9
INTRODUCTION TO COMPONENTS 11
INTRODUCTION 11
FACTS ABOUT COMPONENTS 1
CREATING REACT COMPONENTS 1
INTRODUCTION TO JSX 13
INTRODUCTION 13
COMPILATION 13
JSX ATTRIBUTE EXPRESSIONS 17
CHILD COMPONENT ELEMENTS 17
JAVASCRIPT EXPRESSIONS — WHITESPACE 18
HTML ATTRIBUTES 18
HTML ATTRIBUTES AND JAVASCRIPT RESERVED WORDS 19
HTML STYLE ATTRIBUTE 20
ESCAPING ANDUNESCAPING CONTENT 22
COMPONENT CREATION 24
NAMING 24
FACTORS THAT AFFECT COMPONENT CREATION 24
STATEFUL COMPONENTS 24
STATELESS COMPONENTS 27

Learn React Fast

1.1

Introduction to React

React is an open-source Ul library developed at Facebook to facilitate the creation of
interactive, stateful & reusable Ul visual components for websites and applications. It is used
at Facebook and Instagram in production, amongst other websites.

React gets its name because components have what’s known as ‘Reactive State’. This
means that when your data in your component changes, your Ul reacts and
automatically updates to reflect changes.

What'’s So Special about React?

Speed

It’s fast. Facebook claim that React can redraw a Ul 60 times a second.

Reacting Components

Software applications use data, which changes frequently. When you build software that
uses data, you often need to detect when the data changes and refresh the user interface
when it does. React is different. When you write React code, you are writing Components.
These Components React to data changes and redraw themselves, refreshing the user
interface automatically.

Reusable Components

When you write React code, you are writing Components. They are designed to be Reusable.
These Components can be used in one place in the Application, or in as many places as you
wish. Facebook wrote React. Think about how many times Facebook reuses the ‘like’
Component.

Virtual DOM

Most JavaScript libraries directly update the DOM in the browser. React does not work that
way. When React is running, it keeps a ‘DOM in memory’ that is updated by your
components. When React change detection occurs it compares the ‘DOM in memory’
against the DOM in the browser and only updates the differences in the user interface on
the browser. This avoids the performance issues of redrawing the whole user interface
(DOM) again and again (rendering cycles), only redrawing component parts that have
changed.

Introduction to React 1

Learn React Fast

® Server-side Rendering

One of its unique selling points is that not only does it perform on the client side, but it can
also be rendered server side, and they can work together inter-operably.

® JSX

ANGULAR, EMBER AND KNOCKOUT PUT “JS”” IN YOUR HTML.
REACT PUTS “HTML” IN YOUR JS.

Most of the other JavaScript libraries (Angular, Ember, Knockout) allow you to embed
JavaScript (or bindings) into HTML markup. React does things the other way round. You can
embed HTML (or other markup for React Components) into your JavaScript.

When you look at JavaScript that contains JSX, You will a lot of inline XML-like code, without
quotes. You will also see that there are script blocks with different types (for example
‘text/babel’). This is because the XML-like code (the JSX) is compiled into regular JavaScript
before it is run.

This initially sounds like a bad idea but think about this: the markup is compiled before
runtime. Bad markup will be identified before the code is run.

We will go into detail on JSXin Chapter ‘Introduction to JSX'.

e XHP

XHP is a similar thing to JSX and it was developed before the React JavaScript library. It
enables PHP developers to develop user interface components on the server-side using the
same XML format.

® React Native

You can use React to develop native iOS and Android apps using the React Native libraries
supplied by Facebook.

® AJAX

Applications built with React are modular. React is just one of the modules. React is a view
library and React has no networking/AJAX features. To perform networking/AJAX
operations (such has getting data from the server), developers need to use an additional
JavaScript module (such as JQuery) alongside their React code.

Introduction to React 2

Learn React Fast

1.2 So What Does React Do?

React is a comparatively small JavaScript framework that allows the developer to write user
interfaces that are composed of one or more Components. In these Components React

takes care of the following for you:

1. Rendering the Model (see MVC) to the DOM.

2. Responding to Events.

® Rendering the Model to the DOM

Component inputs are props and state (the model).

Difference is state can change

Use state components as little as possible
Data flows downwards into render then dom
Way to change the dom is to change the model.

Props

State

Render

X

DOM

® Responding to Events

The events in the DOM fire event handlers in the Components. The Components update the
Model to change the DOM.

Introduction to React

Learn React Fast

Architecture

1.3 Other Libraries

® JQuery

Many people use React and JQuery together. However, React will work fine without JQuery.
JQuery developers will need to think differently when coding in React. In JQuery developers
manipulate the DOM directly (imperatively) in order to change how the Ul is rendered. React
allows developers to have Ul components. These Ul components have states that are used
to define how the Ul is rendered. To change how the Ul is rendered, the developer should
change the ‘state’ of a component to tell it to change.

Many developers use JQuery with React to perform asynchronous operations, as React does
not include this capability.

® Angular

Angular also handles DOM manipulation for the developer. It gives the developer to bind
data in the model to the markup in the view (i.e. the DOM). When the user changes data in
the model, this binding updates the view, similar to how React updates when a state (data)
is changed. However Angular does not use a ‘Virtual DOM’ and it uses change detection
algorithms (state tree change algorithms) to figure out what components have changed so
it can update the DOM. It is arguably less efficient at updating the Ul after a state change
has taken place.

Angular is a larger library and provides you everything you need to write a single-page web
application. This library contains more services to the developer, for example routing, http
communication with servers.

Introduction to React 4

Learn React Fast

1.4

Ember

Ember is a larger library than React.

Backbone

Backbone is a larger library then React.

React ES5 & React ES6

Introduction

React has been around for a while and JavaScript ES6 was developed after React had
already been released. From release 0.13.0, React started to support the development of
React Components in ES6. Please see Appendix ‘Versions of JavaScript’ for more
information about the versions of JavaScript available.

Examples

The syntax for using React with ES5 is quite different from using React with ES6. This book
will attempt to cover both, while recognizing that ES6 (and later) is the future. Don’t let the
syntax differences put you off — you can see that React is doing similar things whether in ES5
or ES6.

Pre-ES6

In the context of this book, this means ‘React with ES5’, or ‘any other version of JavaScript
before ES6’.

This book contains many simple ‘Pre ES6’ exercises which you can tryout using JSBin.com.
JSBin.com allows us to quickly write code online without having to setup any kind of project
environment. This is the simplest environment in which you can run React code. No
compiles, build processes. Just type in the code and it run. As of the time of writing this
book, JSBin.com only worked with the earlier React ES5 syntax.

Post-ES6

In the context of this book, this means ‘React with ES6’, or ‘any other version of JavaScript
after and including ES6’.

This book includes a sample project written in ES6, from which | will provide code samples.
Please refer to Chapter ‘Introduction to the React Trails Project’ Project for details on how
to run React in this environment.

Introduction to React

Learn React Fast

2.1

2.2

2.3

2.4

Exercises with JSBin.com

Introduction

JSBin is a website in which you can develop simple applications and try them out. It is similar
to Plunker except that it works with a wider range of libraries. When you open JSBin.com, it
shows you a series of vertical panels. Each panel lets you code an aspect of an html page (for
example html, CSS, JavaScript). The html page (the product of the code in the other panels)
will be executed and output in one of the panels to the right.

Pre-ES6

As of the time of writing this book, JSBin.com only worked with the earlier React ES5 syntax.
This means that JSBin.com allows you to try out code with the earlier React ES5 syntax but
not with the later React ES6 syntax.

Example - Introduction

To learn how to get going in jsbin.com with React, we are going to create a tiny ‘Hello
World’ application to display this message to the user.

HTML - SX (React) ~ Output Run with JS | Auto-runJS ¥ A

<!DOCTYPE html> ReactDOM.render (H For
ello World!

<html> <div>Hello World!</div>,

<head>

<script src="ht [/ react- document.getElementById('container')

with-addons-15
<script

<meta name=
content="widt vid
<title>JS Bin</title>

v id="container"></container>

Example - Instructions

1. Open your browser and navigate to the following web page: http://jsbin.com/

Exercises with JSBin.com

Learn React Fast

& File - Add library HTML = CSS JavaScript Console = Output Login or Register Blogn Help
HTML ~ JavaScript - Output Run with JS | Auto-run JS ¥
<!DOCTYPE html>
<html>
<head>

<meta charset=

<meta name="vi

content="width= =
<title>JS Bin</title>

</head>

<body>

</body>

</html>

s/nume?

</body>

</html>

2. Select ‘Add Library’ and select ‘React with Add-Ons + React DOM 15.1.0” in the list.
@ File ~ HTML CSS JavaScript Console = Output Login or Register Blogn Help

3. We are going to change the html so that it has a container for a ‘hello world’ simple react
component. Edit your html (the panel on the left) and add the following element to the
html:

i <!DOCTYPE html>

: <html>

1 <head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>JS Bin</title>

i </head>

i <body>

: <div id="container"></div>

1 </body>

1 </html>

4. We are going to add a JSX react script to create the ‘hello world’ simple react
component. First of all we need to select the script type in the middle panel. It defaulted
to ‘JavaScript’ but we need to change it to ‘JSX (React)’.

Exercises with JSBin.com 7

Learn React Fast

HTML -~

Console Clear | Output
<!DOCTYPE html> . Run with JS | Auto-run JS ¥
htm JavaScript >
<html>
<head>)

<meta charset="utf-8"> ES6/ Babel
a name="vi "
content="width= JSX (React)
width">
<title>JsS Bin</title> CoffeeScript
</head>
{:ody» Traceur
</body>
</html> TypeScript
Processing
LiveScript
ClojureScript

Convert to JavaScript

5. We now add the script code in the panel below where we selected ‘JSX (React)”:

: ReactDOM. render (
<hl>hello world</hl>,
document.getElementById('container'));

ReactDOM. render(
<hl>hello world</hl>,
document.getElementById('container'));

6. That’s it, your code should be running. The output panel on the right side shows the
output from the running code on the other panels. It should now show the following:

Output ' Run with JS | Auto-runJS ¥ A

hello world

2.5 Tip - Use Line Numbers

® Introduction

It easy to make mistakes when writing code in an online editor such as jsbin.com. You will
often see ‘error at line x’ messages when you run the code. This tells you to look at that line
of code. However, jsbin.com does not show line numbers by default.

Exercises with JSBin.com 8

Learn React Fast

® Jsbin.com Hidden Trick
If you double-click on the panel language selector, it shows the line numbers in your code.

Double-click this:

HTML ~

and this:

JSX (React) ~

var DatalInput = React.createClass({
getInitialState: function() {
return {name: '', city: '', stat

1,

handleNameChange: function(e) {
this.setState({name: e.target.ve
this.validate();

},
becomes this:

JSX (React) v

var Datalnput = React.createClass({
getInitialState: function() {
return {name: '', city: '', sta
}

)
handleNameChange: function(e) {
this.setState({name: e.target.v
this.validate();

1,

2.6 Tip - Use Syntax Highlighting By Copying and Pasting

® Introduction
Unfortunately, most of the online tools like jsbin.com don’t have syntax highlighting.

However there is a solution and | use this all the time. Install another editor on your
computer, for example Microsoft Code. When you have ‘issues’ getting your code running in
jsbin (or another online editor), copy and paste the code into your editor on your computer.
Save the code you pasted as a .js’ file and then the editor should syntax highlight the file.
That makes it much easier to find your problem. Quite often you stare at the screen for
minutes then you paste it into Code and immediately see that you made a simple mistake
like forgetting to add a quote or a comma.

Exercises with JSBin.com 9

Learn React Fast

® Example

The code below is missing a comma. The picture on the left is how the code looks in
jsbin.com. The picture on the right is how the code looks in Microsoft Code.

As you can see it is much easier to diagnose the issue in Microsoft Code, its highlighted in

red!

}else{

}
H
return (
<div>

</div>
<div>

handleSubmit :
e.preventDefault();
this.validate();
if (this.state.errors.length > 0){
document.getElementById(this.sta

function(e) {

alert("Good to go!");

render: function() {
<form onSubmit={this.handleSubmi

Name:<input type="text" id="name

handleSubmit :

e ,\,:u(e) {

e.preventDefault();
‘his.validate();
if (this.state.erorrs.length > 0){
document.getElementById(this.s]
}else{
alert("Good to go!");

}

}

render:
return (

ction() {

form onSubmit=

div

input type="text" id="name

div
div

Exercises with JSBin.com

10

Learn React Fast

3

3.1

3.2

3-3

Introduction to Components

Introduction

React Components are like Ul building blocks. They are what you use to assemble a working
React application and you need to know how they work.

Facts about Components

* They need to be named.

* They have only one root node.

* There are different types of Components and they can be created in different ways.
* They must be rendered into a target element in the DOM.

* They can contain other components (Composition).

* They can accept input data through (properties).

* They can store their own data (states) and they REACT when this data changes.

* They respond to events.

Sounds daunting doesn’t it? Don’t worry: all of the above points are covered in this book.

Creating React Components

React allows developers to create these components in different ways according to your
development environment and state requirements. This is just an introductory chapter so
we won’t go into much detail on this.

Development Environment

As mentioned earlier, from release 0.13.0, React started to support the development of
React Components in ES6.

* Older projects (and websites like jsbin.com) create Components using the pre-ES6
syntax.

* Many more ‘modern’ React projects create Components using the post-ES6 syntax.

Components with State

Don’t worry if you don’t know what ‘State’ means. It just means ‘its own data’. If your React
Component needs to contain state, then you should create it using ‘React.createClass’ or by
extending React.Component.

Introduction to Components 11

Learn React Fast

* Create using React.createClass (Pre-ES6)

This is how we usually create the Components in JSBin.com. Components created in this
manner are full React Components that can store state. The argument to this function is an
object. At a minimum, this object should contain a render function, which returns a single
React Component.

* Create by Extending React.Compoment (Post-ES6)

This is how we usually create Components in a modern React project. ES6 allows JavaScript
developers to create classes. You should define your React Component as a class that
extends the class React.Component. Components created in this manner are full React
Components that can store state. At a minimum, this object should contain a render
function, which returns a single React Component.

If you don’t need your React Component to contain state data then you should create it as a
Stateless Function. This works in all versions of JavaScript, although you can use a different
syntax in ES6 onwards if you want.

® Components without State

You write your React Components as a function. No class, nothing. This is a simple way to
create React Components that don’t hold state. You can still pass in data into these
components using Properties but you cannot change this data. This is a great way to create
simple user interface components that don’t have complex behavior.

Introduction to Components 12

Learn React Fast

4.1

4.2

Introduction to JSX

Introduction

ANGULAR, EMBER AND KNOCKOUT PUT “JS” IN YOUR HTML.
REACT PUTS “HTML” IN YOUR JS.

As mentioned earlier, React is very different from Angular and Ember because it works the
other way round. Normally you embed the JavaScript into the HTML, that is the way most
JavaScript libraries work. React is different though and JSXis one of the differences,
enabling you to put HTML into your JavaScript. Also, this JSX code (that represents HTML in
amongst other things) is validated and compiled.

JSX can be used to write HTML in your JavaScript. However it also lets you add Tags that
represent React Components as well! So with JSX you are not just limited to just HTML.

Compilation

JSXis an XML-like syntax that you can add inline’into your JavaScript code. Later on the JSX
is compiled into regular JavaScript that invokes React code before it is executed on the
browser.

3.
Regular
JavaScript

1. e

JSX CODE COMPILER

However not everyone loves the JSX syntax and the idea of writing the XML-like syntax
inline in script. So some people skip steps 1 and 2 above and just write regular JavaScript (3).

Each element in the XML is compiled into a JavaScript function call to React code create the
element. Elements are data object that represent markup, usually HTML. Element attributes
are converted into arguments in the function calls. Nested elements (elements within
elements) become additional arguments in the function calls.

Example
This JSX code:

i var profile = <div>
1
: <h3>{[user.firstName, user.lastName].join(' ') }</h3>

Introduction to JSX 13

Learn React Fast

it var profile React.createElement ("div", null,
: React.createElement ("img", { src: "avatar.png", className: "profile" }),
React.createElement ("h3", null, [user.firstName, user.lastName].join(" "))

® Example - Notes

1. Notice how the ‘div’ element is compiled into a call to ‘React.createElement’.

2. Notice how the nested ‘img’ and ‘h3’ elements are compiled into calls to
‘React.createElement’ within the original call to ‘React.createElement’ above.

3. Notice how the ‘img’ element ‘src’ and ‘className’ attributes are converted into
arguments in the call to ‘React.createElement’.

® JSXand HTML Markup
JSXis very useful for writing html markup inline in your JavaScript code. For example, the

code below uses JSX and JavaScript to render an html H1 element.

: var headerElement = <hl>Hello There</hl>;
i ReactDOM.render (headerElement, document.getElementById(‘container’));

e Compiled JSX for HTML

When you compile the JSX code for HTML, it creates a call to a React function in the form of
React.DOM.[tag]. This is the React function that represents the HTML element.

For example, the JSX for ‘<div/>’ would compile into the JavaScript ‘React.DOM.div(null)’.

Remember that the React class that represents the HTML element has a name that begins
with a lower-case letter. Therefore, you should use lower-case HTML tag names in your JSX,
e.g. <div>.

* NOTE: To render html markup, use lower-case tag names in JSX, e.g. h1.

® JSX and React Components

JSX can be used to describe React Components in an XML-like syntax. Later on this XML
syntax is converted into JavaScript code. For example the code below uses JSX and
JavaScript to render a React Component.

tvar Hello = React.createClass ({
render: function() {
return <div>Hello {this.props.name}</div>;

Introduction to JSX 14

Learn React Fast

: ReactDOM. render (
<Hello name="World" />,
document.getElementById('container"')

e Compiled JSX for React Components

When you compile the JSX code for React Component, it creates a call to a function of
exactly the same name.

For example, the JSX for ‘<Hello/>’ would compile into the JavaScript ‘Hello(null)’. This
refers to the ‘Hello’ React Component, which must be available to be used.

Remember that your React component class names begin with an upper-case letter.
Therefore, you should use upper-case tag names in your JSX to refer to React Components,
e.g. <Hello>.

® Compiling JSX Code

Your browser cannot is good at executing regular JavaScript code but it is not equipped at
running JSX code. Your JSX code must be compiled into regular JavaScript code before it is
executed.

If you want to look at JSX compilation in more detail, please take a look at the following
page: https://babeljs.io/repl/

® Compiling JSX Code In Your Browser

We have been using jsbin.com to try out our code. This website compiles your JSX code in
your browser ‘just-in-time’ before it runs. This is great for prototyping but not so great for
production websites for the following reasons:

* You need to compile the JSX code into regular JavaScript every time the page loads.
This makes the page slower. It is much more efficient to do the compilation in the
build process and deploy the regular JavaScript.

* The JavaScript code you deploy cannot be minified, linted, debugged or formatted.

® JSX Code in JSBin

When you use JSBin and you select ‘JSX(React)’ in the script dropdown, the website
automatically compiles the JSX code therein to regular JavaScript and compiles it in the
executing page ‘just-in-time’. So you don’t really need to worry about anything other than
selecting the library ‘React with Add-Ons + React DOM 15.1.0” and selecting ‘JSX(React)’ in
the script dropdown. Nice!

Introduction to JSX 15

Learn React Fast

File v Add library Share

HTML ~

<!DOCTYPE html>
<html>

<head>
15.1.0.js"></script>

</script>
<meta charset="utf-8">

<title>JS Bin</title>

<script src="https://fb.me/react-with-addons-

<script src="https://fb.me/react-dom-15.1.0.js">

<meta name="viewport" content="width=device-width">

HTML CSS JSX(React) Console

JSX (React) v

var HelloWorld = React.createClass({
render: function() {

return (
<div>
Hello World
</div>
)
}
b

ReactDOM. render (

</head> <HelloWorld />,

<body> document.getElementById('content')
<div 1id="content"></div> E

</body>

</html>

Output

Output

Hello World

® JSX Code in a Standalone Page — Example

You can use the babel library to your page to compile your JSX code on your webpage ‘just-
in-time’. You need to ensure you load the correct libraries (script tags with ‘src’) and ensure
that the script tag has the correct type ‘text/babel’.

The code below is a standalone html page with react code that you should be able to run on
any web server. It compiles the JSX code contained within the last script tag (in bold below)
and displays the React Component.

i </head>

: <html>
1 <head>
: <script src="https://fb.me/react-with-addons-15.1.0.73s"></script>

<script src="https://fb.me/react-dom-15.1.0.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-

t core/5.8.34/browser.min.js"></script>

<script type="text/babel">
var HelloWorld = React.createClass ({
render: function() {
return (
<div>
Hello World
</div>
)
}
})
ReactDOM. render (
<HelloWorld />,
document.getElementById('container')
)
</script>

i <body>
: <div id="container"></div>
1 </body>
1 </html>

e Example - Notes

1.

The first two scripts that begin with ‘fb’ are React Runtime files. They are required for

React to work in this page.

Introduction to JSX

16

Learn React Fast

2. The third script is the babel browser script. This babel browser script can transform
ES6 and JSX code into regular ES5 code.

3. The fourth script tag contains JSX code. Notice how it has the ‘type’ attribute set to
‘text/babel’. This ensures that the babel browser script (loaded above) compiles the
JSX code within the script block into regular JavaScript. After this script has been
compiled by the babel browser script, it creates a React Component and then mounts
it to the div ‘content’.

® Compiling JSX Code in Your Build

When you write your React code in a project and you have a build process, this build process
will convert the JSX code into regular JavaScript. This avoids having your browser perform
JSX compilation and this is more suitable for production websites. We will cover this in
Chapters ‘Babel’ and ‘Browserify and Babelify’.

4.3 JSX Attribute Expressions

When you write your JSX code, you can use expressions to provide values or perform
calculations. These expressions are delimited by curly braces and they must contain valid
JavaScript expressions. When the JSX compiler runs, it converts these expressions into
arguments to the ‘React’ calls produced by the compiler.

® Example - String Literal Expression

1 <div>
1 {1==27?<Componentl/>:<Component2/>}
P </div>

4.4 Child Component Elements

A JSX Component may have child Components.

1 <Hello>

1 <Componentl/>
1 <Component2/>
i </Hello>

A component can access its children with this.props.children. More on that later!

Introduction to JSX 17

Learn React Fast

4.5 JavaScript Expressions — Whitespace
Whitespace between {} expressions is not allowed. This is because JSX is converted into

JavaScript, including the JavaScript Expressions.

® The following outputs “MarkClow”:

® You can amend the expression to include spaces in several different ways.

If you examine the example code below you will see more than one to get around this.

® Example Code

MarkClow - no space
Mark Clow - space
Mark Clow - space

: ReactDOM. render (
T <div>

{"Mark"}{"Clow"} - no space

{"Mark Clow"} - space

{"Mark"} {"™ "} {"Clow"} - space
</div>,
document.getElementById('conttainer")

4.6 HTML Attributes

You can write JSX to output HTML. This HTML can (obviously) have attributes. JSX will only
output valid HTML attributes, not just anything. However you can use custom attributes if
you prefix them with ‘data-‘.

® Example - Invalid Custom HTML Attribute

: ReactDOM. render (

<div address="Atlanta">

Test

</div>,
document.getElementById(‘container’)

results in the following html:

Introduction to JSX 18

Learn React Fast

v <div id="content'>
<div data-reactroot>Test</div>

</div>

: ReactDOM. render (

<div data-address="Atlanta">

Test

</div>,
document.getElementById(‘container’)

results in the following html:

v<div id="content">
<div data-reactroot data-address=
"Atlanta'>Test</div>
</div>

4.7 HTML Attributes and JavaScript Reserved Words

Attributes cannot use JavaScript reserved words, obviously because JSX generates
JavaScript. This causes problems because some JavaScript words overlap with HTML
attributes:

* for

* class

The answer to do this is to use a slightly different attribute name instead.
* for —use ‘htmlFor’ instead

° class — use ‘className’ instead

® Example - JavaScript 'Reserved Word Attribute

The code below does not generate html with the required ‘class’ attribute.

: ReactDOM. render (

<div class="title2">

Test

</div>,
document.getElementById(‘container’)

It results in the following html:

Introduction to JSX 19

Learn React Fast

v<div id="content
div data-reactroot>Test</div
/div

® Example - JavaScript Reserved Word Attribute Name Corrected

The code below correctly generates html with the required ‘class’ attribute.

i ——
i <div className="title2">
1 Test
T </div>,
document.getElementById(‘container’)
1)
It results in the following html:
v<div id="content
div data-reactroot class
title2">Test</div
/div:
4.8 HTML Style Attribute
The style HTML attribute works very differently in React.
® Style Attribute Requires an Object
You can add use the ‘style’ attribute name but it expects to be assigned a JavaScript object
within ‘{‘ and ‘¥’ brackets.
e Double Brackets
Note that if you want to assign an inline object in the HTML Style Attribute then you should
use double brackets. One set of brackets to indicate a JavaScript expression. One set of
brackets to create a JavaScript object.
: style={{fontWeight:"bold",border:"1lpx solid #£f£0000"}} :
» Single Brackets
You can use single brackets if you use a JavaScript object variable.
var style={fontWeight:"bold",border:"1lpx solid #f£0000"};
gtyle={style}

Introduction to JSX 20

Learn React Fast

® (SS Style Names

Notice that the CSS style names (for example ‘font-weight’ below) need to be converted to
CamelCase for them to work.

® Example - Html Style Attribute Used Incorrectly

_ReactDOM.render(

<div style="font-weight:bold;border:1lpx solid #f£0000">
Test

</div>,

document.getElementById (‘container’)

t VM360 bimadozogi.js:7 Uncaught Invariant Violation: The 'style’ prop expects a mapping
: from style properties to values, not a string. For example, style={{marginRight: spacing
i+ 'em'}} when using JSX.

EReactDOM.render(

<div style={{fontWeight:"bold",border:"1lpx solid #f£f£0000"}}>
Test

</div>,

document.getElementById(‘container’)

or

tvar style={fontWeight:"bold",border:"1lpx solid #£f£f0000"};
: ReactDOM. render (

<div style={style}>

Test

</div>,

document.getElementById(‘container’)

These result in the following output:

Test

and HTML:

v<div id="content"=
<div data-reactroot style="font-weight: bold; border: 1px solid
rgb(255, 0, 0);">Test</div>
f/diV:

Introduction to JSX 21

Learn React Fast

4.9 Escaping and Unescaping Content

® Introduction

JSX escapes all generated content by default. This prevents cross-site scripting attacks. For
more information on cross-site scripting attacks please see the Appendix ‘Cross-Site
Scripting Attacks’.

® Exceptions

Sometimes you need to include unescaped content in your React Components. For example
if you need to generate some dynamic html and you cannot find any way around it. For this
purpose, React provides an attribute ‘dangerouslySetinnerHtml’ to enable developers to
generate unescaped content.

® Example (Pre-ES6)

e Introduction

Let’s build a component that contains three elements:
1. Unescaped script block.
2. Unescaped html.

3. Escaped html.

Naughty
Nice

1. Create a Skeleton React Application in JsBin.

2. Add the following to the html, inside the body:

: var VeryNaughtyComponent = React.createClass ({
render: function() {

var naughty = '<script>alert ("123")</script>';

return <div dangerouslySetInnerHTML={{ html: naughty}} />
[
Ph;
: var NaughtyComponent React.createClass ({
render: function ()

Introduction to JSX 22

Learn React Fast

var naughty = 'Naughty"';

return <div dangerouslySetInnerHTML={{ html: naughty}} />
N
Ph;

: var NiceComponent = React.createClass ({
render: function() {
var nice = 'Nice"';
return <div>{nice}</div>
[
1)

: ReactDOM. render (

T <div>
<VeryNaughtyComponent></VeryNaughtyComponent>
<NaughtyComponent></NaughtyComponent>
<NiceComponent></NiceComponent>

</div>,

document.getElementById('container"')

e Generated HTML

Y <div>
<script=alert("123")</script>
</div>
Y <div>
Naughty
</div>
<div=Nice</div>
</div>

e Notes

1. The unescaped '<script>alert("123")</script>' is output unchanged and has purple
html highlighting. However, JSBin.com does not execute it for security reasons.

2. The unescaped 'Nice' is output unchanged and has purple html
highlighting.

3. The escaped 'Nice' is output escaped. Note that the ‘’ tag
is shown in black text to indicate that it is escaped.

Introduction to JSX 23

Learn React Fast

5.1

5.2

53

Component Creation

Naming

Before you create your React Component, you need to decide on a name forit. As a
convention all React Component names are Camel Case and the first letter should be Upper
case and all the html element tags should start with lower case character.

Factors that Affect Component Creation

Not all React Components are the same. Sometimes you will be working with React
development in an older project, which uses pre-ES6 JavaScript. Sometimes you will be
working with the newer technology: a later version of React with post-ES6 JavaScript.
Sometimes you need to store state data in your components, sometimes you don’t need to
store state in your Components. This is covered in detail later on in Chapter ‘Component
Design — Thinking in React’. React allows developers to create these components in
different ways according to your development environment and requirements.

Component
Creation

Stateful
Components
(Smart)

Dumb
Components

g JavaScript ES5 JavaScript ES5

o JavaScript ES6

JavaScript ES6

Stateful Components

® Introduction

Stateful Components tend to be ‘smarter’. They are smart enough to store information,
telling them what to display and how to display it. When things happen they can also modify

Component Creation 24

Learn React Fast

this information, causing their display to change. Stateful Components need Classes,
because they store modifiable data and code.

® Using React.createClass (Pre-ES6)

This is how we usually create the Components in JSBin.com or in older projects.
Components created in this manner are full React Components that can store state. The
argument to this function is an object. At a minimum, this object should contain a render
function, which returns a single React Component.

® Example (Pre-ES6)

e Introduction

Let’s pass car make and model information into a Component and then display it.

Car: Citroen Dianne

We will have custom attributes for car make and car model:

The code inside the Car Component will access the values of these custom attributes (ie
Properties) using the following variables:

1. this.props.make
2. this.props.model

e Steps

1. Create a Skeleton React Application in JsBin.

2. Add the following to the html, inside the body:

i var Car = React.createClass ({
render: function() {
return <div>Car: {this.props.make} {this.props.model}</div>;
Pl
Ph;
: ReactDOM. render (
<Car make="Citroen" model="Dianne"/>,
document.getElementById('container"')

Component Creation 25

Learn React Fast

® Extending React.Component (Post-ES6)

e Introduction

This is how we usually create Components in a modern project. ES6 allows JavaScript
developers to create classes. You should define your React Component as a class that
extends the class React.Component. Components created in this manner are full React
Components that can store state. At a minimum, this object should contain a render
function, which returns a single React Component.

i class ExampleComponent extends React.Component {
render () {
return <div>Hello, world.</div>;

e Example (Post-ES6)

The code below comes from the example project. It is introduced in Chapter ‘Introduction to
the React Trails Project’.

i import React from 'react';
timport { List, ListItem, ListItemContent, ListItemAction, Icon } from 'react-mdl';
i import { Link } from 'react-router';

i class SearchResults extends React.Component {

render () {
if (this.props.searchResults.length == 0) {
return null;
}
const searchResultList = this.props.searchResults.map (function (value, index) {
let linkTo = °“/details/${value.lat}/${value.lon} ;
return <ListItem key={value.unique id}>
. <ListItemContent avatar="person">{value.name} {value.state}
: {value.country}</ListItemContent>
H <ListItemAction>
<Link to={linkTo}>Details</Link>
</ListItemAction>
</ListItem>;
}) i
return (
<div>
<h2>Results</h2>
<List>
{searchResultList}
</List>
</div>);
N
i)

t export default SearchResults;

Component Creation 26

Learn React Fast

5.4 Stateless Components

® Introduction

Stateless Components are dumb and are supplied with the data they need to display. They
display things and they can let other components know when things happen. Stateful
Components can be implemented as Functions as they are simple.

They are a great way to create simple user interface components that don’t have state or
complex behavior. React Components created in this manner perform very well because
they are simple and require much less overhead than Stateful Components.

Note that Stateless Functions do not have Lifecycle Functions or References, which we will
cover in later chapters.

® Example (Pre-ES6)

e Introduction

Let’s pass car make and model information into a Component and then display it.

Car: Citroen Dianne

We will have custom attributes for car make and car model:

The code inside the Car function will access the values of these custom attributes (ie
Properties) using the following variables:

1. this.props.make
2. this.props.model
e Steps

1. Create a Skeleton React Application in JsBin.

2. Add the following to the html, inside the body:

: function Car (props) {
var style={backgroundColor:'#cccccc', padding: '10px'};
return (

Component Creation 27

Learn React Fast

<div style={style}>
Car: {props.make} {props.model}
</div>

)

i}

: ReactDOM. render (

<Car make="Citroen" model="Dianne"/>,
document.getElementById('container"')
1)

® Example (Post-ES6)

The code below comes from the example project. It is introduced in Chapter ‘Introduction to
the React Trails Project’.

i import React from 'react';

i const Welcome = () => {
return (
<div className="centered">
<h2>Welcome</h2>
<p>Welcome to the 'Trail' project.</p>
<p>This is a small React example project built from React Starterify.</p>
. <p>It enables us to query the <a
t href="https://market.mashape.com/trailapi/trailapi">trail api.</p>
: <p>
H This api gives access to information and photos for tens of thousands of outdoor
i recreation
: locations including hiking and mountain biking trails, campgrounds, ski resorts,
: ATV trails, and more.
</p>
</div>
DN
E};

: export default Welcome;

Component Creation 28

Learn React Fast

BOOK CHAPTERS (NON-SAMPLE)

1 Acknowledgements and Revisions

1.1 Acknowledgements 9
1.2 Revisions 9
2 Introduction to React 10
2.1 What’s So Special about React? 10
2.2 So What Does React Do? 12
2.3 Other Libraries 13
2.4 React ES5 & React ES6 14
3 Exercises with JSBin.com 15
3.1 Introduction 15
3.2 Pre-ES6 15
3.3 Example - Introduction 15
3.4 Example - Instructions 15
3.5 Tip - Use Line Numbers 17
3.6 Tip - Use Syntax Highlighting By Copying and Pasting 18
4 Introduction to Components 20
4.1 Introduction 20
4.2 Facts about Components 20
4.3 Creating React Components 20
5 Introduction to JSX 22
5.1 Introduction 22
5.2 Compilation 22
5.3 JSX Attribute Expressions 26
5.4 Child Component Elements 26
5.5 JavaScript Expressions — Whitespace 27
5.6 HTML Attributes 27
5.7 HTML Attributes and JavaScript Reserved Words 28
5.8 HTML Style Attribute 29
5.9 Escaping and Unescaping Content 31
6 Component Creation 33
6.1 Naming 33
6.2 Factors that Affect Component Creation 33
6.3 Stateful Components 33
6.4 Stateless Components 36
Component Creation 29

Learn React Fast

7 Component Rendering 38
7.1 Introduction 38
7.2 The Component’s Render Function 38
7.3 Example (Pre-ES6) 38
7.4 Example (Post-ES6) 39
7.5 When the Data inside Your Component Changes, it Re-Renders 40
7.6 React’s Rendering Function 42
7.7 Rendering Nothing 43
8 Component Styling 45
8.1 Introduction 45
8.2 Using Inline Styling 45
8.3 Using External Styling 47
9 Introduction to Component Properties 49
9.1 Introduction 49
9.2 Property Data is Inmutable 49
9.3 Accessing Property Data 49
9.4 Setting Default Property Data Values 52
9.5 Specifying Property Types 53
9.6 Spread Attribute (...) 55
10 Introduction to Component States 58
10.1 Introduction 58
10.2 State Data is Mutable 58
10.3 Accessing State Data 58
10.4 Modifying State Data with ‘setState’ 59
10.5 Setting Default State Data Values 61
10.6 Setting Field Focus 63
11 Introduction to Component Events 65
11.1 Introduction 65
11.2 React Events 65
11.3 Event Markup Syntax - Camel Case 66
11.4 Event Handlers 66
11.5 Event Handler Argument and Event Object 66
11.6 Event Propagation and Cancelation 67
11.7 Event Callbacks 67
11.8 Using Events to Implement Two Way Data Binding 67
11.9 Event List 70
11.10 Touch Events 75
12 Component Forms 77
12.1 Introduction 77
12.2 ES5/ES6 78
12.3 Form Fields 78
Component Creation 30

Learn React Fast

12.4 Uncontrolled Fields 79
12.5 Controlled Fields and Properties 81
12.6 Controlled Fields vs Uncontrolled Fields 84
12.7 Form Submission 84
12.8 Form Submission, Validation and CSS 86
13 Component Lifecycle Functions 89
13.1 Introduction 89
13.2 When a Component Initializes 89
13.3 When a Component Updates Because of Property Changes 90
13.4 When a Component Updates Because of State Changes 91
13.5 When a Component Unmounts 92
14 Component Elements and More 93
14.1 React Elements 93
14.2 React DOM Elements 93
14.3 React Component Elements 94
14.4 The Difference Between DOM Elements and Component Elements 95
14.5 Element Tree 95
14.6 Mounting 95
14.7 Component Backing Instance 95
14.8 Component Element Refs 96
15 Component Properties & Callbacks 99
15.1 Parent Component Callbacks 99
16 Component States 103
16.1 State Best Practices 103
16.2 Combining Properties and States 103
16.3 Setting State 103
16.4 Mounting Status 104
17 Component Composition 106
17.1 Introduction 106
17.2 Rendering of Child Components 106
17.3 Pre-ES6 and Post-ES6 106
17.4 Composition with HTML Parent Elements 106
17.5 Composition with Custom React Component Parent Elements 108
17.6 this.props.children 110
17.7 React.Children 111
18 Component Contexts 118
18.1 Introduction to Data Flows 118
18.2 Passing Data from Higher-Components to Lower-Level Components 118
18.3 How to Use Contexts 119
Component Creation 31

Learn React Fast

19 Component Code Reusability 122
19.1 Mixins 122
19.2 Common Mixins 123
19.3 Harmful Mixins 123
19.4 Higher Order Components 124
20 AJAX 129
20.1 Introduction 129
20.2 React Does Not Include Code for AJAX 129
20.3 JQuery AJAX 130
20.4 XMLHttpRequest 141
20.5 Fetch Polyfill 142
20.6 Isomorphic Fetch 143
20.7 Superagent 143
20.8 Axios 144
20.9 RegWest 145
20.10 React Trails Project (ES6) 146
21 Component Design - Thinking in React 148
21.1 Introduction 148
21.2 Step 1: Break Down the Structure Of The Ul Into Logical Components. 148
21.3 Step 2: Write A Static Version of The Ul in React First, Without Events Or Interactivity. 148
21.4 ldentify What Data May Change in The App. 149
21.5 Identify In Which Component This State Data Should Reside. 149
21.6 Add the data flow. 149
22 Introduction to The React Trails Project 151
22.1 Introduction 151
22.2 Project Technologies 151
22.3 Project Overview 152
22.4 Welcome Page 152
22.5 Search Page 152
22.6 Details Page 154
22.7 React Starter Projects 155
22.8 React Startify Project 156
22.9 Setting Up the React Startify Project 157
22.10 Next Step 159
23 Node 160
23.1 Introduction 160
23.2 Installing Node 160
23.3 Setting Up Node in Your Project Folder 160
23.4 Running Code with the Node Command 160
23.5 Node Modules and Dependencies 161
23.6 Node Package Manager 161
23.7 Node Module Installation Levels 161
Component Creation 32

Learn React Fast

23.8 ‘package.json’ File 162
23.9 Folder ‘node_modules’ 163
23.10 Npm - Installing Modules into Node 163
23.11 Updating Node Modules 164
23.12 Uninstalling Node Modules 165
23.13 React Trails Project 165
24 Gulp 167
24.1 Introduction 167
24.2 Plugins 167
24.3 Installing Gulp into Your Project as a Node Module 167
24.4 Create The Project’s Gulp Script 167
24.5 Streams 168
24.6 Tasks 168
24.7 Gulp Uses Node Modules 169
24.8 Gulp Uses Files 169
24.9 Project Build 169
24.10 React Trails Project 170
25 Babel 171
25.1 Introduction 171
25.2 Information 172
25.3 Plugins 172
25.4 Presets 173
25.5 Command Line 174
25.6 Module Formatters 174
25.7 Configuration File 175
25.8 Polyfills 176
25.9 Source Maps 176
25.10 React Trails Project 176
26 Browserify and Babelify 177
26.1 Browserify 177
26.2 Babelify 177
26.3 React Trails Project 178
27 Editors and Visual Studio Code 180
27.1 Introduction 180
27.2 Visual Studio Code 180
27.3 Website 180
27.4 Opening Your Project in Visual Studio Code. 181
27.5 How to See the Available Commands and Hot Keys 181
27.6 How to Configure the Build 182
27.7 How to Build 182
27.8 To View Build Errors 183
27.9 Panel Modes 184
Component Creation 33

Learn React Fast

27.10 Extensions 185
27.11 Notes 186
28 React Router 188
28.1 Introduction 188
28.2 Hash Fragments 188
28.3 Introduction to React Router 190
28.4 What’s so Special About It? 190
28.5 Including the React Router in a Project 190
28.6 Not All Components Are Routed 191
28.7 Declaring Routes 191
28.8 Nested Routing 192
28.9 Index Routes 194
28.10 Index Redirects 195
28.11 Default Routes 195
28.12 NotFound Route 195
28.13 Combining Index Routes and Default Routes 196
29 Change Detection and Performance 197
29.1 Introduction 197
29.2 Know Your Enemy — Excessive DOM Updates 197
29.3 React Component Rendering 197
29.4 Change Detection 198
29.5 Reconciliation 199
29.6 Component Keys 200
29.7 Making Your Code Run Faster (Defeating the Enemy) 200
29.8 The ‘shouldComponentUpdate’ Function 200
30 Testing 205
30.1 Introduction 205
30.2 Unit Testing 205
30.3 Continual Integration 205
30.4 Automated Unit Tests 206
30.5 Coding Automated Unit Tests 206
30.6 ReactTestUtils 208
30.7 Jest 213
30.8 Debugging Jest Unit Tests 216
30.9 React Trails Project 217
31 Introduction to Webpack 220
31.1 Introduction 220
31.2 React Trails Project 220
31.3 What Does Webpack Do? 220
31.4 What about Your Modules and Dependencies? 221
31.5 Benefits 221
31.6 Bundles 221
Component Creation 34

Learn React Fast

31.7 Development Process 221
31.8 Install Webpack 221
31.9 Running Webpack 221
31.10 Configuring Webpack 222
32 Appendix — Server & Client Side Web Applications and AJAX 225
32.1 Introduction 225
32.2 Server (Web Server) 225
32.3 Client (Web Browser) 225
32.4 Communication 225
32.5 Server-Side Web Application 226
32.6 Client-Side Web Application 227
32.7 AJAX 228
32.8 Callbacks 228
32.9 Promises 229
32.10 Encoding 229
32.11 Debugging Tools 231
32.12 Analyzing JSON 233
33 Appendix — Versions of JavaScript 235
33.1 JavaScript History 235
33.2 JavaScript Version Names 235
33.3 JavaScript Shortcomings (Pre-ES6) 235
33.4 JavaScript Strict Mode 237
33.5 JavaScript (Post-ES6) 239
33.6 Shims 247
33.7 Polyfills 247
34 Appendix — JavaScript Techniques 248
34.1 Introduction 248
34.2 Know the ‘This’ Variable 248
34.3 ‘Bind’ Function 250
34.4 Arrow Functions 251
34.5 Closures 253
34.6 Map Function 255
34.7 Obiject.assign 257
35 Appendix — Cross-Site Scripting Attacks. 260
35.1 Introduction 260
35.2 Example Code - Non-Persistent XSS Attacks 260
35.3 Example Code — Persistent XSS Attacks 261
36 Appendix — Prevention of Cross-Site Scripting Attacks. 262
36.1 How is it Prevented? 262
36.2 Sanitization 262
36.3 Escaping 262
Component Creation 35

Learn React Fast

36.4 React and Escaping 263
37 Appendix - Source Maps 264
37.1 Minification and Uglification 264
37.2 Code Running In Your Brower 264
37.3 What Do Source Maps Do? 264
37.4 Source Map File Locations 264
37.5 How to Change Your Project to Generate Map Files 265
37.6 Enabling Map Files in Your Browser 265
37.7 Enabling Map Files on Chrome 265
38 Resources 267
38.1 Introduction 267
38.2 Most Important 267
38.3 Other Resources 268

36

