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1.1

Introduction to React

React is an open-source Ul library developed at Facebook to facilitate the creation of
interactive, stateful & reusable Ul visual components for websites and applications. It is used
at Facebook and Instagram in production, amongst other websites.

React gets its name because components have what’s known as ‘Reactive State’. This
means that when your data in your component changes, your Ul reacts and
automatically updates to reflect changes.

What'’s So Special about React?

Speed

It’s fast. Facebook claim that React can redraw a Ul 60 times a second.

Reacting Components

Software applications use data, which changes frequently. When you build software that
uses data, you often need to detect when the data changes and refresh the user interface
when it does. React is different. When you write React code, you are writing Components.
These Components React to data changes and redraw themselves, refreshing the user
interface automatically.

Reusable Components

When you write React code, you are writing Components. They are designed to be Reusable.
These Components can be used in one place in the Application, or in as many places as you
wish. Facebook wrote React. Think about how many times Facebook reuses the ‘like’
Component.

Virtual DOM

Most JavaScript libraries directly update the DOM in the browser. React does not work that
way. When React is running, it keeps a ‘DOM in memory’ that is updated by your
components. When React change detection occurs it compares the ‘DOM in memory’
against the DOM in the browser and only updates the differences in the user interface on
the browser. This avoids the performance issues of redrawing the whole user interface
(DOM) again and again (rendering cycles), only redrawing component parts that have
changed.
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® Server-side Rendering

One of its unique selling points is that not only does it perform on the client side, but it can
also be rendered server side, and they can work together inter-operably.

® JSX

ANGULAR, EMBER AND KNOCKOUT PUT “JS”” IN YOUR HTML.
REACT PUTS “HTML” IN YOUR JS.

Most of the other JavaScript libraries (Angular, Ember, Knockout) allow you to embed
JavaScript (or bindings) into HTML markup. React does things the other way round. You can
embed HTML (or other markup for React Components) into your JavaScript.

When you look at JavaScript that contains JSX, You will a lot of inline XML-like code, without
quotes. You will also see that there are script blocks with different types (for example
‘text/babel’). This is because the XML-like code (the JSX) is compiled into regular JavaScript
before it is run.

This initially sounds like a bad idea but think about this: the markup is compiled before
runtime. Bad markup will be identified before the code is run.

We will go into detail on JSXin Chapter ‘Introduction to JSX'.

e XHP

XHP is a similar thing to JSX and it was developed before the React JavaScript library. It
enables PHP developers to develop user interface components on the server-side using the
same XML format.

® React Native

You can use React to develop native iOS and Android apps using the React Native libraries
supplied by Facebook.

® AJAX

Applications built with React are modular. React is just one of the modules. React is a view
library and React has no networking/AJAX features. To perform networking/AJAX
operations (such has getting data from the server), developers need to use an additional
JavaScript module (such as JQuery) alongside their React code.

Introduction to React 2



Learn React Fast

1.2 So What Does React Do?

React is a comparatively small JavaScript framework that allows the developer to write user
interfaces that are composed of one or more Components. In these Components React

takes care of the following for you:

1. Rendering the Model (see MVC) to the DOM.

2. Responding to Events.

® Rendering the Model to the DOM

Component inputs are props and state (the model).

Difference is state can change

Use state components as little as possible
Data flows downwards into render then dom
Way to change the dom is to change the model.

Props

State

Render

X

DOM

® Responding to Events

The events in the DOM fire event handlers in the Components. The Components update the
Model to change the DOM.

Introduction to React
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Architecture

1.3 Other Libraries

® JQuery

Many people use React and JQuery together. However, React will work fine without JQuery.
JQuery developers will need to think differently when coding in React. In JQuery developers
manipulate the DOM directly (imperatively) in order to change how the Ul is rendered. React
allows developers to have Ul components. These Ul components have states that are used
to define how the Ul is rendered. To change how the Ul is rendered, the developer should
change the ‘state’ of a component to tell it to change.

Many developers use JQuery with React to perform asynchronous operations, as React does
not include this capability.

® Angular

Angular also handles DOM manipulation for the developer. It gives the developer to bind
data in the model to the markup in the view (i.e. the DOM). When the user changes data in
the model, this binding updates the view, similar to how React updates when a state (data)
is changed. However Angular does not use a ‘Virtual DOM’ and it uses change detection
algorithms (state tree change algorithms) to figure out what components have changed so
it can update the DOM. It is arguably less efficient at updating the Ul after a state change
has taken place.

Angular is a larger library and provides you everything you need to write a single-page web
application. This library contains more services to the developer, for example routing, http
communication with servers.
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1.4

Ember

Ember is a larger library than React.

Backbone

Backbone is a larger library then React.

React ES5 & React ES6

Introduction

React has been around for a while and JavaScript ES6 was developed after React had
already been released. From release 0.13.0, React started to support the development of
React Components in ES6. Please see Appendix ‘Versions of JavaScript’ for more
information about the versions of JavaScript available.

Examples

The syntax for using React with ES5 is quite different from using React with ES6. This book
will attempt to cover both, while recognizing that ES6 (and later) is the future. Don’t let the
syntax differences put you off — you can see that React is doing similar things whether in ES5
or ES6.

Pre-ES6

In the context of this book, this means ‘React with ES5’, or ‘any other version of JavaScript
before ES6’.

This book contains many simple ‘Pre ES6’ exercises which you can tryout using JSBin.com.
JSBin.com allows us to quickly write code online without having to setup any kind of project
environment. This is the simplest environment in which you can run React code. No
compiles, build processes. Just type in the code and it run. As of the time of writing this
book, JSBin.com only worked with the earlier React ES5 syntax.

Post-ES6

In the context of this book, this means ‘React with ES6’, or ‘any other version of JavaScript
after and including ES6’.

This book includes a sample project written in ES6, from which | will provide code samples.
Please refer to Chapter ‘Introduction to the React Trails Project’ Project for details on how
to run React in this environment.

Introduction to React
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2.1

2.2

2.3

2.4

Exercises with JSBin.com

Introduction

JSBin is a website in which you can develop simple applications and try them out. It is similar
to Plunker except that it works with a wider range of libraries. When you open JSBin.com, it
shows you a series of vertical panels. Each panel lets you code an aspect of an html page (for
example html, CSS, JavaScript). The html page (the product of the code in the other panels)
will be executed and output in one of the panels to the right.

Pre-ES6

As of the time of writing this book, JSBin.com only worked with the earlier React ES5 syntax.
This means that JSBin.com allows you to try out code with the earlier React ES5 syntax but
not with the later React ES6 syntax.

Example - Introduction

To learn how to get going in jsbin.com with React, we are going to create a tiny ‘Hello
World’ application to display this message to the user.

HTML - SX (React) ~ Output Run with JS | Auto-runJS ¥ A

<!DOCTYPE html> ReactDOM.render ( H For
ello World!

<html> <div>Hello World!</div>,

<head>

<script src="ht [/ react- document.getElementById('container')

with-addons-15
<script

<meta name=
content="widt vid
<title>JS Bin</title>

v id="container"></container>

Example - Instructions

1. Open your browser and navigate to the following web page: http://jsbin.com/

Exercises with JSBin.com
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& File - Add library HTML = CSS  JavaScript Console = Output Login or Register Blogn Help
HTML ~ JavaScript - Output Run with JS | Auto-run JS ¥
<!DOCTYPE html>
<html>
<head>

<meta charset=

<meta name="vi

content="width= =
<title>JS Bin</title>

</head>

<body>

</body>

</html>

s/nume?

</body>

</html>

2. Select ‘Add Library’ and select ‘React with Add-Ons + React DOM 15.1.0” in the list.
@ File ~ HTML CSS  JavaScript Console = Output Login or Register Blogn Help

3. We are going to change the html so that it has a container for a ‘hello world’ simple react
component. Edit your html (the panel on the left) and add the following element to the
html:

i <!DOCTYPE html>

: <html>

1 <head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>JS Bin</title>

i </head>

i <body>

:  <div id="container"></div>

1 </body>

1 </html>

4. We are going to add a JSX react script to create the ‘hello world’ simple react
component. First of all we need to select the script type in the middle panel. It defaulted
to ‘JavaScript’ but we need to change it to ‘JSX (React)’.
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HTML -~

Console Clear | Output
<!DOCTYPE html> . Run with JS | Auto-run JS ¥
htm JavaScript >
<html>
<head> )

<meta charset="utf-8"> ES6/ Babel
a name="vi "
content="width= JSX (React)
width">
<title>JsS Bin</title> CoffeeScript
</head>
{:ody» Traceur
</body>
</html> TypeScript
Processing
LiveScript
ClojureScript

Convert to JavaScript

5. We now add the script code in the panel below where we selected ‘JSX (React)”:

: ReactDOM. render (
<hl>hello world</hl>,
document.getElementById('container'));

ReactDOM. render(
<hl>hello world</hl>,
document.getElementById('container'));

6. That’s it, your code should be running. The output panel on the right side shows the
output from the running code on the other panels. It should now show the following:

Output ' Run with JS | Auto-runJS ¥ A

hello world

2.5  Tip - Use Line Numbers

® Introduction

It easy to make mistakes when writing code in an online editor such as jsbin.com. You will
often see ‘error at line x’ messages when you run the code. This tells you to look at that line
of code. However, jsbin.com does not show line numbers by default.
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® Jsbin.com Hidden Trick
If you double-click on the panel language selector, it shows the line numbers in your code.

Double-click this:

HTML ~

and this:

JSX (React) ~

var DatalInput = React.createClass({
getInitialState: function() {
return {name: '', city: '', stat

1,

handleNameChange: function(e) {
this.setState({name: e.target.ve
this.validate();

},
becomes this:

JSX (React) v

var Datalnput = React.createClass({
getInitialState: function() {
return {name: '', city: '', sta
}

)
handleNameChange: function(e) {
this.setState({name: e.target.v
this.validate();

1,

2.6 Tip - Use Syntax Highlighting By Copying and Pasting

® Introduction
Unfortunately, most of the online tools like jsbin.com don’t have syntax highlighting.

However there is a solution and | use this all the time. Install another editor on your
computer, for example Microsoft Code. When you have ‘issues’ getting your code running in
jsbin (or another online editor), copy and paste the code into your editor on your computer.
Save the code you pasted as a .js’ file and then the editor should syntax highlight the file.
That makes it much easier to find your problem. Quite often you stare at the screen for
minutes then you paste it into Code and immediately see that you made a simple mistake
like forgetting to add a quote or a comma.

Exercises with JSBin.com 9
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® Example

The code below is missing a comma. The picture on the left is how the code looks in
jsbin.com. The picture on the right is how the code looks in Microsoft Code.

As you can see it is much easier to diagnose the issue in Microsoft Code, its highlighted in

red!

}else{

}
H
return (
<div>

</div>
<div>

handleSubmit :
e.preventDefault();
this.validate();
if (this.state.errors.length > 0){
document.getElementById(this.sta

function(e) {

alert("Good to go!");

render: function() {
<form onSubmit={this.handleSubmi

Name:<input type="text" id="name

handleSubmit :

e ,\,:u(e) {

e.preventDefault();
‘his.validate();
if (this.state.erorrs.length > 0){
document.getElementById(this.s]
}else{
alert("Good to go!");

}

}

render:
return (

ction() {

form onSubmit=

div

input type="text" id="name

div
div

Exercises with JSBin.com
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3

3.1

3.2

3-3

Introduction to Components

Introduction

React Components are like Ul building blocks. They are what you use to assemble a working
React application and you need to know how they work.

Facts about Components

* They need to be named.

* They have only one root node.

* There are different types of Components and they can be created in different ways.
* They must be rendered into a target element in the DOM.

* They can contain other components (Composition).

* They can accept input data through (properties).

* They can store their own data (states) and they REACT when this data changes.

* They respond to events.

Sounds daunting doesn’t it? Don’t worry: all of the above points are covered in this book.

Creating React Components

React allows developers to create these components in different ways according to your
development environment and state requirements. This is just an introductory chapter so
we won’t go into much detail on this.

Development Environment

As mentioned earlier, from release 0.13.0, React started to support the development of
React Components in ES6.

* Older projects (and websites like jsbin.com) create Components using the pre-ES6
syntax.

* Many more ‘modern’ React projects create Components using the post-ES6 syntax.

Components with State

Don’t worry if you don’t know what ‘State’ means. It just means ‘its own data’. If your React
Component needs to contain state, then you should create it using ‘React.createClass’ or by
extending React.Component.

Introduction to Components 11
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* Create using React.createClass (Pre-ES6)

This is how we usually create the Components in JSBin.com. Components created in this
manner are full React Components that can store state. The argument to this function is an
object. At a minimum, this object should contain a render function, which returns a single
React Component.

* Create by Extending React.Compoment (Post-ES6)

This is how we usually create Components in a modern React project. ES6 allows JavaScript
developers to create classes. You should define your React Component as a class that
extends the class React.Component. Components created in this manner are full React
Components that can store state. At a minimum, this object should contain a render
function, which returns a single React Component.

If you don’t need your React Component to contain state data then you should create it as a
Stateless Function. This works in all versions of JavaScript, although you can use a different
syntax in ES6 onwards if you want.

® Components without State

You write your React Components as a function. No class, nothing. This is a simple way to
create React Components that don’t hold state. You can still pass in data into these
components using Properties but you cannot change this data. This is a great way to create
simple user interface components that don’t have complex behavior.

Introduction to Components 12
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4.1

4.2

Introduction to JSX

Introduction

ANGULAR, EMBER AND KNOCKOUT PUT “JS” IN YOUR HTML.
REACT PUTS “HTML” IN YOUR JS.

As mentioned earlier, React is very different from Angular and Ember because it works the
other way round. Normally you embed the JavaScript into the HTML, that is the way most
JavaScript libraries work. React is different though and JSXis one of the differences,
enabling you to put HTML into your JavaScript. Also, this JSX code (that represents HTML in
amongst other things) is validated and compiled.

JSX can be used to write HTML in your JavaScript. However it also lets you add Tags that
represent React Components as well! So with JSX you are not just limited to just HTML.

Compilation

JSXis an XML-like syntax that you can add inline’into your JavaScript code. Later on the JSX
is compiled into regular JavaScript that invokes React code before it is executed on the
browser.

3.
Regular
JavaScript

1. e

JSX CODE COMPILER

However not everyone loves the JSX syntax and the idea of writing the XML-like syntax
inline in script. So some people skip steps 1 and 2 above and just write regular JavaScript (3).

Each element in the XML is compiled into a JavaScript function call to React code create the
element. Elements are data object that represent markup, usually HTML. Element attributes
are converted into arguments in the function calls. Nested elements (elements within
elements) become additional arguments in the function calls.

Example
This JSX code:

i var profile = <div>
1 <img src="avatar.png" className="profile" />
: <h3>{[user.firstName, user.lastName].join(' ') }</h3>

Introduction to JSX 13
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it var profile React.createElement ("div", null,
: React.createElement ("img", { src: "avatar.png", className: "profile" }),
React.createElement ("h3", null, [user.firstName, user.lastName].join(" "))

® Example - Notes

1. Notice how the ‘div’ element is compiled into a call to ‘React.createElement’.

2. Notice how the nested ‘img’ and ‘h3’ elements are compiled into calls to
‘React.createElement’ within the original call to ‘React.createElement’ above.

3. Notice how the ‘img’ element ‘src’ and ‘className’ attributes are converted into
arguments in the call to ‘React.createElement’.

® JSXand HTML Markup
JSXis very useful for writing html markup inline in your JavaScript code. For example, the

code below uses JSX and JavaScript to render an html H1 element.

: var headerElement = <hl>Hello There</hl>;
i ReactDOM.render (headerElement, document.getElementById(‘container’));

e Compiled JSX for HTML

When you compile the JSX code for HTML, it creates a call to a React function in the form of
React.DOM.[tag]. This is the React function that represents the HTML element.

For example, the JSX for ‘<div/>’ would compile into the JavaScript ‘React.DOM.div(null)’.

Remember that the React class that represents the HTML element has a name that begins
with a lower-case letter. Therefore, you should use lower-case HTML tag names in your JSX,
e.g. <div>.

* NOTE: To render html markup, use lower-case tag names in JSX, e.g. h1.

® JSX and React Components

JSX can be used to describe React Components in an XML-like syntax. Later on this XML
syntax is converted into JavaScript code. For example the code below uses JSX and
JavaScript to render a React Component.

tvar Hello = React.createClass ({
render: function() {
return <div>Hello {this.props.name}</div>;

Introduction to JSX 14
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: ReactDOM. render (
<Hello name="World" />,
document.getElementById('container"')

e Compiled JSX for React Components

When you compile the JSX code for React Component, it creates a call to a function of
exactly the same name.

For example, the JSX for ‘<Hello/>’ would compile into the JavaScript ‘Hello(null)’. This
refers to the ‘Hello’ React Component, which must be available to be used.

Remember that your React component class names begin with an upper-case letter.
Therefore, you should use upper-case tag names in your JSX to refer to React Components,
e.g. <Hello>.

® Compiling JSX Code

Your browser cannot is good at executing regular JavaScript code but it is not equipped at
running JSX code. Your JSX code must be compiled into regular JavaScript code before it is
executed.

If you want to look at JSX compilation in more detail, please take a look at the following
page: https://babeljs.io/repl/

® Compiling JSX Code In Your Browser

We have been using jsbin.com to try out our code. This website compiles your JSX code in
your browser ‘just-in-time’ before it runs. This is great for prototyping but not so great for
production websites for the following reasons:

* You need to compile the JSX code into regular JavaScript every time the page loads.
This makes the page slower. It is much more efficient to do the compilation in the
build process and deploy the regular JavaScript.

* The JavaScript code you deploy cannot be minified, linted, debugged or formatted.

® JSX Code in JSBin

When you use JSBin and you select ‘JSX(React)’ in the script dropdown, the website
automatically compiles the JSX code therein to regular JavaScript and compiles it in the
executing page ‘just-in-time’. So you don’t really need to worry about anything other than
selecting the library ‘React with Add-Ons + React DOM 15.1.0” and selecting ‘JSX(React)’ in
the script dropdown. Nice!
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File v Add library  Share

HTML ~

<!DOCTYPE html>
<html>

<head>
15.1.0.js"></script>

</script>
<meta charset="utf-8">

<title>JS Bin</title>

<script src="https://fb.me/react-with-addons-

<script src="https://fb.me/react-dom-15.1.0.js">

<meta name="viewport" content="width=device-width">

HTML CSS JSX(React) Console

JSX (React) v

var HelloWorld = React.createClass({
render: function() {

return (
<div>
Hello World
</div>
)
}
b

ReactDOM. render (

</head> <HelloWorld />,

<body> document.getElementById('content')
<div 1id="content"></div> E

</body>

</html>

Output

Output

Hello World

® JSX Code in a Standalone Page — Example

You can use the babel library to your page to compile your JSX code on your webpage ‘just-
in-time’. You need to ensure you load the correct libraries (script tags with ‘src’) and ensure
that the script tag has the correct type ‘text/babel’.

The code below is a standalone html page with react code that you should be able to run on
any web server. It compiles the JSX code contained within the last script tag (in bold below)
and displays the React Component.

i </head>

: <html>
1 <head>
: <script src="https://fb.me/react-with-addons-15.1.0.73s"></script>

<script src="https://fb.me/react-dom-15.1.0.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-

t core/5.8.34/browser.min.js"></script>

<script type="text/babel">
var HelloWorld = React.createClass ({
render: function() {
return (
<div>
Hello World
</div>
)
}
})
ReactDOM. render (
<HelloWorld />,
document.getElementById('container')
)
</script>

i <body>
: <div id="container"></div>
1 </body>
1 </html>

e Example - Notes

1.

The first two scripts that begin with ‘fb’ are React Runtime files. They are required for

React to work in this page.

Introduction to JSX
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2. The third script is the babel browser script. This babel browser script can transform
ES6 and JSX code into regular ES5 code.

3. The fourth script tag contains JSX code. Notice how it has the ‘type’ attribute set to
‘text/babel’. This ensures that the babel browser script (loaded above) compiles the
JSX code within the script block into regular JavaScript. After this script has been
compiled by the babel browser script, it creates a React Component and then mounts
it to the div ‘content’.

® Compiling JSX Code in Your Build

When you write your React code in a project and you have a build process, this build process
will convert the JSX code into regular JavaScript. This avoids having your browser perform
JSX compilation and this is more suitable for production websites. We will cover this in
Chapters ‘Babel’ and ‘Browserify and Babelify’.

4.3 JSX Attribute Expressions

When you write your JSX code, you can use expressions to provide values or perform
calculations. These expressions are delimited by curly braces and they must contain valid
JavaScript expressions. When the JSX compiler runs, it converts these expressions into
arguments to the ‘React’ calls produced by the compiler.

® Example - String Literal Expression

1 <div>
1 {1==27?<Componentl/>:<Component2/>}
P </div>

4.4  Child Component Elements

A JSX Component may have child Components.

1 <Hello>

1 <Componentl/>
1 <Component2/>
i </Hello>

A component can access its children with this.props.children. More on that later!

Introduction to JSX 17
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4.5 JavaScript Expressions — Whitespace
Whitespace between {} expressions is not allowed. This is because JSX is converted into

JavaScript, including the JavaScript Expressions.

® The following outputs “MarkClow”:

® You can amend the expression to include spaces in several different ways.

If you examine the example code below you will see more than one to get around this.

® Example Code

MarkClow - no space
Mark Clow - space
Mark Clow - space

: ReactDOM. render (
T <div>

{"Mark"}{"Clow"} - no space

<br/>

{"Mark Clow"} - space

<br/>

{"Mark"} {"™ "} {"Clow"} - space
</div>,
document.getElementById('conttainer")

4.6 HTML Attributes

You can write JSX to output HTML. This HTML can (obviously) have attributes. JSX will only
output valid HTML attributes, not just anything. However you can use custom attributes if
you prefix them with ‘data-‘.

® Example - Invalid Custom HTML Attribute

: ReactDOM. render (

<div address="Atlanta">

Test

</div>,
document.getElementById(‘container’)

results in the following html:

Introduction to JSX 18
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v <div id="content'>
<div data-reactroot>Test</div>

</div>

: ReactDOM. render (

<div data-address="Atlanta">

Test

</div>,
document.getElementById(‘container’)

results in the following html:

v<div id="content">
<div data-reactroot data-address=
"Atlanta'>Test</div>
</div>

4.7 HTML Attributes and JavaScript Reserved Words

Attributes cannot use JavaScript reserved words, obviously because JSX generates
JavaScript. This causes problems because some JavaScript words overlap with HTML
attributes:

* for

* class

The answer to do this is to use a slightly different attribute name instead.
* for —use ‘htmlFor’ instead

° class — use ‘className’ instead

® Example - JavaScript 'Reserved Word Attribute

The code below does not generate html with the required ‘class’ attribute.

: ReactDOM. render (

<div class="title2">

Test

</div>,
document.getElementById(‘container’)

It results in the following html:

Introduction to JSX 19
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v<div id="content
div data-reactroot>Test</div
/div

® Example - JavaScript Reserved Word Attribute Name Corrected

The code below correctly generates html with the required ‘class’ attribute.

i ——
i <div className="title2">
1 Test
T </div>,
document.getElementById(‘container’)
1)
It results in the following html:
v<div id="content
div data-reactroot class
title2">Test</div
/div:
4.8 HTML Style Attribute
The style HTML attribute works very differently in React.
® Style Attribute Requires an Object
You can add use the ‘style’ attribute name but it expects to be assigned a JavaScript object
within ‘{‘ and ‘¥’ brackets.
e Double Brackets
Note that if you want to assign an inline object in the HTML Style Attribute then you should
use double brackets. One set of brackets to indicate a JavaScript expression. One set of
brackets to create a JavaScript object.
: style={{fontWeight:"bold",border:"1lpx solid #£f£0000"}} :
» Single Brackets
You can use single brackets if you use a JavaScript object variable.
var style={fontWeight:"bold",border:"1lpx solid #f£0000"};
gtyle={style}
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® (SS Style Names

Notice that the CSS style names (for example ‘font-weight’ below) need to be converted to
CamelCase for them to work.

® Example - Html Style Attribute Used Incorrectly

_ReactDOM.render(

<div style="font-weight:bold;border:1lpx solid #f£0000">
Test

</div>,

document.getElementById (‘container’)

t VM360 bimadozogi.js:7 Uncaught Invariant Violation: The 'style’ prop expects a mapping
: from style properties to values, not a string. For example, style={{marginRight: spacing
i+ 'em'}} when using JSX.

EReactDOM.render(

<div style={{fontWeight:"bold",border:"1lpx solid #f£f£0000"}}>
Test

</div>,

document.getElementById(‘container’)

or

tvar style={fontWeight:"bold",border:"1lpx solid #£f£f0000"};
: ReactDOM. render (

<div style={style}>

Test

</div>,

document.getElementById(‘container’)

These result in the following output:

Test

and HTML:

v<div id="content"=
<div data-reactroot style="font-weight: bold; border: 1px solid
rgb(255, 0, 0);">Test</div>
f/diV:
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4.9 Escaping and Unescaping Content

® Introduction

JSX escapes all generated content by default. This prevents cross-site scripting attacks. For
more information on cross-site scripting attacks please see the Appendix ‘Cross-Site
Scripting Attacks’.

® Exceptions

Sometimes you need to include unescaped content in your React Components. For example
if you need to generate some dynamic html and you cannot find any way around it. For this
purpose, React provides an attribute ‘dangerouslySetinnerHtml’ to enable developers to
generate unescaped content.

® Example (Pre-ES6)

e Introduction

Let’s build a component that contains three elements:
1. Unescaped script block.
2. Unescaped html.

3. Escaped html.

Naughty
<strong>Nice</strong>

1. Create a Skeleton React Application in JsBin.

2. Add the following to the html, inside the body:

: var VeryNaughtyComponent = React.createClass ({
render: function() {

var naughty = '<script>alert ("123")</script>';

return <div dangerouslySetInnerHTML={{ html: naughty}} />
[
Ph;
: var NaughtyComponent React.createClass ({
render: function ()
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var naughty = '<strong>Naughty</strong>"';

return <div dangerouslySetInnerHTML={{ html: naughty}} />
N
Ph;

: var NiceComponent = React.createClass ({
render: function() {
var nice = '<strong>Nice</strong>"';
return <div>{nice}</div>
[
1)

: ReactDOM. render (

T <div>
<VeryNaughtyComponent></VeryNaughtyComponent>
<NaughtyComponent></NaughtyComponent>
<NiceComponent></NiceComponent>

</div>,

document.getElementById('container"')

e Generated HTML

Y <div>
<script=alert("123")</script>
</div>
Y <div>
<strong>Naughty</strong>
</div>
<div=<strong>Nice</strong></div>
</div>

e Notes

1. The unescaped '<script>alert("123")</script>' is output unchanged and has purple
html highlighting. However, JSBin.com does not execute it for security reasons.

2. The unescaped '<strong>Nice</strong>' is output unchanged and has purple html
highlighting.

3. The escaped '<strong>Nice</strong>' is output escaped. Note that the ‘<strong>’ tag
is shown in black text to indicate that it is escaped.
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5.1

5.2

53

Component Creation

Naming

Before you create your React Component, you need to decide on a name forit. As a
convention all React Component names are Camel Case and the first letter should be Upper
case and all the html element tags should start with lower case character.

Factors that Affect Component Creation

Not all React Components are the same. Sometimes you will be working with React
development in an older project, which uses pre-ES6 JavaScript. Sometimes you will be
working with the newer technology: a later version of React with post-ES6 JavaScript.
Sometimes you need to store state data in your components, sometimes you don’t need to
store state in your Components. This is covered in detail later on in Chapter ‘Component
Design — Thinking in React’. React allows developers to create these components in
different ways according to your development environment and requirements.

Component
Creation

Stateful
Components
(Smart)

Dumb
Components

g JavaScript ES5 JavaScript ES5

o JavaScript ES6

JavaScript ES6

Stateful Components

® Introduction

Stateful Components tend to be ‘smarter’. They are smart enough to store information,
telling them what to display and how to display it. When things happen they can also modify
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this information, causing their display to change. Stateful Components need Classes,
because they store modifiable data and code.

® Using React.createClass (Pre-ES6)

This is how we usually create the Components in JSBin.com or in older projects.
Components created in this manner are full React Components that can store state. The
argument to this function is an object. At a minimum, this object should contain a render
function, which returns a single React Component.

® Example (Pre-ES6)

e Introduction

Let’s pass car make and model information into a Component and then display it.

Car: Citroen Dianne

We will have custom attributes for car make and car model:

The code inside the Car Component will access the values of these custom attributes (ie
Properties) using the following variables:

1. this.props.make
2. this.props.model

e Steps

1. Create a Skeleton React Application in JsBin.

2. Add the following to the html, inside the body:

i var Car = React.createClass ({
render: function() {
return <div>Car: {this.props.make} {this.props.model}</div>;
Pl
Ph;
: ReactDOM. render (
<Car make="Citroen" model="Dianne"/>,
document.getElementById('container"')
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® Extending React.Component (Post-ES6)

e Introduction

This is how we usually create Components in a modern project. ES6 allows JavaScript
developers to create classes. You should define your React Component as a class that
extends the class React.Component. Components created in this manner are full React
Components that can store state. At a minimum, this object should contain a render
function, which returns a single React Component.

i class ExampleComponent extends React.Component {
render () {
return <div>Hello, world.</div>;

e Example (Post-ES6)

The code below comes from the example project. It is introduced in Chapter ‘Introduction to
the React Trails Project’.

i import React from 'react';
timport { List, ListItem, ListItemContent, ListItemAction, Icon } from 'react-mdl';
i import { Link } from 'react-router';

i class SearchResults extends React.Component {

render () {
if (this.props.searchResults.length == 0) {
return null;
}
const searchResultList = this.props.searchResults.map (function (value, index) {
let linkTo = °“/details/${value.lat}/${value.lon} ;
return <ListItem key={value.unique id}>
. <ListItemContent avatar="person">{value.name} {value.state}
: {value.country}</ListItemContent>
H <ListItemAction>
<Link to={linkTo}>Details</Link>
</ListItemAction>
</ListItem>;
}) i
return (
<div>
<h2>Results</h2>
<List>
{searchResultList}
</List>
</div>);
N
i)

t export default SearchResults;
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5.4 Stateless Components

® Introduction

Stateless Components are dumb and are supplied with the data they need to display. They
display things and they can let other components know when things happen. Stateful
Components can be implemented as Functions as they are simple.

They are a great way to create simple user interface components that don’t have state or
complex behavior. React Components created in this manner perform very well because
they are simple and require much less overhead than Stateful Components.

Note that Stateless Functions do not have Lifecycle Functions or References, which we will
cover in later chapters.

® Example (Pre-ES6)

e Introduction

Let’s pass car make and model information into a Component and then display it.

Car: Citroen Dianne

We will have custom attributes for car make and car model:

The code inside the Car function will access the values of these custom attributes (ie
Properties) using the following variables:

1. this.props.make
2. this.props.model
e Steps

1. Create a Skeleton React Application in JsBin.

2. Add the following to the html, inside the body:

: function Car (props) {
var style={backgroundColor:'#cccccc', padding: '10px'};
return (
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<div style={style}>
Car: {props.make} {props.model}
</div>

)

i}

: ReactDOM. render (

<Car make="Citroen" model="Dianne"/>,
document.getElementById('container"')
1)

® Example (Post-ES6)

The code below comes from the example project. It is introduced in Chapter ‘Introduction to
the React Trails Project’.

i import React from 'react';

i const Welcome = () => {
return (
<div className="centered">
<h2>Welcome</h2>
<p>Welcome to the 'Trail' project.</p>
<p>This is a small React example project built from React Starterify.</p>
. <p>It enables us to query the <a
t href="https://market.mashape.com/trailapi/trailapi">trail api</a>.</p>
: <p>
H This api gives access to information and photos for tens of thousands of outdoor
i recreation
: locations including hiking and mountain biking trails, campgrounds, ski resorts,
: ATV trails, and more.
</p>
</div>
DN
E};

: export default Welcome;
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