PATTERNS « .

2
- » ;

IN REACT

JUNTAO QIU o

Advanced Data Fetching
Patterns in React

Fast, User-Friendly Data Fetching for
Developers
Juntao Qiu

This book is for sale at
http://leanpub.com/react-data-fetching-patterns

This version was published on 2024-01-27

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2024 Juntao Qiu

http://leanpub.com/react-data-fetching-patterns
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Contents

Preface L 1
Chapter 1: Introduction 2
Setting up the environment
Setting up the backend service 7
Chapter 2: Basics of Data Fetching in React 9
Adding loading and error handling 13
Implementing the User’s Friends List 16
Chapter 3: Fetching Resources in Parallel 19
Sending Requests in Parallel 22
Request Dependency 26
Chapter 4: Optimizing Friend List Interactions. 30
Install and config NextUT 31
Implementing a Popover Component 33
Defining a Trigger Component 34

Implementing UserDetailCard Component (Fetching Data) 35

Chapter 5: Leveraging Lazy Load and Suspense in React . 40

Introducing Lazy Loading 41
Implementing UserDetailCard with lazy loading 43
The potential issue L. 49

Chapter 6: Prefetching Techniques in React Applications 51
Introducing SWR oo oo 51

Implementing SWR for Preloading
Integrating preload with SWR.

Chapter 7: Introducing Server Side Rendering
Introducing Next.js
React Server Components

Chapter 8: Introducing Static Site Generation
Mixing Server-Side Rendering and Static Site Generation

Chapter 9: Optimizing User Experience with Skeleton
LoadinginReact

Chapter 10: The New Suspense APIin React
Re-Introducing Suspense & Fallback
Using skeletons in different layers
Streaming in Nextjs
Optimizing UI by Grouping Related Data Components

Chapter 11: Lazy Load, Dynamic Import, and Preload in
Nextjs
Dynamic Load in Next.js
Implementing the UserDetailCard
Preload in Next.js
Client Component Strategy

Preface

As your React applications grow richer with API integrations, do
you find them increasingly bogged down and sluggish? You’re
wrestling with a common dilemma in the modern web develop-
ment landscape: the more features and data connections you add,
the more complex and slower your app becomes. Add to this
the often baffling world of asynchronous programming, where
debugging and troubleshooting can feel like navigating a labyrinth
in the dark.

And it doesn’t stop there. The React ecosystem is rapidly evolving,
bombarding you with a flurry of new terms and concepts. React
Server Components, SSR (Server-Side Rendering), Suspense
API - these aren’t just fancy buzzwords; they’re game-changers in
how we think about building and optimizing our applications. But
understanding and implementing them can feel overwhelming.

Embark on this journey with me, and together we’ll take these
intricate concepts and break them down into digestible, actionable
insights. From unraveling the challenges of parallel requests and
mastering lazy loading to demystifying SSR and exploring the
cutting-edge realms of Server Components and Suspense, I've got
you covered. You’'ll not only learn how to keep your applications
lightning-fast but also discover strategies for efficient debugging
and problem-solving in the asynchronous realm of React.

Join me, and transform the way you develop, optimize, and debug
your React applications. It’s time to turn those pain points into your
strongest assets.

Chapter 1: Introduction

Kicking off the tutorial ‘Advanced Network Patterns in React’,
this chapter sets the stage for exploring diverse network re-
quest patterns in React applications. It establishes the foun-
dational knowledge needed for handling complex network
scenarios in frontend development.

In this chapter, you will learn the following content:

« Setting up the development environment with Vite and Tail-
wind CSS.

« Ensuring all necessary tools and configurations are in place
for the tutorial.

« Introduction to the mock server for backend simulation.

This tutorial is designed to explore a range of patterns for executing
network requests in React applications. Although the focus is on
React, the principles and challenges discussed are relevant to other
frontend libraries and frameworks.

Starting with a basic user profile, the tutorial progressively intro-
duces more complex scenarios. These scenarios are intended to
illuminate common problems and solutions encountered in large-
scale applications, with a primary aim of demystifying the often-
overlooked performance pitfalls in frontend development.

While React serves as the primary example, the patterns and
strategies discussed are broadly applicable across various frontend
technologies. They offer universal insights that can be valuable in
diverse development contexts.

Chapter 1: Introduction 3

The tutorial assumes you have a foundational understanding of
React, including familiarity with JSX and common hooks such as
useState and useE ffect.

Key learning outcomes of this tutorial include:

+ Gaining a deep understanding of the challenges inherent in
network programming and why it can be difficult to get right.

« Unraveling and demystifying the most commonly misunder-
stood yet widely used patterns.

« Exploring ways to make asynchronous service calls more
manageable and less error-prone.

« Investigating alternative approaches for enhancing user ex-
perience.

+ Learning how to apply different strategies in both frontend
and backend development.

+ Looking ahead to the future of server-side work and its
implications for frontend development.

This tutorial aims to equip you with the knowledge and tools to
navigate the complexities of network requests in React and other
frontend frameworks, enhancing both your understanding and
practical skills.

The page we’re going to build is a Home page in an imaginary social
media website. It doesn’t do much but showing a user their home
page when then log in.

Chapter 1: Introduction

O & Incognito

* & O

c @ localhost:
Profile
2 Juntao Qiu Friends

@@ Developer, Educator Author Abruzzi

Software Enginser
Your Feeds a Bob Smith
Frontend Developer

4%, Carol White
UK Designer

Implementing Dynamic Import and Code Splitting

Figure 1. The home page we will build in the tutorial

Setting up the environment

We’re going to use vite as the scaffolding tool to generate the
structure of the application, use the following command to create

a React with TypeScript enabled.
1 npm create vite@latest react-network-advanced -- --templa\

2
3

te react-ts
cd react-network-advanced

Let’s clean up the generated template file, open up the src/App . tsx,

and put the following code:

[ENENEN

, O © 0 N 0O O b W N -

Chapter 1: Introduction 5

function App() {
return (
<div className="max-w-3xl m-auto my-4 text-slate-80\
o">
<h1l className="text-4x1 py-4 mb-4 tracking-wider \
font-bold">Profile</h1>
</div>

)

export default App;

We are going to use Tailwind Css for styling in this tutorial.

Tailwind is a utility-first CSS framework packed with classes
like flex, pt-4, text-center and rotate-90 that can be composed
to build any design, directly in your markup.

Utility-first CSS frameworks provide a comprehensive set of
CSS utility classes for common styling tasks. Instead of writing
custom CSS, developers can construct designs by combining
these utility classes directly in their markup. This approach
promotes rapid UI development, consistency across pages, and
can lead to more maintainable codebases.

To install Tailwind, go to the react-network-advanced folder we
created above, and execute the following command in Terminal (if
you’re on Mac OS)

npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p

And then you will need to config Tailwind to allow it scan
index.html and all tsx files under src folder.

[ENNEN

O © 00 N O O b wWw N o=

Chapter 1: Introduction 6

Figure 2. tailwind.config.js

/*¥* @type {import('tailwindcss').Config} */
export default {
content: [
"./index.html",
"./src/*¥*/* {ts, tsx}",
1,

theme: {
extend: {},

},

plugins: [],

Lastly, you will need to use @tailwind directives in src/index.css
to actually enable it:

Figure 3. src/index.css

@tailwind base;
@tailwind components;

@tailwind utilities;

I prefer to make the background a bit gray, so I'll add the following

line in src/index.css

Figure 4. src/index.css

body {
background-color: #fefefe;

With these changes in place, let’s launch the application now in
command line:

Chapter 1: Introduction 7

npm run dev

It by default will launch your React application on
“http://localhost:5173/”, And in your browser, you should be
able to see the text Profile

° W React Network Tutorial X +

€ > C @ localhost:5173 8 % & & | O & Incognito

Profile

Figure 5. Check Vite and Tailwind CSS are working together

Setting up the backend service

We are going to call some API endpoints in the course of
the tutorial, I have published them into a Github repo!, go
ahead and clone the repo to your local (assume it’s in folder:

mock -server -network-react-tutorial.

Run the following command to launch the mock server:

cd mock-server -network-react-tutorial
yarn start

You would be able to see something like this in your console:

Uhttps://github.com/abruzzi/mock-server-network-react-tutorial

https://github.com/abruzzi/mock-server-network-react-tutorial
https://github.com/abruzzi/mock-server-network-react-tutorial

© 00 N O O » W N =

e
()

Chapter 1: Introduction 8

yarn run v1.22.19
$ node index.js
Mock server listening at http://localhost:1573

And if you try to access the one of the following API endpoint:
curl http://localhost:1573/users/ul

Or if you prefer, you could use jq to format the output, which is a
bit easier to read (curl http://localhost:1573/users/ul | jq .).
And you should be able to see response like the following:

"id": "utl",
"name": "Juntao Qiu",
"bio": "Developer, Educator, Author",
"interests": [
"Technology",
"Qutdoors",

"Travel"

This introductory chapter equips learners with the essential setup
and context for tackling advanced network patterns in React,
paving the way for more complex concepts and practical appli-
cations in subsequent chapters. The next chapter will dive into
using useEffect for building a basic profile page, demonstrating
sequential network requests.

Chapter 2: Basics of Data
Fetching in React

This chapter dives into the essentials of data fetching in React
applications, starting from a simple user profile page. It
highlights the initial steps of making API calls, dealing with
network delays, and managing state with React’s useEffect

hook.

In this chapter, you will learn the following content:

+ Understanding and implementing basic data fetching using
useEffect in React.

« Exploring the impact of network delays on frontend perfor-
mance.

+ Practical implementation of a user profile and friends list
component with API integration.

Imagine a simple React application: a profile page where a logged-
in user can view their profile. To achieve this, we need to fetch the
user’s information from an API using their ID.

The API endpoint we’ll use returns basic user information. It’s
designed to include a delay, allowing us to later examine how slow
API responses can impact frontend performance.

Consider this API call:

S O 0 N O U B» W N =~

-~

0 N O O b W N =

11
12
13
14

Chapter 2: Basics of Data Fetching in React 10

curl http://localhost:1573/users/ul

And the expected response:

"id": "ul",
"name": "Juntao Qiu",
"bio": "Developer, Educator, Author",
"interests": [
"Technology",
"Qutdoors",

"Travel"

In a typical React setup, we would handle this data fetching within a
useEffect call. React triggers this effect after completing the initial
render.

Here’s how you might implement this in sre/profile.tsx:

Figure 6. src/profile.tsx

const Profile = ({ id }: { id: string }) => {
const [user, setUser] = useState<User | undefined>();

useEffect(() => {
const fetchUser = async () => {
const data = await get<User>(/users/${id}");
setUser(data);
b

fetchUser();
}, [idl);

return (

<div>

15
16
17
18

0 N O O b W N =

11
12
13

Chapter 2: Basics of Data Fetching in React 11

{user && user.name}
</div>
);
};

The get function is a straightforward wrapper around the native
fetch. You can replace it with axios.get or any other preferred
method.

Here’s the utility function in utils.ts:

Figure 7. utils.ts

const baseurl = "http://localhost:1573";

async function get<T>(url: string): Promise<T> {
const response = await fetch(${baseurl}${url}’);

if (!response.ok) {

throw new Error("Network response was not ok");

return await response. json() as Promise<T>;

export { get };

To render the Profile component, update App.tsx as follows:

o N O O b W N =

11
12
13
14

Chapter 2: Basics of Data Fetching in React 12

Figure 8. App.tsx

import { Profile } from "./src/profile.tsx";
function App() {
return (
<div>
<h1>Profile</h1>
<div>
<Profile id="ul" />
</div>
</div>
)i

export default App;

Visualizing the rendering sequence over time, it would look some-

thing like this diagram:

Time

Download resources [l Parse HTML Compile JS parse CSS React render

Figure 9. Fetch and then render

When a user accesses a React application, a typical flow begins
with the browser downloading the initial HTML. As it parses the

Chapter 2: Basics of Data Fetching in React 13

HTML, it encounters links to resources like JS and CSS. This process
involves downloading, parsing, and executing JS bundles, building
the CSSOM, and so on.

Note: HTML parsing is usually done in a streaming manner,
meaning it starts as soon as some bytes are received rather than
waiting for the entire HTML to download. For simplicity, our
illustration assumes the entire HTML is downloaded before
DOM construction. More details can be found in Rendering on
the Web!, Client-side rendering of HTML and interactivity?,
and Populating the page: how browsers work®.

As JavaScript executes, React begins rendering and manipulating
the DOM, then triggers a network request through useEffect. It
waits until data returns from the server before re-rendering with
the new data.

Adding loading and error handling

To enhance user experience, we can introduce a Spinner component
during data loading and an Error component for handling issues
like unresponsive backends or nonexistent users.

With these additions, the Profile component now includes addi-
tional states:

Lhttps://web.dev/articles/rendering- on-the-web
Zhttps://web.dev/articles/client-side-rendering-of-html-and-interactivity
Shttps://developer.mozilla.org/en-US/docs/Web/Performance/How_browsers_work

https://web.dev/articles/rendering-on-the-web
https://web.dev/articles/rendering-on-the-web
https://web.dev/articles/client-side-rendering-of-html-and-interactivity
https://developer.mozilla.org/en-US/docs/Web/Performance/How_browsers_work
https://web.dev/articles/rendering-on-the-web
https://web.dev/articles/client-side-rendering-of-html-and-interactivity
https://developer.mozilla.org/en-US/docs/Web/Performance/How_browsers_work

Chapter 2: Basics of Data Fetching in React 14

Figure 10. src/profile.tsx

const Profile = ({ id }: { id: string }) => {
const [loading, setlLoading] = useState<boolean>(false);
const [error, setError] = useState<Error | undefined>();

const [user, setUser] = useState<User | undefined>();

useEffect(() => {
const fetchUser = async () => {
try {
setLoading(true);
const data = await get<User>(/users/${id});
setUser(data);
} catch (e) {
setError(e as Error);
} finally {
setlLoading(false);
}
b

fetchUser();
},o [id]);

if (loading) {
return <div>Loading...</div>;

if (error) {
return <div>Something went wrong...</div>;

return (
<>

{user && user.name}

</>

35
36

0 N O O B W N =

11
12
13
14
15
16

Chapter 2: Basics of Data Fetching in React 15

);
};

This structure should be familiar if you’ve worked with React
before.

Next, let’s add more than just the username. We’ll create an About
component to display user information, adding simple styles for
visual appeal.

For brevity, I'm omitting Tailwind CSS from the code snippets.
You can view the full styled components in the corresponding
code repository.

Figure 11. src/about.tsx

const About = ({ user }: { user: User }) => {
return (
<div>
<div>
<img
src={user.avatar}
alt={"User ${user.name} Avatar’}
/>
</div>
<div>
<div>{user.name}</div>
<p>{user.bio}</p>
</div>
</div>
);
};

0w N O O B W N =

Chapter 2: Basics of Data Fetching in React 16

When data is correctly fetched, it renders as shown:

[} W React Network Tutorial x 4+

G © localhost:5173 % & & | O & incognito

Profile

2 Juntao Qiu

&b Developer, Educator, Author

Figure 12. User basic information fetched and rendered

We now have a basic Profile page, retrieving data from a backend
API intentionally delayed by 1.5 seconds.

Implementing the User’s Friends List

Consider the user’s friends list, typically stored in a separate
table and accessed via a different API endpoint. For example,
/users/<id>/friends. We'll fetch this data in a new component,

Friends.

Figure 13. src/friends.tsx

const Friends = ({ id }: { id: string }) => {
const [loading, setlLoading] = useState<boolean>(false);
const [users, setUsers] = useState<User[]>([]);

useEffect(() => {
const fetchFriends = async () => {
setlLoading(true);
const data = await get<User>(/users/${id}/friends™\

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 2: Basics of Data Fetching in React 17

)i
setLoading(false);
setUsers(data);

};

fetchFriends();
},o[idl);

if(loading) {
return <div>Loading...</div>

}
return (
<div>
<h2>Friends</h2>
<div>
{users.map((user) => (
<div>
<img
src={"https://i.pravatar.cc/150?u=${user.id\
1}
alt={"User ${user.name} avatar'}
/>
 {user.name}
</div>
)}
</div>
</div>
)i

};

export { Friends };

The structure of the Friends component mirrors that of Profile:
managing state, fetching data in useEffect, and rendering based

O 0 N O U B W N =~

N
()

Chapter 2: Basics of Data Fetching in React 18

on loading, error, and successful data retrieval states.

We can incorporate Friends into the Profile component like any
regular React component:

Figure 14. src/profile.tsx

const Profile = () => {

/...

return (
O
{user && <About user={user} />}
<Friends id={id} /»
</>
);

At first glance, this implementation seems fine. However, if you
consider the time taken for each API call, you might spot a potential
issue. What if the /friends API also takes 1.5 seconds to respond?
The total time to display the full page would be 3 seconds.

This chapter lays the groundwork for mastering network requests
in React. It provides a practical example of fetching and rendering
data, setting the stage for more advanced patterns and perfor-
mance considerations in subsequent chapters. The next chapter
will further explore complex data fetching scenarios, addressing
performance challenges in frontend applications.

Chapter 3: Fetching
Resources in Parallel

Chapter 3 tackles the challenge of optimizing network requests
in React applications. It focuses on implementing parallel
data fetching strategies to minimize the impact of the network
waterfall effect, enhancing application performance and user
experience.

In this chapter, you will learn the following content:

+ Understanding and mitigating the request waterfall effect.
« Implementing parallel requests for efficiency.
+ Handling dependencies in network requests.

The first issue we encounter is with the rendering order. Initially,
in the Profile component, useEffect triggers a network request.
However, since data takes 1.5 seconds to return, we display a
loading indicator in the meantime.

Once the data arrives, we render the About section, and a similar
process occurs in theFriends component. Here, useE ffect initiates
another network request, waiting for the data to return.

Visualizing the request timeline, it looks like this:

Chapter 3: Fetching Resources in Parallel 20

Time

Download resources Parse HTML Compile JS Parse CSS React render

Figure 15. The request waterfall issue

The process involves three renderings. After the first render, the
page displays a loading. .. message while initiating the /users/u1
request. When the server responds, the About section is displayed.
As Friends renders, lacking available data, it shows a loading. ..
message in its section and sends out the /users/u1/friends request.
Upon receiving this data, the third rendering occurs.

Chapter 3: Fetching Resources in Parallel 21

App

|

Profile

—

About Friends

Static component Async component

Figure 16. The component tree of About + Friends

This sequence might be obvious in our current setup, but consider
more complex scenarios. Imagine the Friends component nested
deeper in the component tree or used in different pages or sections.
In such cases, identifying the problem by statically reading the code
becomes challenging.

The situation worsens with more nested components following the
same useEffect + loading + error pattern, potentially leading to
cumulative performance issues:

Chapter 3: Fetching Resources in Parallel 22

Time

Download resources Parse HTML Compile JS parse CSS React render

Figure 17. Request waterfall could be even worse

Over time, as the component tree grows, the page becomes increas-
ingly slower.

However, one might wonder if initiating data fetching simultane-
ously could mitigate this wait time.

Sending Requests in Parallel

We can address this issue by sending parallel requests. In the
Profile component, we can start both requests simultaneously
using Promise.all, passing the fetched friends list to the Friends
component:

0w N O O B W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Chapter 3: Fetching Resources in Parallel 23

Figure 18. src/profile.tsx

const Profile = ({ id }: { id: string }) => {
// ...
const [user, setUser| = useState<User | undefined>();
const |[friends, setFriends]| = useState<User[]>([]);

useEffect(() => {
const fetchUserAndFriends = async () => {

try {
setLoading(true);
const [user, friends] = await Promise.all(]|

get<User> (" /users/${id}"),
get<User[]> (" /users/${id}/friends”),
1)

setUser(user);
setFriends(friends);

} cateh (e) {
setError(e as Error);

} finally {
setLoading(false);

}

¥

fetchUserAndFriends();
b, [id]);

// ...
};

export { Profile };

0 N O O b W N =~

11
12
13
14
15
16
17
18
19
20
21

Chapter 3: Fetching Resources in Parallel 24

The Promise.all() static method accepts an iterable of
promises, returning a single Promise. This promise resolves
when all input promises fulfill (including for an empty
iterable), resulting in an array of fulfillment values. If any
input promises reject, the returned promise rejects with the
first rejection reason.

Consequently, we modify Friends into a presentational component,
responding only to the passed users list, rather than making its own
requests:

Figure 19. src/friends.tsx

const Friends = ({ users }: { users: User[] }) => {
return (
<div>
<h2>Friends</h2>
<div>
{users.map((user) => (
<div>
<img
src={"https://i.pravatar.cc/150?u=${user.id\

3}
alt={"User ${user.name} avatar'}
/>
 {user .name}
</div>
)}
</div>
</div>
);
3

export { Friends };

Chapter 3: Fetching Resources in Parallel 25

Now, the total wait time is reduced tomax (1.5, 1.5) = 1.5 seconds,
a significant improvement:

Time

Download resources [l Parse HTML Compile JS parse CSS React render

Figure 20. Send requests in parallel

The only remaining issue is the potential wait for the slower request
in extreme cases. We’'ll accept this limitation for now and explore
solutions in subsequent chapters.

Chapter 3: Fetching Resources in Parallel 26

App

|

Profile

—

About Friends

Static component Async component

Figure 21. The only async component now is Profile

Request Dependency

Parallel requests expedite the loading of independent data. How-
ever, some requests depend on others. For example, we might need
to fetch user information first and use the interests array from
the response to retrieve recommended feeds for the user. This
sequential dependency necessitates a return to the initial approach.

In the Feeds component, we define loading, error, and data states,
and useEffect initiates network fetching after the initial render:

0 N O O B W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 3: Fetching Resources in Parallel 27

Figure 22. src/feeds.tsx

const Feeds = ({ category }: { category: string }) => {
const [loading, setlLoading] = useState<boolean>(false);
const [feeds, setFeeds] = useState<Feed[]>([]);

useEffect(() => {
const fetchFeeds = async () => {
setlLoading(true);
const data = await get(/articles/${category}”);

setLoading(false);
setFeeds(data);
b

fetchFeeds();
}, [category]);

if (loading) {
return <div>Loading...</div>;

}
return (
<div>
<h2>Your Feeds</h2>
<div>
{feeds.map((feed) => (
<
<h3>{feed.title}</h3>
<p>{feed.description}</p>
</>
)}
</div>
</div>
)

};

=~ O O b W N =

Chapter 3: Fetching Resources in Parallel 28

In the Profile component, we include Feeds as follows:

Figure 23. src/profile.tsx

return (
<&
{user && <About user={user} />}
<Friends users={friends} />
{user && <Feeds category={user.interests[0]} />}
</>
)

Initially, About and Friends load, and as soon as the user data is
available, we use interests[@] to fetch feeds, potentially taking
another second. The overall wait time amounts to max(1.5, 1.5)
+ 1 = 2.5 seconds.

[} W React Network Tutorial

€ > C @ localhost:5173 - £ Incognito

Profile

2 Juntao Qiu

&> Developer, Educator, Author
Friends

=

Abruzzi Bob Smith Carol White

Your Feeds

Implementing Dynamic Import and Code Splitting

As an application grows and more code is added, the initial loading time can become noticeably longer. This delay, sometimes
lasting several seconds, can frustrate users. To avoid this, it's essential to optimize loading times.

Why Web Ul Development Is So Hard?

The landscape of web Ul development is fraught with challenges that extend beyond writing code and designing interfaces.
The inherent language limitations, nuanced data async and often-ignored unhappy paths
collectively make this a formidable field. Architectural decisions

Figure 24. The Ul after all components are rendered

Chapter 3: Fetching Resources in Parallel 29

This approach combines parallel and sequential requests, yielding
better performance than the initial method.

Time

Download resources Parse HTML Compile JS parse CSS React render

Figure 25. The mix of parallel and sequential requests

The feeds request must wait for the completion of the previous
two requests, displaying a large spinner in the interim. While
this solution is functional, we must consider the runtime data
requirements for each specific user.

By mastering parallel requests and managing dependencies in
network calls, this chapter sets the foundation for building faster
and more responsive React applications. Join us as we continue to
navigate the intricate world of advanced network patterns in React.
In the next chapter, we explore further optimization strategies and
delve into more complex scenarios of network fetching in React.

Chapter 4: Optimizing
Friend List Interactions

This chapter focuses on enhancing the user experience in React
applications by implementing a detailed user profile popover.
It explores the integration of external Ul libraries like NextUI
for building interactive features and discusses efficient data
fetching strategies.

In this chapter, you will learn the following content:

« Leveraging NextUI for dynamic Ul components.
« Efficient data fetching for enhanced features.
« Balancing performance with interactive design.

Let’s delve further into typical frontend application scenarios,
uncovering new patterns and potential avenues for performance
improvement.

Consider enhancing the current Profile page. Suppose a user clicks
on a friend’s avatar, and we display a popover with additional
details fetched from a /users/1/details endpoint. This feature,
common in platforms like Twitter or LinkedIn, adds depth to user
interaction.

Chapter 4: Optimizing Friend List Interactions 31

] W React Network Tutorial X +

¢ > C @ localhost:5173 £ O | O & incognito

Profile

® Juntao Qiu

&> Developer, Educator, Author

Friends

Abruzzi a Bob Smith 4. Carol White
Frontend Developer & UI/UX Designer

¥ software Engineer

Abruzzi
@abruzzi
Software Engineer

https:/ficodeit.com.au

T ————————

Figure 26. User Detail Popover

To maintain focus on our main topic, I'll skip the detailed imple-
mentation of the popover itself. Instead, we’ll utilize components
from nextui for the popover behavior and UserDetailCard.

NextUI is a React Ul library built on top of Tailwind CSS and
React Aria, offering beautiful and accessible user interfaces.
Despite its name similarity and website design, it’s an inde-
pendent community project and is not affiliated with Vercel
or Next.js.

Install and config NextUI

Firstly, let’s install NextUI into our project:

o N O O b W N =

11
12
13
14
15
16

S ©O© 00 N O U » W N =~

-~

Chapter 4: Optimizing Friend List Interactions

yarn add @nextui-org/react framer-motion

And the we will need to edit tailwind.config.cjs

Figure 27. tailwind.config.cjs

32

const {nextui} = require("@nextui-org/react");

/** @type {import('tailwindcss').Config} */

module.exports = {
content: [
"./index.html",
", /src/¥* /% {jsx,tsx}",

"./node_modules/@nextui-org/theme/dist/**/*. {js,ts, js\

x,tsx}",
1,
theme: {
extend: {},
}/
darkMode: "class",
plugins: [nextui()],

And finally we’ll need to wrap the Application with

NextUIProvider:

import { NextUIProvider } from "@nextui-org/react";

function App() {
return (
<NextUIProvider>
<div>
<h1>Profile</h1>
<div>
<Profile id="ul"

</div>

/>

11
12
13
14

0o N O O b W N =

11
12
13
14
15
16
17
18
19

Chapter 4: Optimizing Friend List Interactions 33

</div>
</NextUIProvider>
)i

Next let’s implement the popover component with Friend.

Implementing a Popover Component

A popover is a non-modal dialog that appears adjacent to its trigger
element. It’s often used to display additional rich content.

Here’s a basic implementation using @nextui-org/react:

import React from "react";
import {Popover, PopoverTrigger, PopoverContent, Button} \

from "@nextui-org/react";

export default function App() {
return (
<Popover placement="right">
<PopoverTrigger>
<Button>Open Popover</Button>
</PopoverTrigger>
<PopoverContent>
<div>
<div>Popover Content</div>
<div>This is the popover content</div>
</div>
</PopoverContent>
</Popover>

)

0 N O O B W N =

11
12
13
14
15
16
17
18
19
20
21

Chapter 4: Optimizing Friend List Interactions 34

Clicking the “Open Popover” button reveals a popover box to the
right. This box contains a header “Popover Content” in bold,
followed by a descriptive text. It’s styled with padding and font
adjustments for better presentation.

Defining a Trigger Component

The Friend component can act as a trigger for the popover. We
wrap it with PopoverTrigger as follows:

Figure 28. src/friend.tsx

import { User } from "../types";

import { Popover, PopoverContent, PopoverTrigger } from "\
@nextui-org/react”;

import { Brief } from "./brief.tsx";

import UserDetailCard from "./user-detail-card.tsx";
export const Friend = ({ user }: { user: User }) => {
return (
<Popover placement="bottom" showArrow offset={10}>
<PopoverTrigger>
<button>
<Brief user={user} />
</button>
</PopoverTrigger>
<PopoverContent>
<UserDetailCard id={user.id} />
</PopoverContent>
</Popover>
)i
};

The Brief component accepts a User object and renders its details:

© 00 N O O b W N =~

N
0 N O O B W N =~ O

Chapter 4: Optimizing Friend List Interactions 35

Figure 29. src/brief.tsx

export function Brief({user}: { user: User }) {
return (
<div>
<div>
<img
src={"https://i.pravatar.cc/150?u=${user.id} "}

alt={"User ${user.name} avatar'}

width={32}
height={32}
/>
</div>
<div>

<div>{user.name}</div>
<p>{user.bio}</p>
</div>
</div>

);

A click on the Brief component activates the popover.

Implementing UserDetailCard
Component (Fetching Data)

UserDetailCard is designed to fetch and display user details. The
user detail includes:

= O O W N

0 N O O b W N =

[T N T N T N N T VY
N O O 00 N 0O O B W N =~ o O

Chapter 4: Optimizing Friend List Interactions 36

Figure 30. types.ts

export type UserDetail = {
id: string;
name: string;
bio: string;
twitter: string;
homepage: string;

};

We use our reusable get function to fetch these details from the
/users/<id>/details endpoint:

Figure 31. src/user-detail-card.tsx

export function UserDetailCard({ id }: { id: string }) {
const [loading, setlLoading] = useState<boolean>(false);
const [detail, setDetail] = useState<UserDetail | undef\
ined>();

useEffect(() => {
const fetchFeeds = async () => {
setLoading(true);
const data = await get<UserDetail> (" /users/${id}/de\
tails™);

setLoading(false);
setDetail(data);
b

fetchFeeds();
},o[idl);

if (loading || !detail) {
return <div>Loading...</div>;

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Chapter 4: Optimizing Friend List Interactions 37

return (
<Card shadow="none">
<CardHeader>
<div>
<Avatar
isBordered
radius="full"
size="md"
src={"https://i.pravatar.cc/150?u=${detail.id\
13
/>
<div>
<h4>{detail .name}</h4>
<p>{detail.twitter}</p>
</div>
</div>
</CardHeader>
<CardBody>
<p>{detail.bio}</p>
</CardBody>
<CardFooter>
<div>
<p>
{detail.homepage}</\
a>
</p>
</div>
</CardFooter>
</Card>
)

export default UserDetailCard;

If we could visualise the current component tree

Chapter 4: Optimizing Friend List Interactions 38

App

|

Profile
|
l 1 1

About Friends Feeds

!

Friend
|
! 1

Brief UserDetailCard

Static component Async component

Figure 32. Component Tree with User Detail Card

This implementation appears efficient. However, a network inspec-
tion reveals increasing data transfer to the client as more third-
party libraries are integrated. The additional JavaScript and CSS
for the popover and UserDetai1Card could be unnecessary for users
who don’t interact with these features.

DevTools - localhost:5173/

Gonsole Source: ormance Memory Application Securty Lighthouse Recoder X %

Preserve log tiling SRR

Hide data URLs 2 Hide extension URLs (All| (Do | JS [FetoXHR | (CSS | Font | img | Media
Blocked requests (1) Srd-party requests

Manifost | (WS | Wasm | | Other

status Type Inttator size Time Waterfall
20 senpt wms

200 soript
200

200

200

200

1ms
2ms
3ms |

3ms

Figure 33. More data transferred through network

Is it possible to delay loading these resources until needed?
For instance, only loading the UserDetailCard JS bundle when
a user clicks on a Friend avatar, followed by a request to
/users/1/details for detailed information. Let’s find out in the

Chapter 4: Optimizing Friend List Interactions 39

next chapter.

With the introduction of advanced UI elements and thoughtful
data fetching strategies, this chapter elevates the user experience in
React applications, paving the way for more engaging and efficient
frontend designs. In the next chapter, we’ll dive into code splitting
and lazy load to reduce the initial load, that also the foundation of
React concurrent we’ll learn later.

Chapter 5: Leveraging
Lazy Load and Suspense
in React

Chapter 5 of the ‘Advanced Network Patterns in React’ tutorial
explores the concepts of Lazy Loading and React Suspense for
optimizing performance. It demonstrates how to dynamically
load components only when they are required, reducing initial
load times and improving user experience.

In this chapter, you will learn the following content:

« Introduction to Lazy Loading in React
« Utilizing React Suspense for better loading handling
« Practical implementation in a user profile application

At the end of the previous chapter, we noticed that the page now
has more bytes to load initially, which might not fair for user who
don’t hover on a Friend component - they still need to pay for the
extra network requests and JavaScript bundles.

We could delay such extra (not immediate useful) content into
another request as late as possible (maybe never if the users
don’t ask). For example, we could split UserDetailCard (and its
dependency) into a separate JavaScript bundle and load it whenever
the user hover on it.

Chapter 5: Leveraging Lazy Load and Suspense in React 41

App
Profile
|
l 1 l
About Friends Feeds
Friend
|
l R k """"""" H
Brief ! UserDetailCard
Static component Async component

Figure 34. Separate UserDetailCard as another bundle

Let’s see how to implement it in React with lazy load and suspense.

Introducing Lazy Loading

Lazy loading in React is a strategy to dynamically load compo-
nents on-demand, improving performance for larger applications
by minimizing the initial code load. React’s lazy function, used
alongside Suspense, renders dynamic imports as regular compo-
nents, enhancing user experience and resource efficiency.

Consider this implementation:

0o N O O b W N =

11
12
13
14
15
16
17

Chapter 5: Leveraging Lazy Load and Suspense in React 42

import React, { Suspense, lazy } from 'react';

// Lazy load the component
const LazyComponent = lazy(() => import('./LazyComponent'\
));

function App() {
return (
<div>
<Suspense fallback={<div>Loading...</div>}>
<LazyComponent />
</Suspense>
</div>
);

export default App;

Here, LazyComponent is dynamically imported using lazy(). The
Suspense component wraps around LazyComponent, providing a
fallback UI during its loading phase. When LazyComponent is
needed, it loads on demand, improving performance by splitting
the code into smaller chunks.

Code splitting is a technique in React that enables splitting
your code into various bundles, which can then be loaded
on demand or in parallel. This is particularly beneficial for
improving the performance of large applications. When a
user navigates to a part of your application that requires a
component or library, only then does the necessary bundle
get loaded, significantly reducing the initial load time of the
application. This is especially useful for users with slower
internet connections or on mobile devices. React’s 1azy func-

0 N O O B W N =~

11
12
13
14
15
16
17
18

Chapter 5: Leveraging Lazy Load and Suspense in React 43

tion, coupled with Suspense, provides a straightforward way
to implement code splitting, leading to more efficient resource
usage and enhanced user experience.

Implementing UserDetailCard with
lazy loading

Applying this concept, we’ve updated the Friend component in
src/friend.tsx to use React.lazy for importing UserDetailCard.
This change ensures that UserDetailCard loads only when neces-
sary:

Figure 35. src/friend.tsx

import { User } from "../types";

import { Popover, PopoverContent, PopoverTrigger } from "\
@nextui-org/react”;

import React, { Suspense } from "react";

import { Brief } from "./brief.tsx";

const UserDetailCard = React.lazy(() => import("./user-de\
tail-card.tsx"));

> |

export const Friend = ({ user }: { user: User })
return (
<Popover placement="bottom" showArrow offset={10}>
<PopoverTrigger>
<button>
<Brief user={user} />
</button>
</PopoverTrigger>
<PopoverContent>

19
20
21
22
23
24
25

Chapter 5: Leveraging Lazy Load and Suspense in React 44

<Suspense fallback={<div>Loading...</div>}>
<UserDetailCard id={user.id} />
</Suspense>
</PopoverContent>
</Popover>
)i
)

The code defines a Friend component in React that displays user
information using a popover. It imports user-related types and
components from @nextui-org/react and a local Brief component
for displaying a summary of the user.

The UserDetailCard component is dynamically imported using
React . lazy for performance efficiency, loading only when needed.

const UserDetailCard = React.lazy(() => import("./user-de\
tail-card.tsx"));

Within the Friend component, a Popover is set up with its trigger
wrapping a button that shows the Brief user summary. When
clicked, the popover displays, containing the UserDetailCard
within a Suspense component. This setup ensures a loading
fallback is shown while the UserDetailCard loads, providing
detailed user information based on the user’s ID. This approach
optimizes loading performance by fetching detailed user data only
when the popover is activated.

<Suspense fallback={<div>Loading...</div>}>
<UserDetailCard id={user.id} />

</Suspense>

Chapter 5: Leveraging Lazy Load and Suspense in React 45

Suspense is a React component that lets your components
“wait” for something before rendering. Initially introduced for
React.lazy (lazy loading of components), its use has expanded
to include data fetching and other asynchronous operations
(we'll see how to do that in later Chapter with Next.js).
Suspense provides a way to specify a fallback UI - for example,
a loading indicator — that shows up while waiting for the
component to load or data to be fetched. This helps in creating
smoother user experiences in React applications, as it allows
for more control over what gets displayed during the waiting
period of an asynchronous operation. The integration of
Suspense with lazy loading and other React features reflects
the framework’s ongoing evolution to meet modern web de-
velopment needs.

This lazy loading approach is evident in the network panel of
devtools, where two requests are made upon clicking Friend: one
for the JavaScript bundle of UserDetailCard, and another for the
user’s details from the API

curity Lighthouse Recorder 2

(]

Figure 36. Waterfall with lazy load

Analysis the current bundles, it doesn’t seem help a lot:

Chapter 5: Leveraging Lazy Load and Suspense in React 46

Figure 37. Bundle size analysis

Note in the chart above, the thin slice on the left hand side it the
UserDetailCard, while the big one on the right is everything else.
And if we look closely we’ll find the biggest one is framer-motion
- a package that adding the animation in React - shipped within
NextUL Obviously we don’t really need animation for everything,
it only used when the popover shows up.

We could further split the Friend into a separate bundle with
NextUI components, and leave the index lightweight.

So firstly we don’t import Friend in Friends, instead we lazy load
it with suspense:

0o N O O b W N =

11
12
13
14
15
16
17
18
19
20
21
22
23

Chapter 5: Leveraging Lazy Load and Suspense in React 47

import { User } from "../types.ts";

import React, { Suspense } from "react";

import { FriendSkeleton } from "../misc/friend-skeleton.t\

",
’

sx
const Friend = React.lazy(() => import("./friend.tsx"));

const Friends = ({ users }: { users: User[] }) => {
return (
<div>
<h2>Friends</h2>
<div>
{users.map((user) => (
<Suspense fallback={<FriendSkeleton />}>
<Friend user={user} key={user.id} />
</Suspense>
)}
</div>
</div>
)i
}

export { Friends };

And in the Profile.tsx, we will remove NextUIProvider and add
it as a wrapper to Friend, because we don’t need NextUI for the
whole application but the popover in Friend.

0 N O O b W N =

[ST ST S TS T S G\ N G i G G N Y
BW N 2P0 O 0N 0k WwWN O O

Chapter 5: Leveraging Lazy Load and Suspense in React 48

Figure 38. src/friend.tsx

/...
const UserDetailCard = React.lazy(() => import("./user-de\
tail-card.tsx"));

const Friend = ({ user }: { user: User }) => {
return (
<NextUIProvider>
<Popover placement="bottom" showArrow offset={10}>
<PopoverTrigger>
<button>
<Brief user={user} />
</button>
</PopoverTrigger>
<PopoverContent>
<Suspense fallback={<div>Loading...</div>}>
<UserDetailCard id={user.id} />
</Suspense>
</PopoverContent>
</Popover>
</NextUIProvider>
);
};

export default Friend;

With these updates, our new analysis reveals that we have three
distinct bundles: UserDetail, Friend, and Profile.

Chapter 5: Leveraging Lazy Load and Suspense in React 49

Figure 39. Bundle size analysis after splitting Friend

The largest bundle, shown in blue, corresponds to the Friend
component. The smaller, red-tinted one at the top-left is the
UserDetailCard, and the green-tinted one represents the Profile
component.

This is a significant improvement. Now, the loading process works
as follows: When the Profile component initiates parallel requests
for /users/ut and /users/ut/friends, we display skeleton screens
for the About section and the Friends list. As the friends data
arrives and the Friends component starts rendering, the browser
concurrently downloads the related bundle. During this time, a
Friendskeleton is displayed, transitioning to the Friend compo-
nent once the bundle is fully downloaded.

Moreover, if the user doesn’t hover over a Friend, there’s no
additional action. The UserDetail data is fetched only when
the user hovers over a Friend, optimizing resource loading and
enhancing performance.

Chapter 5: Leveraging Lazy Load and Suspense in React 50

The potential issue

Visualizing the request process, we see a sequence similar to the
network waterfall discussed in Chapter 2:

Time

Figure 40. Waterfall with lazy load visualized

This observation leads to a question: is it possible to parallelize
these requests to further reduce delays? Exploring this possibility
could unlock more performance enhancements, especially in com-
plex application structures.

This chapter is a deep dive into optimizing React applications
using Lazy Load and Suspense. It provides practical examples
and insights into improving load times and overall application
efficiency. In the next chapter, we’ll explore more advanced
networking patterns and continue enhancing the performance and
user experience of React applications.

Chapter 6: Prefetching
Techniques in React
Applications

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Introducing SWR

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Implementing SWR for Preloading

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Integrating preload with SWR

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

Chapter 7: Introducing
Server Side Rendering

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Introducing Next.js

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

React Server Components

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

Chapter 8: Introducing
Static Site Generation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Mixing Server-Side Rendering and
Static Site Generation

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

Chapter 9: Optimizing
User Experience with
Skeleton Loading in
React

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

Chapter 10: The New
Suspense APl in React

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Re-Introducing Suspense & Fallback

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Using skeletons in different layers

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Streaming in Next.js

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

Chapter 10: The New Suspense API in React 56

Optimizing Ul by Grouping Related
Data Components
This content is not available in the sample book. The book can be

purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

Chapter 11: Lazy Load,
Dynamic Import, and
Preload in Next.js

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Dynamic Load in Next.js

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Implementing the UserDetailCard

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Preload in Next.js

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

Chapter 11: Lazy Load, Dynamic Import, and Preload in Next.js 58

Client Component Strategy

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

First Version - Entire Component as
Client-Side

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

Second Version - Client Logic at Leaf Node

This content is not available in the sample book. The book can be
purchased on Leanpub at http://leanpub.com/react-data-fetching-
patterns

http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns
http://leanpub.com/react-data-fetching-patterns

	Table of Contents
	Preface
	Chapter 1: Introduction
	Setting up the environment
	Setting up the backend service

	Chapter 2: Basics of Data Fetching in React
	Adding loading and error handling
	Implementing the User's Friends List

	Chapter 3: Fetching Resources in Parallel
	Sending Requests in Parallel
	Request Dependency

	Chapter 4: Optimizing Friend List Interactions
	Install and config NextUI
	Implementing a Popover Component
	Defining a Trigger Component
	Implementing UserDetailCard Component (Fetching Data)

	Chapter 5: Leveraging Lazy Load and Suspense in React
	Introducing Lazy Loading
	Implementing UserDetailCard with lazy loading
	The potential issue

	Chapter 6: Prefetching Techniques in React Applications
	Introducing SWR
	Implementing SWR for Preloading
	Integrating preload with SWR

	Chapter 7: Introducing Server Side Rendering
	Introducing Next.js
	React Server Components

	Chapter 8: Introducing Static Site Generation
	Mixing Server-Side Rendering and Static Site Generation

	Chapter 9: Optimizing User Experience with Skeleton Loading in React
	Chapter 10: The New Suspense API in React
	Re-Introducing Suspense & Fallback
	Using skeletons in different layers
	Streaming in Next.js
	Optimizing UI by Grouping Related Data Components

	Chapter 11: Lazy Load, Dynamic Import, and Preload in Next.js
	Dynamic Load in Next.js
	Implementing the UserDetailCard
	Preload in Next.js
	Client Component Strategy

