

 [image: Advanced Data Fetching Patterns in React]

 Advanced Data Fetching Patterns in React

 Fast, User-Friendly Data Fetching for Developers

 Juntao Qiu

 This book is for sale at http://leanpub.com/react-data-fetching-patterns

 This version was published on 2024-01-27

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2024 Juntao Qiu

Table of Contents
	Preface
	Chapter 1: Introduction	Setting up the environment
	Setting up the backend service

	Chapter 2: Basics of Data Fetching in React	Adding loading and error handling
	Implementing the User’s Friends List

	Chapter 3: Fetching Resources in Parallel	Sending Requests in Parallel
	Request Dependency

	Chapter 4: Optimizing Friend List Interactions	Install and config NextUI
	Implementing a Popover Component
	Defining a Trigger Component
	Implementing UserDetailCard Component (Fetching Data)

	Chapter 5: Leveraging Lazy Load and Suspense in React	Introducing Lazy Loading
	Implementing UserDetailCard with lazy loading
	The potential issue

	Chapter 6: Prefetching Techniques in React Applications	Introducing SWR
	Implementing SWR for Preloading
	Integrating preload with SWR

	Chapter 7: Introducing Server Side Rendering	Introducing Next.js
	React Server Components

	Chapter 8: Introducing Static Site Generation	Mixing Server-Side Rendering and Static Site Generation

	Chapter 9: Optimizing User Experience with Skeleton Loading in React
	Chapter 10: The New Suspense API in React	Re-Introducing Suspense & Fallback
	Using skeletons in different layers
	Streaming in Next.js
	Optimizing UI by Grouping Related Data Components

	Chapter 11: Lazy Load, Dynamic Import, and Preload in Next.js	Dynamic Load in Next.js
	Implementing the UserDetailCard
	Preload in Next.js
	Client Component Strategy

 Guide

 	
 Cover

Preface

As your React applications grow richer with API integrations, do you find them increasingly bogged down and sluggish? You’re wrestling with a common dilemma in the modern web development landscape: the more features and data connections you add, the more complex and slower your app becomes. Add to this the often baffling world of asynchronous programming, where debugging and troubleshooting can feel like navigating a labyrinth in the dark.

And it doesn’t stop there. The React ecosystem is rapidly evolving, bombarding you with a flurry of new terms and concepts. React Server Components, SSR (Server-Side Rendering), Suspense API – these aren’t just fancy buzzwords; they’re game-changers in how we think about building and optimizing our applications. But understanding and implementing them can feel overwhelming.

Embark on this journey with me, and together we’ll take these intricate concepts and break them down into digestible, actionable insights. From unraveling the challenges of parallel requests and mastering lazy loading to demystifying SSR and exploring the cutting-edge realms of Server Components and Suspense, I’ve got you covered. You’ll not only learn how to keep your applications lightning-fast but also discover strategies for efficient debugging and problem-solving in the asynchronous realm of React.

Join me, and transform the way you develop, optimize, and debug your React applications. It’s time to turn those pain points into your strongest assets.

Chapter 1: Introduction

Kicking off the tutorial ‘Advanced Network Patterns in React’, this chapter sets the stage for exploring diverse network request patterns in React applications. It establishes the foundational knowledge needed for handling complex network scenarios in frontend development.

In this chapter, you will learn the following content:

	
Setting up the development environment with Vite and Tailwind CSS.

	
Ensuring all necessary tools and configurations are in place for the tutorial.

	
Introduction to the mock server for backend simulation.

This tutorial is designed to explore a range of patterns for executing network requests in React applications. Although the focus is on React, the principles and challenges discussed are relevant to other frontend libraries and frameworks.

Starting with a basic user profile, the tutorial progressively introduces more complex scenarios. These scenarios are intended to illuminate common problems and solutions encountered in large-scale applications, with a primary aim of demystifying the often-overlooked performance pitfalls in frontend development.

While React serves as the primary example, the patterns and strategies discussed are broadly applicable across various frontend technologies. They offer universal insights that can be valuable in diverse development contexts.

The tutorial assumes you have a foundational understanding of React, including familiarity with JSX and common hooks such as useState and useEffect.

Key learning outcomes of this tutorial include:

	
Gaining a deep understanding of the challenges inherent in network programming and why it can be difficult to get right.

	
Unraveling and demystifying the most commonly misunderstood yet widely used patterns.

	
Exploring ways to make asynchronous service calls more manageable and less error-prone.

	
Investigating alternative approaches for enhancing user experience.

	
Learning how to apply different strategies in both frontend and backend development.

	
Looking ahead to the future of server-side work and its implications for frontend development.

This tutorial aims to equip you with the knowledge and tools to navigate the complexities of network requests in React and other frontend frameworks, enhancing both your understanding and practical skills.

The page we’re going to build is a Home page in an imaginary social media website. It doesn’t do much but showing a user their home page when then log in.

[image: The home page we will build in the tutorial]Figure 1. The home page we will build in the tutorial

Setting up the environment

We’re going to use vite as the scaffolding tool to generate the structure of the application, use the following command to create a React with TypeScript enabled.

Figure 21 npm create vite@latest react-network-advanced -- --templa\
2 te react-ts
3 cd react-network-advanced

Let’s clean up the generated template file, open up the src/App.tsx, and put the following code:

Figure 3 1 function App() {
 2 return (
 3 <div className="max-w-3xl m-auto my-4 text-slate-80\
 4 0">
 5 <h1 className="text-4xl py-4 mb-4 tracking-wider \
 6 font-bold">Profile</h1>
 7 </div>
 8);
 9 }
10
11 export default App;

We are going to use Tailwind Css for styling in this tutorial.

Tailwind is a utility-first CSS framework packed with classes like flex, pt-4, text-center and rotate-90 that can be composed to build any design, directly in your markup.

Utility-first CSS frameworks provide a comprehensive set of CSS utility classes for common styling tasks. Instead of writing custom CSS, developers can construct designs by combining these utility classes directly in their markup. This approach promotes rapid UI development, consistency across pages, and can lead to more maintainable codebases.

To install Tailwind, go to the react-network-advanced folder we created above, and execute the following command in Terminal (if you’re on Mac OS)

Figure 41 npm install -D tailwindcss postcss autoprefixer
2 npx tailwindcss init -p

And then you will need to config Tailwind to allow it scan index.html and all tsx files under src folder.

Figure 5. tailwind.config.js 1 /** @type {import('tailwindcss').Config} */
 2 export default {
 3 content: [
 4 "./index.html",
 5 "./src/**/*.{ts,tsx}",
 6],
 7 theme: {
 8 extend: {},
 9 },
10 plugins: [],
11 }

Lastly, you will need to use @tailwind directives in src/index.css to actually enable it:

Figure 6. src/index.css1 @tailwind base;
2 @tailwind components;
3 @tailwind utilities;

I prefer to make the background a bit gray, so I’ll add the following line in src/index.css

Figure 7. src/index.css1 body {
2 background-color: #fefefe;
3 }

With these changes in place, let’s launch the application now in command line:

Figure 81 npm run dev

It by default will launch your React application on “http://localhost:5173/”, And in your browser, you should be able to see the text Profile

[image: Check Vite and Tailwind CSS are working together]Figure 9. Check Vite and Tailwind CSS are working together

Setting up the backend service

We are going to call some API endpoints in the course of the tutorial, I have published them into a Github repo, go ahead and clone the repo to your local (assume it’s in folder: mock-server-network-react-tutorial.

Run the following command to launch the mock server:

Figure 101 cd mock-server-network-react-tutorial
2 yarn start

You would be able to see something like this in your console:

Figure 111 yarn run v1.22.19
2 $ node index.js
3 Mock server listening at http://localhost:1573

And if you try to access the one of the following API endpoint:

Figure 121 curl http://localhost:1573/users/u1

Or if you prefer, you could use jq to format the output, which is a bit easier to read (curl http://localhost:1573/users/u1 | jq .). And you should be able to see response like the following:

Figure 13 1 {
 2 "id": "u1",
 3 "name": "Juntao Qiu",
 4 "bio": "Developer, Educator, Author",
 5 "interests": [
 6 "Technology",
 7 "Outdoors",
 8 "Travel"
 9]
10 }

This introductory chapter equips learners with the essential setup and context for tackling advanced network patterns in React, paving the way for more complex concepts and practical applications in subsequent chapters. The next chapter will dive into using useEffect for building a basic profile page, demonstrating sequential network requests.

Chapter 2: Basics of Data Fetching in React

This chapter dives into the essentials of data fetching in React applications, starting from a simple user profile page. It highlights the initial steps of making API calls, dealing with network delays, and managing state with React’s useEffect hook.

In this chapter, you will learn the following content:

	
Understanding and implementing basic data fetching using useEffect in React.

	
Exploring the impact of network delays on frontend performance.

	
Practical implementation of a user profile and friends list component with API integration.

Imagine a simple React application: a profile page where a logged-in user can view their profile. To achieve this, we need to fetch the user’s information from an API using their ID.

The API endpoint we’ll use returns basic user information. It’s designed to include a delay, allowing us to later examine how slow API responses can impact frontend performance.

Consider this API call:

Figure 141 curl http://localhost:1573/users/u1

And the expected response:

Figure 15 1 {
 2 "id": "u1",
 3 "name": "Juntao Qiu",
 4 "bio": "Developer, Educator, Author",
 5 "interests": [
 6 "Technology",
 7 "Outdoors",
 8 "Travel"
 9]
10 }

In a typical React setup, we would handle this data fetching within a useEffect call. React triggers this effect after completing the initial render.

Here’s how you might implement this in src/profile.tsx:

Figure 16. src/profile.tsx 1 const Profile = ({ id }: { id: string }) => {
 2 const [user, setUser] = useState<User | undefined>();
 3
 4 useEffect(() => {
 5 const fetchUser = async () => {
 6 const data = await get<User>(`/users/${id}`);
 7 setUser(data);
 8 };
 9
10 fetchUser();
11 }, [id]);
12
13 return (
14 <div>
15 {user && user.name}
16 </div>
17);
18 };

The get function is a straightforward wrapper around the native fetch. You can replace it with axios.get or any other preferred method.

Here’s the utility function in utils.ts:

Figure 17. utils.ts 1 const baseurl = "http://localhost:1573";
 2
 3 async function get<T>(url: string): Promise<T> {
 4 const response = await fetch(`${baseurl}${url}`);
 5
 6 if (!response.ok) {
 7 throw new Error("Network response was not ok");
 8 }
 9
10 return await response.json() as Promise<T>;
11 }
12
13 export { get };

To render the Profile component, update App.tsx as follows:

Figure 18. App.tsx 1 import { Profile } from "./src/profile.tsx";
 2
 3 function App() {
 4 return (
 5 <div>
 6 <h1>Profile</h1>
 7 <div>
 8 <Profile id="u1" />
 9 </div>
10 </div>
11);
12 }
13
14 export default App;

Visualizing the rendering sequence over time, it would look something like this diagram:

[image: Fetch and then render]Figure 19. Fetch and then render

When a user accesses a React application, a typical flow begins with the browser downloading the initial HTML. As it parses the HTML, it encounters links to resources like JS and CSS. This process involves downloading, parsing, and executing JS bundles, building the CSSOM, and so on.

Note: HTML parsing is usually done in a streaming manner, meaning it starts as soon as some bytes are received rather than waiting for the entire HTML to download. For simplicity, our illustration assumes the entire HTML is downloaded before DOM construction. More details can be found in Rendering on the Web, Client-side rendering of HTML and interactivity, and Populating the page: how browsers work.

As JavaScript executes, React begins rendering and manipulating the DOM, then triggers a network request through useEffect. It waits until data returns from the server before re-rendering with the new data.

Adding loading and error handling

To enhance user experience, we can introduce a Spinner component during data loading and an Error component for handling issues like unresponsive backends or nonexistent users.

With these additions, the Profile component now includes additional states:

Figure 20. src/profile.tsx 1 const Profile = ({ id }: { id: string }) => {
 2 const [loading, setLoading] = useState<boolean>(false);
 3 const [error, setError] = useState<Error | undefined>();
 4
 5 const [user, setUser] = useState<User | undefined>();
 6
 7 useEffect(() => {
 8 const fetchUser = async () => {
 9 try {
10 setLoading(true);
11 const data = await get<User>(`/users/${id}`);
12 setUser(data);
13 } catch (e) {
14 setError(e as Error);
15 } finally {
16 setLoading(false);
17 }
18 };
19
20 fetchUser();
21 }, [id]);
22
23 if (loading) {
24 return <div>Loading...</div>;
25 }
26
27 if (error) {
28 return <div>Something went wrong...</div>;
29 }
30
31 return (
32 <>
33 {user && user.name}
34 </>
35);
36 };

This structure should be familiar if you’ve worked with React before.

Next, let’s add more than just the username. We’ll create an About component to display user information, adding simple styles for visual appeal.

For brevity, I’m omitting Tailwind CSS from the code snippets. You can view the full styled components in the corresponding code repository.

Figure 21. src/about.tsx 1 const About = ({ user }: { user: User }) => {
 2 return (
 3 <div>
 4 <div>
 5 <img
 6 src={user.avatar}
 7 alt={`User ${user.name} Avatar`}
 8 />
 9 </div>
10 <div>
11 <div>{user.name}</div>
12 <p>{user.bio}</p>
13 </div>
14 </div>
15);
16 };

When data is correctly fetched, it renders as shown:

[image: User basic information fetched and rendered]Figure 22. User basic information fetched and rendered

We now have a basic Profile page, retrieving data from a backend API intentionally delayed by 1.5 seconds.

Implementing the User’s Friends List

Consider the user’s friends list, typically stored in a separate table and accessed via a different API endpoint. For example, /users/<id>/friends. We’ll fetch this data in a new component, Friends.

Figure 23. src/friends.tsx 1 const Friends = ({ id }: { id: string }) => {
 2 const [loading, setLoading] = useState<boolean>(false);
 3 const [users, setUsers] = useState<User[]>([]);
 4
 5 useEffect(() => {
 6 const fetchFriends = async () => {
 7 setLoading(true);
 8 const data = await get<User>(`/users/${id}/friends`\
 9);
10 setLoading(false);
11 setUsers(data);
12 };
13
14 fetchFriends();
15 }, [id]);
16
17 if(loading) {
18 return <div>Loading...</div>
19 }
20
21 return (
22 <div>
23 <h2>Friends</h2>
24 <div>
25 {users.map((user) => (
26 <div>
27 <img
28 src={`https://i.pravatar.cc/150?u=${user.id\
29 }`}
30 alt={`User ${user.name} avatar`}
31 />
32 {user.name}
33 </div>
34))}
35 </div>
36 </div>
37);
38 };
39
40 export { Friends };

The structure of the Friends component mirrors that of Profile: managing state, fetching data in useEffect, and rendering based on loading, error, and successful data retrieval states.

We can incorporate Friends into the Profile component like any regular React component:

Figure 24. src/profile.tsx 1 const Profile = () => {
 2 //...
 3
 4 return (
 5 <>
 6 {user && <About user={user} />}
 7 <Friends id={id} />
 8 </>
 9);
10 }

At first glance, this implementation seems fine. However, if you consider the time taken for each API call, you might spot a potential issue. What if the /friends API also takes 1.5 seconds to respond? The total time to display the full page would be 3 seconds.

This chapter lays the groundwork for mastering network requests in React. It provides a practical example of fetching and rendering data, setting the stage for more advanced patterns and performance considerations in subsequent chapters. The next chapter will further explore complex data fetching scenarios, addressing performance challenges in frontend applications.

Chapter 3: Fetching Resources in Parallel

Chapter 3 tackles the challenge of optimizing network requests in React applications. It focuses on implementing parallel data fetching strategies to minimize the impact of the network waterfall effect, enhancing application performance and user experience.

In this chapter, you will learn the following content:

	
Understanding and mitigating the request waterfall effect.

	
Implementing parallel requests for efficiency.

	
Handling dependencies in network requests.

The first issue we encounter is with the rendering order. Initially, in the Profile component, useEffect triggers a network request. However, since data takes 1.5 seconds to return, we display a loading indicator in the meantime.

Once the data arrives, we render the About section, and a similar process occurs in the Friends component. Here, useEffect initiates another network request, waiting for the data to return.

Visualizing the request timeline, it looks like this:

[image: The request waterfall issue]Figure 25. The request waterfall issue

The process involves three renderings. After the first render, the page displays a loading... message while initiating the /users/u1 request. When the server responds, the About section is displayed. As Friends renders, lacking available data, it shows a loading... message in its section and sends out the /users/u1/friends request. Upon receiving this data, the third rendering occurs.

[image: The component tree of About + Friends]Figure 26. The component tree of About + Friends

This sequence might be obvious in our current setup, but consider more complex scenarios. Imagine the Friends component nested deeper in the component tree or used in different pages or sections. In such cases, identifying the problem by statically reading the code becomes challenging.

The situation worsens with more nested components following the same useEffect + loading + error pattern, potentially leading to cumulative performance issues:

[image: Request waterfall could be even worse]Figure 27. Request waterfall could be even worse

Over time, as the component tree grows, the page becomes increasingly slower.

However, one might wonder if initiating data fetching simultaneously could mitigate this wait time.

Sending Requests in Parallel

We can address this issue by sending parallel requests. In the Profile component, we can start both requests simultaneously using Promise.all, passing the fetched friends list to the Friends component:

Figure 28. src/profile.tsx 1 const Profile = ({ id }: { id: string }) => {
 2 //...
 3 const [user, setUser] = useState<User | undefined>();
 4 const [friends, setFriends] = useState<User[]>([]);
 5
 6 useEffect(() => {
 7 const fetchUserAndFriends = async () => {
 8 try {
 9 setLoading(true);
10
11 const [user, friends] = await Promise.all([
12 get<User>(`/users/${id}`),
13 get<User[]>(`/users/${id}/friends`),
14]);
15
16 setUser(user);
17 setFriends(friends);
18 } catch (e) {
19 setError(e as Error);
20 } finally {
21 setLoading(false);
22 }
23 };
24
25 fetchUserAndFriends();
26 }, [id]);
27
28 //...
29 };
30
31 export { Profile };

The Promise.all() static method accepts an iterable of promises, returning a single Promise. This promise resolves when all input promises fulfill (including for an empty iterable), resulting in an array of fulfillment values. If any input promises reject, the returned promise rejects with the first rejection reason.

Consequently, we modify Friends into a presentational component, responding only to the passed users list, rather than making its own requests:

Figure 29. src/friends.tsx 1 const Friends = ({ users }: { users: User[] }) => {
 2 return (
 3 <div>
 4 <h2>Friends</h2>
 5 <div>
 6 {users.map((user) => (
 7 <div>
 8 <img
 9 src={`https://i.pravatar.cc/150?u=${user.id\
10 }`}
11 alt={`User ${user.name} avatar`}
12 />
13 {user.name}
14 </div>
15))}
16 </div>
17 </div>
18);
19 };
20
21 export { Friends };

Now, the total wait time is reduced to max(1.5, 1.5) = 1.5 seconds, a significant improvement:

[image: Send requests in parallel]Figure 30. Send requests in parallel

The only remaining issue is the potential wait for the slower request in extreme cases. We’ll accept this limitation for now and explore solutions in subsequent chapters.

[image: The only async component now is Profile]Figure 31. The only async component now is Profile

Request Dependency

Parallel requests expedite the loading of independent data. However, some requests depend on others. For example, we might need to fetch user information first and use the interests array from the response to retrieve recommended feeds for the user. This sequential dependency necessitates a return to the initial approach.

In the Feeds component, we define loading, error, and data states, and useEffect initiates network fetching after the initial render:

Figure 32. src/feeds.tsx 1 const Feeds = ({ category }: { category: string }) => {
 2 const [loading, setLoading] = useState<boolean>(false);
 3 const [feeds, setFeeds] = useState<Feed[]>([]);
 4
 5 useEffect(() => {
 6 const fetchFeeds = async () => {
 7 setLoading(true);
 8 const data = await get(`/articles/${category}`);
 9
10 setLoading(false);
11 setFeeds(data);
12 };
13
14 fetchFeeds();
15 }, [category]);
16
17 if (loading) {
18 return <div>Loading...</div>;
19 }
20
21 return (
22 <div>
23 <h2>Your Feeds</h2>
24 <div>
25 {feeds.map((feed) => (
26 <>
27 <h3>{feed.title}</h3>
28 <p>{feed.description}</p>
29 </>
30))}
31 </div>
32 </div>
33);
34 };

In the Profile component, we include Feeds as follows:

Figure 33. src/profile.tsx1 return (
2 <>
3 {user && <About user={user} />}
4 <Friends users={friends} />
5 {user && <Feeds category={user.interests[0]} />}
6 </>
7);

Initially, About and Friends load, and as soon as the user data is available, we use interests[0] to fetch feeds, potentially taking another second. The overall wait time amounts to max(1.5, 1.5) + 1 = 2.5 seconds.

[image: The UI after all components are rendered]Figure 34. The UI after all components are rendered

This approach combines parallel and sequential requests, yielding better performance than the initial method.

[image: The mix of parallel and sequential requests]Figure 35. The mix of parallel and sequential requests

The feeds request must wait for the completion of the previous two requests, displaying a large spinner in the interim. While this solution is functional, we must consider the runtime data requirements for each specific user.

By mastering parallel requests and managing dependencies in network calls, this chapter sets the foundation for building faster and more responsive React applications. Join us as we continue to navigate the intricate world of advanced network patterns in React. In the next chapter, we explore further optimization strategies and delve into more complex scenarios of network fetching in React.

Chapter 4: Optimizing Friend List Interactions

This chapter focuses on enhancing the user experience in React applications by implementing a detailed user profile popover. It explores the integration of external UI libraries like NextUI for building interactive features and discusses efficient data fetching strategies.

In this chapter, you will learn the following content:

	
Leveraging NextUI for dynamic UI components.

	
Efficient data fetching for enhanced features.

	
Balancing performance with interactive design.

Let’s delve further into typical frontend application scenarios, uncovering new patterns and potential avenues for performance improvement.

Consider enhancing the current Profile page. Suppose a user clicks on a friend’s avatar, and we display a popover with additional details fetched from a /users/1/details endpoint. This feature, common in platforms like Twitter or LinkedIn, adds depth to user interaction.

[image: User Detail Popover]Figure 36. User Detail Popover

To maintain focus on our main topic, I’ll skip the detailed implementation of the popover itself. Instead, we’ll utilize components from nextui for the popover behavior and UserDetailCard.

NextUI is a React UI library built on top of Tailwind CSS and React Aria, offering beautiful and accessible user interfaces. Despite its name similarity and website design, it’s an independent community project and is not affiliated with Vercel or Next.js.

Install and config NextUI

Firstly, let’s install NextUI into our project:

Figure 371 yarn add @nextui-org/react framer-motion

And the we will need to edit tailwind.config.cjs

Figure 38. tailwind.config.cjs 1 const {nextui} = require("@nextui-org/react");
 2
 3 /** @type {import('tailwindcss').Config} */
 4 module.exports = {
 5 content: [
 6 "./index.html",
 7 "./src/**/*.{jsx,tsx}",
 8 "./node_modules/@nextui-org/theme/dist/**/*.{js,ts,js\
 9 x,tsx}",
10],
11 theme: {
12 extend: {},
13 },
14 darkMode: "class",
15 plugins: [nextui()],
16 }

And finally we’ll need to wrap the Application with a NextUIProvider:

Figure 39 1 import { NextUIProvider } from "@nextui-org/react";
 2
 3 function App() {
 4 return (
 5 <NextUIProvider>
 6 <div>
 7 <h1>Profile</h1>
 8 <div>
 9 <Profile id="u1" />
10 </div>
11 </div>
12 </NextUIProvider>
13);
14 }

Next let’s implement the popover component with Friend.

Implementing a Popover Component

A popover is a non-modal dialog that appears adjacent to its trigger element. It’s often used to display additional rich content.

Here’s a basic implementation using @nextui-org/react:

Figure 40 1 import React from "react";
 2 import {Popover, PopoverTrigger, PopoverContent, Button} \
 3 from "@nextui-org/react";
 4
 5 export default function App() {
 6 return (
 7 <Popover placement="right">
 8 <PopoverTrigger>
 9 <Button>Open Popover</Button>
10 </PopoverTrigger>
11 <PopoverContent>
12 <div>
13 <div>Popover Content</div>
14 <div>This is the popover content</div>
15 </div>
16 </PopoverContent>
17 </Popover>
18);
19 }

Clicking the “Open Popover” button reveals a popover box to the right. This box contains a header “Popover Content” in bold, followed by a descriptive text. It’s styled with padding and font adjustments for better presentation.

Defining a Trigger Component

The Friend component can act as a trigger for the popover. We wrap it with PopoverTrigger as follows:

Figure 41. src/friend.tsx 1 import { User } from "../types";
 2 import { Popover, PopoverContent, PopoverTrigger } from "\
 3 @nextui-org/react";
 4 import { Brief } from "./brief.tsx";
 5
 6 import UserDetailCard from "./user-detail-card.tsx";
 7
 8 export const Friend = ({ user }: { user: User }) => {
 9 return (
10 <Popover placement="bottom" showArrow offset={10}>
11 <PopoverTrigger>
12 <button>
13 <Brief user={user} />
14 </button>
15 </PopoverTrigger>
16 <PopoverContent>
17 <UserDetailCard id={user.id} />
18 </PopoverContent>
19 </Popover>
20);
21 };

The Brief component accepts a User object and renders its details:

Figure 42. src/brief.tsx 1 export function Brief({user}: { user: User }) {
 2 return (
 3 <div>
 4 <div>
 5 <img
 6 src={`https://i.pravatar.cc/150?u=${user.id}`}
 7 alt={`User ${user.name} avatar`}
 8 width={32}
 9 height={32}
10 />
11 </div>
12 <div>
13 <div>{user.name}</div>
14 <p>{user.bio}</p>
15 </div>
16 </div>
17);
18 }

A click on the Brief component activates the popover.

Implementing UserDetailCard Component (Fetching Data)

UserDetailCard is designed to fetch and display user details. The user detail includes:

Figure 43. types.ts1 export type UserDetail = {
2 id: string;
3 name: string;
4 bio: string;
5 twitter: string;
6 homepage: string;
7 };

We use our reusable get function to fetch these details from the /users/<id>/details endpoint:

Figure 44. src/user-detail-card.tsx 1 export function UserDetailCard({ id }: { id: string }) {
 2 const [loading, setLoading] = useState<boolean>(false);
 3 const [detail, setDetail] = useState<UserDetail | undef\
 4 ined>();
 5
 6 useEffect(() => {
 7 const fetchFeeds = async () => {
 8 setLoading(true);
 9 const data = await get<UserDetail>(`/users/${id}/de\
10 tails`);
11
12 setLoading(false);
13 setDetail(data);
14 };
15
16 fetchFeeds();
17 }, [id]);
18
19 if (loading || !detail) {
20 return <div>Loading...</div>;
21 }
22
23 return (
24 <Card shadow="none">
25 <CardHeader>
26 <div>
27 <Avatar
28 isBordered
29 radius="full"
30 size="md"
31 src={`https://i.pravatar.cc/150?u=${detail.id\
32 }`}
33 />
34 <div>
35 <h4>{detail.name}</h4>
36 <p>{detail.twitter}</p>
37 </div>
38 </div>
39 </CardHeader>
40 <CardBody>
41 <p>{detail.bio}</p>
42 </CardBody>
43 <CardFooter>
44 <div>
45 <p>
46 {detail.homepage}</\
47 a>
48 </p>
49 </div>
50 </CardFooter>
51 </Card>
52);
53 }
54
55 export default UserDetailCard;

If we could visualise the current component tree

[image: Component Tree with User Detail Card]Figure 45. Component Tree with User Detail Card

This implementation appears efficient. However, a network inspection reveals increasing data transfer to the client as more third-party libraries are integrated. The additional JavaScript and CSS for the popover and UserDetailCard could be unnecessary for users who don’t interact with these features.

[image: More data transferred through network]Figure 46. More data transferred through network

Is it possible to delay loading these resources until needed? For instance, only loading the UserDetailCard JS bundle when a user clicks on a Friend avatar, followed by a request to /users/1/details for detailed information. Let’s find out in the next chapter.

With the introduction of advanced UI elements and thoughtful data fetching strategies, this chapter elevates the user experience in React applications, paving the way for more engaging and efficient frontend designs. In the next chapter, we’ll dive into code splitting and lazy load to reduce the initial load, that also the foundation of React concurrent we’ll learn later.

Chapter 5: Leveraging Lazy Load and Suspense in React

Chapter 5 of the ‘Advanced Network Patterns in React’ tutorial explores the concepts of Lazy Loading and React Suspense for optimizing performance. It demonstrates how to dynamically load components only when they are required, reducing initial load times and improving user experience.

In this chapter, you will learn the following content:

	
Introduction to Lazy Loading in React

	
Utilizing React Suspense for better loading handling

	
Practical implementation in a user profile application

At the end of the previous chapter, we noticed that the page now has more bytes to load initially, which might not fair for user who don’t hover on a Friend component - they still need to pay for the extra network requests and JavaScript bundles.

We could delay such extra (not immediate useful) content into another request as late as possible (maybe never if the users don’t ask). For example, we could split UserDetailCard (and its dependency) into a separate JavaScript bundle and load it whenever the user hover on it.

[image: Separate UserDetailCard as another bundle]Figure 47. Separate UserDetailCard as another bundle

Let’s see how to implement it in React with lazy load and suspense.

Introducing Lazy Loading

Lazy loading in React is a strategy to dynamically load components on-demand, improving performance for larger applications by minimizing the initial code load. React’s lazy function, used alongside Suspense, renders dynamic imports as regular components, enhancing user experience and resource efficiency.

Consider this implementation:

Figure 48 1 import React, { Suspense, lazy } from 'react';
 2
 3 // Lazy load the component
 4 const LazyComponent = lazy(() => import('./LazyComponent'\
 5));
 6
 7 function App() {
 8 return (
 9 <div>
10 <Suspense fallback={<div>Loading...</div>}>
11 <LazyComponent />
12 </Suspense>
13 </div>
14);
15 }
16
17 export default App;

Here, LazyComponent is dynamically imported using lazy(). The Suspense component wraps around LazyComponent, providing a fallback UI during its loading phase. When LazyComponent is needed, it loads on demand, improving performance by splitting the code into smaller chunks.

Code splitting is a technique in React that enables splitting your code into various bundles, which can then be loaded on demand or in parallel. This is particularly beneficial for improving the performance of large applications. When a user navigates to a part of your application that requires a component or library, only then does the necessary bundle get loaded, significantly reducing the initial load time of the application. This is especially useful for users with slower internet connections or on mobile devices. React’s lazy function, coupled with Suspense, provides a straightforward way to implement code splitting, leading to more efficient resource usage and enhanced user experience.

Implementing UserDetailCard with lazy loading

Applying this concept, we’ve updated the Friend component in src/friend.tsx to use React.lazy for importing UserDetailCard. This change ensures that UserDetailCard loads only when necessary:

Figure 49. src/friend.tsx 1 import { User } from "../types";
 2 import { Popover, PopoverContent, PopoverTrigger } from "\
 3 @nextui-org/react";
 4 import React, { Suspense } from "react";
 5 import { Brief } from "./brief.tsx";
 6
 7 const UserDetailCard = React.lazy(() => import("./user-de\
 8 tail-card.tsx"));
 9
10 export const Friend = ({ user }: { user: User }) => {
11 return (
12 <Popover placement="bottom" showArrow offset={10}>
13 <PopoverTrigger>
14 <button>
15 <Brief user={user} />
16 </button>
17 </PopoverTrigger>
18 <PopoverContent>
19 <Suspense fallback={<div>Loading...</div>}>
20 <UserDetailCard id={user.id} />
21 </Suspense>
22 </PopoverContent>
23 </Popover>
24);
25 };

The code defines a Friend component in React that displays user information using a popover. It imports user-related types and components from @nextui-org/react and a local Brief component for displaying a summary of the user.

The UserDetailCard component is dynamically imported using React.lazy for performance efficiency, loading only when needed.

Figure 501 const UserDetailCard = React.lazy(() => import("./user-de\
2 tail-card.tsx"));

Within the Friend component, a Popover is set up with its trigger wrapping a button that shows the Brief user summary. When clicked, the popover displays, containing the UserDetailCard within a Suspense component. This setup ensures a loading fallback is shown while the UserDetailCard loads, providing detailed user information based on the user’s ID. This approach optimizes loading performance by fetching detailed user data only when the popover is activated.

Figure 511 <Suspense fallback={<div>Loading...</div>}>
2 <UserDetailCard id={user.id} />
3 </Suspense>

Suspense is a React component that lets your components “wait” for something before rendering. Initially introduced for React.lazy (lazy loading of components), its use has expanded to include data fetching and other asynchronous operations (we’ll see how to do that in later Chapter with Next.js). Suspense provides a way to specify a fallback UI – for example, a loading indicator – that shows up while waiting for the component to load or data to be fetched. This helps in creating smoother user experiences in React applications, as it allows for more control over what gets displayed during the waiting period of an asynchronous operation. The integration of Suspense with lazy loading and other React features reflects the framework’s ongoing evolution to meet modern web development needs.

This lazy loading approach is evident in the network panel of devtools, where two requests are made upon clicking Friend: one for the JavaScript bundle of UserDetailCard, and another for the user’s details from the API.

[image: Waterfall with lazy load]Figure 52. Waterfall with lazy load

Analysis the current bundles, it doesn’t seem help a lot:

[image: Bundle size analysis]Figure 53. Bundle size analysis

Note in the chart above, the thin slice on the left hand side it the UserDetailCard, while the big one on the right is everything else. And if we look closely we’ll find the biggest one is framer-motion - a package that adding the animation in React - shipped within NextUI. Obviously we don’t really need animation for everything, it only used when the popover shows up.

We could further split the Friend into a separate bundle with NextUI components, and leave the index lightweight.

So firstly we don’t import Friend in Friends, instead we lazy load it with suspense:

Figure 54 1 import { User } from "../types.ts";
 2 import React, { Suspense } from "react";
 3 import { FriendSkeleton } from "../misc/friend-skeleton.t\
 4 sx";
 5
 6 const Friend = React.lazy(() => import("./friend.tsx"));
 7
 8 const Friends = ({ users }: { users: User[] }) => {
 9 return (
10 <div>
11 <h2>Friends</h2>
12 <div>
13 {users.map((user) => (
14 <Suspense fallback={<FriendSkeleton />}>
15 <Friend user={user} key={user.id} />
16 </Suspense>
17))}
18 </div>
19 </div>
20);
21 };
22
23 export { Friends };

And in the Profile.tsx, we will remove NextUIProvider and add it as a wrapper to Friend, because we don’t need NextUI for the whole application but the popover in Friend.

Figure 55. src/friend.tsx 1 //...
 2 const UserDetailCard = React.lazy(() => import("./user-de\
 3 tail-card.tsx"));
 4
 5 const Friend = ({ user }: { user: User }) => {
 6 return (
 7 <NextUIProvider>
 8 <Popover placement="bottom" showArrow offset={10}>
 9 <PopoverTrigger>
10 <button>
11 <Brief user={user} />
12 </button>
13 </PopoverTrigger>
14 <PopoverContent>
15 <Suspense fallback={<div>Loading...</div>}>
16 <UserDetailCard id={user.id} />
17 </Suspense>
18 </PopoverContent>
19 </Popover>
20 </NextUIProvider>
21);
22 };
23
24 export default Friend;

With these updates, our new analysis reveals that we have three distinct bundles: UserDetail, Friend, and Profile.

[image: Bundle size analysis after splitting Friend]Figure 56. Bundle size analysis after splitting Friend

The largest bundle, shown in blue, corresponds to the Friend component. The smaller, red-tinted one at the top-left is the UserDetailCard, and the green-tinted one represents the Profile component.

This is a significant improvement. Now, the loading process works as follows: When the Profile component initiates parallel requests for /users/u1 and /users/u1/friends, we display skeleton screens for the About section and the Friends list. As the friends data arrives and the Friends component starts rendering, the browser concurrently downloads the related bundle. During this time, a FriendSkeleton is displayed, transitioning to the Friend component once the bundle is fully downloaded.

Moreover, if the user doesn’t hover over a Friend, there’s no additional action. The UserDetail data is fetched only when the user hovers over a Friend, optimizing resource loading and enhancing performance.

The potential issue

Visualizing the request process, we see a sequence similar to the network waterfall discussed in Chapter 2:

[image: Waterfall with lazy load visualized]Figure 57. Waterfall with lazy load visualized

This observation leads to a question: is it possible to parallelize these requests to further reduce delays? Exploring this possibility could unlock more performance enhancements, especially in complex application structures.

This chapter is a deep dive into optimizing React applications using Lazy Load and Suspense. It provides practical examples and insights into improving load times and overall application efficiency. In the next chapter, we’ll explore more advanced networking patterns and continue enhancing the performance and user experience of React applications.

Chapter 6: Prefetching Techniques in React Applications
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Introducing SWR
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Implementing SWR for Preloading
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Integrating preload with SWR
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Chapter 7: Introducing Server Side Rendering
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Introducing Next.js
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

React Server Components
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Chapter 8: Introducing Static Site Generation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Mixing Server-Side Rendering and Static Site Generation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Chapter 9: Optimizing User Experience with Skeleton Loading in React
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Chapter 10: The New Suspense API in React
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Re-Introducing Suspense & Fallback
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Using skeletons in different layers
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Streaming in Next.js
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Optimizing UI by Grouping Related Data Components
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Chapter 11: Lazy Load, Dynamic Import, and Preload in Next.js
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Dynamic Load in Next.js
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Implementing the UserDetailCard
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Preload in Next.js
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Client Component Strategy
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

First Version - Entire Component as Client-Side
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

Second Version - Client Logic at Leaf Node
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/react-data-fetching-patterns

 EPUB/resources/ch5/waterfall-lazy-load.png
DevTools - localhost:5173/

o Elements Console Sources Network Performance Memory Application Security Lighthouse Recorder X >

® 0| Y Q Preserve log Disable cache No throttling ¥ L L

Invert Hide data URLs Hide extension URLs Al Doc || JS || Fetch/XHR || CSS || Font | | Img || Media | | Manifest || WS || Wasm | | Other
Blocked response cookies Blocked requests 3rd-party requests
Name Status Type Initiator Size Time Waterfall

[©) user-detail-card.tsx?t=17047015903... 304 script friend.tsx:13 145 B 3ms 1l
{7} details 200 fetch utils.ts:4 210B 504 ms

2requests | 355 B transferred | 12.2 kB resources

EPUB/resources/ch1/profile-final.png
React Network Tutorial A Create Next App

Cc ® localhost:3000/user/ul [& Incognito

Profile

2 Juntao Qiu Friends

Developer, Educator, Author .
P Abruzzi

Software Engineer

Your Feeds Bob Smith

. . s Frontend Developer
Implementing Dynamic Import and Code Splitting

As an application grows and more code is added, the initial loading time can become Carol White
noticeably longer. This delay, sometimes lasting several seconds, can frustrate users. To UI/UX Designer
avoid this, it's essential to optimize loading times.

Why Web Ul Development Is So Hard?

The landscape of web Ul development is fraught with challenges that extend beyond
writing code and designing interfaces. The inherent language limitations, nuanced data
management, async complexities, and often-ignored unhappy paths collectively make this a
formidable field. Architectural decisions ...

e ————————————————————————

EPUB/resources/ch3/mixed-parallel-and-sequential.png
Time

||
ll.
|
> S S <>
RN & RSN
e © N2NEN
°] <~
QR > A&N @
Y
RS
> *Q’b

Download resources

|
||
bé/ ,V(f\ bé/
S« &
< <
SN ;
@ y&@ @
QQ
N
2
6

M Parse HTML [Compile JS

[Parse CSS

[l React render

EPUB/resources/ch2/fetch-then-render.png
Time

||
..
|
|
v 5 S >
N & S S5
Ay % N o e
o RGN o
o RS <
Nl
&
X

Download resources [Parse HTML [Compile JS [Parse CSS [React render

EPUB/resources/ch4/user-detail-popover.png
React Network Tutorial

® localhost:5173

[& Incognito

Profile

2 Juntao Qiu

Developer, Educator, Author

Friends

Abruzzi Bob Smith

Software Engineer Frontend Developer

Abruzzi
@abruzzi
Software Engineer

https:/ficodeit.com.au

Carol White
Ul/UX Designer

T ——————————————————————————

EPUB/styles/resources/leanpub_pencil.png

EPUB/styles/resources/leanpub_question-circle.png

EPUB/resources/ch2/fetched-about.png
React Network Tutorial

(] @ localhost:5173 [& Incognito

Profile

2 Juntao Qiu

Developer, Educator, Author

EPUB/resources/ch4/component-tree-user-detail.png
Profile
! |
About Friends Feeds
Friend
! !
Brief UserDetailCard

Static component

Async component

EPUB/resources/ch3/parallel-requests.png
Time

O
.I
|
||
S) S ° S
RN & RSN &
© Q {/Q/
2 S X o
P R A\/@N KQ}' <
Y
RSN
RS

Download resources [Parse HTML [Compile JS

[Parse CSS

[l React render

EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/resources/ch4/network-inspect-increasing-load.png
o0 DevTools - localhost:5173/

o Elements Console Sources Network Performance Memory Application Security Lighthouse Recorder X >

(%) Q Preserve log Disable cache No throttling v T 3
Invert Hide data URLs Hide extension URLs | All Doc | JS | Fetch/XHR || CSS || Font | | Img || Media | | Manifest || WS || Wasm | | Other
Blocked response cookies Blocked requests 3rd-party requests
Name Status Type Initiator Size Time Waterfall

user-info-skeleton.tsx 200 script protile.tsx:2:3 4.2 KB loms 1)
friend.tsx?t=1704782632001 200 script friends.tsx:17 5.9 kB 1ms
feeds-skeleton.tsx 200 script feeds.tsx:19 6.7 kB 2ms
about-skeleton.tsx 200 script user-info-s... 5.3 kB 3ms
friends-skeleton.tsx 200 script user-info-s... 5.8 kB 3ms

brief.tsx 200 script friend.tsx:18 5.8 kB 2ms
user-detail-card.tsx?t=1704782632001 200 script friend.tsx:19 12.2 kB 3ms
chunk-HSESELKR.js?v=bbd2c0f7 200 script @nextui-or... 36.5 kB 1ms

25/35requests | 3.4 MB /3.4 MB transferred | 3.4 MB /4.1 MB resources | Finish: 2.67 s Load: 130 ms

EPUB/resources/ch5/component-tree-lazy-user-detail.png
Profile
l]
About Friends Feeds
Friend
|
J/ : """""""""" J; --------------
Brief . UserDetailCard

Static component Async component

EPUB/resources/ch3/more-waterfall.png
Time

[|
.l
|
|
|
|
> S S > SIS i
® & ¥ 6?’& sz & sz & sz
o % N e K« e« &
e 5 SRS 8 AN o
< ~ & k‘?’& < é\@ < é\@ <
XY O O
QY > S
~ &
K\

Download resources [Parse HTML [Compile JS [Parse CSS [React render

EPUB/styles/resources/leanpub_bug.png

EPUB/resources/ch3/component-tree-waterfall.png
App

!

Profile

|
! !

About Friends

Static component Async component

EPUB/resources/ch5/bundle-size-analytics-nextui.png
Cc

© Rendered

chunk-XBMXQUVZ.mjs.

Vite Bundle Visualizer X ar

@ File

@ Gzip @ Brotli Exclude RSl

js

assets/user-detail-card-3UE8EXGxX.js
node_modules/@nextui-org

theme/dist

avatar/dist card/dist

e chunk 2LHESBTa mis

chunk-KTES4AKA.mis

assets/index-giRLhSxP.js
src

node_modules

hook js canpetss

singleton.js

— mediumjs

e useRefjs

useMergeRefjs

— utils.js

component s

hunk-IXBJZRSA js

index.js

utils/dist/import.mjs

overlays|dist/import.mis

ULjs handleScroll.js SideEffect.js

_internal/dist/index.mjs

core/dist/index.mjs

[private/var/folders/_r/q3xfgkc904I_ks1gkwkbny9c0000gn/T/tmp-71892-2fupZ4yJa3Ua/stats.html

popover/dist

Chunk-JaMUIRCLmjs

‘shared-utils/dist G IsIdISt chunk-3YBC73XM.mjs

e chunk ARECNDSB i

spinner/dist

react-rsc-utils/dist

—

e cnoeLC e

button/dist

chunk-NXTXE2B3.mls
hunkUYSIEME s

chunk-2GZPFWUB.mjs
ripple/dist

chunk-SWIMKC2Y.mjs |

assets/friend-yT_2Cdlc.js
node_modules

theme/dist use-aria-press/dist

e ChunkQUEKE s chunk SAEINKSZ.mjs |~ CUTATOGZURM.T | chunk-7D88DBGQ.Ms

chunk-CWMPADA3.mjs

chunkNAY2XKLYmls | chunk-2PIR7DFM.m]s.

index.mjs

e chunk-33DU6C7L.mjs

Iru-cache.mjs = tw-join.mjs create-taitwind-merge.mis

et validators.mis. | merge-classistmjs | modifier-utils.mis

class-utils.mjs

default-config.mjs

e s swpssiroens [18n/dlist/real-module.mjs

utils/dist/fimport.mjs

focus/dist/import.mjs

interactions/dist/import.mjs

overlays/dist

i uk-UA s BB rU-RUMS

import.mjs

events context easing

~ modifiers
cubic-bezier.mjs

© utils

value

it

index.mjs

types
utils.mjs

numbers _ .
filter.mjs

complex
mix-color.mjs

color

rearpoiatemial nets.mis e |)

index.mjs.

mix-complex.mis indexmis

hexmis
rgbamis

frameloop

batchermjs render-step.mjs

motion

utils

—— valid-prop.mjs
index.mjs

" was-visal-cment s

features

viewport

defitonsms

_ observersmis iNndex.mjs
animation

exitmjs

layout/MeasureLayout.mjs
__ indexmis

animation

interfaces

animators

js

cwinin visual-slement targetmis - Motion-value.mjs

generators
spring

inertia.mjs .
find.mjs

[V

html

[LE—

use-props.mis

utils

e bull-stylos s

S DOMVisualElement mis

use-rendar.mis

value-types -—-

index.mjs

index.mjs

waapi

index.mjs

create-accelerated-animation.mis

setters.mjs

VisualElement.mjs

animation-state.mjs

unit-conversion.mjs

fiter-props.mis

motion-proxymis

e presancechiamis PopChild.mjs

components/AnimatePresence

index.mjs

gestures

[

pan drag

hover.mjs utils

indexmjs |

lock.mjs constraints.mjs

focus.mjs

press.mjs ferse=mne | \isualElementDragControls.mjs

projection

styles

scale-bordar-radius.mis

animationimixvaussmis - shared)stack.mjs

transform.mis

geometry
e UtilS.MjS

dolta-calc.ms delta-remove.mjs
coynis CONVBrSion.mis.

delta-apply.mjs

node

state.mjs HTMLProjectionNode.mis

create-projection-node.mjs

EPUB/resources/ch3/request-waterfall.png
Time

O
.I
|
||
||
3 3
o’bt> (59&) bQ’& ?;\‘% S y\,é\ ®
N NS S @ S
3 o0 SN P S
QR S \/@N KQ’& &Q“ y\\s\@ &@
X o
& &

Download resources [Parse HTML [Compile JS [Parse CSS [React render

EPUB/styles/resources/leanpub_info-circle.png

EPUB/resources/ch3/profile-friends-feeds.png
React Network Tutorial

® localhost:5173 [& Incognito

Profile

2 Juntao Qiu

Developer, Educator, Author

Friends

®@ & O

Abruzzi BobASmith Carol White

Your Feeds

Implementing Dynamic Import and Code Splitting

As an application grows and more code is added, the initial loading time can become noticeably longer. This delay, sometimes
lasting several seconds, can frustrate users. To avoid this, it's essential to optimize loading times.

Why Web Ul Development Is So Hard?

The landscape of web Ul development is fraught with challenges that extend beyond writing code and designing interfaces.
The inherent language limitations, nuanced data management, async complexities, and often-ignored unhappy paths
collectively make this a formidable field. Architectural decisions ...

EPUB/media/resources/title_page.png
PATTERNS -
IN REACT

JUNTAO QlU

EPUB/resources/ch5/waterfall-lazy-load-vis.png
Time

||
- |
|
-
|
|
> o) S i o > <
® & SR K S
AS NS s Q
© Q < QQ/ 0’2) Q
; ~° xﬁ <~ < o &6\ zﬁ
Q’b’ L KQ/ < /\ﬁ kQ/ <
<> >
< -
N\

Download resources [Parse HTML [Compile JS [Parse CSS [React render

EPUB/resources/ch5/bundle-size-analytics.png
Cc

© Rendered

avatarfdist

themefdist

card/dist

Vite Bundle Visualizer

@ File [private/var/folders/_r/q3xfgkc904I_ks1gkwkbny9c0000gn/T/tmp-71712-FfFpEuJLvFN4/stats.html

® Gzip @ Brotli

Vite Bundle Visualizer

X

+

* 3 ©

Exclude QRN include

root
assets/index-MoFmrWOX.js
node_modules

mep.ms

utils.mjs

complex
numbers

filter.mjs
color

hsla.mis g e

index.mjs
indexmis

hex.mis
rgba.mis.

animation

exit.mjs index.mjs

use-motion-ref.mjs | Viewport

observers.mis
i rnr | use-visual-slement s

index.mjs
use-visual-state.mjs

utils

indexmjs |

lock.mjs constraints.mjs

PanSessionmis

VisualElementDragControls.mjs

rtmis q
visual-element-target.mjs

motion-value.mjs index.mjs

utils spring

keyframes.mjs

find.mjs index.mjs
inertia.mjs

utils

- path.mis_build-attrs.mis;

HTMLVisualElement.mjs

utils

e buld-sys s

e e e flat-tree.mis

e use-rendermjs | motion-proxy.mjs.

value-types

* defaults.mjs

setters.mjs _ number.ms.

utils

[T P ———

animation-state.mjs

unit-conversion.mjs

scale-border-radius.mis

transform.mjs

e UtilS.MjS
detta-calemis delta-removemis delta-apply.mjs

coyria| ConVersion.mis

state.mjs HTMLProjectionNode.mis

create-projection-node.mjs

EPUB/resources/ch1/vite-tailwind-setup.png
React Network Tutorial

® localhost:5173 = 3 [& Incognito

Profile

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

EPUB/resources/ch3/component-tree-parallel.png
App

!

Profile

|
! !

About Friends

Static component Async component

