FROM RUBY TO
GOLANG

A RUBY PROGRAMMER'S GUIDE
TO LEARNING GO

JOEL BRYAN JULIANO

From Ruby to Golang
A Ruby Programmer’s Guide to Learning Go

Joel Bryan Juliano
This book is for sale at http://leanpub.com/rb2go
This version was published on 2021-09-16

ISBN 1080944001, ISBN-13 978-1080944002

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2019 - 2021 Joel Bryan Juliano

http://leanpub.com/rb2go
http://leanpub.com/
http://leanpub.com/manifesto

I dedicate this book to my loving, supportive and beautiful wife, and to my son.

Contents

Preface e 1
Introduction 3
About the Author. 3
Chapter 0: Go Primer 4
Package Name and Imports. L 4
Println 4
Printf . . . 4
Sprintf . . 4
Functions 4
Function Basics L e 4
Function Parameters and Arguments 5
Function Return Types e 5
Main Function. 5
Chapter 1:Structs 6
Instance Variables 8
Struct . . . 9
Public Structs 12
Attaching a StructtoaFunction L o L 13
Pass-by-value and Pass-by-reference oL 19
Pointer Receiver 21
Value Receiver 22
Decouple and Reuse Structs through Inheritance 24
Anonymous Structs e 27
Anonymous Struct Fields 28
Chapter Questions 31
Chapter 2: Maps 32
Maps by Declaration L 32
Initialization by Make 32
Initialization by Literal Type Assignment 32
Maps by Assignment 33

Assignment witha Key/Value 33

CONTENTS

Assignmentonan Empty Map 33
Using Struct in Maps 33
Struct Maps by Declaration. 33
Struct Maps by Assignment 33
Struct Maps with Array Values 34
Maps with Dynamic Types 34
Deleting Map Values 34
Reading a Non-Present Key fromaMap 34
Variadic Functions 35
Variadic Interface 35
Maps with Variadic Interface 35
Chapter Questions 35
Chapter 3: Arraysand Slices 36
Fixed Array 36
Fixed-Array Automatic Size Calculation 36
Fixed-Array Sizes o oo 36
Fixed-Array Assignment Behaviour L. 37
Sliced Array 37
Sliced-Array Assignment Behaviour oL 37
Capacity 38
Deep Copy . . o ot e 38
Append 38
Arrays with Variadic Types. 38
Empty Interface Array Type o o 39
Chapter Questions 39
Chapter 4: Array Navigation 40
C-style Semantic Form 40
Value Semantic Form 40
Value Semantic Form with Muted Parameter 40
Index Semantic Form forRange 41
Value Semantic Form with Pointer Access 41
Chapter Questions 41
Chapter 5: Package Management, 42
Sharing Go Packages 42
Package Management using Go Modules 42
Manual go.mod Generation. 42
Automatic go.mod Generation Through Source-Code 43
Automatic go.mod Generation Through dep Package Manager 43
Refresh Go Modules 43
Package Management using Dep 44

Chapter Questions e 44

CONTENTS

Chapter 6: Collection Functions. 45
Predicate Method all? 45
Predicate Method any? e 45
Collect Enumerable Method 45
Cycle Enumerable Method 46
Detect Enumerable Method 46
Drop Enumerable Method 46
Drop While Enumerable Method 46
Chapter Questions 47

Chapter 7:Interfaces 48
Interface as a Self-Documenting API Reference 48
Interface as Typecontract. 48
Satisfying Return Values 48
Chapter Questions 49

Glossary 50

Acknowledgments 51

Credits s, 52

Preface

Before I start, let me highlight what I love about Go and why I chose to learn it as my next
programming language.

To begin with, let me say that Go hands-down is a great language; It is easy to read, with clear
syntax. And it compiles to a single binary file which makes apps fast and compact and can compile
to run on different platforms. And it’s statically typed and garbage-collected, making it efficient.

It is like a modern C with package support, memory safety, automatic garbage collection, and
concurrency baked-in. And you get all the nice features from a statically typed language, and IDEs
love it, and so does your development workflow.

In today’s world of cloud-native microservices, containerized architectures, You can be up-to-
date with knowledge in Go. Many notable open-source projects are built using Go (i.e., Docker,
Kubernetes, Etherium, and Terraform, to name a few). Those platforms have APIs and SDKs readily
available natively for you to use. And many global companies have been using Go in production (i.e.,
Google, Netflix, Dropbox, Heroku, and Uber, to name a few), proving that it has been battle-tested
and powerful mature language to based your work into.

This made me decide to pursue Go as my next language, and in 2018, I was hired by a company that
uses Go. After 8+ years of working with Ruby, the first thing I did to learn Go was to relate to what
I know in Ruby. And I thought it would be a good idea to document my learning process.

My initial intention was to keep it as my personal documentation and notes, but I decided to post it
online after much careful thought and consideration. From one topic, it grew into a series of multiple
online articles, discussing all my research and learnings about the language, collecting its analogies
that [can compare with Ruby to help me learn it.

By teaching familiar implementations found in Ruby, you will see the correlation between the two
languages, establishing familiar concepts to give you enough knowledge to be comfortable with Go
and start programming with it.

This book was made with a Rubyist in mind in a friendly, conversational, and informal manner.
All the learning metaphors are based on Ruby. I think it will help you learn the Go programming
language when you already know Ruby. You don’t need to take notes or remember things. Just
continue reading and understand how things work from what you already know and how it relates
and is applied in Go to learn the language.

This book does not discourage people from using Ruby. Ruby is still my favorite scripting language
of all time, and I attest to Ruby’s slogan, “A Programmer’s Best Friend,” because it is just a pleasure
to use. I use Ruby all the time, and it has become a go-to extension of my mind to do something
requiring computers. And I always get excited about new updates about Ruby.

Preface 2

Finally, I hope this book can help you get started, and master Go as your next programming language.
With so many great opportunities out there to build great things with Go, you will not regret learning
it.

Now, let’s get started!

Introduction

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

About the Author

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 0: Go Primer

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Package Name and Imports

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Printin

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Printf

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Sprintf

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Functions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Function Basics

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 0: Go Primer 5

Function Parameters and Arguments

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Function Return Types

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Main Function

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

O U W N

Chapter 1: Structs

Everything needs communication. Animals and humans communicate using physical gestures and
sounds. Most insects have a special antenna in them that they use to communicate to other insects or
emits sounds or scents to exchange information with other animals. Plants also have a special way
of communicating with other plants through electric signaling or using other hosts to send their
messages.

From gigantic animals to small microscopic bacterias, viruses to cells, all have a special way to
exchange messages. They all have a way to coordinate information with each other.

Computers and software also require much communication.

Inside the computer hardware, electrical signals are sent to each component where they are task
to perform a particular function. And computers themselves communicate to other computers via
wired, wireless, and The Internet.

It is hard to imagine a world without communication!

In programming, there are also various levels of ways to communicate your code. In this chapter,
we will discuss ways we can communicate to individual parts of code.

If you need to pass, exchange, and coordinate values bound to specific parts of the code, we can use
a variable.

Variables can either be a local variable that you can only access inside the function or a global
variable that you can globally access throughout your code.

For our first program example, I assume that you have prior Ruby knowledge, so that we will do
a simple recap in Ruby. We will create a function that takes a single word input to dissect it in Go.
This code will output the word “Hello World”

Here, we have a local variable in Ruby. In this example, we declared a local variable hello inside a
function say_hello.

def say_hello(message)
hello = "Hello"
puts hello + message

end

say_hello("World")

And when we run the Ruby code, it will output “Hello World”

<~ O O b w N~

Chapter 1: Structs 7

$ ruby say_hello.rb
Hello World

However, if we want to change the hello variable to store a different message, we cannot directly
change it from outside the function.

def say_hello(message)
hello = "Hello"
puts hello + message
end

hello = "Hi"
say_hello("World")

So even though we change the hello variable, this will still output a “Hello World”
$ ruby say_hello.rb

Hello World

Questions

1. What have we learned?
We learned to use a local variable to store a value that we can only access inside the function.
2. Why do we need communication?

We need communication to exchange information.

3. What is a variable?
A variable is a name that you can use to store a value.

4. Why do you use a variable?
You use a variable to store a value that you can use later in your code.

5. How do you use a variable?
You use a variable by declaring it first, then you can assign a value to it.

6. How do we pass and coordinate information in our code?
We pass and coordinate information in our code by using variables.

7. What is a local variable?
A local variable is a variable that you can only access from inside the function.

8. What is a global variable?
A global variable is a variable that you can access from anywhere in your code.

=~ O O b W N -~

Chapter 1: Structs 8

Instance Variables

How do we change the information from inside different functions?

What we need is an instance variable. An instance variable is a variable that you can access via a
single reference. In Ruby, the instance variable starts with an @ sign, followed by the variable name.

You can treat an instance variable like any normal variable, only that you can pass or modify
information around it to other functions regardless of its location.

So back to our example, we changed the local variable hello to @hello, and then we can change the
message of the variable.

def say_hello(message)
@hello = "Hello"
puts @hello + message
end

@hello = "Hi"
say_hello("World")

This will output a “Hi World” message.
$ ruby say_hello.rb
Hi World

This is very convenient because we can pass values to other functions without initializing any object.

Questions

1. What have we learned?

We learned that we could pass values to other functions without initializing an object using
instance variables.

2. Why is it useful?

It is useful because it is used to store data that is specific to an instance of a class or stores a
value that is specific to a particular object.

3. What is an instance variable?
An instance variable is a variable that is associated with an instance of a class that you can
access via a single reference.

4. How do you create an instance variable in Ruby?
You can create an instance variable by using the @ sign, followed by the variable name.

W N

O© 00 I O O b W N =~

SN
N =~ O

Chapter 1: Structs 9

Struct

struct is a type that you can declaratively group and define data fields accessible via a single
reference. struct also provides a way to pass a value from within functions.

In Go, we can use structs to store a value from our functions. Here is an example of how to create a
struct.

type Employee struct {
FirstName string
LastName string

Using a struct, you can set a value and get a value from within your functions. This capability
to exchange data throughout your code from within functions is useful for exchanging and
coordinating data onto other parts of your code.

In Ruby, a struct can be equivalent to an instance variable.

In the following example, let’s discuss this in detail, starting with a Ruby implementation on how
you pass values from within different parts of the code. We can proceed with a Go example on how
to pass values from one function to another function.

In the following Ruby example, a class Dog has an initializer that accepts a parameter breed and sets
that parameter to an instance variable @breed, which provides data access from within the class.

In this case, a public method kind directly returns the value passed to the initializer.

Ruby Instance Variables

class Dog
def initialize(breed)
@breed = breed

end

def kind
@breed
end
end

dog = Dog.new('Rottweiler")
dog.kind

© 00 N O O b W N =

[S Y
O b 0w N =~ O

a b w N

Chapter 1: Structs 10

$ ruby dog.rb

Rottweiler

The use of instance variables in the Ruby example can be rewritten in Go, using struct.

In the next example, a dog struct defines a property breed with a value type string and insidemain().
The struct dog initializes to a variable kind with its property breed filled in.

Go Private Struct

package main
import "fmt"
type dog struct {

breed string

func main() {
kind := dog{
breed: "Rottweiler",

fmt.Println(kind.breed)

$ go run dog.go

Rottweiler
Since struct can group similar data field types, you can extend this struct by adding multiple fields.

type dog struct {
name string
breed string
age int

Then we can access multiple fields this way.

O 0 =N O O & W N =~

= =y
© 00 N O O = W N =~ O

1
2

Chapter 1: Structs

Go Private Struct

11

package main

import "fmt"

type dog struct {
name string
breed string
age int

fune main() {
pet := dog{
name: "Maximus",
breed: "Rottweiler",
age: 5

’

fmt.Printf("%+v", pet)

$ go run dog.go

{name:Maximus breed:Rottweiler age:5}

o I O O b W N =~

Chapter 1: Structs 12

Questions

1. What have we learned?
We learned that struct is a type that you can declaratively group and define data fields
accessible via a single reference.

2. Why is it useful?
Struct is useful because it provides a way to pass a value from within functions.

3. What is a struct?
A struct is a user-defined type used to group many variables of different types.

4. What is the equivalent of a struct in Ruby?
An instance variable.

5. How do you declare a variable in Go?
You declare a variable in Go by using the keyword var.

6. How do you create a struct in Go?
You can declare a struct using the struct keyword, followed by the struct name, field name,
and type.

7. What is a private struct in Go?
A private struct is a struct that is only visible to the package it is defined in.

8. What is a struct field in Go?
A struct field is a variable that is part of a struct.

Public Structs

Take note that the struct dog is only available internally from within the package.
To make this public, the struct type alias name needs capitalization, in this case to Dog.

The same naming mechanics can also apply to the struct field names, functions, and variables.
Provide an option to make its resource publicly available for other packages by capitally them.

Go Public Struct

package main

import "fmt"

type Dog struct {

Breed string

10
11
12
13
14
15

Chapter 1: Structs 13

func main() {
kind := Dog{
Breed: "Rottweiler",

fmt.Println(kind.Breed)

$ go run dog.go

Rottweiler

In most cases, the equivalent functionality of an instance variables in Go would be using struct.
And you can extend struct by attaching it to a function, forming methods to a struct that you can
perform mutations of existing values.

Questions

1. What have we learned?
Structs are a way to group data, and you can also make it publicly available for other
packages.

2. Why is it useful?
Sharing packages in Go is useful because it allows you to reuse code in different projects.

3. How do you make your Golang struct publicly available?
You can make your struct publicly available by capitalizing the struct type alias name.

4. What is another Golang functionality that you can make public?
You can also make your functions and variables publicly available by capitalizing their
names.

5. How do you mutate an existing struct value?
By attaching a struct to a function, you can perform mutations of existing values.

Attaching a Struct to a Function

Supposed we like to perform a method on a declared variable.

In Ruby, this is an OOP call since Ruby can create methods in a class. This allows you to call those
methods when you initialize the class using dot notation.

© 00 N O O b W N =

NONON NN NN SR R sy s sy
O O b WO N »r O O 0 N O U bk Ww N~ O

Chapter 1: Structs 14

However, Go’s first-class citizens are functions and not an OOP language by design. Since there’s
no concept of class, how do we attach a method from within a declared variable in a similar manner
in Ruby?

In Go, we can associate a struct to a function by specifying the type of that function as one of the
declared structs. This will provide the capability to create methods from within functions.

In the following example in Ruby, an instance variable produce
declares as a receiver. There are also three methods to operate on the variable: “ add_item, change_-
item and items’.

In the add_item method, using a double-splat' parameter operator, we generate a hash from the
method appending the values to produce.

The change_item method deletes the entry from the
hash and then appends to produce as a new entry.

Operating On A Reciever Instance Variable in Ruby

class Basket
def initialize
@produce = []
end

def add_item(**entry)
Raise an error if name, flavour and
kind keys are not passed
items = %w[name flavour kind]

unless items.any? { |key| entry.key? key.to_sym }

raise "Usage: add_item(name: L,
flavour: '..',
kind:)"

end

@produce << entry

puts "Entry #{entry[:name]} created!"
end

def change_item(name, entry)
Delete existing record
item = @produce
.delete_if { |h| h[:name] == name }
.first

'https://ruby-doc.org/core-2.3.0/doc/syntax/calling_methods_rdoc.html#label-Hash+to+Keyword+Arguments+Conversion

https://ruby-doc.org/core-2.3.0/doc/syntax/calling_methods_rdoc.html#label-Hash+to+Keyword+Arguments+Conversion
https://ruby-doc.org/core-2.3.0/doc/syntax/calling_methods_rdoc.html#label-Hash+to+Keyword+Arguments+Conversion

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69

Chapter 1

ite

: Structs

.dup

m = entry

Add it to the instance variable

@pr
@pr

put
end

def i

puts "There are #{@produce.count} number of items in

the bas

@pr

i

end
end

priva

def i
put
put
put

end

end

basket

basket.
name:
flavo

sweet,
kind:

basket.
name:
flavo
kind:

oduce << item
oduce.uniq!

s "Item #{name} changed!"

tems

ket"

oduce.each do |entry|
tem(entry)

te

tem(entry)

s "Name: #{entry[:name]}"

s "Flavour: #{entry[:flavour]}"
s "Kind: #{entry[:kind]}"

= Basket.new

add_item(
‘apple’,
ur: "It's a little sour and bitter, but mostly
not at all salty, very juicy in general",
"fruit'

add_item(
'carrot’,

ur: "',

'veggies'

15

70
71
72
73
T4
5
76
T
78
79

O© 00 9 O O & W N =~

T ==
N O O b W N~

Chapter 1: Structs

basket .change_item(

'carrot’,

name: 'cucumber',

flavour: 'Slightly bitter with a mild melon aroma,
and planty flavor.',

kind: 'veggies'

basket.items

16

$ ruby basket.rb

Entry apple created!
Entry carrot created!
Item carrot changed!

There is 2 number of items in the basket.

Name: apple

Flavor: It's a little sour and bitter, but slightly sweet,

not at all salty, juicy in general
Kind: fruit

Name: cucumber
Flavor: Slightly bitter with a mild melon aroma, and
leafy flavor.

Kind: veggies

To rewrite Go, a struct must represent the produce with properties name, flavor and kind.

Another struct named basket will be an array of produce since basket is an array of a struct that

will contain the produce struct.

We will define a function and attach it to basket to interact with produce. We will call the defined

basket functions as add_item, change_item, and items

O© 00 N O O & W N =~

BB DWW W W W W W WWWNDNNDNDNDNDDNDDNDDNDDN S S Sss,),)y
N O O 00 N O O b W N A OO O 0N O O b W N~ OO O© 00 N O U b W N~ O

Chapter 1: Structs 17

Operating on a Receiver Struct in Go
package main

import "fmt"

type basket []produce

type produce struct {
name string

flavour string

kind string

func (p *basket) add_item(entry produce) ({
*p = append(*p, entry)

fmt.Printf("Entry %s created!\n", entry.name)

1
fune (p basket) change_item(name string, entry produce) {
for key, val := range p {
if val.name == name {

p[key] = entry

fmt.Printf("Item %s changed!\n", name)

func (p basket) items() {
fmt.Printf("There are %d number of items in the basket\n",
len(p))

for val := range p {
fmt .Printf(Name: %s\n
Flavour: %s\n
Kind: %s\n~,

val.name,

—7

val. flavour,
val .kind)
fmt.Println("")

43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4

Chapter 1: Structs 18

fune main() {
basket := new(basket)

basket .add_item(
produce({
name: "apple",
flavour: "It's a little sour and bitter, but mostly
sweet, not at all salty, very juicy in general.’,
kind: "fruit",

}
)
basket.add_item(
produce({
name: "carrot",
flavour: "",
kind: "veggies",
},

basket.change_item("carrot",
produce({
name: "cucumber",
flavour: °“Slightly bitter with a mild melon aroma
and planty flavor.,
kind: "veggies",

}/

basket.items()

O© 00 I O O b W N =

N N = = =N
N O O b= W N =~ O

Chapter 1: Structs

$ go run basket.go

Entry apple created!
Entry carrot created!

Item carrot changed!
There is 2 number of items in the basket.

Name: apple

Flavor: It's a little sour and bitter, but slightly sweet,
not at all salty, juicy in general.

Kind: fruit

Name: cucumber
Flavor: Slightly bitter with a mild melon aroma and leafy
flavor.

Kind: veggies

Questions

1. What have we learned?
We learned that we could attach a struct to a function in Go.
2. Why is it useful?

It’s a way to pass data to a function.

3. How do you create a function with a struct in Go?
You can create functions with a struct by specifying the type of the function as one of the
declared structs.

4.Is Golang an OOP language?
*No, Go is not an OOP language.

5. What is a double-splat parameter operator?
The double-splat operator is a way to pass multiple arguments to a function.

6. How do you create a double-splat parameter operator in Ruby?
In Ruby, we can create a splat functionality by using the *args and **kwargs

Pass-by-value and Pass-by-reference

In our above basket example, notice two types of functions attached to basket?

19

Chapter 1: Structs 20

It might be a new concept coming from Ruby, but when dealing with pointers and references, there
is two semantics of passing a value to a variable.

Let’s discuss them in detail.
Those are the two types of parameter passing in Go, namely pointer receiver and value receiver.

- Value receivers are pass-by-value, which means that the variable will use an actual value or a
resulting value.

- Pointer receivers are pass-by-reference, which takes in the memory address pointing to the value
and passes it to the variable.

Ruby by default is pass-by-value, and in Go, we can use those two types of semantics of passing and
using a variable value. We will discuss them further in detail.

When deciding the proper way of passing variables, the Go community had created
documentation on utilizing the proper semantics between pointer receivers and value
receivers. See the official Golang code review comment? for receiver types.

Questions

1. What have we learned?
We learned that there are two types of the semantics of passing variables in Go.
2. Why is it useful?

It is useful because it helps us understand the difference between the two types of semantics
of passing variables.

3. What is pass-by-value?
Pass-by-value means that the value of the variable is passed to the function.

4. What is pass-by-reference?
Pass-by-reference means that the address of the variable is passed to the function.

5. Is Ruby a pass-by-value or pass-by-reference?
It’s pass-by-value.

6. Is there a proper semantic in between pointer receivers and value receivers in Golang?
Yes, there is a community-supported semantic in between pointer receivers and value
receivers in Golang.

*https://github.com/golang/go/wiki/CodeReviewComments#receiver-type

https://github.com/golang/go/wiki/CodeReviewComments#receiver-type
https://github.com/golang/go/wiki/CodeReviewComments#receiver-type

© 00 N O O b W N =

N
[\

Chapter 1: Structs 21

Pointer Receiver

Pointer receiver is pass-by-reference, which means that we pass the reference to the memory address
of the resulting value to a variable.

Pointer receivers will create a copy to a new variable referencing the value’s memory address per
each assignment. When you modify the parameter values, it will be a modification referencing the
memory address of the original variable’s value.

To explain this further, let’s go back to our previous example. In the previous example, add_item
expects a produce argument, and the receiver of this function is basket.

Notice that there is an asterisk before the receiver type, p *basket, which means that the receiver
basket can be accessed and mutated directly within the function.

Pointer receivers are both setters and getters in Go, in the sense that the receiver basket is settable
and gettable directly.

Pointer receivers can be an ideal use case when you are looking for an attr_accessor analog in
Go, compared to the same behavior keen in Ruby. Here’s the general form of constructing a pointer
receiver.

Pointer Receiver in Go

funce (receiverName *receiverType)
funcName(paramName paramType) {
// we can directly set the value of the
// receiver type (setter)

*receiverName = paramName

// we can also access the value of the
// receiver type (getter)
fmt.Println(receiverName)

Chapter 1: Structs 22

Questions

1. What have we learned?
Pointer receivers are a way to pass a pointer to a function.

2. Why is it useful?
It is useful because the function can use the pointer to access the data.

3. Is the pointer receiver a pass-by-reference or pass-by-value?
Pointer receivers are pass-by-reference.

4. What is an equivalent attribute accessor in Golang?
Pointer receivers are an equivalent of attribute accessors in Go.

5. What is a pointer-receiver in Go?
A pointer-receiver is a function that takes a pointer as an argument.

6. Why there’s an asterisk before the receiver type?
The asterisk before the receiver type is a pointer receiver, which means it can be accessed and
mutated directly.

Value Receiver

Value receiver is pass-by-value, which means that we pass the actual value or a resulting value to a
variable. Value receivers will create a new independent variable copying the original value per each
assignment.

Two functions in our previous example utilize a value receiver function: those methods where the
receiver type does not start with an asterisk, namely, the change_item and items functions which
are also a method for the basket struct.

You might ask: Why does change_item mutate the value of the basket struct? Does this mean that
the value receiver is also a setter? And the same with the pointer receiver?

You can modify the parameter values, but changes are not forwarded to the original variable. It is
possible to modify existing variables with records, and value receivers can be setters of an initialized
variable. However, any modifications to the variable will not reflect on new struct records. We must
create the struct first and initialize it separately before passing values to the new structure record.

Value receivers are ideal for concurrent applications because they do not modify the original
reference but create a new reference copy, making value receivers thread-safe. To explain this much
further, let’s go back to our example above.

In our pointer receiver example, we used append to append a produce in a newly initialized basket
array. The change_item mutates an already initialized basket variable but cannot mutate the struct
basket directly. Here’s the general form of creating a value receiver.

Chapter 1: Structs

Value Receiver in Go

23

func (receiverName receiverType)

funcName(paramName paramType) {

// we can set the value of an

// _already initialised_ receiver type

// but we cannot modify the receiver

// type directly

receiverName = parameterName

// we can access the value of the

// _already initialised_

// receiver type (getters)

fmt.Println(receiverName)

Questions

©

1. What have we learned?
Value receivers are a way to pass a value to a function and creates a new copy of the original
value

2. Why is it useful?
They are used to pass a value to a function and not a reference to the value.

3. What is a value-receiver in Ruby?
A value-receiver is a class with a method that accepts a value of another class as a parameter.

4. What is a value-receiver in Golang?
A value-receiver is a function that receives a value as an argument.

5. Are the value receiver the same as the pointer receiver?

No, value receivers are not the same as pointer receivers. Value receivers are pass-by-value,
which means that we pass the actual value or a resulting value to a variable. Value receivers
will create a new independent variable copying the original value per each assignment.

6. In value receivers, will any modifications to the variable reflect on new struct records?
No, any modifications to the variable will not reflect on new struct records. We still need
to create the struct first, initialize it separately before we can pass values to the new struct
record.

7. Are value receivers thread-safe?
Yes, value receivers are ideal for concurrent applications because they do not modify the
original reference but create a new reference copy, making value receivers thread-safe.

O© 00 I O O b W N =~

SN
N =~ O

Chapter 1: Structs 24

Decouple and Reuse Structs through Inheritance

One of the nicest features of struct is decoupling the data structures into smaller chunks inheriting
a common structure, allowing specific implementations for each data structure.

Modularizing your data structure is a good practice by separately grouping your data struct. When
decoupling your structs into smaller chunks, you can maximize the reusability of your struct because
it

allows you to interchange your struct into varied use cases, focusing on the content of each structure.

In the long run, your code will be easy to maintain due to the
modularized organization of your structures, adding the overall
the simplicity of using and maintenance of your code.

In the following example, we create a common Animal struct and a Dog struct. Specifying the name
of the struct on top of the field inherits the struct and its field properties. In this case, the Dog struct
inherits the Animal struct and its fields. Adding an asterisk before the name makes the inheritance
a pointer receiver, allowing modifications to the struct field values.

type Animal struct {
Kind string
Habitat string
Origin string
Diet string

type Dog struct {
*Animal
Name string
Breed string

And we can also have the ability to inherit multiple structures. Here’s the complete example where
the Dog and Cat structs are inheriting both Animal and Owner, and in the main(), we can add the
values for each field.

© 00 =N O O & W N =~

N DN DN DN DN DN DN DN NN -~ s s, s s e
© 0 N O O b W N~ OO O 0 N O O b W N =~ O

30
31
32
33
34
35
36
37
38
39
40
41
42
43

Chapter 1: Structs

package main

import "fmt"

type Animal struct {
Kind string
Diet string

type Owner struct {
Name string
Country string

type Dog struct {
*Animal
*Owner
Name string
Breed string

type Cat struct {
*Animal
*Owner
Name string
Breed string

func main() {
var dog Dog
dog.Name = "Maximus"
dog.Animal = &Animal({
Kind: "Dog",
Diet: "Omnivorous",
dog.Breed = "Pitbull"
dog.Owner = &0wner{

Name: "John",
Country: "USA",

25

44
45
46
47
48
49
50
o1
52

a b w N

Chapter 1: Structs

fmt.Printf("Name of %s is %s\n", dog.Animal.Kind,
dog.Name)

fmt.Printf("%s is a %s with an %s diet\n", dog.Name,
dog.Breed, dog.Animal.Diet)

fmt.Printf("%s is owned by %s who lives in %s\n",

dog.Name, dog.Owner.Name, dog.Owner.Country)

}

$ go run animal.go

The name of Dog is Maximus.

Maximus is a Pitbull with an Omnivorous diet

Maximus is owned by John, who lives in the USA

Questions

©

1. What have we learned?
We learned that structs are a great way to organize your data, and you can use inheritance to
create a common structure and then create specific structs that inherit the common structure.

2. Why is it useful?
It’s useful because it allows you to create a common structure that you can use in multiple
structs, and it allows you to create specific structs that inherit the common structure.

3. Can you decouple data structures into a struct?
Yes, you can decouple data structures in the struct.

4. Why do you want to decouple your structs into smaller chunks?

By decoupling your structs in smaller chunks, you can maximize the reusability of your struct
because it allows you to interchange your struct into varied use cases, focusing on the content
of each structure.

5. Why is modularization a good practice?
In the long run, your code will be easy to maintain, due to the modularized organization of
your structures, adding the overall simplicity of using and maintenance of your code.

6. What does adding an asterisk before a name in a struct field do?
Adding an asterisk before the name makes the inheritance a pointer receiver, allowing
modifications to the struct field values.

26

© 00 1 O O b W N =

I = SO =N
B W N e

Chapter 1: Structs 27

Anonymous Structs

An anonymous struct is a struct you can declare and initialize on the fly without explicit declaration
via type. It’s declared in an inline manner along with your code, which provides a flexible way of
declaration and usage of your data structures.

From a developer’s perspective, this provides speedy invocations of your data structures when you
need it because anonymous structs can immediately invoke your data structures as needed along
with your code. Other cases where anonymous structs are useful are when a name is not needed for
the operation.

Anonymous struct also provides a way to avoid needless declarations of type name alias, which
can cause namespace pollution for your struct. However, it’s recommended to avoid deep nested
anonymous structs due to the risk of unreadable code. This may result in a code that is hard to
maintain.

Finally, anonymous structs is a good and cheap alternative to an empty interface{} type.

package main
import (

"Emt"

funec main() {
Animal := struct {
Kind string
Diet string
}{"Dog", "Omnivorous"}

fmt.Println(Animal.Kind, "-", Animal.Diet)

$ go run anonymous_struct.go

Dog - Omnivorous

Chapter 1: Structs

Questions

©

1. What have we learned?
We learned that we could declare and initialize a struct on the fly without explicit declaration
via type.

2. Why is it useful?
Anonymous structs are useful when a name is not needed for the operation.

3. What are anonymous structs?
Anonymous structs are structures you can declare and initialize on the fly without explicit
declaration via type. It’s declared in an inline manner along with your code.

4. What is the advantage of anonymous structs for a developer?

Anonymous structs provide speedy invocations of your data structures when you need them
because anonymous structs can immediately invoke your data structures as needed along
with your code. Other cases where anonymous structs are useful are when a name is not
needed for the operation.

5. What problem do anonymous structs solve?
Anonymous structs provides a way to avoid needless declarations of type name alias, which
can cause namespace pollution for your struct.

6. What are the risks of using anonymous structs?
Anonymous structs are a good and cheap alternative to an empty inter face{} type. However,
it’s recommended to avoid deep nested anonymous structs due to the risk of unreadable code.
This may result in a code that is hard to maintain.

Anonymous Struct Fields

28

In OOP languages, the properties of an object are collectively called attributes. Since Go is not an
OOP language, attribute names in an OOP property are called fields.

Normally, a struct has a declared field name with an attached type. However, this is not always the
case. You can also create a struct without field names, leaving only its type.

The way to access the value of an anonymous field is by calling the literal name of the field type of
the struct, for example:

O© 00 I O O b W N =

N S
g b 0w N =~

W N

Chapter 1: Structs 29

package main

import (
p—

fune main() {
animals := struct {
int
string
H1, "Dog"}

fmt.Println(animals.int)
fmt.Println(animals.string)

$ go run anonymous_struct_fields.go

1
Dog

You can only access the value by calling the literal name of the type in the struct, and with this
semantics, it comes with a limitation.

It is important to note that when using anonymous field names, you have a limitation of having
a declaration of the same type only once since anonymous struct fields need to have unique value
types. Otherwise, there cannot be a distinction between each type.

Chapter 1: Structs

Questions

©

1. What have we learned?
Anonymous struct fields are useful when you want to create a struct with a unique type, and
you don’t want to create a new type just for that.

2. Why is it useful?
Go’s anonymous struct fields are a great way to pass data to functions without creating a
new type.

3. What are anonymous struct fields?
Anonymous struct fields are struct fields without a name.

4. What are the limitations of anonymous struct fields?
Anonymous structs are limited to a single type declaration.

5. What is a property of an object in OOP?
In OOP, properties of an object are collectively called attributes.

6. What is the equivalent object attribute in Go?
An attribute is a property of an object. In Go, an attribute is a field of a struct.

7. How do you access the value of an anonymous field?
You can only access the value by calling the literal name of the type in the struct, and with
this semantics, it comes with a limitation.

8. What is the limitation of an anonymous field?

It is important to note that when using anonymous field names, you have a limitation of
having a declaration of the same type only once since anonymous struct fields need to have
unique value types. Otherwise, there cannot be a distinction between each type.

30

Chapter 1: Structs

Chapter Questions

1. How do you create a function in Go?
You use the keyword func followed by the function name, a list of parameters in parentheses,
and the function body.

2. How do you create a variable in Go?
You use the keyword var followed by the variable name and the type.

3. How do you create a pointer in Go?
You use the keyword * followed by the type of the pointer and the variable name.

4. What is a struct?
A struct is a collection of fields.

5. What is a field?
A field is a variable that is part of a struct.

6. How do you create a struct in Go?
You use the keyword struct followed by the struct name, a list of fields in curly braces, and
the body.

7. What does capitalizing a struct, variable, and function do?
It makes it publicly accessible outside the package.

8. What is an anonymous struct?
An anonymous struct is a struct without a name.

9. Why use an anonymous struct?
Anonymous structs are useful when you want to create a struct on the fly.

10. Why do you modularized a struct?
Modularisation makes it easier to reuse the data structure defined in a struct.

31

Chapter 2: Maps

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Maps by Declaration

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Initialization by Make

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Initialization by Literal Type Assignment

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 2: Maps 33

Maps by Assignment

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Assignment with a Key/Value

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Assignment on an Empty Map

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Using Struct in Maps

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Struct Maps by Declaration

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Struct Maps by Assignment

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 2: Maps 34

Struct Maps with Array Values

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Maps with Dynamic Types

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Deleting Map Values

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Reading a Non-Present Key from a Map

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 2: Maps 35

Variadic Functions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Variadic Interface

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Maps with Variadic Interface

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Chapter Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 3: Arrays and Slices

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Fixed Array

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Fixed-Array Automatic Size Calculation

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Fixed-Array Sizes

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 3: Arrays and Slices 37

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Fixed-Array Assignment Behaviour

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Sliced Array

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Sliced-Array Assignment Behaviour

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 3: Arrays and Slices 38

Capacity

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Deep Copy

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Append

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Arrays with Variadic Types

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 3: Arrays and Slices 39

Empty Interface Array Type

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Chapter Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 4: Array Navigation

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

C-style Semantic Form

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Value Semantic Form

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Value Semantic Form with Muted Parameter

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 4: Array Navigation 41

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Index Semantic Form for Range

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Value Semantic Form with Pointer Access

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Chapter Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 5: Package Management

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Sharing Go Packages

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Package Management using Go Modules

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Manual go.mod Generation

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 5: Package Management 43

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Automatic go.mod Generation Through Source-Code

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Automatic go.mod Generation Through dep Package
Manager

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Refresh Go Modules

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 5: Package Management 44

Package Management using Dep

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Chapter Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 6: Collection Functions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Predicate Method a11?

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Predicate Method any?

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Collect Enumerable Method

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 6: Collection Functions 46

Cycle Enumerable Method

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Detect Enumerable Method

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Drop Enumerable Method

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Drop While Enumerable Method

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 6: Collection Functions 47

Chapter Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 7: Interfaces

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Interface as a Self-Documenting APl Reference

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Interface as Type contract

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Satisfying Return Values

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go
http://leanpub.com/rb2go

Chapter 7: Interfaces 49

Chapter Questions

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go

Glossary

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go

Acknowledgments

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go

Credits

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/rb2go.

http://leanpub.com/rb2go
http://leanpub.com/rb2go

	Table of Contents
	Preface
	Introduction
	About the Author

	Chapter 0: Go Primer
	Package Name and Imports
	Println
	Printf
	Sprintf
	Functions
	Function Basics
	Function Parameters and Arguments
	Function Return Types
	Main Function

	Chapter 1: Structs
	Instance Variables
	Struct
	Public Structs
	Attaching a Struct to a Function
	Pass-by-value and Pass-by-reference
	Pointer Receiver
	Value Receiver
	Decouple and Reuse Structs through Inheritance
	Anonymous Structs
	Anonymous Struct Fields
	Chapter Questions

	Chapter 2: Maps
	Maps by Declaration
	Initialization by Make
	Initialization by Literal Type Assignment
	Maps by Assignment
	Assignment with a Key/Value
	Assignment on an Empty Map
	Using Struct in Maps
	Struct Maps by Declaration
	Struct Maps by Assignment
	Struct Maps with Array Values
	Maps with Dynamic Types
	Deleting Map Values
	Reading a Non-Present Key from a Map
	Variadic Functions
	Variadic Interface
	Maps with Variadic Interface
	Chapter Questions

	Chapter 3: Arrays and Slices
	Fixed Array
	Fixed-Array Automatic Size Calculation
	Fixed-Array Sizes
	Fixed-Array Assignment Behaviour
	Sliced Array
	Sliced-Array Assignment Behaviour
	Capacity
	Deep Copy
	Append
	Arrays with Variadic Types
	Empty Interface Array Type
	Chapter Questions

	Chapter 4: Array Navigation
	C-style Semantic Form
	Value Semantic Form
	Value Semantic Form with Muted Parameter
	Index Semantic Form for Range
	Value Semantic Form with Pointer Access
	Chapter Questions

	Chapter 5: Package Management
	Sharing Go Packages
	Package Management using Go Modules
	Manual go.mod Generation
	Automatic go.mod Generation Through Source-Code
	Automatic go.mod Generation Through dep Package Manager
	Refresh Go Modules
	Package Management using Dep
	Chapter Questions

	Chapter 6: Collection Functions
	Predicate Method all?
	Predicate Method any?
	Collect Enumerable Method
	Cycle Enumerable Method
	Detect Enumerable Method
	Drop Enumerable Method
	Drop While Enumerable Method
	Chapter Questions

	Chapter 7: Interfaces
	Interface as a Self-Documenting API Reference
	Interface as Type contract
	Satisfying Return Values
	Chapter Questions

	Glossary
	Acknowledgments
	Credits

