

CONTENT

1 INTRODUCTION ...ccuuiiiiuuniiiieneieiiensseeiennsssressssstssssssssasssssrsssansssssanssssns 5
1.1 ADOUL JAVA ..ot rene st enas et sensseseenessssensssssesnssssssnsssssensssssensssssennsssssnnsnanns 6
07 2 [5 - | | POt 7

00 2 R XU o o o ¥ L ot | YU UPRRSN 8
O |V, - T o TV T | SR SPPRR 9
1.3 Create APPliCatioN ...t reneeeresasseresesessensssssenessssensssssennssssssnssssssnannns 10
0 0 o Y o Yo] PSPPSR 11
00 70 A 1Y o] L= USRS 12
T S V' o o o N 13
O - 1V Yol < < 14
A T 1V T (TS 16

2 BASIC SYNTAX .eiieeeiiiemeieiienneetennsseetensereenssesssnssscsssnsssssenssesssnssssssnssssssnnssssssnssssssnssssssnsssessnnssessanssnns 18

7200 R 0o 4T 4 =T 5 (N 19
2 O A [o F =4 L 1o PSP 20
D2 A |V [0 I XTSRS 21
72 A © T« = = | o N 22
0700 A O ¢ oY o Y= o 1Yo o NP UURRN 23
D A N 4 1 .4 <] o oS 25
0 T N3] =4 s o 0 =] o | RPN 26
D N 11 Y V1Y RSP 27
B 2 T o - T | RSP 28
P2 T - 1 =T 0 01T 0 29
20 70 A o o Vo [o] o - | PSP 29
2.3.1.1 27T a Tl 311 o= 30
. 700 0 St R | USSP UUUP PPN 31
0 T8t O 0 A 1 £ SRR 31
e TR 0 O T < (Y PO P UUPP PPN 32
D0 T8t O S Y o [USRS 33
2.3.1.1.5 2 et ettt ettt ettt ettt et et et et ae et et et et e e et et et eae et et et eaeae et et et eaeae et et eanas et etetens 34
2.3.1.2 oo o1 =SSR 35
. T8 007 2 R o] USSP UUUP U PUPPON 36
D T VY o 11 1= USRI PPRR 37
e T8 0 2 T o Lo TR V.Y o 11 =TT UUUPUUUP PPN 38
S B0 A ¥ | o 1 o V=PRI 39
2.3.2.1 oY== PR PURPRNY 40
2.3.2.2 Folo 01 o T0 T 41
P2 S 0 T) - R Y T - 42
D S R or- | - | PSS 46
2.4.1.1 0T 1 PR PURRRNt 47
24.1.2 Yo To) KU SRS UUUUUP RS 48
2.4.1.3 o3 U 49
24.1.4] 2 To] 5 PSP UUPPPUURRRP 50
2.4.1.5 0 PP PPP PN 51
28.1.6 JONEueieieieeeeeeeeeeee ettt ettt ettt ettt ettt ettt et et sttt enen e eeneeas 52
2.4.1.7 10T SR PURR 53

24.1.8 (o [oT0] o] 1O T O O PSP PP PP PR PUPPROP 54

2.4.1.9 (o] 0 T= 1 (PO 55

PR 37 o] 4 Y To 18 s o [PPSR 56
24.2.1 L1 [V<SS OO P PO P PPPRRR T PUPPPPPPIRE 57
2.4.2.2 1 U 58
2.4.2.3 L0 - 1P 59

PRI 1 =T - 1 60

725 Tt |1 | 61

D 0 A - To To] [T o T 62

2.5.3 L) =T = L= OO P PP PP PP PPPPPPTPPPRRR 63
2531 DTl T0 0 =Y Vo) 71 1 Lo o I 64
2.5.3.2 (01 = I\ To =1 4 o F RSP 65
2533 Hexadecimal NOtatioNooii i rre e e e e eeeeeeaaeas 66

P T S o o V- S OO OPPTPPPRPRRR P PPPPPPPPPR 67
2541 DTl T0 0 =1 VL) 7 1 1 Lo o IS 68
2.5.4.2 (01 = I |\ To] =1 4 o F TSP 69
2543 Hexadecimal NOtatioNccoii i e e ree e e e e eeeeeeaaeas 70

D T T o (o Y- | 71
2.5.5.1 2 Y Tl A\ [0} 1 4 [o PSSR 72
2.5.5.2 Yo = ok u) il (Ko - 4 o o PP RPN 73

D T T 0 1o 101 o LIRS P 74
2.5.6.1 2] (ol N[0 - 1 [o O PP PPPPPTPNE 75
2.5.6.2 o=l)1 (ol o] =) o o PP 76

D T A O o -1 Vot] 77

0 R o o 1 o =S URRPN 78

P T B A\ o - | PP PPPPUPPPPPPPPPPIR 79

3 OBIJECT ORIENTED SYNTAX ...cuieuiiuitaitenttencrnncransesssnsssssssssssssssssssssssssssssnsssssssnssssssnsssasssnssssssasssasssnse 80
% R o - 11 - 81

o R [o1 Y=Y 1 =] [< IO RP 83

3.1.2 ReflECHiON oo 84

N e T O = T o Y=Y [U PURRUR PP 86

2 2N 111 7= o -1 o[- TN 87
202 T © < = ot £ RN 88

3.3.1 L@ =T) o TRt 89

3,302 UPCASHING i 90

3.3.3 DOWNCASTING ettt e e e e e e e e e e e e e e e e e e 91

2% S 2 Col=Y o 4 o o T3S 92
2RI | (=14 1o Yo C PPN 93

3.5.1 L0 =T) =T PRt 94

3.5.2 ParameEters SCOPE ..ccoiiiiiiiiiiee et e e 95

I TC T O 1V =Y o [- o 11 = SR 97

TR S O 1V T o o o 1Y - PR UPS 98

4 ADVANCED SYNTANX ..c.uicueteieruientiencrasernseesssesssnsesnssssssesssnsssnssssssasssnsssassssssssssasssasssnsessssasssasesasessssanss 929
L R = 4 T=T 4 T ol Tt 929

s A 1 - T PP PPPPPPPRPPPPPRt 100

L A Y/ =Y o o o Yo PRSPPI 102

G T IV o TN [o =T /=Y o ol SRR 103

A.1.4 TYPE PATAMETEIS ceeeeieieiiiititetetttetetetetererererareaeeere—e—eaete—aaeeetetetesatatetatetetetesasasesnsesessssnsssnsrnsnnes 103

4.1.5 LTAT A1 o Loz Y o KRR 104

5 BUILT IN FUNCTIONALITIES....cccetttmuuuiiiiiiimmnnnniiiiiiennnnniiiineieenssiiiiiniemmsssisssieessssssssssesssssssssssssssssssses 107

L% R o] | [Tt d o] L3 SIS 107
LT I N o - 1] 1 1/ =Y U 108
0 Y Tt o] 3PNt 109
5.1.3 L= =) o | RPN 110
5.1.4 Hashtables. ... 111
5.1.5 [oYU 0 =T = | (o] U 113
LT T O - | (=Y A T 1 L= SRR 114

N -1 o -] [£ 1 4 (o] 3 TSy PIN 116

6 APPENDIX.....ccuitiiuietieeitcnneeenierneereanereaseernsassasssenssssnssssnsssenssssnssssnssssnsssanssssnsssenssssnssssnsssensesensessnsenen 116

7% R XY o | I - 1] TSP RPIN 117

(S B o 111 R 4 = =T RNt 119
200 R Yo Yo 120
T A <1V YRR 121
3. T o Vo o A 123
ST S 1 o 125
ST 28 T o T o -SSR 127
T T oY | AU TR 129
I A« [o U] o1 1< 130
T - T o] o -1 PR 131
IS T o o oV = 132
L0700 O Y o - Y SRSt 134

(o000 0 I Y Vo V=4 1= g V=Y] o Y o - | RN 134

6.2.10.2 MUIti DIMENSTIONAL ceutuiiiiiiiiee ettt e et ee e e ettt e s e et aaaeseesasasesssanasesssnnnsssessans 136

1 Introduction

Info

© This book contains tutorials about syntax of JAVA Programming Language.
Syntax is the set of rules that you must obey in order to write proper code in specified language.
© Tutorials are standalone and minimalistic focusing only at one problem at the time.

Each tutorial includes working example with a complete code needed to test discussed functionality.

How to use this book

© This book can be used as an introduction to JAVA Programming Language covering all of the basic core functionalities.
© Book is also intended as Just In Time Support so that user can learn what it needs when it needs it.

© This is why tutorials are standalone and minimalistic focusing only at one problem at the time.

Meaning of symbols used in tutorials

© In most tutorials you will find symbols like [R], [E] and [C] whose meanings are described in following table.

Symbols
SYMBOL | NAME DESCRIPTION
[R] Reference Link to reference which was used while creating tutorial.
[E] Error Link to solution for an error that might occur while following tutorial.
[C] Create application | Link to a tutorial which shows how to create an application in order to test tutorial's code.

Chapters organization

Chapter 1
© First chapter contains short introduction to JAVA Syntax followed by tutorials that explain how to install JAVA.
© Chapter contains tutorials which show how to create either JAVA Console or Applet Application.

Chapter 2
© Second chapter contains tutorials explaining basic JAVA syntax which doesn't include rules related to classes and objects.

Chapter 3
© Third chapter contains tutorials that explain JAVA syntax related to classes and objects.

Chapter 4
© Forth chapter contains tutorials that explain advanced parts of JAVA syntax some of which were added to later versions.

Chapter 5
© Fifth chapter contains tutorials that explain how to use built in that functions which give you more power of what you can

do with the language compared to using just syntax.

Chapter 6
© Sixth chapter describes different tools that might prove helpful while working with that like Eclipse IDE.

Chapter 7
© Sixth chapter contains list of errors that might occur while working with PHP and how to solve them.

Chapter 8
© Last chapter contains additional informations related to JAVA like cheat sheets containing most useful code snippets.

1.1 About JAVA

Info

(<]

JAVA

® is Object Oriented Programming Language (OOP)

e s platform independent which means that it can run on any 0S-Operating System that supports JVM.
JVM stands for Java Virtual Machine which is capable of running JAVA intermediate code

e has no pointers and the job of removing objects that are not needed from memory is taken care by Garbage Collector.
Since it has no pointers direct access to memory is not impossible.

JAVA's goal was to bring order in the world of programming languages ruled thus far by C, C++ an PERL.

All the tasks that could be done by computer were transferred from programmer to computer.

This is why JAVA has no headers since it is smart enough, unlike C compilers, to find function definition on its own.

Java Development Kit (JDK) is collection of files and applications needed to create JAVA applications.

Java Runtime Environment (JRE) is collection of files and applications needed to run JAVA applications.

1.2 Install

Info

© Following tutorials show how to install JAVA.

1.2.1 Automatically

Info

© This tutorial shows how to install JAVA by using installer program.

© Environment variables will be automatically set.

Download

= http://java.sun.com/javase/downloads/index.jsp

= JDK 6 Update 12: Download

= Platform: Windows

= | Agree: ON

= Continue

= jdk-6ul2-windows-i586-p.exe

= Save to: D:\Downloads\jdk-6ul2-windows-i586-p.exe

Install

= Start jdk-6ul2-windows-i586-p.exe

Test

= Create JAVA Console Application

http://java.sun.com/javase/downloads/index.jsp

1.2.2 Manually

Info

© This tutorial shows how to install JAVA by copying JAVA installation and setting environment variables manually.

Extract

= Extract zipped JDK to D:\Installed\Programming

Edit Environment Variables

Start

Settings
Control Panel
System
Advanced

Environment Variables

System Variables

Environment Variables

EXAMPLE DESCRIPTION
PATH ;D:\Installed\Programming\JDK6\bin | Allows you to execute java.exe from any directory while in MSDOS.
CLASSPATH ;D:\Installed\Programming\JDK6\bin | Allows javac.exe to find .class files listed in this variable.
JAVA_HOME |;D:\Installed\Programming\JDK6 Some programes, like Eclipse, use it to find installed JAVA.

Test

= Create JAVA Console Application

1.3 Create Application

Info

© Following tutorials show different ways of creating JAVA application.

1.3.1 Console

Info

© This tutorial shows how to create "JAVA Console Application".
© Console application uses command line to interact with the user.

Example

= Create D:\Temp\Test.java
= Start MSDOS
= cd D:\Temp

= javac Test.java

Test.java

public class Test {

public static void main(String[] args) {
System.out.println("Hello World.");

}

Test

= Start MSDOS
= cd D:\Temp
= java Test

output

Hello World.

1.3.2 Applet

Info

© This tutorial shows how to create Applet.
© Applet is JAVA program meant to run under Web Browser.

Example

= Create JAVA Console Application Test.java
= Create Web Page D:\Temp\Test.html

Test.java

import java.applet.*;
import java.awt.*;

public class Test extends Applet {
public void paint(Graphics g) {
g.drawString("Hello world!", 50, 25);

Test.html

<html>
<body>
Here is the output of my program:
<applet code="Test.class" width="150" height="25" alt=""></applet>
</body>
</html>

Test

= D:\Temp\Test.html

1.4 Support

Info

© Following tutorials show how to use javac.exe and java.exe to compile and run JAVA code.

1.4.1 javac.exe

Info

© javac.exe is application used to compile java code .java into intermediate code .class.

Examples

COMMAND DESCRIPTION

javac Test.java |Compile Test.java from current dir and save Test.class in the same dir.

javac *.java Compile all files with .java suffix from current dir and save their .class files in the same dir.
-sourcepath

© Defines where to find source files needed to compile target source file.
© You can define directories, JAR or ZIP files.

© Needed source files are also compiled and their .class files are saved in the same directory where they were found.

Examples

COMMAND DESCRIPTION

javac -sourcepath src Test2.java Look for source files in src dir in current directory.
javac -sourcepath .;..\src;C:\stuff Test2.java Look for source files in listed directories.

javac -sourcepath servlet.jar;C:\util.zip Test2.java Look for source files in listed directories.

-classpath, -cp

© Defines where to look for class files needed to compile target source file.
© You can define directories, JAR or ZIP files.

Examples

COMMAND DESCRIPTION

javac -classpath classes Test2.java Look for class files in class dir in current directory.

javac -classpath .;..\classes;C:\stuff Test2.java | Look for class files in listed directories.

javac -cp servlet.jar;C:\util.zip Test2.java Look for class files in listed dirs, JARs or ZIP files.
-d

Without -d parameter javac creates .class files in current directory ignoring package directive.
Only if -d parameter is used javac will create directory structure as defined with package directive.
Directory structure will be created in directory defined with -d parameter.

o © 0 O

.class file will be created in the last directory.

Examples

COMMAND DESCRIPTION

javac Test.java |Create Test.class in current directory ignoring package directive.

javac -d . Test.java |Create directory structure in current directory.

javac -d C:\stuff Test.java | Create directory structure in directory C:\stuff.

javac -d classes Test.java |Create directory structure in directory classes in current directory.

javac -d temp\classes Test.java |Create directory structure in directory temp\classes from current directory.
javac -d ..\ Test.java | Create directory structure in parent directory from current directory.

javac -d ..\..\classes Test.java |Create directory structure in directory classes two dirs above current directory.

-version

© Displays JAVA version.
© java -version

output

java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-b64)
Java HotSpot(TM) Client VM (build 1.5.0-b64, mixed mode)

-help

© Displays possible parameters and their usage.
© javac -help

output

Usage: javac <options> <source files>
where possible options include:

-g Generate all debugging info

-g:none Generate no debugging info

-g:{lines,vars,source} Generate only some debugging info

-nowarn Generate no warnings

-verbose Output messages about what the compiler is doing

-deprecation Output source locations where deprecated APIs are used

-classpath <path> Specify where to find user class files

-cp <path> Specify where to find user class files

-sourcepath <path> Specify where to find input source files

-bootclasspath <path> Override location of bootstrap class files

-extdirs <dirs> Override location of installed extensions

-endorseddirs <dirs> Override location of endorsed standards path

-d <directory> Specify where to place generated class files

-encoding <encoding> Specify character encoding used by source files

-source <release> Provide source compatibility with specified release

-target <release> Generate class files for specific VM version

-version Version information

-help Print a synopsis of standard options

-X Print a synopsis of nonstandard options

-J<flag> Pass <flag> directly to the runtime system
Example

= This example can be used to test different parameters of javac.exe.
= Create JAVA Console Application Test.java

Test.java

public class Test {
public static void main(String[] args) {
System.out.println("Hello World.");

Test2.java

public class Test2 {
public static void main(String[] args) {
Test test = new Test();
test.main(null);

1.4.2 java.exe

Info

© java.exe is used to start JVM and run .class files in it.

Run .class which was made using package keyword

= MylJava.java has line: package begin.middle;

= Save Mylava.class in: C:\Stuff\src\begin\middle
= Start MSDOS

= cd C:\Stuff\src>java begin.middle.MyJava

Define VM version to run .class

= C:\MyClasses>C:\Install\JDK14\bin\java MyClasses

Define paths to classes

= Following line defines two class paths which are used to find MyProgram.class and all classes used by it.

MyProgram.class is in directory Tests and it has no package defined in it.

java -cp .;D:\JavaProjects\Jemmy\Tests;D:\ProgramFiles\JemmyClasses MyProgram

= Following line defines that Java will look for needed classes in current directory and in
C:\Stuff\Some\JDBCDriver_Oracle9.zip. Class TestSome is called with parameter 3.416

java -cp .;C:\Stuff\Sinisa\JDBCDriver_Oracle9.zip TestSome 3.416

java -cp .;..\lib\httpunit.jar;..\lib\js.jar; TestHTTPUnit videobox 7n433vfs

Define output

= Qutput of program will be written to the file

= java Hello > ivor.log

Get Version

= java -version

Errors

'java’ is not recognized as an internal or external command, operable program or batch file.

O

You have to check Environment Variable PATH. If it looks like this without quotes "C:\Install\JDK142\bin;D:\Stuff" DOS will
try to find java.exe first in C:\Install\JDK142\bin directory and then in D:\Stuff directory. This means that first java.exe
found is executed. Be aware that DOS only looks for java.exe in listed directories but not in their subdirectories.

Be aware that there are two types of PATH variable, one defined as User Variable and the other as System Variable. If
User Variable PATH exists java uses ONLY its value. If it doesn't exists, but System Variable PATH exists, then it uses ONLY
its value. If both variables are missing DOS will not be able to find java.exe.

In order for changes in Environment Variables to become visible in DOS you have to restart DOS.

Exception in thread "main" java.lang.NoClassDefFoundError: Ivor

O

You have to check Environment Variable CLASSPATH. If it looks like this without quotes ".;D:\MyClasses" it means that
java first looks for classes in current directory and then in D:\myClasses directory. If it can not find the class in any of
those it reports above error. Be aware that DOS only looks for java.exe in listed directories but not in their subdirectories.
Be aware that there are two types of CLASSPATH variable, one defined as User Variable and the other as System Variable.
If User Variable CLASSPATH exists java uses ONLY its value. If it doesn't exists, but System Variable CLASSPATH exists, then
it uses ONLY its value. If both variables are missing java will by default look only in current directory.

In order for changes in Environment Variables to become visible in DOS you have to restart DOS.

Moj.jar access denied

O

Set attribute file-a to executable.

Moj.jar cannot execute binary file

O

Class path is not valid. Try to defined it like
java -cp ".:../dirl/Moj.jar:../dir2/Moj.jar MojProgram"

2 Basic Syntax

Info

© Following tutorials explain basic JAVA syntax.
© Later chapter Object Oriented Syntax explains syntax related to classes and objects.
© Syntax of a programming language is the set of rules that define the combinations of symbols that are considered to be

correctly structured programs in that language.

2.1 Comments

[C]

Info

© Comments are pieces of text inserted into source code to clarify it.

© They are not instructions for the computer and are therefore ignored by execution engine.

© Specially formatted comments can be used to generate documentation directly from the source code.
o

JAVA supports both single line and multi line (block) comments.

Comment types

SINGLE LINE COMMENT TYPE EXAMPLE
Single line //Single line comment
Multi line /* Multi line comment.

Second line.

*/

2.1.1 Single Line

Info [C]

© Single Line comments can't span over multiple lines.

Start of single line comment is indicated by especially reserved combination of characters //.
End of single line comment is indicated by the end of the line.
Benefit of single line comments is that they do not need to be terminated with terminator keyword.

o © 0 O

Downside of single line comment is that creating longer comments requires placing indicator for start of comment at the

beginning of each line.

Test.java

public class Test {
public static void main(String[] args) {
//Print something.

//Say Hello World.
System.out.println("Hello World"); //Single line comment.

2.1.2 Multi Line

Info [C]

O

O
O
O

Multi Line comments can span over multiple lines.

Start of multi-line comment is indicated by combination of slash and multiply character /*.

End of multi-line comment is indicated by combination of multiply and slash characters */.

Benefit of multi-line comments is that they allow you to write a lot of text that spans over multiple lines without having to
prefix each line with predefined prefixes as is the case with single line comments.

Downside of multi-line comments is that they have to be terminated with specific indicator which presents typing

overhead compared to single line comments for shorter text.

Test.java

public class Test {
public static void main(String[] args) {
/* Multi line comment.

Block comment. &7
System.out.println("Hello World");

2.2 Operators

Info

© Operators are used for changing values of variables.

2.2.1 Comparison

Info

O

O
O
O

Comparison operators are used to compare values of two variables.

This way they provide a method to direct program flow depending on the outcome.

JAVA comparison operators should be used only for comparing numerical values.

Strings should be compared using predefined JAVA functions designed for that purpose.

Operators

TYPE NAME DESCRIPTION

a==>o Equal TRUE if 'a' is equal to 'b' after type juggling
al!l=b Not equal TRUE if 'a' is not equal to 'b' after type juggling.
a <> b Not equal TRUE if 'a' is not equal to 'b' after type juggling.
a === Identical TRUE if 'a' is of the same value and type as 'b'.
a !==b Not identical TRUE if 'a' is not of the same value and type as 'b".
a<hb Less than TRUE if 'a' is strictly less than 'b'.

a>b Greater than TRUE if 'a' is strictly greater than 'b'.

a <=b Less than or equal TRUE if 'a' is less than or equal to 'b'.

a >=b Greater than or equal TRUE if 'a' is greater than or equal to 'b".

Numerical values

[c]

© This example shows how to use comparison operators on numerical values.

Test.java

publ

ic class Test {

public static void main(String[] args) {

//FOR char, byte, short, int, long, float, double.

char left = 65;
long right = 70;

JIFOR BERIERAR, ~orscrssomos00050000500000055000506050005560500055 060500050000 EE05E0050005E00DS00000E

if (left == right) { System.
if (left != right) { System.
if (left < right) { System.
if (left <= right) { System.
if (left > right) { System.
if (left >= right) { System.
boolean 1 = true;

boolean r = false;

if (1 ==1r) { System.
if (1 !'=1r) { System.

out.
out.
out.
out.
out.
out.

out

out.

println("Left equals right.");
println("Left is different from right.");
println("Left is smaller then right.");
println("Left is smaller or equals right.");
println("Left is greater then right.");
println("Left is greater or equals right.");
.println("Left equals right."); }

println("Left is different from right."); }

[N W)

Objects and Strings

[l

© This example shows to compare Objects and String for which you can't use comparison operators.

Test.java

public class Test {

public static void main(String[] args) {

JFOR @ojjeGESs corscrcssmoso005500050005000550005005506550005000585005005800050EEE0E0EEEDEEEEEE00D5S

String text = "Hello";

if (text instanceof String) { System.

JFOR SEPfES - corsormsonos000500055500000050005000500055005000550005000500005E000005000EE00DS00E00E

String text = "Hello";

if (text.equals ("Hello")) {
if (text.equalsIgnoreCase("hello")) {
if (text.contains ("110") {
if (text.contentEquals ("Hello")) {
if (text.startsWith ("He")) {
if (text.startsWith ("110",2)) {
if (text.endsWith ("11o0" 1)) {
if (text.matches ("Hello")) {

System.
System.
System.
System.
System.
System.
System.
System.

out.
out.
out.
out.
out.
out.
out.

out

println("text
println("text
println("text
println("text
println("text
println("text
println("text

.println("text

is equal to \"Hello\".

is equal to \"hello\".

contains \"1llo\".

is equal to \"Hello\".
starts with \"He\"."

)5
)5
)5
)5
)5

at index 2 starts with \"1llo\".");

ends with \"1lo\"."
matches regex \"Hello\"."

)s
)s

L e B S B R =}

2.2.2 Arithmetic

Info [C]

© Arithmetic operators are used to perform mathematical operations.
© Mathematical operations, not supported by arithmetic operators, can be performed using JAVA mathematical functions.
© If one of the operands is float or double the other one is implicitly transformed into that type.
© Division returns integer if both operands are evenly divisible integers (or strings that get converted to integers)
In all other cases float is returned.
© Modulus operands are converted to integers (by stripping the decimal part) before processing.
Result of the modulus has the same sign as the dividend (first parameter a).

Operators
TYPE NAME
+b Plus
- b Negation
a+hb Addition
a-b Subtraction
a*h Multiplication
a/b Division.
a%hb Modulus.
a++ Post-increment
a-- Post-decrement
++b Pre-increment
--b Pre-decrement
Test.java
public class Test {
public static void main(String[] args) {
//TEST VARIABLES.
int X = 10;
int y = 20;
//ARITHMETIC OPERATORS.
int negate = -y, //-10 = -10
int add = X+y; //10+20 = 30
int subtract = X-y; //10-20 = -10
int multiply = x*y; //10*20 = 200
int dividel = x/y; //10/20 = 0.5 =0
float divide2 = (float)x/y; //10.0/20.0 = 0.5
int reminder = x%y; //10%20 = 0%*20+10 = 10
int incrementl = ++x; //Increment x by 1 and then store x into incrementl.
int decrementl = --x; //Decrement x by 1 and then store x into decrementl.
int increment2 = X++; //Store x into increment2 and then increment x by 1.
int decrement2 = X--; //Store x into decrement2 and then decrement x by 1.

//DISPLAY RESULTS.
System.out.println(negate);

2.2.3 Assighment

Info

[C]

© Assignment operators assign value to variable.

O

Shortcut assignment operators like += or *= perform mathematical operation before making the assignment.

Operators

TYPE NAME DESCRIPTION

a =5 Assignment aequals 5

a+=5 Addition-Assignment aequals aplus5

a-=5 Subtraction-Assignment a equals a minus 5

a *= 5 Multiplication-Assignment a equals a multiplied by 5
a /=5 Division-Assignment a equals a divided by 5

a %= 5 Modulus-Assignment a equals a modulo 5
Test.java

public class Test {

public static void main(String[] args) {

//TEST VARIABLES.
int x = 10;

//ARITHMETIC OPERATORS.

X

X
X
X
X

+=

10;
10;
10;
10;
10;

// X = X + 10;
// x = x - 10;
// x = x * 10;
// x = x/ 10;
// X = X % 10;

//DISPLAY RESULT.
System.out.println(x);

2.2.4 Bitwise

Info

[C]

O

O
O
O

Bitwise operators combine bits within one or two int or long values.

If an operand is shorter than an int, it is promoted to int before doing the operations.

Right shift >> n is Arithmetic Shift equivalent of dividing left operand by 2" which preserves operand sign.

AND, OR, XOR and NOT do not change the value of operands.

Operators
TYPE NAME DESCRIPTION
$a & $b AND Set bits that are set in both $a and Sb
$a | $b OR Set bits that are set in either Sa or Sb.
$a ~ $b XOR Set bits that are different in $Sa and Sb.
~ $b NOT Invert bits
$a << b Shift left Shift the bits of $Sa by Sb steps to the left (each step means "multiply by two")
$a >> $b Shift right Shift the bits of $Sa by Sb steps to the right (each step means "divide by two")
Test.java

public class Test {

public static void main(String[] args) {

//TEST VARIABLES.

int lef
int rig

t
ht

Integer.
Integer.

//BITWISE OPERATORS.

int and
int or
int xor
int inv

int shiftLeft
int shiftRight
int shiftRight2

ert

//DISPLAY RESULTS.

System.
System.
System.
System.
System.
System.
System.

out

out.
out.
out.
out.
out.
out.

.println
println
println
println
println
println
println

left &

left |

left ~
~left;

left <<
left >>

Integer.
Integer.
Integer.
Integer.
Integer.
Integer.
Integer.

right; //1eele.
right; //11e11.
right; //e1ee1l.

//00100.

B //11011000.
2; //110.
left >>> 2;

T

toBinaryString
toBinaryString
toBinaryString
toBinaryString
toBinaryString
toBinaryString
toBinaryString

parseInt ("11011", 2);
parseInt ("1e01e", 2);

1 if both

1 if either
1if

Invert bits.

Shift bits to the left by 3. Fill with @.
Shift bits to the right by 2. Fill with @.

(and
(or

(invert
(shiftLeft
(shiftRight)
(shiftRight2)

)
)
(xor)
)
)

bits are 1.
bit is 1.

bits are different.

2.2.5 Logical

Info

[C]

© Logical operators are used to combine boolean values that can be only TRUE or FALSE.

© This way they provide a method to direct program flow depending on the outcome.

Operators
TYPE NAME DESCRIPTION
a& b AND True if both 'a' and 'b' are true
a AND b AND True if both 'a' and 'b' are true
al|l b OR True if either 'a' or 'b' is true
aOR b OR True if either 'a' or'b'is true
a XOR b Exclusive OR True if only ‘a' or only 'b" is true
b NOT True if Sb is not true

NOT b NOT True if Sb is not true

Test.java

public class Test {

public static void main(String[] args) {

//TEST VARIABLES.
char left = 65;
long right = 70;

//LOGICAL OPERATORS.

if (left> 50 && right==70) { System.out.println("left >50 AND right==10")5 }
if (left!=4 || right> 90) { System.out.println("left!=50 OR right> 90") }
if (I (left==80)) { System.out.println("left is NOT equal to 80"); }

2.3 Statements

Info

© Statement is smallest part of code which can be executed.
© JAVA statements must be terminated with semicolon ; indicating end of statement, except in some special cases.

© Statements are classified depending on their function.

2.3.1 Conditional

Info

© Conditional Statements define which part of code should be executed depending on some condition.

© Code is executed only once compared to Looping Statements where code can be executed multiple times.

2.3.1.1 Branching

Info

© Branching is used to control program flow.
© Following example contains examples of branching options.

2.3.1.1.1 if

Info [C]
© if statement executes specified code if specified condition is true.
© If code contains only one statement curly brackets can be omitted but this can lead to errors when adding statements.

Syntax

if (condition) { code }

Test.java

public class Test {

public static void main (String arg[]) throws Exception {

int value = 10;
String text = "bird";
if (value == 10) { System.out.println("value = 10")s }

if (text.equals("bird")) { System.out.println("text equals bird"); }

2.3.1.1.2 else

Info [C]
© else statement can be used only in combination with if statement.

O If condition specified by if statement is TRUE then only code defined in if statement is executed.

© If condition specified by if statement is FALSE then only code defined in else statement is executed.
s}

If code belonging to if or else statements contains only single statement, curly brackets can be omitted but this can lead

to errors when adding statements.

Syntax
if (condition) { codel }
else { code2 }
Test.java

public class Test {

public static void main (String arg[]) throws Exception {

int value = 10;

String text = "bird";

if (value == 10) { System.out.println("Value = 10")5 }
else { System.out.println("No match found"); }

2.3.1.1.3 elseif

Info [C]

© Multiple else if statements can be used in combination with if statement.
© if...elseif combo works as multiple if statements.
© Conditions are evaluated in sequence and only code belonging to the first condition which evaluates to true is executed.
© if...else if combo can optionally end with else statement.
If so, then if all conditions evaluate to FALSE only code belonging to else statement will be executed.

Syntax

if (conditionl) { codel }
else if (condition2) { code2 }

else { codelo }
Test.java
public class Test {

public static void main (String arg[]) throws Exception {

int value = 10;
String text = "bird";
if (value == 10) { System.out.println("value = 10")8

else if (text.equals("bird")) { System.out.println("text equals bird");
else if (text.equals(“dog")) { System.out.println("text equals dog");
else { System.out.println("No match found");

(S)

2.3.1.1.4 switch

Info [C]

© switch statement uses single integer or char parameter whose value determines from which case to start executing code.

All statements that follow are then executed until break statement or end of switch block.
© default: case is executed if no other cases were true and it can be placed anywhere.
© switch statement is used instead else if statements when all conditions evaluate the same integer variable.

Syntax

switch (integer|char) {
case valuel:
optional code 1
break;
case value2:
optional code 2
default:
optional code 10

Test.java

public class Test {
public static void main (String arg[]) throws Exception {
int a = 5;
switch (a) {
case 1:
System.out.println("Value is 1. Exit from switch.");

break;

case 5:
System.out.println("Value is 5. Continue to next case or default.");

default:
System.out.println("Default value is selected if no case was true.");

break;

2.3.1.15 ?:

Info [C]

© This tutorial shows how to use ? : conditional statement where
® Expression left from ? is evaluated.
o If TRUE expression left from : is executed.

e If FALSE expression right from : is executed.
Syntax

condition ? code if true : code if false;

Test.java

public class Test {

public static void main(String[] args) {

int a
int b

10;
5;

int max = (a > b) ? a : b;
System.out.println(max);

2.3.1.2 Looping

Info

© Depending on given condition Looping Statements can execute specific part of code multiple times.
© Existence of condition makes them similar to Conditional Statements but they can execute code only once.

2.3.1.2.1 for

Info

[cl

O

Depending on the condition, for statement can execute specified code multiple times where
e expressionl is executed at the beginning of the first iteration
® expression2 is executed at the end of each iteration
e condition is evaluated at the beginning of each iteration
o Ifitis TRUE code is executed
o |Ifitis FALSE code is NOT executed and program breaks out of for loop
Expressions and condition can be left empty in which case condition evaluates to TRUE.
You can use
® break statement to break out of for loop

® continue statement to skip the rest of the body and continue with next iteration from the beginning of for loop.

Syntax

for (expressionl; condition; expression2) { body }

Test.java

public class Test {
public static void main (String arg[]) throws Exception {

//SIMPLE. Output is "1 2 3 4".
for(int i=1;i<=4;i++) {
System.out.println(i);

//COMPLEX. Output is "1 2 3".
for(int i=1, j=5 ; i<=4 && j>2 ; i++,j--){
System.out.println(i);

//BREAK. Output is "1 2 3" since we break out of for loop before condition i<4 is reached.

for(int i=1;i<=4;i++) {
System.out.println(i);
if(i==3) { break; }

//CONTINUE. Output is "1 2 4" since display of number 3 is skipped.
for(int i=1;i<=4;i++) {

if(i==3) { continue; };

System.out.println(i);

2.3.1.2.2 while

Info [C]

© while statement iteratively executes specified code as long as condition is TRUE where
e condition is evaluated at the beginning of each iteration.
o Ifitis TRUE code is executed.
o |Ifitis FALSE code is NOT executed and program breaks out of while loop.
© Youcan use
® break statement to break out of for loop
® continue statement to skip the rest of the body and continue with next iteration from the beginning of for loop.

Syntax

while (condition) { code }

Test.java

public class Test {
public static void main (String arg[]) throws Exception {

//Initialize variable that will be used as counter.
int i=0;

//SIMPLE. Output is "1 2 3 4 5".
while(i<=4) {

i++;

System.out.println(i);

//BREAK. Output is "1 2" since we break out of for loop before condition i<=4 is reached.
while(i<=4){

i++;

if(i==3) { break; }

System.out.println(i);

//CONTINUE. Output is "1 2 4 5" since display of number 3 is skipped.
while(i<=4){

it++;

if(i==3) { continue; }

System.out.println(i);

2.3.1.2.3 do... while

Info [C]

© do...while statement iteratively executes specified code as long as condition is TRUE where
e condition is evaluated at the end of each iteration.
o Ifit evaluates to TRUE code is executed.
o Ifit evaluates to FALSE code is NOT executed and program breaks out of do...while loop.
© Unlike while statement, code is always executed at least once since condition is evaluated at the end of each iteration.
© Youcan use
® break statement to break out of for loop
® continue statement to skip the rest of the body and continue with next iteration from the beginning of for loop

Syntax

do { code } while (condition)

Test.java

public class Test {
public static void main (String arg[]) throws Exception {

//Initialize variable that will be used as counter.
int i=0;

//SIMPLE. Output is "1 2 3 4 5".
do{

i++;

System.out.println(i);
Jwhile(i<=4);

//BREAK. Output is "1 2" since we break out of for loop before condition i<=4 is reached
do{

i++;

if(i==3) { break; }

System.out.println(i);
Jwhile(i<=4);

//CONTINUE. Output is "1 2 4 5" since display of number 3 is skipped.
do{

i++;

if(i==3) { continue; }

System.out.println(i);
Jwhile(i<=4);

2.3.2 Jumping

Info

© Jumping statements are used to unconditionally continue code execution at some other part of code.

© Use of such statements is considered bad practice since they make it harder to follow code execution.

© You should use conditional statements instead.

2.3.2.1 break

Info

[C]

© break statement is used to end execution of looping statements or switch blocks.
© This means that you can use it to stop execution of for, while, do ... while or switch blocks.

Syntax

break;

Test.java

public class Test {
public static void main (String arg[]) throws Exception {

//FOR. Output is "1 2 3" since we break out of for loop before condition i<4 is reached.
for(int i=1; i<=4; i++) {

System.out.println(i);

if(i==3) { break; }

}
//WHILE. Output is "1 2" since we break out of for loop before condition i<=4 is reached.
int i=0;
while(i<=4){
i++;

if(i==3) { break; }
System.out.println(i);

//DO...WHILE. Output is "1 2" since we break out of for loop before condition i<=4 is reached
i=0;
do {
i++;
if(i==3) { break; }
System.out.println(i);
} while(i<=4);

//SWITCH.
int a = 5;
switch (a) {
case 1:
System.out.println("value is 1. Exit from switch.");
break;
case 5:
System.out.println("Value is 5. Continue to next case or default.");
default:
System.out.println("Default value is selected if no case was true.");
break;

2.3.2.2 continue

Info [C]

© continue statement is used inside looping statements to stop current iteration and continue with the next one.

© This means that you can use it to stop execution of for, while or do ... while blocks.

Syntax

continue;

Test.php

public class Test {

public static void main (String arg[]) throws Exception {

//FOR. Output is "1 2 4" since display of number 3 is skipped.
for(int i=1; i<=4; i++) {

if(i==3) { continue; };

System.out.println(i);

//WHILE. Output is "1 2 4 5" since display of number 3 is skipped.
int i=0;
while(i<=4){

i++;

if(i==3) { continue; }

System.out.println(i);

//Do...WHILE. Output is "1 2 4 5" since display of number 3 is skipped.
do{

i++;

if(i==3) { continue; }

System.out.println(i);
Iwhile(i<=4);

2.4 Data types

Info [R]

© Data type defines main characteristics of data.

Categorization of Data Types

© Data types can be categorized as
e Pre defined data types (boolean, char, byte, short, int, long, float, double, array and predefined classes like String)
o User defined data types (user defined classes or interfaces)
© Data types can be categorized as
e Value data types which hold data within its own memory allocation
e Reference datatypes which hold reference within its own memory allocation that points to actual data
© Data types can be categorized as
e Scalar data types which can store single value (boolean, char, byte, short, int, long, float, double)

e Compound data types which can store multiple values of scalar types (array, String, specific classes or interfaces)

Scalar Data Types

TYPE DESCRIPTION SIZE

null Represents undefined/unknown value.

boolean Represents logical TRUE or FALSE.

char Represents unicode character. 16-bit

byte Represents integer number (20, -54). 8-bit two's complement
short Represents integer number (20, -54). 16-bit two's complement
int Represents integer number (20, -54). 32-bit two's complement
long Represents integer number (20, -54). 64-bit two's complement
float Represents real number (-45.87). 32-bit IEEE 754

double Represents real number (-45.87). 64-bit IEEE 754

Compound Data Types

TYPE DESCRIPTION

Array Collection of data of the same data type.

String Class for storing constant strings.

Class Custom data type. Collection of data of different data types.
Interface Custom data type. Collection of data of different data types.

http://stackoverflow.com/questions/5164005/what-is-the-difference-between-a-class-and-a-datatype

Strongly typed

O
O
O

JAVA is a strongly typed language meaning that every variable must have a declared data type.
So when you declare a variable you have to define data type it can store like char, int, array or Class.
If you try to store data type which is different from declared data type you will get an error.

Examples

String name "John";

int age = 25;

Classes, Interfaces and Objects

© When you declare a class or interface you are actually declaring new custom compound data type.
© So every declared class or interface is a separate data type, either defined by user or built in into JAVA.
© Object is not a data type, instead it is actual data of specific custom data type defined by its class.
© In the below example class Person is data type and object john is data of that data type.
Examples
public class Test {
public static void main(String[] args) {
Person john = new Person();
john.say();
¥
¥
class Person {
String name;
int age;
public void say() { System.out.println("Hello World"); }
¥
Strings [R]
© String can be considered as a special data type.
© String is declared as a built in class but such that has special powers which no other class can have
e itis the only class with overloaded + operator which is used for concatenating Strings
e itis the only class whose objects can be created without using new by using string literal instead "something"
© String can't be modified.

Examples

public class Test {
public static void main(String[] args) {
String start = "Hello "; //0bject creation uaing string literal insted of new keyword.
String end = "World";
String greet = start + end; //Concatenation using overloaded + operator.
System.out.println(greet);
}
}

http://stackoverflow.com/questions/2009228/strings-are-objects-in-java-so-why-dont-we-use-new-to-create-them

Stack vs heap [R]

© Both stack and heap are stored in a computer RAM and are used to store data like variables, classes, etc.

Heap

© In a heap there is no order to the way items are placed so you can reach in and remove items in any order.

© Heap is where global variables (reference types) get created which allows them to be referenced from any function.

© When you declare custom data type like class this declaration is saved in a heap because it has to be globally available so

that you could create data of that data type (object) in any method.

Stack
© In a stack items are stacked on top of each other using LIFO (Last In First Out) principle which means
® You can only add new item at the top of the stack
® You can only remove item from the top of the stack
© Stack is where local variables (value types)
e get created when you call a function
e are removed from when function returns
© Such local variables created on the stack will go out of scope and automatically deallocate and are used to store
e return address to which program must go when it returns from the function
e parameters with which function was called
e |ocal variables created inside the function
© When you create object it goes on top of the stack if it was created as local variable in some method

Implicit conversion of decimals and integer literals

© Any decimal number written in code, like 123.56, is implicitly converted into double primitive type.
This is why you have to explicitly downcast them to smaller container like float.
© Any integer number written in code, like 156, is implicitly converted into int primitive type.

This is why you have to explicitly downcast them to smaller containers like byte and short.

Declaring Integer and Binary

© When declaring Integer and binary constants following rules apply.

Integer constants can be DIRECTLY defined only in decimal, octal or hexadecimal format but not in binary format

int value = 65 //Decimal value.
= 0x41; //Hexadecimal value.
= 0101; //0ctal value.

Binary constants, and all the other constants different from 10, 8 and 16 base can be defined like this

int value

Integer.parseInt("54"); //Decimal value since default base is 10.
value = Integer.parseInt("11", 2); //Use base two making it binary number: 1*2+1=3.
value = Integer.parseInt("Ke", 25); //Use base 25. F=15. FGHIJK=>K=20. 20*25=500.

http://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap

2.4.1 Scalar

Info

© Scalar datatypes are capable of containing a single item of information.
© Scalar datatypes include: boolean, char, byte, short, int, long, float and double.

2.4.1.1 null

Info

© Null data type can only have null value.
Data of null data type can be called "null data" for short.

Null data can be created using Null Literal.

e 0 O

You cannot assign null data to primitive variables like boolean, int, float, etc.

Example

Null data type can only be assigned to reference type variable which are those that hold Classes and Strings.

[l

© Example uses null literal to create null data of value null which is then stored in a variables name and age.

© Null data can't be stored in variables declared to hold primitive types like boolean, int, float, etc.

Test.java

public class Test {
public static void main(String[] args) {

//CREATE NULL DATA.
String name = null; //Create null data using null literal.

Integer age = null; //Assign null to Integer class. Different from int primitive.
int temp = null; //Error. Cannot assign null data to primitive variables.
//DISPLAY.

System.out.println(name);

output

null

2.4.1.2 bool

Info

© Boolean data type can have only two possible values which are logical TRUE or FALSE.

© Data of boolean data type can be called "boolean data" for short.

© Boolean data can be created using Boolean Literal.

© Boolean datatype is named after mathematician George Boole (1815-1864).

© Check out bool cheat sheets containing code samples for working with bool data type.

Example [C]

© Example shows how to create boolean data using
® boolean literal true
® getBoolean() method
© Boolean data is then stored it in variable with identifier value.

Test.java
public class Test {
public static void main(String[] args) {
//CREATE BOOLEAN DATA.
boolean value = true; //Create boolean data using boolean literal.

value = Boolean.getBoolean("false"); //Create boolean data using getBoolean() method.

//DISPLAY.
System.out.println(value);

output

false

2.4.1.3 byte

Info

© Byte data type is type of data that represents integer number.

© Data of byte data type can be called "byte data" for short.

© Byte data can be created using Integer Literal which first creates integer data which is then implicitly converted to byte.
o

Check out byte cheat sheet containing code samples for working with byte data type.

Example [C]

© Example shows how to create byte data using integer literal which first creates integer data which is then implicitly

converted to byte data.

Test.java

public class Test {
public static void main(String[] args) {

//CREATE CHAR DATA.
byte value = 65; //Create byte data using long literal which is then implicitly converted to byte data.

//DISPLAY.
System.out.println(value);

output

65

2.4.1.4 short

Info

© Short data type is type of data that represents integer number.

© Data of short data type can be called "short data" for short.

© Short data can be created using Integer Literal which first creates integer data which is then implicitly converted to short.
o

Check out short cheat sheet containing code samples for working with short data type.

Example [C]

© Example shows how to create short data using integer literal which first creates integer data which is then implicitly

converted to short data.

Test.java

public class Test {
public static void main(String[] args) {

//CREATE SHORT DATA.
short value = 65; //Create short data using integer literal which is implicitly converted to short data.

//DISPLAY.
System.out.println(value);

output

65

2.4.1.5 int

Info

© Int data type is type of data that represents integer number.

Data of int data type can be called "int data" for short.

Int data can be created using Integer Literal.

Check out int cheat sheet containing code samples for working with int data type.

e 0 O

Example

(€]

© Example shows how to create int data using
e integer literal
® parselnt() method

Test.java

public class Test {
public static void main(String[] args) {

//CREATE INTEGER DATA USING INTEGER LITERAL IN DIFFERENT NOTATIONS.

int value = 65; //Decimal.
value = 0101; //0Octal.
value = 0x41; //Hexadecimal.

//CREATE INTEGER DATA USING method parseInt().

value = Integer.parselInt("65"); //Decimal since default base is 10.
2o

value = Integer.parselnt("1000001", 2); //Binary since base is set to

//DISPLAY.
System.out.println(value);

output

65

2.4.1.6 long

Info

© Long data type is type of data that represents integer number.

© Data of long data type can be called "long data" for short.

© Long data can be created using Long Literal.

© Check out long cheat sheet containing code samples for working with longdata type.

Example

(€]

© Example shows how to create int data using
e integer literal
® parselnt() method

Test.java

public class Test {
public static void main(String[] args) {

//CREATE INTEGER DATA USING INTEGER LITERAL IN DIFFERENT NOTATIONS.

long value = 65; //Decimal.
value = 0101; //0ctal.
value = 0x41; //Hexadecimal.

//CREATE INTEGER DATA USING method parseInt().

value = Long.parseLong("65") //Decimal since default base is 10.
2o

value = Long.parselLong("1000001", 2); //Binary since base is set to

//DISPLAY.
System.out.println(value);

output

65

2.4.1.7 float

Info

O

O
O
O

Float data type is type of data that represents real number.
Data of float data type can be called "float data" for short.

Float data can be created using Float Literal.

Check out float cheat sheet containing code samples for working with float data type.

Example

[€]

O

Example shows how to create int data using
e float literal
® parseFloat() method

Test.java

public class Test {
public static void main(String[] args) {
//CREATE FLOAT DATA USING FLOAT LITERAL IN DIFFERENT NOTATIONS.

float value = 65.23F; //Basic notation.
value = 0.6523E2F; //Scientific notation.

//CREATE FLOAT DATA USING METHOD parseFloat().
value = Float.parseFloat("65.23");

//DISPLAY.
System.out.println(value);

output

65.23

2.4.1.8 double

Info

O

O
O
O

Double data type is type of data that represents real number.
Data of double data type can be called "double data" for short.

Double data can be created using Double Literal.

Check out double cheat sheet containing code samples for working with double data type.

Example

[€]

O

Example shows how to create double data using
e double literal
® parseFloat() method

Test.java

public class Test {
public static void main(String[] args) {
//CREATE DOUBLE DATA USING DOUBLE LITERAL IN DIFFERENT NOTATIONS.

double value = 65.23F; //Basic notation.
value = 0.6523E2F; //Scientific notation.

//CREATE DOUBLE DATA USING method parseFloat().
value = Double.parseDouble("65.23");

//DISPLAY.
System.out.println(value);

output

65.23

2.4.1.9 char

Info

© Char data type is type of data that uses integer number to represents single character based on ASCII Table.
© Data of char data type can be called "char data" for short.

© Char data can be created using Character Literal in different notations.

© Check out char cheat sheet containing code samples for working with char data type.

Example [C]

© Example shows how to create char data using
e character literal
e integer literal with value based on ASCII Table

Test.java

public class Test {
public static void main(String[] args) {
//CREATE CHAR DATA.

char letter = 'A'; //Create char data using character literal.
letter = 65; //Create char data using integer literal which is implicitly converted to char data.

//DISPLAY.
System.out.println(letter);

output

2.4.2 Compound

Info

© Compound datatypes allow for multiple items of the same type to be aggregated.

© Compound datatypes include: Array, String and Object.

2.4.2.1 String

Info [R]

© String data type is type of data that represents a string, sequence of characters.

© Data of string data type can be called "string data" for short.
© String data can be created using String Literal.
© Check out String cheat sheet containing code samples for working with String data type.

Example [C]

© Example shows how to create string data
® using string literal
® by creating object from string class new String("text")

Test.java

public class Test {
public static void main(String[] args) {

//CREATE STRING DATA USING STRING LITERAL.

String text = null; //Calling any function on text throws Exception
text = ""; //Empty string.text.length()=0,text.equals("")==true
text = "Hello World"; //Creates string with constant text "text".
text = "First line. \n Second line."; //Using escape character "\': \" \t \n \\
text = "Start" + "End"; //Connecting Strings.

//CREATE STRING DATA BY CREATING OBJECT FROM STRING CLASS.
text= new String("text");
text= new String(new byte[] {'C','a','r','s"});//Creates String from byte array.

//DISPLAY.
System.out.println(text);

http://stackoverflow.com/questions/2009228/strings-are-objects-in-java-so-why-dont-we-use-new-to-create-them

2.4.2.2 array

Info [R]

© Array data type is type of data that represents collection of ordered elements of specific data type.

Data of array data type can be called "array data" for short.
Array data can be created using Array Literal.
Array can't be resized. To change array size create new one and transfer elements or use ArrayList, Vector, etc.

o © 0 O

Check out array cheat sheet containing code samples for working with array data type.

Example [C]

© Example shows how to create array data
e using array literal
® Dby creating object from string class new String("text")

Test.java

import java.util.Arrays;
public class Test {
public static void main(String[] args) {

//CREATE 1D ARRAY DATA USING ARRAY LITERAL.
int[] arraylD = {0,1,2,3}; //Create array data using is array literal {0,1,2,3}.

//CREATE 2D ARRAY DATA USING ARRAY LITERAL. SUB ARRAYS CAN HAVE DIFFERENT LENGTH.
int[][] array2D = { {0,1,2,3},
{4,5},
{6,7,8,9,10,11}
s

//DISPLAY ARRAY.
System.out.println(Arrays.toString(arraylD)); //[0, 1, 2, 3]

output

e, 1, 2, 3]

http://stackoverflow.com/questions/2009228/strings-are-objects-in-java-so-why-dont-we-use-new-to-create-them

2.4.2.3 Class

Info

© Class data types are custom made data types that can contain multiple items.

Example

[cl

© Example shows how to create object (data) from a class (custom data type).

Test.java
//MAIN CLASS.
public class Test {

public static void main(String[] args) {

//CREATE OBJECT.
Person john = new Person();
john.say();

//DECLARE CLASS.
class Person {

String name;
int age;

public void say() {
System.out.println("Hello World");

2.5 Literals

Info

[R]

© Literal is sequence of characters that represents data by both defining data type and data value.

Literal Types

LITERAL EXAMPLES DESCRIPTION

Null null Null literal represents null data type and value which can only be null.

Boolean true, false |Boolean literal represents boolean data type and value which can be true or false.
Integer 50 Integer literal represents integer data type and value which can be integer.

Long Integer |se Long Integer literal represents integer data type and value which can be integer.

Floating 34.75 Floating literal represents float data type and value which can be decimal.

Double 34.75 Double literal represents double data type and value which can be decimal.
Character e Character literal represents character data type and value which can be any character.
String "Hello" String literal represents string data type and value which can be any string.

Array

http://www.javatutorialprograms.com/2013/01/java-literals.html

2.5.1 Null

Info

© Null literal represents null data type.
© Null literal is written by using case sensitive keyword null.
© Null literal can be written in just one notation/format as shown below.

Test.php
public class Test {
public static void main(String[] args) {

//USE NULL LITERAL DO STORE NULL DATA INTO VARIABLE NAME.

String name = null;

//DISPLAY NULL DATA.
System.out.println(name);

output

null

2.5.2 Boolean

Info

© Boolean literal represents boolean data type and value.
© Boolean literal is written by using case sensitive true or false.
© Boolean literal can be written in just one notation/format as shown below.

Test.php
public class Test {
public static void main(String[] args) {

//USE BOOLEAN LITERAL DO STORE BOOLEAN DATA INTO VARIABLES.
boolean access = true;
access = false;

//DISPLAY BOOLEAN DATA.
System.out.println(access);

output

true

2.5.3 Integer

Info

O
O

Integer literal represents integer data type and value.

Integer literal can be written in following notations

e Decimal Notation where integer is written as decimal

e Octal Notation where integer is written as octal

e Hexadecimal Notation where integer is written as hexadecimal

Test.java

public class Test {

public static void main(String[] args) {

//USE INTEGER LITERAL DO STORE INTEGER DATA INTO VARIABLE.
//Decimal notation (base 10).
//0ctal notation (base 8).
//Hexadecimal notation (base 16).

int age = -41;
age = -051;
age = -0x29;

//DISPLAY BOOLEAN DATA.
System.out.println(age);

output

-41

number in base of 10
number in base of 8

number in base of 16

like -41
like -051
like -ox29

2.5.3.1 Decimal Notation

Info

© Integer literal can be written in decimal notation (base 10).

Test.java

public class Test {
public static void main(String[] args) {
//USE INTEGER LITERAL WRITTEN IN DECIMAL NOTATION.

41; //Positive.
age = +41; //Positive.

int age

age = -41; //Negative.

//DISPLAY BOOLEAN DATA.
System.out.println(age);

2.5.3.2 Octal Notation

Info

© Integer literal can be written in hexadecimal notation (base 16).

Test.java

public class Test {
public static void main(String[] args) {

//USE INTEGER LITERAL WRITTEN IN HEXADECIMAL NOTATION.
int age = 051; //Positive.

age = +051; //Positive.

age = -051; //Negative.

//DISPLAY BOOLEAN DATA.
System.out.println(age);

2.5.3.3 Hexadecimal Notation

Info

© Integer literal can be given in hexadecimal notation (base 16).

Test.java

public class Test {
public static void main(String[] args) {

//USE INTEGER LITERAL WRITTEN IN HEXADECIMAL NOTATION.
int age = 0x29; //Positive.
+0x29; //Positive.
-0x29; //Negative.

age
age

//DISPLAY BOOLEAN DATA.
System.out.println(age);

2.5.4 Long

Info

© Long literal represents long integer data type and value.

© Long literal can be written in following notations
e Decimal Notation where integer is written as decimal number in base of 10 like -411
e Octal Notation where integer is written as octal number in base of 8 like -@51L
e Hexadecimal Notation where integer is written as hexadecimal number in base of 16 like -ex29L

Test.java

public class Test {
public static void main(String[] args) {

//USE LONG INTEGER LITERAL DO STORE LONG INTEGER DATA INTO VARIABLE.

long age = -411; //Decimal notation (base 10).
age = -051L; //0ctal notation (base 8).
age = -Ox29L; //Hexadecimal notation (base 16).

//DISPLAY INTEGER DATA.
System.out.println(age);

output

-41

2.5.4.1 Decimal Notation

Info

© Long literal can be written in decimal notation (base 10).

Test.java

public class Test {
public static void main(String[] args) {

//USE LONG INTEGER LITERAL WRITTEN IN DECIMAL NOTATION.
long age = 411; //Positive.

age = +41L; //Positive.

age = -41L; //Negative.

//DISPLAY LONG INTEGER DATA.
System.out.println(age);

2.5.4.2 Octal Notation

Info

© Long literal can be written in hexadecimal notation (base 16).

Test.java

public class Test {
public static void main(String[] args) {

//USE LONG INTEGER LITERAL WRITTEN IN OCTAL NOTATION.
long age = ©0511; //Positive.
+051L; //Positive.
-051L; //Negative.

age
age

//DISPLAY LONG INTEGER DATA.
System.out.println(age);

2.5.4.3 Hexadecimal Notation

Info

© Long literal can be written in hexadecimal notation (base 16).

Test.java

public class Test {
public static void main(String[] args) {

//USE LONG INTEGER LITERAL WRITTEN IN HEXADECIMAL NOTATION.
long age = ©0x291; //Positive.

age = +0x29L; //Positive.

age = -0x29L; //Negative.

//DISPLAY LONG INTEGER DATA.
System.out.println(age);

2.5.5 Float

Info [R]

© Float literal represents float data type and value.

© Float literal is used to represent real number.
© Float literal can be written in following notations
® Basic Notation where integer is written as decimal number in base of 10 like 123.045f
e Scientific Notation where integer is written as hexadecimal number in base of 2 like 1.23045E+2F

Test.java
public class Test {
public static void main(String[] args) {
//USE DOUBLE LITERAL DO STORE DOUBLE DATA INTO VARIABLES.

double temp = 123.045f; //Normal notation.
temp = 1.23045E+2F; //Scientific notation.

//DISPLAY DOUBLE DATA.
System.out.println(temp);

output

123.04499816894531

http://www.javatutorialprograms.com/2013/01/java-literals.html

2.5.5.1 Basic Notation

Info

[R]

© Float literal can be written in basic notation by using case insensitive F suffix at the end of the decimal number.

Test.java

public class Test {
public static void main(String[] args) {

//USE NORMAL NOTATION TO WRITE FLOAT LITERAL.
float temp = 123.045f; //Explicitly specify float literal using 'f' sufix.
temp = 123.045F; //Explicitly specify float literal using 'F' sufix.

//DISPLAY FLOAT DATA.
System.out.println(temp);

http://www.javatutorialprograms.com/2013/01/java-literals.html

2.5.5.2 Scientific Notation

Info [R]

© Float literal can be written in scientific notation by using case insensitive E and F suffixes at the end of decimal number.

Test.java
public class Test {
public static void main(String[] args) {
//USE NORMAL NOTATION TO WRITE FLOAT LITERAL.
float temp = 1.23045E+2F; //Explicitly specify float literal using f' sufix.

temp = 1.23045E+2f; //Explicitly specify float literal using 'F' sufix.

//DISPLAY FLOAT DATA.
System.out.println(temp);

http://www.javatutorialprograms.com/2013/01/java-literals.html

2.5.6 Double

Info [R]

© Double literal represents double data type and value.

© Double literal is used to represent real number.
© Double literal can be written in following notations
® Basic Notation where integer is written as decimal number in base of 10 like 123.045
e Scientific Notation where integer is written as hexadecimal number in base of 2 like 1.23045E+2

Test.java
public class Test {
public static void main(String[] args) {
//USE DOUBLE LITERAL DO STORE DOUBLE DATA INTO VARIABLES.

double temp = 123.045; //Normal notation.
temp = 1.23045E+2; //Scientific notation.

//DISPLAY DOUBLE DATA.
System.out.println(temp);

output

123.045

http://www.javatutorialprograms.com/2013/01/java-literals.html

2.5.6.1 Basic Notation

Info [R]

© Double literal can be written in basic notation with optional d or D suffix.

Test.java

public class Test {
public static void main(String[] args) {

//USE NORMAL NOTATION TO WRITE DOUBLE LITERAL.

double temp = 123.045; //Floating point literals are by default interpreted as double literal.
123.045d; //Explicitly specify double literal using 'd' sufix.

123.045D; //Explicitly specify double literal using 'D' sufix.

temp

temp

//DISPLAY DOUBLE DATA.
System.out.println(temp);

http://www.javatutorialprograms.com/2013/01/java-literals.html

2.5.6.2 Scientific Notation

Info [R]

© Double literal can be written in scientific notation with optional case insensitive D suffix.

Test.java

public class Test {
public static void main(String[] args) {

//USE NORMAL NOTATION TO WRITE DOUBLE LITERAL.

double temp = 1.23045E+2; //Floating point literals are by default interpreted as double literal.
1.23045E+2d; //Explicitly specify double literal using 'd' suffix.

1.23045E+2D; //Explicitly specify double literal using 'D' suffix.

temp

temp

//DISPLAY DOUBLE DATA.
System.out.println(temp);

http://www.javatutorialprograms.com/2013/01/java-literals.html

2.5.7 Character

Info

O

Character literal

e represents character data type and value where value is 16-bit unicode character

e s constructed by enclosing character or escape sequence inside single quotes

Escape sequence

® can represent any character, including special ones, as shown by the table below

e starts with backslash / escape character followed by specific combinations representing a character
Using octal or unicode character representations is equivalent to typing that character inside your source code.
This differs from escape sequences \n, \' or \" which will not throw error while '\u000D', '\u0027' or '\u0022' might.

Escape Sequences

SEQUENCE | DESCRIPTION

\n Linefeed

\r Carriage return

\t Horizontal tab

\v Vertical tab

\e Escape

\f Form feed

\\ Backslash

\$ Dollar sign

\" Double quote (only for Double Quotes and Heredoc)

\' Single quote (only for Single Quotes and Nowdoc)

\d Octal representation of character as defined in ASCII Table (For 'A' it is '\101").

\ud Unicode representation of character as defined in ASCII Table (For 'A' it is "\u0041').
Test.java

public class Test {

public static void main(String[] args) {

//BASIC CHARACTER LITERAL.

char mark = 'A"; //"'A" character.
mark = "\t'; //Tab character.
mark = "\""; //Double quote character.
mark = "\'"; //Single quote character.

//USING OCTAL ESCAPE SEQUENCE.

char mark = "\101"; //'A' character.
mark = "\10'; //Tab quote character.
mark = "\42'; //Double quote character.
mark = "\47'; //Single quote character.

//USING UNICODE ESCAPE SEQUENCE. USES HEXADECIMAL ASCII VALUES WITH LEADING ZEROS.
char mark = "\uee41'; //'A' character.

mark = "\u@oe9'; //Tab character

mark = "\u@022'; //Double quote character

mark = '\uee27'; //Single quote character reports error.

//DISPLAY CHARACTER DATA.
System.out.println(mark);

2.5.8 String

Info

© String literal represents string data type and value.
© String literal is used to represent strings.
© String literal is written by enclosing sequence of characters inside double quotes.
© Using octal or unicode character representations is equivalent to typing that character inside your source code.
This differs from escape sequences \n, \' or \" which will not throw error while "\u000D', '\u0027' or '\u0022' might.

Escape Sequences

SEQUENCE | DESCRIPTION

\n Linefeed

\r Carriage return

\t Horizontal tab

\v Vertical tab

\e Escape

\f Form feed

\\ Backslash

\$ Dollar sign

\" Double quote (only for Double Quotes and Heredoc)

\' Single quote (only for Single Quotes and Nowdoc)

\d Octal representation of character as defined in ASCII Table (For 'A" it is '\101").

\ud Unicode representation of character as defined in ASCII Table (For 'A' it is '\u0041').
Test.java

public class Test {

public static void main(String[] args) {

//BASIC STRING LITERAL.
String text = "Display letter A"; //"Display letter A" is string literal.
text = "First line \nSecond \t line."; //Escape sequences \n and \t for new line and tab.

//USING OCTAL ESCAPE SEQUENCE.
text = "Display letter \101"; //"Display letter A".
text = "First line \15Second \11 line."; //"First line \nSecond \t line.".

//USING OCTAL ESCAPE SEQUENCE.
text = "Display letter \ueo41"; //"Display letter A".
text = "First line \nSecond \u@©@9 line."; //Replacing \n with unicode causes error.

//DISPLAY CHARACTER DATA.
System.out.println(text);

output

First line

Second line.

2.5.9 Array

Info

© Array literal represents array data type and value.
© Array literal is written by enclosing sequence of elements inside curly brackets.

Test.java

import java.util.Arrays;
public class Test {
public static void main(String[] args) {

//ARRAY LITERAL.
int[] array = {0,1,2,3}; //{0,1,2,3} is array literal

//DISPLAY ARRAY.
System.out.println(Arrays.toString(array)); //[0, 1, 2, 3]

3 Object Oriented Syntax

Info

© Following tutorials explain Object Oriented JAVA Syntax.
© Below are explanations of some of the terms closely related to object oriented programming (OOP).

Polymorphism

© Polymorphism is capability of having multiple methods with the same name but different implementation.

© There are three types of polymorphism
o Overloaded methods have the same name but different number or type of parameters.
e Overridden methods have the same signature but are redefined within class that extends.

e Dynamic method binding

3.1 Classes

Info

e © © O © O

Class defines type of Object.

Class is collection of properties and methods which represent certain type of data, for instance: car, animal, food.

Class is defined by using class keyword.

If class has defined method main() it can be executed which calls this method javac Test.java arge argl arg2

Class can hold static objects of its own kind.

Class keyword is followed by

class name

optional keyword extends followed by single class which it extends
optional keyword implements followed by list of interfaces separated by ',’
optional constructor

optional destructor

optional properties (variables, objects)

optional methods (functions)

Test.java

public class Test {

Simple example

[cl

© This example defines simple class with defined constructor and single property and method.

Test.java

public class Test{
public static void main(String[] args) {
Car fiat = new Car(200);
fiat.startEngine();

}

}

class Car {
Car(int topSpeed) { this.topSpeed = topSpeed; } //Constructor.
private int topSpeed; //Property.

public void startEngine() { System.out.println("Accelerating to "+topSpeed); } //Method.
}

Complex example

[l

O
O
O

This example defines complex class which extends class Item and implements two interfaces.
Class constructor calls parent constructor.

Java doesn't support destructors so none is implemented, instead you can explicitly call some function like close().

Test.java

public class Test{
public static void main(String[] args) {
Instrument instrument = new Instrument(100);
instrument.sound();
Instrument.drums.fall();

interface SoundInterface {
public int i=10;
public void sound();

interface GravityInterface {
public double g=9.81;
public void fall();

class Item {
int weight;
Item(int weight) { this.weight = weight; }
int getWeight() { return weight; };

class Instrument extends Item implements SoundInterface, GravityInterface {
Instrument(int weight) { super(weight); } ;
static Instrument drums = new Instrument(500); //Static object of this class.
public void sound() { System.out.println("Playing note")5 3}
public void fall () { System.out.println("Falling from the sky"); };

3.1.1 Inheritance

Info

[C]

e © © O © O

Inheritance is the capability of class to use the properties & methods of another class while adding its own functionality.
In Java this is done through the use of extends keyword.

Keyword extends allows class to extend another class, therefore inheriting its properties and methods (inheritance).
You can extend only from one class since multiple inheritance is not supported (unlike C++).

Single extend can be combined with implementing multiple interfaces:

class Bird extends Animal implements interfacel, interface2

Syntax

class Bird extends Animal { body }
class Bird extends Animal implements interfacel, interface2 { body }

Test.java

public class Test{

public static void main(String[] args) {
Bird swan = new Bird("swan", 10); //Create object calling constructor with two parameters.

swan.fly();

class Animal {

String name;
void eat O { System.out.println(name + "is eating."); };
public Animal(String name) { this.name = name; } //'this' is used to distinguish 'name' variables.

class Bird extends Animal {

int wingsSpan;
void fly O { System.out.println(name + "is flying."); };
public Bird(String name, int span) {
super(name); //Call to Parent constructor must be first statement in constructor.

wingsSpan = span;

3.1.2 Reflection

Info [C]

© Reflection enables you to get information of class: name, methods and properties.

© You can run methods and take properties values.

Test.java
import java.lang.reflect.*;

import java.lang.Class;

class Unknown {
public int height = 176;

public int weight = 75;
public void noArgs() { System.out.println("noArgs>Hello!"); }
public void oneArg(int i) { System.out.println("oneArg>"+1i); }

public class Test {

public static void main(String[] args) {

try {
Unknown obj = new Unknown();
Class objectClass = obj.getClass();
String className = objectClass.getName();

Method[] classMethods= objectClass.getMethods();
Field[] classFields = objectClass.getFields(); //0nly public ones are displayed.
System.out.println(“className>"+className);

//All methods.
for(int i=0;i<classMethods.length;i++){
System.out.println("methodName>"+classMethods[i].getName());

//All fields.
for(int i=0;i<classFields.length;i++){
System.out.println("fieldName>"+classFields[i].getName());

//height.
Field height = classFields[©0];
System.out.println("height="+height.get(obj));

//width.
Field width = classFields[1];
System.out.println("width="+width.get(obj));

//noArgs.

Method noArgs = classMethods[0];
Object[] paramsl = null;
noArgs.invoke(obj,paramsl);

//oneArgs.

Method oneArg = classMethods[1];
Integer[] params2 = new Integer[1];
params2[@] = new Integer(12);
oneArg.invoke(obj,params2);

}
catch(Exception e){}

3.1.3 ClassLoader

Info [C]

© MyClassLoader can find class FindMe.class in the same directory and display its methods.

Test.java

import java.lang.reflect.Method;
class MyClassLoader extends ClassLoader{}
public class Test {

public static void main(String[] args) {

try {
MyClassLoader myLoader = new MyClassLoader();
Class findMe = myLoader.loadClass("FindMe");
Method[] methods = findMe.getMethods();
String methodName = methods[@].getName();

System.out.println("methodName="+methodName);

}
catch(Exception e){System.out.println(e.toString());}

FindMe.java

class FindMe {
public void sayHello() { System.out.println(“Helo from FindMe"); }

3.2 Interface

Info [C]

© Interface is collection of methods which can be used by someone else to communicate.

© InJava interface is declared using keyword interface.
© Keyword interface declares constants and method declarations, but not method implementations.
Java interfaces are meant to replace multiple inheritance.
© Keyword implements defines that class must implements functions from given list of interfaces.
© To instantiate a class that implements interface, that class has to give body to all functions from interface.
© This ensures that all classes that implement the same interface have the same set of functions (interface).

Test.java

public class Test{
public static void main(String[] args) {
Instrument instrument = new Instrument();
instrument.sound();

interface SoundInterface {
public int 1i=10;
public void sound();

interface GravityInterface {
public double g = 9.81;
public void fall();

class Instrument implements SoundInterface, GravityInterface {
public void sound() { System.out.println("Playing note" HBH
public void fall () { System.out.println("Falling from the sky"); };

3.3 Objects

Info

O
O
O

This tutorial shows how to create Java Object.

In Java objects are created from predefined classes using new keyword followed by class name.
This will call class constructor which might be given additional parameters.

Constructor is function with the same name as Class name.

You can have multiple constructors with different number and type of parameters.

Primitive Types & String

[c]

(€]

O
O
O

Primitive types function parameters are given to function by value.
They are copied into local variables which are visible only inside the function.

Changes to these local variables inside a function have no affect on the values of variables used as parameters.

This is also true for Objects of following classes: Integer, String, ...

Test.java

public class Test{
public static void main(String[] args) {
Car fiat = new Car(200);
fiat.startEngine();

class Car {
private int topSpeed;
public void startEngine() { System.out.println("Accelerating to "+topSpeed); }
Car(int topSpeed) { this.topSpeed = topSpeed; } //Constructor.

}

3.3.1 Create

Info

© This tutorial shows how to create Java Object and override its properties and methods.
© This means that for this Object overridden methods will behave differently then methods of other Objects of this class.

Override Properties and Methods [C]

© Primitive types function parameters are given to function by value.

© They are copied into local variables which are visible only inside the function.

© Changes to these local variables inside a function have no affect on the values of variables used as parameters.
o

This is also true for Objects of following classes: Integer, String, ...

Test.java

public class Test{
public static void main(String[] args) {

//OVERRIDEN BJECT.
Car bmw = new Car() {

//OVERRIDE EXISTING PROPERTIES AND METHODS.

public int code = 100;

public void startEngine() {
System.out.println("Engine exploded with code "+code);
sendMail();

//THESE WILL NOT BE ACCESSIBLE THROUGH OBJECT.
public int code2 = 500;
public void sendMail() { System.out.println("Get new car with code "+code2); }

1

bmw.startEngine();
//bmw.code2 = 101; //code2 cannot be resolved or is not a field
//bmw.sendMail(); //The method sendMail() is undefined for the type Car

//NORMAL BJECT.
Car fiat = new Car();
fiat.startEngine();

class Car {
public int code = 200;
public void startEngine() { System.out.println("Engine started with code "+code); }

output

Engine exploded with code 100
Get new car with code 500
Engine started with code 200

3.3.2 Upcasting

Info

© Upcasting permits an object of a subclass type (Dog) to be treated as an object of any superclass type (Animal).
© Upcasting is done automatically since each subclass extends all the features of superclass.

© So by treating subclass as superclass you are simply using subset of its features.

© By casting you are not changing the object, you are just labeling (treating) it differently.

Example [C]

© In this example we upcast Soldier to Person, we create Object of class Soldier but treat it as if it is of class Person.

© This means that only properties and methods defined in Person will be visible which is why we can't access 'bullets'.

© It is not necessary to explicitly cast to Person since this is done automatically.

Test.java
public class Test {
public static void main(String[] args) {

Person jill = (Person) new Soldier(); //Excplicit upcasting Soldier to Person.

Person john new Soldier(); //Implicit upcasting Soldier to Person.

john.attack();

//john.bullets = 10; //Bullets don't exist in Person class
Soldier jack = new Soldier();
Person jackPerson = (Person) jack; //Excplicit upcasting Soldier to Person.

Person jackPerson2 jack; //Implicit upcasting Soldier to Person.

class Person {
void attack() { System.out.println("Using fist."); }

class Soldier extends Person {
int bullets = 100;
void attack() { System.out.println("Using gun."); }

output

Using gun.

3.3.3 Downcasting

Info [C]
© Downcasting permits an object which is treated as superclass (Animal) to be treated as an object of subclass type (Dog)

© Downcasting must be defined explicitly and it works only if object is being downcasted to one of the classes it extends.

© By casting you are not changing the object, you are just labeling (treating) it differently.

Test.java

public class Test {
public static void main(String[] args) {

//UPCASTING.

Person john = new Soldier(); //Implicit upcasting Soldier to Person.
john.attack();
//john.bullets = 10; //Can't access bullets.

//DOWNCASTING.

if(john instanceof Soldier) {
Soldier johnSoldier = (Soldier) john; //Explicit downcasting Person to Soldier.
johnSoldier.bullets = 10; //Can access bullets.

class Person {
void attack() { System.out.println("Using fist."); }

class Soldier extends Person {
public int bullets = 100;
void attack() { System.out.println("Using gun."); }

3.4 Exceptions

Info

© This tutorial shows basic exception handling in Java.

Example [C]

© This tutorial shows simple example of using Exceptions.

Test.java

public class MyClass {

public static void main(String[] args) {

try{
Integer i = null;
i.byteValue();
}
catch(Exception e){
System.out.println(e.toString());

Print Stack Trace [C]

© This tutorial shows how to get Exception Stack Trace.
© This is a bit complicated since you can't get it as String directly from Exception Object.

Test.java

import java.io.PrintWriter;
import java.io.StringWriter;

public class MyClass {

public static void main(String[] args) {

try{
Integer i = null;
i.bytevalue();
}
catch(Exception e){
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter (sw);

e.printStackTrace(pw);

System.out.println("Error = " + sw.toString());

Output

Error = java.lang.NullPointerException at MyClass.main(MyClass.java:11)

3.5 Methods

Info

© This tutorial shows how to use methods.

Purpose
© Methods are used to avoid to copy-paste block of code that needs to be executed numerous times.
© Using methods, every time you need to execute that block of code you can simply
e call that function by it's name,
e give it input parameters to work on if it expects any,
® receive it's return variable if it gives any.
Specifics
© Java function can only exist inside a class, and general term for such function is a method.
© Java function can't have another function inside it, in other words function nesting is not supported.
© Java function can only have single return variable.
To return more then one value you can return collection, like HashMap, or some custom made Object.
© Values of function parameters are copied into local variables which are visible only inside the function.

Changes to these local variables have no affect on the values of variables used as parameters.

3.5.1 Create

Info [C]

© This tutorial shows how to create and call methods.
Keyword void before function name indicates that function returns no value.
If function returns some Primitive Type or Object, it's name must be placed before function name.

Keyword return must be used if function returns some value.

o © 0 O

Function parameters are defined after function name inside round brackets.
For each parameter you must define it's type and name.
© Each function has fixed number of parameters, they all have to be given in function call and can't have default values.

Test.java

public class Test {

public static void main(String[] args) {
noReturnValue();
int ret returnvalue (); System.out.println(ret);
String text = noParameters (); System.out.println(text);
float division = parameters (10,2); System.out.println(division);

public static void noReturnValue(){
System.out.println("This function doesn't return any value.");

}

public static int returnvValue (){
System.out.print("This function returns int Primitive Type: ");
return 10;

public static String noParameters (){
System.out.print("This function expects no input parameters. Returns constant String: ");
return "Hello";

public static float parameters(int pl, int p2){
System.out.print("This function expects two parameters: "+pl+"/"+p2+"=");
return pl/p2;

3.5.2 Parameters Scope

Info

© This tutorial explains scope of function parameters.
© Function parameters are given to function either by value or by reference depending on the parameter type.

Primitive Types & String

[C]

© Primitive types function parameters are given to function by value.

© They are copied into local variables which are visible only inside the function.
© Changes to these local variables inside a function have no affect on the values of variables used as parameters.

© This is also true for Objects of following classes: Integer, String, ...

Test.java

public class Test {

public static void main(String[] args) {

"Hello";
10;

String myString
int myInt =
myFunction(myString, myInt);

System.out.println(myString);
System.out.println(myInt);

}
static void
stringArg = "World";
intArg = 20;
}
}
output
Hello

10

//"Hello" since changes made

//1@

since changes made

myFunction(String stringArg, int intArg){

//Local variable.
//Local variable.

inside a function are not visible.

inside a function are not visible.

Arrays [C]

© Array function parameters are given to function by reference,
© Changes to them inside a function will be visible also once the function ends.

Test.java

public class Test {

public static void main(String[] args) {
String[] myString = {"Hello"};
myFunction(myString);
System.out.println(myString[@]);

¥

static void myFunction(String[] stringArg){
stringArg[@] = "World";

output

World

Object [C]

© Object function parameters are given to function by reference,
© Changes to them inside a function will be visible also once the function ends.

Test.java

public class Test {
public static void main(String[] args) {

Flag flag = new Flag();
flag.i = 10;

myFunction(flag);

System.out.println(flag.i);

static void myFunction(Flag flagArg){
flagArg.i = 20;
¥

class Flag{
public int i = 0;

output

20

3.5.3 Overloading

Info

© Overloaded methods have the same name but different number or type of parameters.
© Java doesn't support methods with variable number of parameters.
© Instead you have to make separate function for different number of parameters which results in overloading.

Example [C]

© In this example Person constructor (method) is overloaded since two constructors have the same name but different

number and type of parameters.

Test.java

public class Test {

public static void main(String[] args) {
Person john = new Person("John");
john.say();

Person jill = new Person("Jill", 25);
jill.say();

class Person {

String name;
int age;
void say() { System.out.println(name +

"o "

is + age); }
//CONSTRUCTOR WITH ONE PARAMETER.

Person(String name) {
this.name = name;

//CONSTRUCTOR WITH TWO PARAMETERS.
Person(String name, int age) {
this.name = name;
this.age = age;

3.5.4 Overriding

Info

© Overridden methods have the same signature but are redefined within class that extends.

Example

[cl

© In this example we define some default attack behavior characteristic for all Persons.

© Then we override this behavior for Soldier by giving him a gun.

Test.java
public class Test {
public static void main(String[] args) {

Soldier john = new Soldier();
john.attack();

class Person {

void attack() { System.out.println("Using fist."); }

class Soldier extends Person {

void attack() { System.out.println("Using gun."); }

4 Advanced Syntax

Info

© Following tutorials explain advanced JAVA syntax which was introduced into JAVA in later versions.

4.1 Generic

Info [R]

© This tutorial shows how to write comments in Java.

© Java supports both single line and multi line (block) comments.

Test.java

public class Test {

http://www.angelikalanger.com/GenericsFAQ/FAQSections/TypeArguments.html

4.1.1 Class

Info [R]

© Generic Class uses one or more symbols in places where actual Class names should be given.
Which Class names should be used in place of symbols is defined during Object creation.

© InJava 7 constructor call can use diamond <> instead of redefining symbol types (type inference)

Syntax

Person<String, Integer> john = new Person<>("John", 25);

Example [C]

© In this example we define that Generic Class should accept String and Integer.

© Trying to give String to constructor where Integer is expected results in compile time error.

Test.java

public class Test {
public static void main(String[] args) {

//VALID PARAMETERS.
Person<String, Integer> john = new Person<String, Integer>("John", 25);
john.say();

//VALID PARAMETERS.
Person<String, String> jack = new Person<String, String >("Jack", "25");
jack.say();

//COMPILE TIME ERROR.

//Second parameter is defined as Integer but constructor gers String.

//Error message: The constructor Person<String,Integer>(String, String) is undefined
//Person<String, Integer> jill = new Person<String, Integer>("Jill", "25");

//GENERIC CLASS.
class Person<Tl, T2> {

Tl name;

T2 age;

Person(T1 name, T2 age) {
this.name = name;
this.age = age;

public void say() {

System.out.println(name + " is " + age);

http://docs.oracle.com/javase/tutorial/java/generics/gentypes.html

Example [R] [C]

© Generics Classes are usually used when defining Collection Classes, those that should contain collection of Objects.

© Defining that your Collection Object should contain only Strings you'll get compile time error if you try to add Integer.
© Example of such Collection Class is Vector which, before Generics were introduces, was defined to accept any Object.

© If you were planning to store only Strings in it, error would be caught to late, at run time, instead of compile time.

Test.java

import java.util.ArraylList;
import java.util.List;

public class Test {
public static void main(String[] args) {
List v = new ArrayList();

v.add("test");
Integer i = (Integer)v.get(®); //Run time error.

Test.java

import java.util.ArraylList;
import java.util.List;

public class Test {
public static void main(String[] args) {
List<String> v = new ArraylList<String>();

v.add("test");
Integer i = v.get(9); //Compile time error. (type error)

http://en.wikipedia.org/wiki/Generics_in_Java

4.1.2 Method

Info [R]

© Generic Method uses type parameters instead of defining of what class input parameters should be.

Example [C]

© In this example we define that Generic Class should accept String and Integer.
© Trying to give String to constructor where Integer is expected results in compile time error.

Test.java

public class Test {
public static void main(String[] args) {

//VALID CALLS.
Person. say("John", 50); //SHORT CALL. Type inference.
Person.<String, Integer>say("John", 50); //COMPLETE CALL.

//INVALID CALL.
//Person.<String, Integer>say("John","50"); //Expects Integer as second parameter.

//GENERIC CLASS.
class Person {

static public <U, T> void say(U u, T t) {

System.out.println(u + " is " + t);

http://docs.oracle.com/javase/tutorial/java/generics/genmethods.html

4.1.3 Type inference

Info [R]

© Type inference enables you to invoke generic method or class without specifying type parameters between <>.

Generic Method can be called as normal method

Person. say("John", 50); //SHORT CALL. Type inference.
Person.<String, Integer>say("John", 5@); //COMPLETE CALL.

Generic Class can be called using diamond <> instead of redefining symbol types

Person<String, Integer> john = new Person<> ("John", 25); //SHORT CALL. Type inference
Person<String, Integer> john = new Person<String, Integer>("John", 25); //COMPLETE CALL.

4.1.4 Type parameters

Info [R]

© Type parameters are used to define Generic Methods and Generic Classes.

© When you define generic Class or Method you use type parameters where actual Class names should be given.
© Then when you create Object or call method you define which classes should be substitutes instead type parameters.

Bounded Type Parameters [R]

© Bounded type parameters can be replaced by given Class or its subclass.
© You define upper bound and allowed Classes are connected through inheritance.

To define that parameter can be of type Integer, Number or Object you would write

<U extends Integer>

Additionally you can define if replacement Class must implement certain interfaces

<U extends Integer & MyInterface>

http://docs.oracle.com/javase/tutorial/java/generics/gentypeinference.html
http://docs.oracle.com/javase/tutorial/java/generics/gentypeinference.html
http://docs.oracle.com/javase/tutorial/java/generics/bounded.html

4.1.5 Wildcards

Info [R] [R] [R]

© Type parameters are used to define Generic Methods and Generic Classes.
© When you define generic Class or Method you use type parameters where actual Class names should be given.
© Then when you create Object or call method you define which classes should be substitutes instead type parameters.

Type Parameter vs Wildcards

© Type Parameters are used to create template for Generic Class or Method.
Once you instantiate an Object of generic Class each type parameter is replaced with exactly one specific class.

© Now if you create method which takes Objects of such Generic Class as input parameter you can use Wildcards to more
specifically define what kind of type parameter Object should have: <?>, <? extends Number> or <? super Integer>.

© If generic class has multiple type parameters you could define wild cards for each of them

<?, ? extends Number, ? super Integer>

Unbounded

© List<?> represents Generic List with any type parameter like shown below.

List<Integer>
List<String>
List<JFrame>

With Lower Bound

© List<? super Integer>represents Generic List which type parameter is Integer or supertype of Integer like shown below.

List<Integer>
List<Number>
List<Object>

With Upper Bound

© List<? extends Number> represents Generic List which type parameter is Number or extends Number like shown below.
© This allows using both List<Integer> and List<Float> even though there is no inheritance relationship between them.

List<Number>
List<Integer>
List<Float>
List<Double>

http://www.daimi.au.dk/~madst/tool/tool2004/talks/wildcards.pdf
http://en.wikipedia.org/wiki/Wildcard_(Java)
http://en.wikipedia.org/wiki/Generics_in_Java

Example [C]

© This example demonstrates usage of wildcards.

Test.java

import java.util.ArraylList;
import java.util.List;

public class Test {
public static void main(String[] args) {

//CREATE OBJECTS FROM GENERIC LIST INTERFACE.

List<Object > object = new ArraylList<Object >();

List<Number > number = new ArraylList<Number >();

List<Integer> integer = new ArraylList<Integer>();

List<Float > floatvar = new ArraylList<Float >();

List<String > string = new ArraylList<String >();

//UNBOUNDED ACCEPTS ANY LIST. List<?>
unbounded(object);

unbounded (number) ;

unbounded(string);

//LOWER BOUND ACCEPTS NUMBER OF SUPERTYPE OF NUMBER. List<? super Integer>

lowerBound(object);
lowerBound(number);
//lowerBound(integer); //Integer isn't supertype of Number.

//UPPER BOUND ACCEPTS NUMBER OF CLASS THAT EXTENDS NUMBER. List<? extends Number>
//upperBound(object); //Object doesn't extend from Number.

upperBound(number);

upperBound(integer);

upperBound(floatvar);

static void unbounded (List<? > list) {}
static void lowerBound(List<? super Number> list) { }
static void upperBound(List<? extends Number> list) { }

Example [C]

© In this example we create generic class person which accepts two type parameters.
© Then we define two function which accepts this generic class and we use wildcards for each type parameter.

Test.java

public class Test {
public static void main(String[] args) {

//CREATE OBJECTS FROM GENERIC PERSON CLASS.
Person<String , Integer> stringInteger = new Person<String , Integer>();

Person<Object , Float > objectFloat = new Person<Object , Float >();
Person<Integer, Object > integerObject = new Person<Integer, Object >();
Person<Number , Object > numberObject = new Person<Number , Object >();

//TYPE PARAMETERS: UNBOUND, UPPER BOUND.
unboundedUpper(stringInteger);
unboundedUpper(objectFloat);

//unboundedUpper (integerObject); //Object doesn't extend Number

//TYPE PARAMETERS: LOWER BOUND, UPPER BOUND.
lowerUpper(numberObject);
lowerUpper(integerObject);

//lowerUpper(stringInteger); //String is not supertype of Number

¥

static void unboundedUpper(Person<? , ? extends Number> person) { }
static void lowerUpper (Person<? extends Number, ? super String> person) { }

//GENERIC CLASS.

class Person<Tl, T2> {
Tl name;
T2 age;

5 Built in functionalities

Info

© Following tutorials show how to use core JAVA APls which are built-in PHP functions.

5.1 Collections

Info

© Collections are structures which contain number of other variables.
© Arrays are the only structures in JAVA which are not Objects.
© All other collections, like HashMaps or Vectors, are created by instantiating objects of some class.

5.1.1 HashMap

Info [C]

O

O
O
O

HashMap is structure containing key-value pairs.

HashMap can't contain duplicate keys.

Both keys and values can be any Object, Primitive Type or null value.

Use HashMap instead Hashtable since

e it allows null values for both keys and values

e t's iterator is fail-safe throwing Exception if another thread tries to modify collection "structurally" while iterating

e itis not thread-safe making it faster and giving you an option to synchronize it or not

Test.java

import java.util.HashMap;
public class Test {
public static void main (String arg[]) throws Exception {

U TR E [T E N S P

HashMap hashmap = new HashMap();
hashmap.put("key" , "element"); //Add key-value pair.
hashmap.put("age" , 33)
hashmap.put(new Integer(34) , false)
hashmap.put(1 , hew Character('A"));

J/GET: ELEMENTS. === == == /= == == /= /= o= o oo oo oieo oo cioolamo o

String name = (String) hashmap.get ("key" K
int age = ((Integer) hashmap.get ("age")).intValue O
boolean flag = ((Boolean) hashmap.get (new Integer(34))).booleanValue ();
char stuff = ((Character) hashmap.get (1)).charValue O
J/STATISTICS . === === - - - - o oo oo oo mmmommeoooooooooo
boolean containsElement = hashmap.containsValue("element");
boolean containsKey = hashmap.containskey ("key")3
boolean isEmpty = hashmap.isEmpty ()
int size = hashmap.size ()
String removed = (String) hashmap.remove ("key")
hashmap.clear ()

[//PRSPLAY STATISTIES, cossesssssscsassasossssasassasaananas

System.out.println ("Contains 'element' = " + containsElement);
System.out.println ("isEmpty = " + isEmpty)
System.out.println ("size =" + size)
System.out.println ("removed element = " + removed)

5.1.2 Vectors

Info [C]

© This tutorial shows how to use Vectors.

© Vector is structure that holds indexed elements where index is integer starting with 0 and can't be negative.

© Elements can only be inserted at the end or at the already existing index.
Existing element at that index and all elements with bigger indexes are shifted to the right by increasing their index by 1
Size of vector is increased by 1.

© When element is removed all elements with bigger indexes are shifted to the left by decreasing their index by 1.

Size of vector is decreased by 1.

Test.java

import java.util.Vector;
public class Test {
public static void main (String arg[]) throws Exception {

//PUT ELEMENTS. = -=-=-=====c=cococococacecccaccceeae

Vector vector = new Vector();
vector.addElement ("element"); //Append element to the end of vector.
vector.add (33); //Append element to the end of vector.
vector.add (false); //Elements can be of different Raw Type
vector.add (new Character('A")); //or Object.
vector.add (3, "Shift others"); //Insert element at index 3 and add 1 to

//indexes of elements on index 3 or above.

J/GET: ELEMENTS. === == == /=== == == <= c= oo im o oiomio oo oo ol

String index_© = (String) vector.elementAt(Q);

int index_1 = ((Integer) vector.get (1)).intvalue s
boolean index_2 = ((Boolean) vector.get (2)).booleanValue();
String index_3 = (String) vector.get (3);

char index_4 = ((Character) vector.get (4)).charvValue ();
J/STATISTICS. = ----=------mmmm oo mmommmooomooo -

boolean containsElement = vector.contains(33);

boolean isEmpty = vector.isEmpty ();

int size = vector.size)

String removed = (String) vector.remove (3); //Decrase size & indexes of above elements by 1
vector.clear ();

//DISPLAY ELEMENTS.--------c-oommmmmmmmmme oo

Iterator iterator = vector.iterator();

while(iterator.hasNext() == true) {
System.out.println(iterator.next());
iterator.remove();

//DISPLAY STATISTICS. --=-=-=mmmmmmmmmmmomemaemoe

System.out.println ("Contains 'element' = " + containsElement);
System.out.println ("isEmpty = " + isEmpty)
System.out.println ("size =" + size K
System.out.println ("removed element = " + removed K

5.1.3 Iterator

Info

(<]

e
(¢]
e

Iterators are used to iterate through collection of elements with ability, in some cases, to remove last element returned.

Iterators are part of Java Collection Framework
Iterators should be used instead of Enumerator since they provide extended functionality and shorter function names.

Iterator can't be instantiated but only returned by some other collection class like Vectors.

5.1.4 Hashtables

Info [R] [C]

e © © O © O

This tutorial shows how to use HashTables in JAVA.

HashTable is structure containing key-value pairs.

HashTable can't contain duplicate keys, meaning that each key can map to at most one value.

In JAVA HashTables are implemented as Objects.

Both keys and values can be any Object or Primitive Type.

Use HashMap instead Hashtable since

e it allows null values for both keys and values

e it's iterator is fail-safe throwing Exception if another thread tries to modify collection "structurally" while iterating

e it is not thread-safe making it faster and giving you an option to synchronize it or not

Test.java

import java.util.Enumeration;
import java.util.Hashtable;

public class Test {
public static void main (String arg[]) throws Exception {

U TR E [T E N S P

Hashtable hashtable = new Hashtable();
hashtable.put("key" , "element"); //Add key-value pair.
hashtable.put("age" , 33)
hashtable.put(new Integer(34) , false)
hashtable.put(1 , new Character('A"));

J/GET: ELEMENTS. === == == /= == == /= /= o= o oo oo oieo oo cioolamo o

String name = (String) hashtable.get ("key")
int age = ((Integer) hashtable.get ("age")).intValue O
boolean flag = ((Boolean) hashtable.get (new Integer(34))).booleanValue ();
char stuff = ((Character) hashtable.get (1)).charValue s
J/STATISTICS . - - - - o s - oo mm oo oo oo
boolean containsklement = hashtable.contains ("element");
boolean containsElement2 = hashtable.containsValue("element");
boolean containsKey = hashtable.containskKey ("key")
boolean isEmpty = hashtable.isEmpty ()
int size = hashtable.size ()
String removed = (String) hashtable.remove ("key")
hashtable.clear ()

//DISPLAY KEYS.-------mmmmmmmm oo e e

Enumeration keys = hashtable.keys();

while(keys .hasMoreElements()== true) {
System.out.println(keys.nextElement());

//DISPLAY ELEMENTS.--------mmmmmmmmm e e e o

Enumeration elements = hashtable.elements();

while(elements.hasMoreElements() == true) {
System.out.println(elements.nextElement());

(/OISR STATISTIES ; sossascssasasnssasassasaanscanassanas

System.out.println ("Contains ‘'element' = " + containsElement);

System.out.println ("Contains ‘'element' = " + containsElement2);

http://www.jguru.com/faq/view.jsp?EID=430247

System.out.println ("isEmpty
System.out.println ("size
System.out.println ("removed element

+ isEmpty
+ size
+ removed

)3
)5

5.1.5 Enumerator

Info

(<]

e
(¢]
e

Enumerators are used to iterate through collection of elements.
Enumerators are legacy class which should be replaced by Iterators which are part of Java Collection Framework.
Enumerators should be replaced by Iterator since they provide extended functionality and shorter function names.

Enumerators can't be instantiated but only returned by some other Collection classes like Hashtables.

5.1.6 Date/Time

Info [R]
© This tutorial shows how to work with Date & Time in Java.
Calendar [C]

© This tutorial shows how to use Calendar class.

Test.java

import java.util.Calendar;
public class Test {
public static void main(String[] args) {

//GET CURRENT DATE.
Calendar calendar = Calendar.getInstance();
calendar.set(2012,1,13);
calendar.set(2012,1,13, 23,45,12);
calendar.clear();

//GET DATE COMPONENTS.

int year = calendar.get(Calendar.YEAR)
int month = calendar.get(Calendar.MONTH)
int dayOfMWeek = calendar.get(Calendar.DAY_OF_WEEK);
int dayOfMonth = calendar.get(Calendar.DAY_OF_MONTH);

int hourl2 = calendar.get(Calendar.HOUR)
int hour24 = calendar.get(Calendar.HOUR_OF_DAY);
int minutes = calendar.get(Calendar.MINUTE)
int seconds = calendar.get(Calendar.SECOND)

int miliseconds = calendar.get(Calendar.MILLISECOND);

//CALCULATE.

calendar.add(Calendar.YEAR , 1);
calendar.add(Calendar.MONTH , 2);
calendar.add(Calendar.DAY_OF_MONTH, -1);
calendar.add(Calendar.HOUR , -1);
calendar.add(Calendar.MINUTE , 20);
calendar.add(Calendar.SECOND , 20);

calendar.add(Calendar .MILLISECOND , 20);

//DISPLAY.
System.out.println("year ="+year);
System.out.println("month ="+month)

System.out.println("dayOfMonth ="+dayOfMonth);
System.out.println("dayOfMWeek ="+dayOfMwWeek);

System.out.println("hourl2 ="+hourl2)
System.out.println("hour24 ="+hour24)
System.out.println("minutes ="+minutes)
System.out.println("seconds ="+seconds)

System.out.println("miliseconds="+miliseconds);

//Get current date.
//Set date. year,month,dayofmonth

//year,month,dayofmonth, hours24,minutes, seconds

//2012
//1
//1
//13
//11
//23
//45
//12
//312

//2013
//3
//12
/122
/75
//32
/732

[0, 12]
[1-Sunday, ..
[1, 31]
[0, 11]
[0, 23]
[0, 59]
[0, 59]
[@, 999]

Add

Add

Substract
Substract
Add 20
Add 20
Add 20

1
2
1
1

,7-Suterday]

year. Next year
months.

month. Yesterday.
hour.

minutes.

seconds.
miliseconds.

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Date

[l

© This tutorial shows how to use Date class which is deprecated and should be replaced with Calendar described above.

Test.java

import java.util.Date;

import java.text.SimpleDateFormat;

public class Test {

public static void main(String[] args) {

//MILISECONDS.

long

miliSecs =

System.out.println(miliSecs);

System.currentTimeMillis();

//DISPLAY COMPONENTS OF DATE & TIME.

Date date = new Date O;
String text = date.toLocaleString();
int dayOfiWeek = date.getDay O;
int dayOfMonth = date.getDate 0
int month = date.getMonth 0
int year = date.getYear ()+1900;
int hours = date.getHours 0
int monutes = date.getMinutes 0
int seconds = date.getSeconds 0);
long yearInMiliseconds = date.getTime O;

//CREATE DATE OBJECT FROM.

Date datel = new Date();

Date date2 = new Date(miliSecs);

Date date3 = new Bate(105, 0, 12);

Date date4 = new DBate(105, 02, 12, 12, 59, 1);

//DISPLAY FORMATED DATE.

SimpleDateFormat

String

formatter
formatedDate

//Current time in miliseconds.

//1107879156077

//Current date and time.

//Tue Feb 08 17:04:07 CET 2005

//@-Sunday, ...,6-Suterday Day of week.
//[1,31] Day of the

//10,11]

//2012

//10,23]

//34

//12

//1107879156077 current time in miliseconds.

//Current date

//miliseconds

//(year,month,day) year=wanted-1900 month=[0,11]
//(year,moth,day,hrs,min,sec) integers day=[1,31]

= new SimpleDateFormat("dd:MM:yyyy HH:mm:ss.SSS");

= formatter.format(new Date());

System.out.println(formatedDate);

//DISPLAY.

System.out.println(text);
System.out.println(dayOfiWeek)5
System.out.println(dayOfMonth)8
System.out.println(month)8
System.out.println(year +1900) ;
System.out.println(hours)8
System.out.println(monutes)8
System.out.println(seconds N
System.out.println(yearInMiliseconds);
System.out.println(datel.getTime());
System.out.println(date2.getTime());
System.out.println(date3);
System.out.println(date4);

//26:03:2009 10:53:40.030

//Tue Feb 08 17:04:07 CET 2005
//@-Sunday, ..
//0-Sunday, . .
//10,11]
//2012
//10,23]

//34

//12
//1107879156077 urrent time in miliseconds.

.,6-Suterday Day of the week [0, 6]
.,6-Suterday Day of the month [1,31]

//1107879156077
//1107879156077
//Sat Jan 12 00:00:00 CET 2005
//Sat Mar 12 12:59:01 CET 2005

5.2 Serialization

Info

© Serialization is process of storing objects data as file on hard disk.

e 0 O

Example

This way data will not get lost once the application exits.
Deserialization is process of loading objects data from file into memory.
To make custom class serializable just add implements Serializable.

[€]

© In this example built in class Vector, which implements Serializable, is Serialized and Deserialized.

Test.java

import
import
import
import
import
import

public

public static void main(String[] args) throws IOException, ClassNotFoundException {

java.
java.
java.
java.
java.

java.i

util.Vector;

io
io

.IOException;

.FileInputStream;

.FileOutputStream;

.ObjectInputStream;
.ObjectOutputStream;

class Test {

//CREATE OBJECT.
Vector v = new Vector();
v.add("First");

v.add("Second");

//SERIALIZE OBJECT. Save object to file.

FileOutputStream

ObjectOutputStream oos

00s.
00s.

//DELETE VECTOR DATA.
v.clear();

fout = new FileOutputStream("test.dat");

= new ObjectOutputStream(fout);
writeObject(v);
close();

//DESERIALIZE OBJECT. Load object from file.

FileInputStream fin

ObjectInputStream ois

v = (Vector) ois.
.close();

ois

//DISPLAY VECTOR DATA.
System.out.println(v.get(0));
System.out.println(v.get(1));

= new FileInputStream("test.dat");
= new ObjectInputStream(fin);
readObject();

6 Appendix

Info

© Following tutorials show how to use core JAVA APIls which are built-in PHP functions.

6.1 ASCII Table

Info [R]

© Following tables show ASCII values of characters which can be used with octal and unicode Escape Sequences like.
© Forinstance capital letter 'A' can be represented in octal or unicode Escape Sequences as '\101' or '\uee41' respectively.
© Using these character representations is equivalent to typing that character inside your source code.

This differs from escape sequences \n, \' or \" which will not throw error while "\u000D', '\u0027' or "\u0022' will.

Control characters Special characters

DEC | HEX BINARY | CHAR DESCRIPTION DEC | HEX BINARY |CHAR DESCRIPTION
0 00 |00000000 | NUL |null 32 |20 |00100000 |Space |space

1 01 |00000001 |SOH |start of header 33 |21 00100001 |! exclamation mark
2 02 | 00000010 |STX |start of text 34 |22 00100010 " double quote
3 03 |00000011|ETX |end of text 35 |23 00100011 # number

4 04 |00000100 EOT |end of transmission 36 |24 /00100100 |S$ dollar

5 05 |00000101 |ENQ |enquiry 37 |25 |00100101 |% percent

6 06 |00000110|ACK |acknowledge 38 |26 00100110 |& ampersand
7 07 |00000111 |BEL |bell 39 |27 00100111 |' single quote
8 08 |00001000 |BS backspace 40 |28 |00101000 | (left parenthesis
9 09 |00001001 |HT horizontal tab 41 |29 |00101001 |) right parenthesis
10 |0A |00001010|LF line feed 42 |2A |00101010 | * asterisk

11 |0B |00001011 |VT vertical tab 43 |2B |00101011 |+ plus

12 |0C |00001100 |FF form feed 44 |2C |00101100 |, comma

13 0D |00001101|CR enter / carriage return 45 | 2D |00101101 |- minus

14 |OE |00001110|SO shift out 46 |2E |00101110 . period

15 |OF |00001111|SI shift in 47 |2F |00101111 |/ slash

16 |10 |00010000 DLE |data link escape

17 |11 00010001 |DC1 | device control 1 Digits

18 |12 |00010010|DC2 |device control 2 DEC | HEX BINARY | CHAR DESCRIPTION
19 |13 |00010011|DC3 |device control 3 48 |30 |00110000|0 zero

20 |14 |00010100|DC4 |device control 4 49 |31 |00110001 |1 one

21 |15 |00010101 | NAK |negative acknowledge 50 /32 001100102 two

22 |16 |00010110|SYN |synchronize 51 |33 |00110011 |3 three

23 |17 |00010111 ETB |end of trans. block 52 34 001101004 four

24 |18 |00011000|CAN |cancel 53 |35 /001101015 five

25 |19 |00011001|EM |end of medium 54 36 |00110110|6 Six

26 | 1A | 00011010 |SUB |substitute 55 |37 001101117 seven

27 |1B |00011011| ESC |escape 56 38 00111000 |8 eight

28 |1C | 00011100 FS file separator 57 |39 /00111001 |9 nine

29 |1D |00011101|GS group separator

30 |1E |00011110|RS record separator

31 |1F |00011111|US unit separator

127 |7F |01111111|DEL |delete

http://www.rapidtables.com/code/text/ascii-table.htm

Special characters Special characters

DEC | HEX | BINARY |CHAR DESCRIPTION DEC | HEX BINARY |CHAR DESCRIPTION

58 |3A |00111010 |: colon 91 |5B |01011011|[left square bracket
59 |3B |00111011 |; semicolon 92 |5C |01011100|\ backslash

60 |3C |00111100 < less than 93 |5D |01011101/|] right square bracket
61 |3D /00111101 = equality sign 94 |5E 01011110~ caret / circumflex
62 |3E |00111110 |> greater than 95 |5F 01011111 |_ underscore

63 |3F 001111117 question mark 96 |60 |01100000|" grave / accent

64 |40 |01000000 @ at sign

Capital letters Small letters

DEC | HEX BINARY |CHAR |DESCRIPTION DEC | HEX | BINARY | CHAR DESCRIPTION
65 |41 |01000001 A 97 |61 |01100001 | a
66 |42 |01000010 B 98 |62 |01100010 b
67 |43 |01000011|C 99 |63 |01100011 |c
68 |44 |01000100 D 100 |64 |01100100 d
69 |45 |01000101 E 101 |65 |01100101 e
70 |46 |01000110|F 102 |66 |01100110|f
71 |47 |01000111 |G 103 |67 |01100111 g
72 |48 01001000 H 104 |68 |01101000 h
73 |49 |01001001 I 105 |69 |01101001 |i
74 |4A |01001010) 106 |6A |01101010/]j
75 |4B |01001011 K 107 |6B | 01101011 k
76 |4C 01001100 L 108 |6C |01101100/1I
77 |4D |01001101 M 109 |6D |01101101 | m
78 |4E |01001110 N 110 |6E |01101110|n
79 |4F |01001111|0 111 |6F |01101111|o
80 |50 |01010000 P 112 |70 |01110000 |p
81 |51 |01010001|Q 113 |71 |01110001 |q
82 |52 |01010010 R 114 |72 01110010 |r
83 |53 |01010011|S 115 |73 01110011 |s
84 |54 |01010100|T 116 |74 |01110100 |t
85 |55 |01010101|U 117 |75 01110101 |u
86 |56 |01010110|V 118 |76 |01110110|v
87 |57 |01010111|W 119 |77 |01110111|w
88 |58 |01011000 |X 120 |78 |01111000 | x
89 |59 01011001|Y 121 |79 |01111001 |y
90 |5A |01011010 2z 122 |'7A |01111010|z

Special characters

DEC| HEX BINARY | CHAR DESCRIPTION

123 |78 01111011

—~

left curly bracket

124 |7C |01111100 vertical bar

|
125 /7D |01111101 |} right curly bracket
126 |7E 01111110 |~ tilde

127 |7F 01111111 |DEL |delete

6.2 Cheat Sheets

Info

© Following tutorials contain code samples for working with different data types.

6.2.1 bool

Info

© This tutorial contains code samples for working with bool data type.
© Converting boolean true/false from number, character or string gives 1/0, t/f or "true"/"false" respectively.

Test.java

public class Test {

public static void main(String[] args) {

//==ss=s=ssssssssssssssssssssssssssssssssssssss==
//boolean.
//==s==s=ss=s
G R A T o T T TR
boolean value = true;

value = Boolean.getBoolean ("false");

value = Boolean.parseBoolean("true");
//CONVERT TO. === - - === o m o o o o o o e o e e e e e e e e e e e e oo
byte convertl = value ? (byte) 1:@ ; // 1 -true , © -false
char convert2 = value ? "ttt f'; // 't -true , 'f' -false
short convert3 = value ? (short) 1:@¢ ; // 1 -true , © -false.
int convert4 = value ? 1:0¢ ; // 1 -true , © -false
long convert5 = value ? 1:¢ ; // 1 -true , © -false.
float convert6 = value ? 1:0 ; // 1.0 -true , 0.0 -false.
double convert7 = value ? 1:0 ; // 1.0 -true , 0.0 -false.
String convert8 = String.valueOf(value); //Explicit conversion to String object: "A"

convert8 = "" + value; //Implicit ocnversion while concatenating.
F A Y I N R e e

System.out.println(value);
System.out.println(Boolean.toString(value));

//==
//Boolean.
//==
R E A E T T T e
Boolean object = new Boolean (value); //Constructor accepting boolean argument.

object = new Boolean ("false"); //Constructor accepting String argument.

object = Boolean.valueOf (value); //boolean argument.

object = Boolean.valueOf ("true"); //String argument.
//CONVERT TO. === == = == = = e o e oo

boolean primitive= object.booleanValue();
String string = object.toString();

/DISPLAY . - = = o o e e e e e e e e e oo
System.out.println(object);
System.out.println(object.toString());

6.2.2 byte

Info

© This tutorial contains code samples for working with byte data type.
© Explicit conversion is needed to convert byte to char since char is not used to store numbers.

Test.java

public class Test {

public static void main(String[] args) {

//==s===sss=s=s
//byte.
//===s=ssssSsssssssssssssssssssssssssssssssss=ss=s
[ERENIE, coomesssssoonassssosonnssssnoonaossoooonasE0o00o0a00050000050050000050050000000050000a
byte value = 65; //Decimal. Implicit conversion from int.

value = 01le1; //0Octal. Implicit conversion from int.

value = 0x41; //Hexadecimal. Implicit conversion from int.

value = Byte.parseByte("65")5 //Decimal since default base is 10.

value = Byte.parseByte("1000001", 2); //Binary since base is set to 2.

value = Byte.parseByte("101" , 8); //Octal since base is set to 8.

value = Byte.parseByte("41" ,16); //Hexadecimal since base is set to 16.
//CONVERT TO. === == m = o o o o o o o o o e e e e e e e e e e e e e
boolean convertl = (value == 1) ; //True only if left byte argument is 1.
char convert2 = (char) value; //Excplicit conversion since not all char fit into.
short convert3 = (short) value; //Implicit conversion since all byte fit into short.
int convert4 = value; //Implicit conversion since all byte fit into int.
long convert5 = value; //Implicit conversion since all byte fit into long.
float convert6 = value; //Implicit conversion since all byte fit into long:65.0
double convert7 = value; //Implicit conversion since all byte fit into long:65.0
String convert8 = String.valueOf(value); //Explicit conversion to String object.

convert8 = """ + value; //Implicit ocnversion while concatenating.

[DISPLAY ; comossssssonncasssscansassosoaasascooonasansono0a0E0o0000000050000000050000a00000000a
System.out.println(value);

System.out.println(Byte.toString(value));

[IERENIE, commeccccsocaacascoscaccassoscaacassoscoasansoncoasoosoncoasEooo000a0c000000a00000000a
Byte object = new Byte (value); //byte argument.
object = new Byte ("65"); //Decimal.
object = Byte.valueOf (value) //byte argument.
object = Byte.valueOf ("65")5 //Decimal since default base is 1@.
object = Byte.valueOf ("1000001", 2); //Binary since base is set to 2.
object = Byte.valueOf ("101" , 8); //0ctal since base is set to 8.
object = Byte.valueOf ("41" ,16); //Hexadecimal since base is set to 16.

//CONVERT TO. === == = == = == o m e e e o e o e o e oo e e e e e e e e e e e e e e e
byte primitive= object.byteValue();
String string = object.toString();

//DISPLAY . = = = = e e e e e e e e e e
System.out.println(object);
System.out.println(object.toString());

6.2.3 short

Info

© This tutorial contains code samples for working with short data type.

Test.java

public class Test {

public static void main(String[] args) {

//===S==S=s==s==ss=s==s===ss=======
//short.
//===s=====s====s==ss===========
P A Y S e
short value = 65; //Decimal. Implicit conversion from int.
value = 0101; //0ctal. Implicit conversion from int.
value = 0x41; //Hexadecimal. Implicit conversion from int.
value = Short.parseShort("65"); //Decimal since default base is 10.
value = Short.parseShort("1000001", 2); //Binary since base is set to 2o
value = Short.parseShort("101" ,» 8); //Octal since base is set to 8.
value = Short.parseShort("41" ,16); //Hexadecimal since base is set to 16.

J/CONVERT TQ. === == === === === mm mm e o o o o o oo o e o e o oo o oo me oo

boolean convertl = (value == 1) ; //True only if left byte argument is 1.
char convert2 = (char) value; //Explicit conversion since not all short fit into char
byte convert3 = (byte) value; //Implicit conversion since all short fit into byte.
int convert4 = value; //Implicit conversion since all short fit into int.
long convert5 = value; //Implicit conversion since all short fit into long.
float convert6 = value; //Implicit conversion since all short fit into long:65
double convert7 = value; //Implicit conversion since all short fit into long:65
String convert8 = String.valueOf(value); //Explicit conversion to String object.

convert8 = "" + value; //Implicit conversion while concatenating.
F Al S I N R L L LT

System.out.println(value);
System.out.println(Short.toString(value));

//===s==ss==ss=sss==ss=ssss=sss=ssss=ssss=ss=s==ss====
//Short.
//==s===ss=sss==ss=ssss=ssssssss=ssss=sss=s=s=s=====
//CREATE . = = e
Short object = new Short (value); //byte argument.
object = new Short ("65"); //Decimal.
object = Short.valueOf (value); //byte argument.
object = Short.valueOf ("65"); //Decimal since default base is 1e.
object = Short.valueOf ("1e00001", 2); //Binary since base is set to 2.
object = Short.valueOf ("101" , 8); //Octal since base is set to 8.
object = Short.valueOf ("41" ,16); //Hexadecimal since base is set to 16.

JICEVERT TOooocccssonnsnssssonncnssnnonnoanc0n000000000000000000000000005000000000000000000000
short primitive= object.shortValue();
String string = object.toString();

DTS 2 T
System.out.println(object);
System.out.println(object.toString());

6.2.4 int

Info

© This tutorial contains code samples for working with int data type.

© Explicit conversion is needed for converting int to primitive types with smaller containers.

Test.java

public class Test {

public static void main(String[] args) {

//int

int value
value
value
value
value
value
value

65;

0101;

0x41;

Integer.parseInt ("65")
Integer.parselnt ("1000001", 2);
Integer.parseInt ("101" , 8);
Integer.parseInt ("41" ,16);

//Decimal.

//Octal.

//Hexadecimal.

//Decimal since default
//Binary since base is
//0ctal since base is

//Hexadecimal since base is

base is 10.
set to 2.
set to 8.
set to 16.

JJCEBVERT T =ocosssconssancosasaonssanmnsao000006500560000506000 5000005068500 5a8000000a0000a0000S

boolean convertl
char convert2
byte convert3
short convert4
long convert5
float convert6
double convert7
String convert8
convert8
convert8
convert8
convert8
convert8
convert8

(value == 1) ;

(char) value;

(byte) value;

(short) value;

value;

value;

value;

"" + wvalue;
String .valueOf
Integer.toString

(value);
(value);

Integer.toBinaryString(value);

Integer.toOctalString (value);

Integer.toHexString (value);
(value, 5);//Base 5.

Integer.toString

//True only if left byte argument is 1.

//Explicit conversion since
//Implicit conversion since
//Implicit conversion since
//Implicit conversion since
//Implicit conversion since
//Implicit conversion since
//Decimal.

//Decimal.

//Decimal.

//Binary.

//Octal.

//Hexadecimal.

not all int fit into char.

all int fit into byte.
all int fit into short.
all int fit into long.
all int fit into long:
all int fit into long:

[DISPLAY ; comossssssonncasssscansassosoaasascooonasansono0a0E0o0000000050000000050000a00000000a
System.out.println(value);

R A s = = T e

Integer object
object

object
object
object
object
object

//int argument.
//Decimal.

//int argument.

//Decimal since default
//Binary since base is
//0ctal since base is

//Hexadecimal since base is

base is 10.
set to 2.
set to 8.

set to 16.

J/CONVERT TO. === == === == == mm o e e o e e o e o e e e e o o oo e oo

int primitive
String convl

new Integer (value);

new Integer ("65");
Integer.valueOf (value)
Integer.valueOf ("65")
Integer.valueOf ("1000001", 2);
Integer.valueOf ("101" , 8);
Integer.valueOf ("41" ,16);
object.intValue();
object.toString();

//Decimal.

65.0
65.0

[DISPLAY ; comossssssonncasssscansassosoaasascooonasansono0a0E0o0000000050000000050000a00000000a
System.out.println(object);

6.2.5 long

Info

© This tutorial contains code samples for working with long data type.

© Explicit conversion is needed for converting long to primitive types with smaller containers.

Test.java

public class Test {

public static void main(String[] args) {

//CREATE.

long

//CONVERT TO.

value
value
value

value
value
value
value

boolean convertl

char convert2
byte convert3
short convert4
int convert5
float convert6
double convert7
String convert8
convert8
convert8
convert8
convert8
convert8
convert8
//DISPLAY.

65;

0101;

0x41;

Long.parseLong ("65")
Long.parseLong ("1000001", 2);
Long.parseLong ("101" , 8);
Long.parseLong ("41" ,16);

(value == 1) ;
(char) value;
(byte) value;
(short) value;
(int) value;
value;
value;
"" + wvalue;
String.valueOf(value);
Long .toString (value);
Long .toBinaryString(value);
Long .toOctalString (value);
Long .toHexString (value);
Long .toString

System.out.println(value);

//CREATE.

Long

//CONVERT TO.

long

object
object

object
object
object
object
object

primitive

new Long (value);

new Long ("65");
Long.valueOf (value)
Long.valueOf ("65")
Long.valueOf ("1lee0001", 2);
Long.valueOf ("1e1" , 8);
Long.valueOf ("a1" ,16);
object.intValue();

//Decimal.
//0Octal.

//Hexadecimal.

//Decimal
//Binary
//0ctal

//Hexadecimal since

since default

since base is

since base is

base is

base is 10.
set to 2.
set to 8.
set to 16.

//True only if left byte argument is 1.

//Explicit
//Implicit
//Implicit
//Implicit
//Implicit
//Implicit
//Decimal.
//Decimal.
//Decimal.
//Binary.
//0ctal.

conversion
conversion
conversion
conversion
conversion
conversion

//Hexadecimal.

(value, 5);//Base 5.

//int argument.

//Decimal.

//int argument.

//Decimal
//Binary
//0ctal

//Hexadecimal since

//Decimal.

since
since
since
since
since
since

since default

since base is

since base is

base is

not all long fit
not all long fit
not all long fit
not all long fit
all long fit
all long fit

base is 10.
set to 2o
set to 8.
set to 16.

into
into
into
into
into
into

char.
byte.
short
long.
long:
long:

String string = object.toString(); //Decimal.

I DISPLAY . - = = o o e e e e e e oo
System.out.println(object);

6.2.6 float

Info

© This tutorial contains code samples for working with float data type.

Test.java

public class Test {

public static void main(String[] args) {

G A e T o R

float value = 65;
value = 0101;
value = 0x41;

value = Float.parseFloat ("65.0");

//Decimal.
//0ctal.

//Hexadecimal.

J/CONVERT TO. === == === === === mm oo o e e o o o o o o e o e o o oo oo e

boolean convl = (value == 1) ;
char conv2 = (char) value;
byte conv3 = (byte) value;
short conv4d = (short) value;

int conv5 = (int) value;

long conve = (long) value;

double conv7 = value;

String conv8 = String.valueOf(value);
conv8 = "" + value;

//True only if left byte argument is 1.

//Explicit
//Implicit
//Implicit
//Implicit
//Implicit
//Implicit
//Explicit
//Implicit

conversion
conversion
conversion
conversion
conversion
conversion
conversion
conversion

since
since
since
since
since
since

not
not
not
not

all
all
all
all
all
all

float
float
float
float
float
float

to String object.

while concatenating.

fit
fit
fit
fit
fit
fit

into
into
into
into
into
into

VA hE TN S S S S S S R S R S S S SR

System.out.println(value);
System.out.println(Float.toString (value));
System.out.println(Float.toHexString(value));

e S S S S S R S S S S SR

//Float.

Float object = new Float (value);
object = new Float ("65.0");
object = Float.valueOf (value);
object = Float.valueOf ("e5");

//int argument.

//Decimal.

//int argument.

//Decimal since default base is 10.

G O R T () T

float primitive = object.intValue();
String string = object.toString();

J/DISPLAY . - = - = e e e e e e e e e e e e

System.out.println(object);
System.out.println(object.toString());

char.
byte.
short
int.

long.
doubl

6.2.7 double

Info

© This tutorial contains code samples for working with double data type.

Test.java

public class Test {

public static void main(String[] args) {

//==
//double.
//==
JIERENIE, coomossssssonnsassssonnsasssnonnsasssnonnaancnnonnoaEco0000000000000000000000000000000C
double value = 65; //Decimal.

value = 0101; //0ctal.

value = 0x41; //Hexadecimal.

value = Double.parseDouble ("65.0");
//CONVERT TO. === = - == = o o o o o o o o e o e e e e e e e e e e e oo
boolean convl = (value == 1) ; //True only if left byte argument is 1.
char conv2 = (char) value; //Explicit conversion since not all double fit into char
byte convd = (byte) value; //Implicit conversion since not all double fit into byte
short conv4d = (short) value; //Implicit conversion since not all double fit into shor
int conv5 = (int) value; //Implicit conversion since not all double fit into int.
long conve = (long) value; //Implicit conversion since all double fit into long
float conv7 = (float) value; //Implicit conversion since all double fit into floa
String conv8 = String.valueOf(value); //Explicit conversion to String object.

conv8 = "" + wvalue; //Implicit conversion while concatenating.
F A Y I N R e e

System.out.println(value);
System.out.println(Double.toHexString(value));
System.out.println(Double.toHexString(value));

//==
//Double.
//==
R A e T T S EEEEE
Double object = new Double (value); //int argument.

object = new Double ("65.0"); //Decimal.

object = Double.valueOf (value); //int argument.

object = Double.valueOf ("65"); //Decimal since default base is 10.
//CONVERT TO. === == = == = = e o e oo

double primitive= object.intValue();
String string = object.toString();

J/DISPLAY . - = = o = e o e e e e e e e e e e e oo
System.out.println(object);
System.out.println(object.toString());

6.2.8 char

Info

© This tutorial contains code samples for working with char data type.

Test.java

public class Test {

public static void main(String[] args) {

//===S==S=s==s==ss=s==s===ss=======
//char
//===s===ss==ss===========
P A Y S e
char value = 'A';

value = 65; //Decimal ASCII value.

value = 0101; //0ctal ASCII value.

value = 0Ox41; //Hexadecimal ASCII value.

e Y =3 O T P

boolean convertl = (value == 1) ; //True only if left byte argument is 1.

byte convert2 = (byte) value; //Explicit conversion since not all char fit into byte.

short convert3 = (short) value; //Explicit conversion since not all char fit into short.

int convertd4 = value; //Implicit conversion since all byte fit into int.

long convert5 = value; //Implicit conversion since all byte fit into long.

float convert6 = value; //Implicit conversion since all byte fit into float.

double convert7 = value; //Implicit conversion since all byte fit into double

String convert8 = String.valueOf(value); //Explicit conversion to String object: "A"
convert8 = "" + value; //Implicit ocnversion while concatenating.

F A N S I N R e e LT

System.out.println(value);

//CREATE . = = e
Character object = new Character(value); //Constructor accepting char argument.

object = new Character((char)65); //Decimal ASCII value.

object = new Character((char)ele1l); //Octal ASCII value.

object = new Character((char)ox41); //Hexadecimal ASCII value.

object = Character.valueOf(value); //char argument.

JJEENVERT T =ososcscssssasansasasnssannnsasmoneoa00050000000E00050000000E5005a000800a0000a0000S

char primitive= object.charValue();
String string = object.toString();
[ISP o comosssssscnnsnssssonncnssnnonnonncnno00000000000000000000000050000000000000000000000

System.out.println(object);
System.out.println(object.toString());

6.2.9 String

Info

© This tutorial contains code samples for working with String data type.

Test.java

public class Test {

public static void main(String[] args) {

J/CREATE . = = = == = = = = e o e e o e e e e e e e e e e e e e e oo
String text = null; //Calling any function on text throws Exception
text = PP //Empty string.text.length()=0,text.equals("")==true
text = "text"; //Creates string with constant text "text".
text = "Name\t\"Jo\"\n"; //Using escape character "\': \" \t \n \\
text = "Start"+"End"; //Connecting Strings.
text = new String(); //Empty string.
text = new String("text"); //Creates string with constant text "text".
text = new String (new byte[] {'C',"'a','r","'s'}); //Creates String from byte array.
text = new String (new char[] {'C',"'a"','r","'s'}); //Creates String from char array.
text = String.copyTextOf(new char[] {'C','a','r"','s"}); //Creates String from char array.
text = String.copyTextOf(new char[] {'C','a",'r"','s"}, 1, 2); //From index=1 take 2.
text = String.textOf (false); //boolean
text = String.textOf (‘AN //char
text = String.textOf (65); //int
text = String.textOf ((long) 65); //long
text = String.textOf ((float) 65.0); //float
text = String.valueOf(65.0); //double
F A S I N R

System.out.println(value);

//CONCATENATE . = = = = = = = = = = = — = o o o o o oo oo o
String text = "START"+"END"; //Connects two strings into new one.
text += text; //Connects string with itself.

J/CONVERT! T 0. = == =/= == = = =/ =/ =/ =/ =/o o/o =lo /o olo =lo =lm = o = o = o = = = =)= = = = = =)= =/ =/ =/ =l =l =l =l =lo =lo =l mlmm|a =lm o o= ol = = = = = = -

boolean convertl = Boolean.parseBoolean("true"); //All else is false including null.

char convert2 = "A" .charAt (9);

byte convert3 = new Byte ("10").byteValue(); //Decimal since default base is 1@.
convert3 = Byte .parseByte ("10"); //Decimal since default base is 1e.
convert3 = Byte .parseByte ("1000001", 2); //Binary since base is set to
convert3 = Byte .parseByte ("101" , 8); //Octal since base is set to
convert3 = Byte .parseByte ("41" ,16); //Hexadecimal since base is set to 16.

short convert4 = new Short ("10").shortValue(); //Decimal since default base is 1@.
convert4 = Short .parseShort ("10"); //Decimal since default base is 1e.
convert4 = Short .parseShort ("1000001", 2); //Binary since base is set to
convert4 = Short .parseShort ("101" , 8); //Octal since base is set to
convert4 = Short .parseShort ("41" ,16); //Hexadecimal since base is set to 16.

int convert5 = new Integer("10").intValue(); //Decimal since default base is 1@.
convert5 = Integer.parselnt ("10"); //Decimal since default base is 10.
convert5 = Integer.parselnt ("1000001", 2); //Binary since base is set to
convert5 = Integer.parselnt ("101" , 8); //Octal since base is set to

convert5 = Integer.parselnt ("a1" ,16); //Hexadecimal since base is set to 16.

long

float

double

//ANALYZE.

String
int

boolean

int

int

//GET SUBSTRINGS.

String

String

String[]

//MODIFY.

String

converté
converté
converté
converté
converté

convert?7

convert8

text

index
index
index
index
index
index
index
index

test
test
test
test
test

cmp
cmp

length

text
sub
sub

changed

text

tokens
tokens
tokens
tokens
tokens
tokens
tokens
tokens

text

changed
changed
changed
changed
changed
changed

= text.
= text
= text.
= text.
= text

= "0123
= text.
= text.
= text.
= text.
= text.
= text.

split("<->");
split("<->",3);

replaceAll ("[\n\r]",

"zero<->one<->two<->three";
= text.

= new Long ("10").longValue(); //Decimal since default base is 1@.

= Long .parselLong ("10"); //Decimal since default base is 10.

= Long .parselLong ("1000001", 2); //Binary since base is set to 2.

= Long .parselLong ("1le01" , 8); //Octal since base is set to 8.

= Long .parselLong ("41" ,16); //Hexadecimal since base is set to 16.

= Float .parseFloat ("2.5");

= Double .parseDouble ("2.5");

= "012345";

= text.indexOf ('3’); //First occurence of '3’ or -1.
= text.indexOf ('3" , 2); //First occurence of '3' starting from 2 or -1.
= text.indexOf ("23"); //First occurence of "23" or -1.
= text.indexOf ("23", 2); //First occurence of "23" starting from 2 or -1.
= text.lastIndexOf ('3" ', 2); //Last occurence of '3' starting from 2 or -1.
= text.lastIndexOf ('3" ', 2); //Last occurence of '3' starting from 2 or -1.
= text.lastIndexOf ("23"); //Last occurence of "23" or -1.
= text.lastIndexOf ("23", 2); //Last occurence of "23" starting from 2 or -1.
= text.startsWith ("e123"); //true if text starts with "0123". Else false.

= text.startsWith ("234", 2); //true if there is string "234" at index 2.

= text.endsWith ("345"); //true if text ends with "345". Else false.

= text.equals ("012345"); //true if strings are equal.

= text.equalsIgnoreCase ("e12345"); //true if strings are equal ignoring case.

= text.compareTo ("012345"); //0 if equal, <0 if text<"Second", else >0

= text.compareToIgnoreCase("012345"); //Same as above ignoring case.

= text.length(); //Returns number of characters in string.

= "012345";

= text.substring (2); //Take substring from index 2 till the end. Result is "2345"

= text.substring (2,5); //Take substring from index 2 till 5-1=4. Result is "234".

= text.trim O //Erases leading and trailing whitespaces: \t \n

//Split string around "<->" regex. Gives tokens[@]="one";

//Create maximum 3 tokens.

);//Remove all \n and \r characters.

Gives tokens[2]="two<->three";

"AB" .
"AB" .

.split("[135]"); //Split string around 1,3 and 5.

split("/") //Split string around '/'.

split("\\."); //Split string around '.'

ssplit("\\\\"); //Split string around '\'.

.split(”;") //0One token 1is returned resulting in tokens.length=1.
.split(”;") //No tokens are returned resulting in tokens.length=0.
45 \n";

toUpperCase (); //Converts all characters to upper case.
toLowerCase (); //Converts all characters to lower case.

replace ('3', "A"); //Replace ALL occurrences of char '3' with
replaceFirst("23","AB"); //Replace FIRST occurrences of regex "23" with
replaceAll ("23","AB"); //Replace ALL occurrences of regex "23" with

6.2.10 array

Info

© Following tutorials contains code samples for working with array data type.

6.2.10.1 Single dimensional

Info

© This tutorial contains code samples for working with single dimension array data type.

Array

Create with [] after array Type

int[] array; //Declared. Used to define scope.

int[] array = null; //Declared, set to null.

int[] array = new int[5]; //Declared, memory reserved, initial values.
int[] array = new int[] {0,1,2,3}; //Declared, memory reserved, elements added.
int[] array = {0,1,2,3}; //Declared, memory reserved, elements added.

Create with [] after array Name

int array[]; //Declared. Used to define scope.

int array[] = null; //Declared, set to null.

int array[] = new int[5]; //Declared, memory reserved, inital values.
int array[] = new int[] {0,1,2,3}; //Declared, memory reserved, elements added.
int array[] = {0,1,2,3}; //Declared, memory reserved, elements added.

Create with Initial Values

boolean[] array = new boolean[5]; //Elements set to initial value false.

char []1 array = new char [5]; //Elements set to initial value ©x0000.

byte [] array = new byte [5]; //Elements set to initial value @.

short [] array = new short [5]; //Elements set to initial value @.

int [] array = new int [51; //Elements set to initial value ©.

long [] array = new long [5]; //Elements set to initial value ©.

float [] array = new float [5]; //Elements set to initial value ©.0.

double [] array = new double [5]; //Elements set to initial value ©.0.

String [] array = new String [5]; //0bject elements are set to initial value null.
Modify

array = null; //Set to null.

array = new int[5]; //Memory reserved, initial values.

array = new int[] {0,1,2,3}; //Memory reserved, elements added.

array = array2; //array gets dimension & all elements from array2.
Analyze

int length = array.length; //Number of elements of Array array.

int length = Array.getLength(array); //Number of elements of Array array.
Display

System.out.println(Arrays.toString(array)); //[0, 1, 2, 3]

Element

Add

array[@] = 5;

Array.
Array.
Array
Array.
Array.
Array.
Array.
Array.
Array.

Get
int
int

boolea
char
byte
short
int
long
float
double

set

(array,

setBoolean(array,

.setChar

setByte
setShort
setInt
setLong
setFloat
setDouble

element
element

n element
element
element
element
element
element
element
element

(array,
(array,
(array,
(array,
(array,
(array,
(array,

5);
true);
A
(byte)
(short)
5);

5);
(float)
, 5.5);

« v .

-

. .

-

®®®®‘_®®®®®

= array[@0];

= Array.

= Array.
= Array.
= Array.
= Array.
= Array.
= Array.
= Array.
= Array.

get

getBoolean
getChar
getByte
getShort
getInt
getlLong
getFloat
getDouble

OXFF);
OXFFFF);

5.5);

(array,

(array,
(array,
(array,
(array,
(array,
(array,
(array,
(array,

9);

0);
0);
0);
0);
0);
0);
0);
0);

//Add value 5 at index ©.

//Add value 5 at index ©.

//Exception if can't convert to array type.
/7-11-.

//-1]-. Convert from int to byte.
//-||-. Convert from int to short.
//-11-.

//-11-.

//-||-. Convert from double to float.
//-11-.

//Get element at index @.
//Get element at index=0 from Array array.

//Exception if can't convert from array to element.
/7-11-.
/7-11-.
/7-11-.
/7-11-.
/7-11-.
/7-11-.
/7-11-.

6.2.10.2 Multi Dimensional

Info

© This tutorial contains code samples for working with multi dimensional array data type.

© Multi dimensional arrays are created simply by using arrays as elements for another array.

© Each array that is element of another array has it's own length throwing Exception if you over-index it.

Array

Create int array

int[][] array;
int[][] array = null;

int[][] array = new int[2][4];
int[][] array
int[][] array

{ {e,1,2,3},
{4,5}
{6,7,8,9,10,11}

};

Create String array

String[][][] multyArray =

new int[J[] { {e,1,2,3}, {4,5}, {6,7,8,9,10,11} };

{ //Top level array containing two middle level arrays.
{ //First middle layer array containing two arrays.
{"There","is"}, //Lowest level array 1.
{"something","fishy","going","on."} //Lowest level array 2.
3
{ //Second middle layer array containing two arrays.
{"These","are","just","arrays."}, //Lowest level array 3.
{"No", "way."} //Lowest level array 4.
¥
s
Element
Add
array [1][e] = 78 //Element at second row and first column.

multyArray[0][1][3] "on.";

Get

int element = array[0][2];

//Element at first table, second row & forth column

//Get element at second row and first column=2.

n

on.

	1 Introduction
	1.1 About JAVA
	1.2 Install
	1.2.1 Automatically
	1.2.2 Manually

	1.3 Create Application
	1.3.1 Console
	1.3.2 Applet

	1.4 Support
	1.4.1 javac.exe
	1.4.2 java.exe

	2 Basic Syntax
	2.1 Comments
	2.1.1 Single Line
	2.1.2 Multi Line

	2.2 Operators
	2.2.1 Comparison
	2.2.2 Arithmetic
	2.2.3 Assignment
	2.2.4 Bitwise
	2.2.5 Logical

	2.3 Statements
	2.3.1 Conditional
	2.3.1.1 Branching
	2.3.1.1.1 if
	2.3.1.1.2 else
	2.3.1.1.3 else if
	2.3.1.1.4 switch
	2.3.1.1.5 ? :

	2.3.1.2 Looping
	2.3.1.2.1 for
	2.3.1.2.2 while
	2.3.1.2.3 do ... while

	2.3.2 Jumping
	2.3.2.1 break
	2.3.2.2 continue

	2.4 Data types
	2.4.1 Scalar
	2.4.1.1 null
	2.4.1.2 bool
	2.4.1.3 byte
	2.4.1.4 short
	2.4.1.5 int
	2.4.1.6 long
	2.4.1.7 float
	2.4.1.8 double
	2.4.1.9 char

	2.4.2 Compound
	2.4.2.1 String
	2.4.2.2 array
	2.4.2.3 Class

	2.5 Literals
	2.5.1 Null
	2.5.2 Boolean
	2.5.3 Integer
	2.5.3.1 Decimal Notation
	2.5.3.2 Octal Notation
	2.5.3.3 Hexadecimal Notation

	2.5.4 Long
	2.5.4.1 Decimal Notation
	2.5.4.2 Octal Notation
	2.5.4.3 Hexadecimal Notation

	2.5.5 Float
	2.5.5.1 Basic Notation
	2.5.5.2 Scientific Notation

	2.5.6 Double
	2.5.6.1 Basic Notation
	2.5.6.2 Scientific Notation

	2.5.7 Character
	2.5.8 String
	2.5.9 Array

	3 Object Oriented Syntax
	3.1 Classes
	3.1.1 Inheritance
	3.1.2 Reflection
	3.1.3 ClassLoader

	3.2 Interface
	3.3 Objects
	3.3.1 Create
	3.3.2 Upcasting
	3.3.3 Downcasting

	3.4 Exceptions
	3.5 Methods
	3.5.1 Create
	3.5.2 Parameters Scope
	3.5.3 Overloading
	3.5.4 Overriding

	4 Advanced Syntax
	4.1 Generic
	4.1.1 Class
	4.1.2 Method
	4.1.3 Type inference
	4.1.4 Type parameters
	4.1.5 Wildcards

	5 Built in functionalities
	5.1 Collections
	5.1.1 HashMap
	5.1.2 Vectors
	5.1.3 Iterator
	5.1.4 Hashtables
	5.1.5 Enumerator
	5.1.6 Date/Time

	5.2 Serialization

	6 Appendix
	6.1 ASCII Table
	6.2 Cheat Sheets
	6.2.1 bool
	6.2.2 byte
	6.2.3 short
	6.2.4 int
	6.2.5 long
	6.2.6 float
	6.2.7 double
	6.2.8 char
	6.2.9 String
	6.2.10 array
	6.2.10.1 Single dimensional
	6.2.10.2 Multi Dimensional

