

ETHEREUM
Rapid Learning & Just In Time Support

CONTENT
1 INTRODUCTION .. 5

1.1 Terms .. 5

2 CLIENTS .. 8

2.1 GETH ... 9

2.1.1 Setup .. 11

2.1.1.1 Install ... 12

2.1.1.2 Edit PATH Environment Variable ... 14

2.1.2 Private Network ... 15

2.1.2.1 Setup ... 16

2.1.2.2 Connect ... 18

2.1.3 Account .. 19

2.1.3.1 Create .. 19

2.1.3.2 Unlock.. 20

2.1.3.3 Change Password .. 21

2.1.3.4 Show All ... 22

2.1.3.5 Delete .. 23

2.1.3.6 Set Base Account ... 24

2.1.3.7 Get balance ... 25

2.1.4 Ether ... 26

2.1.4.1 Mine .. 26

2.1.4.2 Transfer ... 29

2.1.5 SOLC ... 31

2.1.5.1 Check if GETH is linked to SOLC ... 31

2.1.5.2 Link GETH with SOLC ... 32

2.1.6 Contracts .. 33

2.1.6.1 Create using online SOLC - Browser Solidity ... 34

2.1.6.2 Create using online SOLC - Ether Chain ... 37

2.1.6.3 Create using installed SOLC ... 40

2.1.6.4 Run by others .. 46

2.1.6.5 Kill .. 48

2.2 ETH ... 49

2.2.1 Setup .. 49

2.2.1.1 Install ... 49

2.2.1.2 Edit PATH Environment Variable ... 51

3 SOLIDITY .. 52

3.1 Comments ... 53

3.1.1 Single Line .. 54

3.1.2 Multi Line ... 55

3.2 Operators .. 56

3.2.1 Assignment ... 56

3.2.2 Comparison .. 57

3.2.3 Arithmetic .. 58

3.2.4 Bitwise .. 59

3.2.5 Logical ... 60

3.3 Statements .. 61

3.3.1 Conditional Branching .. 62

3.3.1.1 if ... 63

3.3.1.2 else .. 64

3.3.1.3 else if ... 65

3.3.2 Conditional Looping ... 66

3.3.2.1 for .. 67

3.3.2.2 while .. 68

3.3.3 Unconditional Jumping .. 69

3.3.3.1 break.. 70

3.3.3.2 continue .. 71

3.4 Functions .. 72

3.4.1 Name .. 73

3.4.2 Return values ... 74

3.4.2.1 None .. 75

3.4.2.2 Single ... 76

3.4.2.3 Multiple ... 77

3.4.3 Parameters ... 78

3.4.3.1 None .. 78

3.4.3.2 Multiple ... 79

3.4.4 Type .. 80

3.4.4.1 public ... 81

3.4.4.2 private ... 82

3.4.4.3 constant ... 83

3.4.5 Reference ... 84

3.4.5.1 Internal Function Call .. 84

3.5 Contracts ... 85

3.5.1 Name .. 86

3.5.2 Fields .. 87

3.5.2.1 public ... 88

3.5.2.2 private ... 89

3.5.3 Methods ... 90

3.5.4 Constructor .. 91

3.5.5 Inheritance ... 92

3.5.1 Data Types .. 94

3.5.2 Scalar .. 95

3.5.2.1 bool ... 95

3.5.2.2 int .. 96

3.5.2.3 uint .. 97

3.5.2.4 address .. 98

3.5.2.5 byte ... 99

3.5.3 Compound .. 100

3.5.3.1 bytes .. 101

3.5.3.2 string.. 102

3.5.3.3 struct ... 103

3.5.3.4 array .. 104

4 RELATED TECHNOLOGIES .. 105

4.1 Chocolatey .. 106

4.1.1 Install .. 106

4.1.2 Uninstall ... 110

4.2 Windows ... 111

4.2.1 Show Environment Variables ... 111

4.2.2 Start Command Prompt ... 112

4.3 Python .. 113

4.3.1 Install .. 114

4.4 JSON Formatter ... 115

5 ERRORS .. 117

5.1 SyntaxError json.dumps .. 117

5.2 TypeError: 'greet' is not a function ... 118

1 Introduction

Info

 Ethereum is decentralized network of nodes which prevents downtime, censorship, fraud or third party interference.

 Node is any computer that runs an Ethereum client.

 Ethereum clients execute applications which are called contracts and can be implemented in JavaScript, C++ or Python.

 Ethereum is based on Bitcoin blockchain technology and uses Ether as its digital currency.

 Using contracts consumes Ether which can be mined with Ethereum clients.

1.1 Terms

Info

 This tutorial explains Ethereum terms.

Releases

 Frontier is the first release of the Ethereum project, tailored specifically for developers.

Clients

 Ethereum clients are applications that are used to connect to Ethereum network and there are three different versions

● GETH is implemented in Go and it will be used in Mist Browser

● ETH is implemented in C++ and it will be used for contract development toolset Mix IDE

● Pyethapp is implemented in Python

 You can use these clients to connect either to

● private network which should be used for testing since it allows you to easily mine your own ether

● public network which should be used for production since mining ether, needed to use the network, is much harder

Console

 Connecting to network using console keyword allows you to execute JavaScript commands either directly or from a file.

 You can then use these commands to create accounts, start mining, transfer ether between accounts and so on.

 Some of these commands, like creating accounts, can also be executed using clients with additional parameters.

Mining [R]

 Mining is process of

● creating new Ether which is analogy for how gold is created by mining.

● securing the network by creating, verifying, publishing and propagating blocks in the blockchain.

 When first command to mine is given your computer first needs to go through a process called "building a DAG".

 It is approximately 1GB big file which takes about 10 minutes create and each Private Network needs its own DAG file.

 As soon as it is created, Geth will start mining automatically adding ether to base account every time a block is mined.

 Mining on private network allows you to easily get Ether to test contracts, each network requiring is own DAG file.

 Mining on the public network requires dedicated computers otherwise getting Ether can take a long time.

Đapps [R]

 Ethereum is a platform that allows people to easily write decentralized applications (Đapps) using blockchain technology.

 Early examples of Đapps include BitTorrent for file sharing and Bitcoin for digital currency.

 Ethereum takes the primary developments used by BitTorrent and Bitcoin, the peer to peer network and the blockchain,

and generalizes them in order to allow developers to use these technologies for any purpose.

http://ethereum.gitbooks.io/frontier-guide/content/mining.html
http://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html

Ethereum Virtual Machine (EVM) [R]

 The part of the protocol that handles internal state and computation is referred to as the EVM.

 EVM can be thought of as a large decentralized computer containing millions of objects, called "accounts", which have

the ability to maintain an internal database, execute code and talk to each other.

Blockchain [R]

 Ethereum blockchain can be described as a

● blockchain with a built-in programming language

● consensus-based globally executed virtual machine

Accounts [R]

 There are two types of accounts:

● Normal or Externally owned account (EOA) is an account controlled by a private key.

 If you own the private key you have the ability to send ether and messages from it.

● Contract is an account that has its own code, and is controlled by code.

 Both types of accounts have an ether balance.

Transactions [R]

 Contracts interact with each other through an activity called either "calling", "transactions" or "sending messages".

 When contract receives message it can return some data, which can be used by the sender, exactly like calling a function.

 Contracts only fire transactions in response to other transactions that they have received.

 Therefore, all action on the Ethereum is set in motion by user triggering an action by sending a transaction from an EOA.

 The simplest transactions are ether transfer transactions between two EOAs.

 If destination of the transaction is another EOA, then transaction may transfer some ether but otherwise does nothing.

 However, if the destination is a contract, then the contract in turn activates, and automatically runs its code.

Messages

 Message is object which contracts send to each other and contain

● some quantity of ether (with the primary purpose of paying transaction fees)

● a byte-array of data of any size

● the addresses of a sender

● the addresses of a recipient.

Coins

 Coin is a tradable token that can be

● used to control access (an entrance ticket)

● used to represent debt owed by an organization (a bond)

● used as an exchange of value within a community (a currency)

● placeholder for an asset held by a third party (a certificate of ownership)

 Ethereum token are censorship proof by having following advantages

● it's a decentralized service and tokens can be still exchanged even if the original service goes down for any reason

● code can guarantee that no tokens will ever be created other than the ones set in the original code

● by having each user hold their own token, this eliminates the scenarios where one single server break-in can result in

the loss of funds from thousands of clients.

http://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html
http://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html
http://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html
http://ethereum.gitbooks.io/frontier-guide/content/contracts_and_transactions_intro.html

Gas [R]

 Gas is unit that defines cost of computation. It is a cost of executing operations on Ethereum network.

 In other words for each operation you have to pay fixed amount of Gas to execute it.

 Gas is automatically bought using Ether from the Account that executed the transaction.

 In other words when Account executes a contract it will loose certain amount of Ether which will be used to buy Gas

needed to run contract operations.

 The price of Gas in Ether is floating. Amount of Ether needed to buy specific quantity of gas may vary.

 Purpose of Gas is to

● limit infinite loops

● prevent DDOS attacks

● make users pay for network usage

 Additionally for each transaction you define mining fee which is reward for miners.

 This motivates miners to first take care of transactions with highest mining fees.

Ether Denominations

 Ether can also be expressed in denominations listed in the following table.

Ether denominations

Kraken [R]

 Kraken is exchange for trading Ether which got its name after mythical sea monster that appeared off the coast of Norway

 You can use Kraken to buy Ether with Bitcoins, Euros or Dollars.

https://www.cryptocompare.com/coins/guides/what-is-the-gas-in-ethereum/
https://www.cryptocompare.com/exchanges/guides/how-to-trade-ethereum-on-kraken/

2 Clients

Info

 Ethereum clients are applications that are used to connect to Ethereum network and there are three different versions

● GETH is implemented in Go and it will be used in Mist Browser

● ETH is implemented in C++ and it will be used for contract development toolset Mix IDE

● Pyethapp is implemented in Python

 You can use these clients to connect either to

● private network which should be used for testing since it allows you to easily mine your own ether

● public network which should be used for production since mining ether, needed to use the network, is much harder

2.1 GETH

Info [R]

 GETH is command line interface for running a full Ethereum node implemented in Go and allows you to

● mine real ether

● transfer funds between addresses

● create contracts and send transactions

● explore block history

 You can interact with GETH using following interfaces

● Command line options

● JavaScript Console available when GETH is launched with console option exposing web3 (Ðapp) and admin APIs

Basic GETH Commands

EXAMPLE DESCRIPTION

geth Connect to public network.

geth --networkid 123 Connect to new private network.

geth --datadir G:\Temp\Ethereum\datadir Connect to already created private network.

geth console Open console after connecting to network.

geth attach Open additional console which will not contain log lines.

geth 2>> G:\Temp\Ethereum\my.log Write log into file instead of displaying it.

geth account new Create new account by providing password.

geth account update 2f5a853427848d5a Change password of the Account with specified address.

geth account list Show list of Accounts. For each account index and address is displayed.

geth --etherbase 1 Set base account to account at index 1.

geth --etherbase '0xa4d8e9cae4d04b09' Set base account to account with address '0xa4d8e9cae4d04b09'.

geth --mine Start mining ether. Ether is added to base account.

geth --solc "I:/Ethereum/Release/solc.exe" Specify location of Solidity Compiler.

Console Commands

EXAMPLE DESCRIPTION

personal.newAccount("mypassword"); Create account with specified password.

eth.accounts; Show accounts.

myaccount = eth.accounts[0]; Save reference to account into variable.

eth.getBalance(myaccount); Returns ether balance of 10 as 10000000000000000000.

eth.getBalance(myaccount).toNumber(); Returns ether balance of 10 as 10000000000000000000.

web3.fromWei(eth.getBalance(myaccount), "ether"); Returns ether balance of 10 as 10.

miner.start(8); Start mining.

admin.sleepBlocks(10); Wait for 10 blocks to be mined.

miner.stop(); Stop mining.

txpool.status shows transaction pool

eth.getBlockTransactionCount("pending"); number of pending txs

eth.getBlock("pending", true).transactions print all pending txs

eth.getCompilers(); Show list of available compilers.

loadScript("/Users/username/gethload.js") Load JavaScript file.

admin.setSolc("I:/Ethereum/Release/solc.exe"); Link to Solidity Compiler.

myContractInstance.transactionHash Hash of the transaction, which created the contract.

myContractInstance.address Defined after contract transaction is mined.

https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options

Print all balances

function checkAllBalances() {

 var i =0;

 eth.accounts.forEach(function(e){

 console.log("eth.accounts["+i+"]: "+e+" \tbalance: "+web3.fromWei(eth.getBalance(e), "ether")+"ether");

 i++;

 })

};

Send Ether

> eth.sendTransaction({from:eth.coinbase, to:eth.accounts[1], value: web3.toWei(0.05, "ether")})

> eth.sendTransaction({from: '0x036a03fc47084741f83938296a1c8ef67f6e34fa', to:

'0xa8ade7feab1ece71446bed25fa0cf6745c19c3d5', value: web3.toWei(1, "ether")})

 Also, be advised that the amount debited from the source account will be slightly larger than that credited to the target

account, which is what has been specified. The difference is a small transaction fee, discussed in more detail later.

2.1.1 Setup

Info

 Following tutorials show how to install and setup GETH Client.

2.1.1.1 Install

Info

 This tutorial shows how to use Chocolatey to install Ethereum GETH Client.

 GETH Client is Command Line Tools used for interaction with Ethereum.

Read License Agreement

 https://www.ethereum.org/#install-geth

 Install the Command line tools

 I understand this, let me proceed

Install the Command line tools

I understand this, let me proceed

https://www.ethereum.org/#install-geth

Install GETH

 Install Chocolatey

 Start Command Prompt as Administrator

 choco install geth-stable -version 1.1.1.0

 yes

choco install geth-stable -version 1.1.1.0

‘

Results

 GETH will be installed inside geth-stable directory under lib directory where Chocolatey was installed.

Created directory

2.1.1.2 Edit PATH Environment Variable

Info

 This tutorial shows how to edit PATH Environment Variable by appending directory where geth.exe is installed.

 This will allow you to execute geth from any directory.

 Without this step you would first need to position yourself in directory where GETH is installed by calling

 cd I:\ProgramData\chocolatey\lib\geth-stable\tools before being able to run GETH inside Command Prompt.

Procedure

 Show Environment Variables

 User Variables

 PATH

 Edit

 Variable value: (Append ;I:\ProgramData\chocolatey\lib\geth-stable\tools)

 3*OK

Edit PATH

Append path to geth.exe

Test

 Start Command Prompt

 geth

2.1.2 Private Network

Info

 Following tutorials show how to use GETH to create and work with Private Network.

2.1.2.1 Setup

Info [R] [R]

 This tutorial shows how to setup Private Network for testing by adding initial amount of Ether to the Account.

 After that you can create additional accounts and mine more Ether.

 This way you can test creating and using contracts for which Ether is needed.

Initialize Network

 Create directory G:\Temp\Ethereum\datadir

 Create file G:\Temp\Ethereum\genesis_block2.json as shown below

 Start Command Prompt

 (Execute below commands)

 Remove all folders except keystore from G:\Temp\Ethereum\datadir

genesis_block2.json

{

 "nonce" : "0xdeadbeefdeadbeef",

 "timestamp" : "0x0",

 "parentHash" : "0x00",

 "extraData" : "0x0",

 "gasLimit" : "0x8000000",

 "difficulty" : "0x400",

 "mixhash" : "0x00",

 "coinbase" : "0x33",

 "alloc" : {

 }

}

Start Private Network

geth --genesis G:\Temp\Ethereum\genesis_block2.json --datadir G:\Temp\Ethereum\datadir --networkid 123 --

nodiscover --maxpeers 0 console

Create Account

> personal.newAccount("mypassword");

"0xae442df5214070f2eb98f3cfb9c3177918c2941a"

Exit Network

> exit

Remove all folders except keystore

http://adeduke.com/2015/08/how-to-create-a-private-ethereum-chain/
https://github.com/quiark/eth-devchain

Add Ether to the Account

 Replace G:\Temp\Ethereum\genesis_block2.json with file shown below using address of created Account

 (Execute below commands)

genesis_block2.json

{

 "nonce" : "0xdeadbeefdeadbeef",

 "timestamp" : "0x0",

 "parentHash" : "0x00",

 "extraData" : "0x0",

 "gasLimit" : "0x8000000",

 "difficulty" : "0x400",

 "mixhash" : "0x00",

 "coinbase" : "0x33",

 "alloc" : {

 "0xae442df5214070f2eb98f3cfb9c3177918c2941a": {

 "balance": "10000000000000000000"

 }

 }

}

Start Private Network

geth --genesis G:\Temp\Ethereum\genesis_block2.json --datadir G:\Temp\Ethereum\datadir --networkid 123 --

nodiscover --maxpeers 0 console

Get Account balance

> web3.fromWei(eth.getBalance(eth.accounts[0]), "ether");

10000000000000000000

2.1.2.2 Connect

Info [R]

 This tutorial shows how to connect to Private Network which was setup using Setup Private Network.

 We are using GETH command option 2>> G:\Temp\my.log to separate your commands from the log lines.

 Or you can use console command geth attach to open new Command Prompt where log lines will not be displayed.

Procedure

 Start Command Prompt

 (Execute below commands)

Connect to private network

geth --networkid 123 --datadir G:\Temp\Ethereum\datadir --genesis G:\Temp\Ethereum\genesis_block2.json --

nodiscover --maxpeers 0 --solc "I:/Installed/Programming/Ethereum 0.9.41/Release/solc.exe" console 2>>

G:\Temp\Ethereum\my.log

Command Prompt

G:\Temp\Ethereum\my.log

I0909 11:34:55.546875 4356 database.go:73] Alloted 16MB cache to G:\Temp\Ethereum\datadir\chaindata

I0909 11:34:55.588867 4356 database.go:73] Alloted 16MB cache to G:\Temp\Ethereum\datadir\dapp

I0909 11:34:55.617187 4356 backend.go:291] Protocol Versions: [61 60], Network Id: 123

I0909 11:34:55.619140 4356 genesis.go:88] Genesis block already in chain. Writing canonical number

I0909 11:34:55.619140 4356 backend.go:303] Successfully wrote genesis block. New genesis hash =

378266f167238c543183a5230b251c50d431aadee179cedb937f6df8d4b707c9

I0909 11:34:55.620117 4356 backend.go:328] Blockchain DB Version: 3

I0909 11:34:55.620117 4356 chain_manager.go:237] Last block (#174)

c89e03b0a6a60cc9aa85a56c33f3d018c25c3c8b3912a0100ce576a82dc595fc TD=23791184

I0909 11:34:55.653320 4356 cmd.go:125] Starting Geth/v1.1.1/windows/go1.4.2

I0909 11:34:55.653320 4356 server.go:311] Starting Server

I0909 11:34:55.654296 4356 backend.go:557] Server started

I0909 11:34:55.654296 4356 ipc_windows.go:724] IPC service started (\\.\pipe\geth.ipc)

I0909 11:34:55.654296 4356 server.go:552] Listening on [::]:30303

https://www.ethereum.org/greeter

2.1.3 Account

Info

 Following tutorials show how to use GETH to work with Accounts.

2.1.3.1 Create

Info [R]

 This tutorial shows how to use GETH interactive interface to create new Account.

 You will be required to type a password which needs to be entered twice.

 Command will return address which is assigned to the account.

Procedure

 Start Command Prompt

 (Execute below commands)

Commands

geth account new

Passphrase: B...5

Repeat Passphrase: B...5

Command Prompt

http://ethereum.gitbooks.io/frontier-guide/content/managing_accounts.html

2.1.3.2 Unlock

Info [R]

 This tutorial shows how to use GETH to unlock Account on the Private Network.

 This will connect you to the network and ask for account password to unlock it.

 When using Public Network simply remove --datadir G:\Temp\Ethereum\datadir.

Procedure

 Start Command Prompt

 (Execute below commands)

Commands

geth --datadir G:\Temp\Ethereum\datadir --unlock "0x7d56684162242fd7e3312c20207d643135263f69" console

Passphrase: B...5

Command Prompt

https://github.com/ethereum/go-ethereum/wiki/Managing-your-accounts

2.1.3.3 Change Password

Info [R]

 This tutorial shows how to use GETH interactive interface to change account password by specifying its address.

 You will be asked to give the current password and then to type the new password twice.

Procedure

 Start Command Prompt

 (Execute below commands)

Commands

geth account update 2f5a853427848d5a206f434cc8f2da8440f0961c

Passphrase: (old password)

Passphrase: (new password)

Repeat Passphrase: (new password)

Command Prompt

http://ethereum.gitbooks.io/frontier-guide/content/managing_accounts.html

2.1.3.4 Show All

Info [R]

 This tutorial shows how to use GETH interactive interface to list accounts by displaying their indexes and addresses.

Procedure

 Start Command Prompt

 (Execute below commands)

Command for Public Network

geth account list

Command for Private Network

geth --datadir G:\Temp\Ethereum\datadir account list

Command Prompt

http://ethereum.gitbooks.io/frontier-guide/content/managing_accounts.html

2.1.3.5 Delete

Info [R]

 This tutorial shows how to delete Account by removing its corresponding file from the keystore directory inside datadir.

 Account can't be deleted through GETH Command Line Parameters or Console.

Procedure

 Open directory G:\Temp\Ethereum\datadir\keystore

 Delete Account file

Windows Explorer

UTC--2015-09-06T21-02-57.470703100Z--cf394f168b75aa10ecc705aae5c2aa91d75b1cd8

{

 "address":"cf394f168b75aa10ecc705aae5c2aa91d75b1cd8",

 "Crypto":{

 "cipher":"aes-128-ctr",

 "ciphertext":"3106f829e8d3145127269a0976286147a8f82cb5bf43d2c5bcae65c689129b09",

 "cipherparams":{

 "iv":"6a9c34e1e41307dd6b9f29c359e1bc24"

 },

 "kdf":"scrypt",

 "kdfparams":{

 "dklen":32,

 "n":262144,

 "p":1,

 "r":8,

 "salt":"89960487c6b1b426d0f6e9735387edc6dc413c73007f7da1971ff3d779ff14b1"

 },

 "mac":"21db55bc4018b32c005822e7ab5c8eef45ae708bb47e3a6c8745c19ea36d1ae9"

 },

 "id":"aa6584e4-65b1-44ec-854b-c0b5ce5b3aa4",

 "version":3

}

https://www.reddit.com/r/ethereum/comments/3gc8ir/how_do_i_delete_accounts_and_how_do_i_change/

2.1.3.6 Set Base Account

Info

 This tutorial shows how to set base Account which defines where Mined Ether should go.

Procedure

 Connect to Private Network

 (Execute below commands)

Set base account.

miner.setEtherbase(eth.accounts[0]);

2.1.3.7 Get balance

Info

 This tutorial shows how to get amount of Ether stored into an Account.

Procedure

 Connect to Private Network

 (Execute below commands)

Get balance

web3.fromWei(eth.getBalance(eth.accounts[0]), "ether");

Geth

2.1.4 Ether

Info

 Following tutorials show how to use GETH with Solidity Compiler (SOLC).

2.1.4.1 Mine

Info

 This tutorial shows how to mine Ether on Private Network.

 When new account is created, in order to get its index, you might need to exit console and then use

 geth --datadir G:\Temp\Ethereum\datadir account list

Procedure

 Connect to Private Network

 (Execute below commands)

Create additional Account

> personal.newAccount("mypassword");

Set base account so that mined Ether is added to its balance

> miner.setEtherbase(eth.accounts[0]);

Start mining. Wait for creation of DAG file if one doesn't exist.

> miner.start();

Check balance of the base account

> web3.fromWei(eth.getBalance(eth.accounts[0]), "ether");

10

Creating DAG file

DAG file created

Mining

Check balance

Created DAG file

2.1.4.2 Transfer

Info [R]

 This tutorial shows how to transfer Ether between Accounts.

 Before transferring Ether we will execute GETH command which list all Accounts with their indexes and addresses since

we will need indexes to check balances and addresses to transfer Ether.

List Accounts

 Start Command Prompt

 (Execute below commands)

List Accounts

> geth --datadir G:\Temp\Ethereum\datadir account list

Account #0: {cf394f168b75aa10ecc705aae5c2aa91d75b1cd8}

Account #1: {6d150665bb7d1cee98231226aed3b0b94adb1f27}

Account #2: {ae442df5214070f2eb98f3cfb9c3177918c2941a}

Account #3: {f2c0faa11e9366b11a212e7dffaaa4a4c9f57b4c}

Account #4: {7d56684162242fd7e3312c20207d643135263f69}

Connect to private network

geth --networkid 123 --datadir G:\Temp\Ethereum\datadir --genesis G:\Temp\Ethereum\genesis_block2.json --

nodiscover --maxpeers 0 --solc "I:/Installed/Programming/Ethereum 0.9.41/Release/solc.exe" console

Get Ether balances from source and destination

web3.fromWei(eth.getBalance(eth.accounts[4]), "ether");

web3.fromWei(eth.getBalance(eth.accounts[0]), "ether");

Transfer Ether

eth.sendTransaction({from: '0x7d56684162242fd7e3312c20207d643135263f69', to:

'0xcf394f168b75aa10ecc705aae5c2aa91d75b1cd8', value: web3.toWei(10, "ether")})

Set base account. Start mining. Wait a while. Stop mining.

miner.setEtherbase(eth.accounts[3]);

miner.start();

miner.stop();

Get Ether balances from source and destination

web3.fromWei(eth.getBalance(eth.accounts[4]), "ether");

web3.fromWei(eth.getBalance(eth.accounts[0]), "ether");

https://github.com/ethereum/go-ethereum/wiki/Contracts-and-Transactions

Command Prompt

2.1.5 SOLC

Info

 Following tutorials show how to link GETH with installed Solidity Compiler (SOLC).

 You don't need to install Solidity Compiler (SOLC) if you plan on using some of the online compilers as described in

● Create contract using online SOLC - Browser Solidity

● Create contract using online SOLC - Ether Chain

2.1.5.1 Check if GETH is linked to SOLC

Info

 This tutorial shows how to check if GETH is linked to SOLC.

Procedure

 Start Command Prompt

 (Execute below commands)

Connect to private network

geth --datadir G:\Temp\Ethereum\datadir 2>> G:\Temp\Ethereum\my.log console

Test if GETH is linked to SOLC

> eth.getCompilers();

["Solidity"]

Command Prompt

2.1.5.2 Link GETH with SOLC

Info [R]

 This tutorial shows how to link GETH with SOLC.

 Prerequisite is to install Solidity Compiler by Installing ETH which includes solc.exe.

 You have to repeat this procedure every time you reconnect to the network.

Using GETH Command Line

 Start Command Prompt

 (Execute below commands)

 Connect to private network

geth --datadir G:\Temp\Ethereum\datadir --solc "I:/Installed/Programming/Ethereum 0.9.41/Release/solc.exe" 2>>

G:\Temp\Ethereum\my.log console

Test if linking was successful

> eth.getCompilers();

["Solidity"]

Command Prompt

Using GETH Console

 Start Command Prompt

 (Execute below commands)

 Connect to private network

geth --datadir G:\Temp\Ethereum\datadir 2>> G:\Temp\Ethereum\my.log console

Link GETH with SOLC

> admin.setSolc("I:/Installed/Programming/Ethereum 0.9.41/Release/solc.exe");

"solc v0.1.1\nSolidity Compiler: I:/Installed/Programming/Ethereum 0.9.41/Release/solc.exe\n"

Test if linking was successful

> eth.getCompilers();

["Solidity"]

Command Prompt

https://www.ethereum.org/greeter

2.1.6 Contracts

Info

 Following tutorials show how to work with contracts.

 Contracts can be created either by using installed or online Solidity Compilers as shown by the tutorials.

2.1.6.1 Create using online SOLC - Browser Solidity

Info

 This tutorial shows how to create contract using online Solidity Compiler Browser Solidity.

 It creates deployment code "Web3 deploy" in which values for input variables should be inserted before pasting to GETH.

 Compiler also creates Bytecode and Contract ABI which can be used as shown in Create using online SOLC - Ether Chain.

Compile Code

 https://chriseth.github.io/browser-solidity/

 (Paste Contract Source Code)

Contract Source Code

contract greeter {

 address owner; /* Define address variable owner */

 string greeting; /* Define string variable greeting */

 function greeter(string _greeting) public { /* Run during initialization */

 greeting = _greeting;

 owner = msg.sender;

 }

 function kill() { /* Get funds on killing contract */

 if (msg.sender == owner) suicide(owner);

 }

 function greet() constant returns (string) { /* Main function */

 return greeting;

 }

}

https://chriseth.github.io/browser-solidity/

https://chriseth.github.io/browser-solidity/
https://chriseth.github.io/browser-solidity/

Create Contract

 Connect to Private Network

 (Paste "Web3 deploy" into text editor)

 (Enter values for input variables var _greeting = /* var of type string here */ ;)

 (Execute below commands)

Unlock Account

personal.unlockAccount("7d56684162242fd7e3312c20207d643135263f69", "mypassword")

Paste "Web3 deploy" with entered values for input variables

var _greeting = "Hello World!" ;

var greeterContract =

web3.eth.contract([{"constant":false,"inputs":[],"name":"kill","outputs":[],"type":"function"},{"constant":true

,"inputs":[],"name":"greet","outputs":[{"name":"","type":"string"}],"type":"function"},{"inputs":[{"name":"_gre

eting","type":"string"}],"type":"constructor"}]);

var greeter = greeterContract.new(

 _greeting,

 {

 from: web3.eth.accounts[4],

 data:

'60606040526040516102b23803806102b28339016040526060805160600190602001505b80600160005090805190602001908280548282

5590600052602060002090601f016020900481019282156071579182015b828111156070578251826000505591602001919060010190605

4565b5b50905060989190607c565b8082111560945760008181506000905550600101607c565b5090565b505033600060006101000a8154

8173ff021916908302179055505b506101dc806100d66000396000f300606060405260003

57c01009004806341c0e1b514610044578063cfae3217146100515761

0042565b005b61004f6004506100ca565b005b61005c60045061015e565b604051808060200182810382528381815181526020019150805

19060200190808383829060006004602084601f0104600302600f01f150905090810190601f1680156100bc578082038051600183602003

6101000a031916815260200191505b509250505060405180910390f35b600060009054906101000a900473fffffffffffffffffffffffff

fffffffffffffff1673ff163373ff161415

61015b57600060009054906101000a900473ff1673fffffffffffffffffffffffffffffff

fffffffff16ff5b5b565b60206040519081016040528060008152602001506001600050805480601f016020809104026020016040519081

016040528092919081815260200182805480156101cd57820191906000526020600020905b8154815290600101906020018083116101b05

7829003601f168201915b505050505090506101d9565b9056',

 gas: 1000000

 }, function(e, contract){

 if (typeof contract.address != 'undefined') {

 console.log(e, contract);

 console.log('Contract mined! address: ' + contract.address + ' transactionHash: ' +

contract.transactionHash);

 }

 })

Start mining. Wait for message "Contract mined!" Stop mining.

miner.start();

miner.stop();

Call Greeter. Errors: TypeError: 'greet' is not a function

greeter.greet();

Command Prompt

2.1.6.2 Create using online SOLC - Ether Chain

Info

 This tutorial shows how to create contract using online Solidity Compiler Ether Chain.

 Compiler will create Bytecode and Contract ABI which need to be saved in variables in GETH console as shown below.

 Compiled code needs to be saved in a variable using single or double quotes with or without leading 0x.

Compile Code

 https://etherchain.org/solc

 (Paste Contract Source Code)

 Compile

Contract Source Code

contract greeter {

 address owner; /* Define address variable owner */

 string greeting; /* Define string variable greeting */

 function greeter(string _greeting) public { /* Run during initialization */

 greeting = _greeting;

 owner = msg.sender;

 }

 function kill() { if (msg.sender == owner) suicide(owner); } /* Get funds on killing contract */

 function greet() constant returns (string) { return greeting; } /* Main function */

}

Online Solidity Compiler

https://etherchain.org/solc

Create Contract

 Connect to Private Network

 (Execute below commands)

Copy Byte code into variable

var greeterCompiled =

'0x60606040526040516102b23803806102b28339016040526060805160600190602001505b806001600050908051906020019082805482

825590600052602060002090601f016020900481019282156071579182015b8281111560705782518260005055916020019190600101906

054565b5b50905060989190607c565b8082111560945760008181506000905550600101607c565b5090565b505033600060006101000a81

548173ff021916908302179055505b506101dc806100d66000396000f3006060604052600

0357c01009004806341c0e1b514610044578063cfae32171461005157

610042565b005b61004f6004506100ca565b005b61005c60045061015e565b6040518080602001828103825283818151815260200191508

0519060200190808383829060006004602084601f0104600302600f01f150905090810190601f1680156100bc5780820380516001836020

036101000a031916815260200191505b509250505060405180910390f35b600060009054906101000a900473fffffffffffffffffffffff

fffffffffffffffff1673ff163373ff1614

1561015b57600060009054906101000a900473ff1673fffffffffffffffffffffffffffff

fffffffffff16ff5b5b565b60206040519081016040528060008152602001506001600050805480601f0160208091040260200160405190

81016040528092919081815260200182805480156101cd57820191906000526020600020905b8154815290600101906020018083116101b

057829003601f168201915b505050505090506101d9565b9056'

Copy Contract ABI into variable

var greeterABI =

[{"constant":false,"inputs":[],"name":"kill","outputs":[],"type":"function"},{"constant":true,"inputs":[],"name

":"greet","outputs":[{"name":"","type":"string"}],"type":"function"},{"inputs":[{"name":"_greeting","type":"str

ing"}],"type":"constructor"}]

Contract Object

var greeterContract = web3.eth.contract(greeterABI);

Prepare contract variable and source.

var _greeting = "Hello World!"

Unlock Account

personal.unlockAccount("7d56684162242fd7e3312c20207d643135263f69", "mypassword")

Deploy Contract Asynchronously. You will get message "waiting to be mined..."

var greeter = greeterContract.new(_greeting,{from:web3.eth.accounts[4], data: greeterCompiled, gas:

300000}, function(e, contract){

 if(!e) {

 if(!contract.address) {

 console.log("Contract transaction send: TransactionHash: " + contract.transactionHash + " waiting to be

mined...");

 } else {

 console.log("Contract mined! Address: " + contract.address);

 console.log(contract);

 }

 }

})

Start mining. Wait for message "Contract mined!" Stop mining.

miner.start();

miner.stop();

Call Greeter. Errors: TypeError: 'greet' is not a function

greeter.greet();

Command Prompt

2.1.6.3 Create using installed SOLC

Info [R]

 This tutorial shows how to create contract using installed SOLC and deploying it either Asynchronously or Synchronously.

 Tutorial uses Textfixer to remove line breaks from contract definition so that it can be stored in a variable.

 Example uses GETH command line parameter --solc to link with locally installed Solidity Compiler.

https://www.ethereum.org/greeter

Remove line breaks

 http://www.textfixer.com/tools/remove-line-breaks.php

 Remove line breaks and paragraph breaks: SELECT

 (Paste contract definitions with or without comments)

 Remove Line Breaks

Contract definitions

contract mortal {

 address owner; /* Define address variable owner */

 function mortal() { owner = msg.sender; } /* Set owner during initialization */

 function kill() { if (msg.sender == owner) suicide(owner); } /* Get funds on killing contract */

}

contract greeter is mortal {

 string greeting; /* Define string variable greeting */

 function greeter(string _greeting) public { greeting = _greeting; } /* Run during initialization */

 function greet() constant returns (string) { return greeting; } /* Main function */

}

Text Fixer

http://www.textfixer.com/tools/remove-line-breaks.php

Deploy Contract Asynchronously

 Connect to Private Network

 (Execute below commands)

Copy "New Text without Line Breaks" into variable

var greeterSource = 'contract mortal { address owner; function mortal() { owner = msg.sender; } function kill()

{ if (msg.sender == owner) suicide(owner); } } contract greeter is mortal { string greeting; function

greeter(string _greeting) public { greeting = _greeting; } function greet() constant returns (string) { return

greeting; } }';

Compile contracts

var greeterCompiled = web3.eth.compile.solidity(greeterSource);

Unlock Account

personal.unlockAccount("7d56684162242fd7e3312c20207d643135263f69", "mypassword")

Prepare contract variable and source.

var _greeting = "Hello World!"

var greeterContract = web3.eth.contract(greeterCompiled.greeter.info.abiDefinition);

Deploy Contract Asynchronously. You will get message "waiting to be mined..."

var greeter = greeterContract.new(_greeting,{from:web3.eth.accounts[4], data: greeterCompiled.greeter.code,

gas: 300000}, function(e, contract){

 if(!e) {

 if(!contract.address) {

 console.log("Contract transaction send: TransactionHash: " + contract.transactionHash + " waiting to be

mined...");

 } else {

 console.log("Contract mined! Address: " + contract.address);

 console.log(contract);

 }

 }

})

Start mining. Wait for message "Contract mined!" Stop mining.

miner.start();

miner.stop();

Call Greeter. Errors: TypeError: 'greet' is not a function

greeter.greet();

output

'Hello World!'

Command Prompt

Deploy Contract Synchronously [R]

 Connect to Private Network

 (Execute below commands)

Copy "New Text without Line Breaks" into variable

var greeterSource = 'contract mortal { address owner; function mortal() { owner = msg.sender; } function kill()

{ if (msg.sender == owner) suicide(owner); } } contract greeter is mortal { string greeting; function

greeter(string _greeting) public { greeting = _greeting; } function greet() constant returns (string) { return

greeting; } }';

Compile contracts

var greeterCompiled = web3.eth.compile.solidity(greeterSource);

Unlock Account

personal.unlockAccount("7d56684162242fd7e3312c20207d643135263f69", "mypassword")

Prepare contract variable and source.

var _greeting = "Hello World!"

var greeterContract = web3.eth.contract(greeterCompiled.greeter.info.abiDefinition);

Deploy Contract Synchronously.

var greeter = greeterContract.new(_greeting, {from:web3.eth.accounts[4], data: greeterCompiled.greeter.code,

gas: 300000});

Start mining. Wait a while. Stop mining.

miner.start();

miner.stop();

Call Greeter. Errors: TypeError: 'greet' is not a function

greeter.greet();

output

'Hello World!'

https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethcontract

Command Prompt

2.1.6.4 Run by others

Info [R]

 This tutorial shows how to allow other people to run your Contract by using its

● ABI (Application Binary Interface) which describes functions name and how to call them from the JavaScript

● Address which defines where the contract is located

 You can send ABI and Address, shown at the end of tutorial, to anyone who wants to use your contract.

Procedure

 Create Contract

 (Execute below commands)

Get ABI and Address

var greeterABI = greeterCompiled.greeter.info.abiDefinition;

var greeterAddress = greeter.address;

var greeter2 = eth.contract(greeterABI).at(greeterAddress);

greeter2.greet();

Command Prompt

https://www.ethereum.org/greeter

greeterABI

[{

 constant: false,

 inputs: [],

 name: "kill",

 outputs: [],

 type: "function"

}, {

 constant: true,

 inputs: [],

 name: "greet",

 outputs: [{

 name: "",

 type: "string"

 }],

 type: "function"

}, {

 inputs: [{

 name: "_greeting",

 type: "string"

 }],

 type: "constructor"

}]

greeterAddress

"0xd544116dac1eb44a5e8311e1ddc28aa319884950"

2.1.6.5 Kill

Info [R]

 This tutorial shows how to kill Contract by calling its kill function which has to be implemented by each Contract.

 Calling kill function creates transaction which needs to be mind in order to get executed.

 Kill can only be triggered by a transaction sent from the contracts owner which is given as the only transaction parameter.

Procedure

 Create Contract

 (Execute below commands)

Kill Contract

greeter.kill.sendTransaction({from:eth.accounts[4]});

Start mining. Wait a while. Stop mining.

miner.start();

miner.stop();

Check if Contract was killed. It should return "0x".

eth.getCode(greeter.address);

Command Prompt

https://www.ethereum.org/greeter

2.2 ETH

Info

 ETH is graphical user interface for running a full Ethereum node implemented in C++.

2.2.1 Setup

Info

 Following tutorials show how to install and setup GETH Client.

2.2.1.1 Install

Info [R]

 This tutorial shows how to Install ETH.

Download

 https://build.ethdev.com/builds/Windows%20C%2B%2B%20master%20branch/Ethereum-win64-latest.exe

 Save as: G:\Downloads\Ethereum-win64-latest.exe

Install

 Execute G:\Downloads\Ethereum-win64-latest.exe

 Next

 I Agree

 Add Ethereum to the system PATH to all users: SELECT – Next

 Destination Folder: I:\Installed\Programming\Ethereum 0.9.41 – Next

 Next

 Install

 Finish

Next I Agree

https://www.reddit.com/r/ethereum/comments/3id1yj/how_do_i_develop_contractsdapps_on_windows/
https://build.ethdev.com/builds/Windows%20C%2B%2B%20master%20branch/Ethereum-win64-latest.exe

Next Next

Next Install

Finish

2.2.1.2 Edit PATH Environment Variable

Info

 This tutorial shows how to edit PATH Environment Variable by appending directory where eth.exe is installed.

 This will allow you to execute eth from any directory.

 Without this step you would first need to position yourself in directory where ETH is installed by calling

 I:\Installed\Programming\Ethereum 0.9.41\Release before being able to run ETH inside Command Prompt.

Procedure

 Show Environment Variables

 User Variables

 PATH

 Edit

 Variable value: (Append ;I:\Installed\Programming\Ethereum 0.9.41\Release)

 3*OK

Edit PATH

Append path to eth.exe

Test

 Start Command Prompt

 eth

Command Prompt

3 Solidity

Info

 Solidity is high level programming language especially designed for implementing Ethereum contracts.

 Following tutorials explain Solidity syntax in detail.

 Syntax of a programming language is the set of rules that define the combinations of symbols that are considered to be

correctly structured programs in that language.

Variable

 Variable is a named memory location reserved to store a number in it and has following parameters

● Identifier is the name of the variable, the name of memory locaton

● Address is the beginning of that memory location inside computer memory.

● Data Value is the number (zeros and ones) stored at that memory location, also known as just Data or Value.

● Data Type is type of data that is stored in that memory location defining what these zeros and ones represent

Data Type

 Data type tells computer how to intepret number stored in memory location.

 This is needed because number stored in a memory location is just zeros and ones and the same combination of zeros

and ones can have different meaning depending on what they are supposed to represent.

 For instance the same combination of zeros and ones can represent either integer 68656c6c6f or string "Hello".

 So in order for print(myvariable) function to properly display data stored in memory location it needs to know if data

represents integer or string so that it can display either 68656c6c6f or "Hello" respectivly on the screen.

 Data type also defines the size of memory location so that computer would know how many zeros and ones to take

beginning from the address of the memory location.

Example

 In the following example

● Identifier is name

● Data Value is "Ivor Online" and it is defined with String literal

● Data Type of data that is actually being stored is defined by String literal "Ivor Online" and it is of data type String

● Address is assigned automatically by computer and is unknown to us

● = is assignment operator used to store value into variable

 With string literal "Ivor Online" we have defined data value, zeroes and ones that should go into memory location, but

we have also defined that these zeroes and ones are of String data type.

Store data into variable

string name = 'IvorOnline'

Literal

 Literal is string representation of data type and value like

● "Ivor Online" is string literal since it represents string data type of value Ivor Online

● 'Ivor Online' is also string literal, but using single quotes notation, since it also represents string data type

● 10 is integer literal since it represents integer data type of value 10

● 0x0A is also integer literal, but using different notation, since it also represents integer data type of value 10

 Literal notations are different ways of constructing literals that represent the same data type.

 For example following integer literals represent the same data type (integer) using different literal notations

 10, +10, 012 or 0xA.

3.1 Comments

Info [R]

 Comments are pieces of text inserted into source code to clarify it.

 They are not instructions for the computer and are therefore ignored by execution engine.

 Specially formatted comments can be used to generate documentation directly from the source code.

 Solidity supports two types of comments as shown in below table.

Comment types

TYPE DESCRIPTION

Single Line //Single line comment

Multi Line /* Multi line comment.

 Second line. */

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.1.1 Single Line

Info [R]

 Single Line comments can't span over multiple lines.

 Start of single line comment is indicated by especially reserved combination of characters //.

 End of single line comment is indicated by the end of the line.

 Benefit of single line comments is that they do not need to be terminated with terminator keyword.

 Downside of single line comment is that creating longer comments requires placing indicator for start of comment at the

beginning of each line.

Syntax

COMMENT SYNTAX EXAMPLE

//... //Single line comment

Example

contract greeter is mortal {

 function greet() returns (string) {

 string username = 'IvorOnline'; //Account username

 string password = 'mypassword'; //Account password

 return username;

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.1.2 Multi Line

Info [R]

 Multi Line comments can span over multiple lines.

 Start of multi-line comment is indicated by combination of slash and multiply character /*.

 End of multi-line comment is indicated by combination of multiply and slash character */.

 Benefit of multi-line comments is that they allow you to write a lot of text that spans over multiple lines without having to

prefix each line with predefined prefixes as is the case with single line comments.

 Downside of multi-line comments is that they have to be terminated with specific indicator which presents typing

overhead compared to single line comments for shorter text.

Syntax

COMMENT SYNTAX EXAMPLE

/* ... */ /* Multi line comment.

 Second line. */

Example

contract greeter is mortal {

 function greet() returns (string) {

 /* User account is defined by

 username and pasword */

 string username = 'IvorOnline';

 string password = 'mypassword';

 return username;

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.2 Operators

Info

 Operators are used to assign, combine or compare values of variables.

3.2.1 Assignment

Info [R]

 Assignment operators assign value to variable.

 Shortcut assignment operators, like += and /+, perform some mathematical operation before making the assignment.

Logical operators

OPERATOR EXAMPLE NAME DESCRIPTION

= a = 5 Assignment a = 5

+= a += 5 Addition-Assignment a = a + 5

-= a -= 5 Subtraction-Assignment a = a - 5

*= a *= 5 Multiplication-Assignment a = a * 5

/= a /= 5 Division-Assignment a = a / 5

%= a %= 5 Modulus-Assignment a = a % 5

Example

contract greeter is mortal {

 function test() returns (int) {

 //Test variables.--

 int x = 15;

 //Assignement operators.---

 x += 10; // x = x + 10;

 x -= 10; // x = x - 10;

 x *= 10; // x = x * 10;

 x /= 10; // x = x / 10;

 x %= 10; // x = x % 10;

 //Display result.---

 return x; // Replace add with any other variable from above to see its value.

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.2.2 Comparison

Info [R]

 Comparison operators are used to compare values of two variables.

 Result is always a boolean data type indicating if comparison was true or false.

 Comparison operators provide a method to direct program flow depending on the outcome.

Comparison operators

OPERATOR EXAMPLE NAME DESCRIPTION

== a == b Equal TRUE if a is equal to b.

!= a != b Not equal TRUE if a is not equal to b.

< a < b Less then TRUE if a is strictly less than b.

> a > b Greater then TRUE if a is strictly greater than b.

<= a <= b Less then or equal TRUE if a is less than or equal to b.

>= a >= b Greater then or equal TRUE if a is greater than or equal to b.

Example

contract greeter is mortal {

 function test() returns (bool) {

 //Test variables.--

 int left = 65;

 int right = 70;

 //Comparison operations.---

 if (left == right) { return true; } // Left equals right.

 if (left != right) { return true; } // Left is different from right.

 if (left < right) { return true; } // Left is smaller then right.

 if (left > right) { return true; } // Left is greater then right.

 if (left <= right) { return true; } // Left is smaller or equals right.

 if (left >= right) { return true; } // Left is greater or equals right.

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.2.3 Arithmetic

Info [R]

 Arithmetic operators are used to perform mathematical operations.

 Mathematical operations, not supported by arithmetic operators, can be performed using PHP mathematical functions.

 Division ("/") returns integer if both operands are evenly divisible integers (or strings that get converted to integers).

 In all other cases float is returned.

 Operands of modulus ("%") are converted to integers (by stripping the decimal part) before processing.

 Result of the modulus ("%") has the same sign as the dividend (first parameter $a).

Arithmetic operators

OPERATOR EXAMPLE NAME DESCRIPTION

unary - -a Negation Changes sign of a.

unary + +a Does no change to the value of a.

+ a + b Addition Adds a and b.

- a - b Subtraction Subtracts b from a.

* a * b Multiplication Multiply a with b.

/ a / b Division Divide a by b.

% a % b remainder Return reminder of dividing a by b.

** a ** b Exponentiation Returns a to the exponent of b.

++ a++ Post-increment Increment a by one after it is used in expression.

-- a-- Post-decrement Decrease a by one after it is used in expression.

++ ++b Pre-increment Increment b by one before it is used in expression.

-- --b Pre-decrement Decrease b by one before it is used in expression.

Example

contract greeter is mortal {

 function test() returns (int) {

 //Test variables.--

 int x = 10;

 int y = 20;

 //Arithmetic operations.---

 int negate = -y; // -20 = -20

 int add = x + y; //10+20 = 30

 int subtract = x - y; //10-20 = -10

 int multiply = x * y; //10*20 = 200

 int divide = x / y; //10/20 = 0.5

 int modulo = x % y; //10%20 = 0*20+10 = 10

 int increment2 = y++; //Store y into increment2 and then increment y by 1.

 int decrement2 = y--; //Store y into decrement2 and then decrement y by 1.

 int increment1 = ++y; //Increment y by 1 and then store y into increment1.

 int decrement1 = --y; //Decrement y by 1 and then store y into decrement1.

 //Return result.---

 return(increment2); //Replace add with any other variable from above to see its value.

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.2.4 Bitwise

Info [R]

 Bitwise operators combine bits within one or two integers.

 Right shift >>n is Arithmetic Shift equivalent of dividing by 2n which preserves operand sign.

 AND, OR, XOR and NOT do not change the value of operands.

Bitwise operators

OPERATOR EXAMPLE NAME DESCRIPTION

& a & b AND Set bits that are set in both a and b

| a | b OR Set bits that are set in either a or b.

^ a ^ b XOR Set bits that are different in a and b. Exclusive OR.

~ ~ b NOT Invert bits in b. Negation.

<< $a << $b Shift left Shift the bits of a by b steps to the left (each step means "multiply by two")

>> $a >> $b Shift right Shift the bits of a by b steps to the right (each step means "divide by two")

Example

contract greeter is mortal {

 function test() returns (byte) {

 //Test variables.---

 byte left = 27; //11011

 byte right = 18; //10010

 //Bitwise operators.--

 byte and = left & right; //10010. 1 if both bits are 1.

 byte or = left | right; //11011. 1 if either bit is 1.

 byte xor = left ^ right; //01001. 1 if bits are different.

 byte invert = ~left; //11111111111111111111111111100100. Invert bits.

 byte shiftLeft = left << 3; //11011000. Shift bits to left by 3 positions. Fill with 0.

 byte shiftRight = left >> 2; //110. Shift bits to right by 2 positions. Fill with sign bit.

 //Display results.--

 return shiftRight;

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.2.5 Logical

Info [R]

 Logical operators are used to compare variable values and the result is always bool.

Logical operators

OPERATOR EXAMPLE NAME DESCRIPTION

&& a && b AND True if both a and b are true.

|| a || b OR True if either a or b is true.

! !a NOT True if b is not true.

Example

contract greeter is mortal {

 function test() returns (bool) {

 //Test variables.--

 int left = 65;

 int right = 70;

 //Logical operators.---

 if (! (left==80)) { return true; } //left is NOT equal to 80

 if (left> 50 && right==70) { return true; } //left > 50 AND right == 70

 if (left!=50 || right> 90) { return true; } //left != 50 OR right > 90

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.3 Statements

Info

 Statement is smallest part of code which can be executed.

 Statements are classified depending on their function.

Conditional Statements

 Conditional Statements define which part of code should be executed depending on some condition.

 Parentheses can not be omitted for condition.

 Parentheses can be omitted for the code only if code to be executed contains single statement.

 Conditional Statements are further classified as

● Conditional Branching where if condition is true code is executed only ones.

● Conditional Looping statements where as long as the condition is true code is executed through multiple iterations.

Syntax

keyword (condition) { code }

3.3.1 Conditional Branching

Info

 Conditional branching statements are used to control program flow based on specified condition being true or false.

 If condition is true code is executed only ones.

Syntax

keyword (condition) { code }

3.3.1.1 if

Info

 if statement executes specified code if specified condition is true.

 If code contains only single statement, curly brackets can be omitted.

 This is not recommended since it makes code less readable and adding additional code statements can lead to errors.

Syntax

if (condition) { code }

Example

contract greeter is mortal {

 function test() returns (bool) {

 int number = 10;

 if (number == 10) { return true; }

 }

}

3.3.1.2 else

Info

 else statement can be used only in combination with if statement.

 If condition specified by if statement is TRUE then only code defined in if statement is executed.

 If condition specified by if statement is FALSE then only code defined in else statement is executed.

 If code belonging to if or else statements contains only single statement, curly brackets can be omitted.

 This is not recommended since it makes code less readable and adding additional code statements can lead to errors.

Syntax

if (condition) { code1 }

else { code2 }

Example

contract greeter is mortal {

 function test() returns (bool) {

 int number = 10;

 if (number == 10) { return true; }

 else { return false; }

 }

}

3.3.1.3 else if

Info

 Multiple else if statements can be used in combination with if statement.

 if...else if combo works as multiple if statements.

 Conditions are evaluated in sequence and only code belonging to the first condition which evaluates to true is executed.

 if...else if combo can optionally end with else statement.

 If so, then if all conditions evaluate to FALSE only code belonging to else statement will be executed.

Syntax

if (condition1) { code1 }

else if (condition2) { code2 }

...

else { code10 }

Example

contract greeter is mortal {

 function test() returns (bool) {

 int number = 10;

 if (number == 10) { return true; }

 else if (number == 11) { return true; }

 else { return false; }

 }

}

3.3.2 Conditional Looping

Info

 Looping statements are used to control program flow based on specified condition being true or false.

 As long as the condition is true code is being executed through multiple iterations.

3.3.2.1 for

Info

 Depending on the condition, for statement can execute specified code multiple times.

● expression1 is executed at the beginning of the first iteration.

● condition is evaluated at the beginning of each iteration and

○ if it evaluates to TRUE code is executed.

○ if it evaluates to FALSE code is NOT executed and program breaks out of for loop.

● expression2 is executed at the end of each iteration.

 Both expressions and condition can be left empty in which case condition evaluates to TRUE.

 You can break out of such for loop by using conditional and break statement inside a code.

Syntax

for (expression1; condition; expression2) { code }

Example

contract greeter is mortal {

 function test() returns (int) {

 //SIMPLE. Output is: 4.--

 int cnt1;

 for (int i=1; i<=4; i++) {

 cnt1++;

 }

 //BREAK. Output is: 2 since we break out of for loop when i=3.--

 int cnt2;

 for (int j=1; j<=4; j++) {

 if(j==3) { break; }

 cnt2++;

 }

 //CONTINUE. Output is: 3 since k = 3 is skipped.---

 int cnt3;

 for (int k=1; k<=4; k++) {

 if(k==3) { continue; }

 cnt3++;

 }

 //EMPTY. Output is: 4 since we break on 5.--

 int cnt4;

 int l = 1;

 for (;;) {

 if (l==5) { break; }

 cnt4++;

 l++;

 }

 return cnt4;

 }

}

3.3.2.2 while

Info

 while statement iteratively executes specified code as long as specified condition is TRUE.

 condition is evaluated at the beginning of each iteration and

● If it evaluates to TRUE code is executed.

● If it evaluates to FALSE code is NOT executed and program breaks out of while loop.

Syntax

while (condition) { code }

Example

contract greeter is mortal {

 function test() returns (int) {

 //SIMPLE. Output:4.

 int i = 1;

 while (i<=4) {

 i++;

 }

 //BREAK. Output:3 since we break out of for loop when j=3.

 int j = 1;

 while (j<=4){

 j++;

 if (j==3) { break; }

 }

 //NEXT. Output:5 since step 3 is skipped.

 int k = 0;

 while (k<=4){

 if (k==3) { continue; }

 k++;

 }

 return k;

 }

}

3.3.3 Unconditional Jumping

Info

 Jumping statements are used to unconditionally continue code execution at some other part of code.

 Use of such statements is considered bad practice since they make it harder to follow code execution.

 You should use conditional statements instead.

3.3.3.1 break

Info

 break statement is used looping statements to end execution of for and while loops.

Syntax

break;

Example

contract greeter is mortal {

 function test() returns (int) {

 //Break from for loop.

 int cnt;

 for (int i=1; i<=4; i++) {

 if (j==3) { break; }

 cnt++;

 }

 //Break from while loop.

 int j = 1;

 while (j<=4){

 j++;

 if (j==3) { break; }

 }

 return cnt;

 }

}

3.3.3.2 continue

Info

 continue statement is used inside looping statements to stop current iteration and continue with the next one.

 This means that you can use it to continue with the next iteration in for and while loops.

Syntax

continue;

Example

contract greeter is mortal {

 function test() returns (int) {

 //Continue with the next iteration.--

 int cnt;

 for (int i=1; i<=4; i++) {

 if(i==3) { continue; }

 cnt++;

 }

 //Continue with the next iteration.--

 int k = 0;

 while (k<=4){

 if (k==3) { continue; }

 k++;

 }

 return cnt;

 }

}

3.4 Functions

Info

 Function is block of code that can be repeatedly called with different parameters and which can return some value.

 In Solidity functions can only be declared inside a contract, there are no global functions.

 Therefore we can also refer to Solidity functions as methods since contracts are equivalent to classes and functions

declared inside classes are called methods.

Function declaration

 Function is declared

● inside a contract

● using keyword function

● followed by the function name

● followed by the list of input parameters inside curved brackets with mandatory types and optional names

● followed by optional keyword returns and type of output value inside curved brackets (if function returns value)

● followed by the function body inside curly brackets

Syntax

function name(dataType paramName, ...) returns (dataType) { body }

Example

contract greeter is mortal {

 //Function declaration.

 function calculate(int x, int y) private returns (int) {

 return x + y;

 }

 //Function call.

 function greet() returns (int) {

 return calculate(10, 5);

 }

}

3.4.1 Name

Info

 This tutorial shows how to declare function name.

 Declaration of function name should follow keyword function.

 Function name is used to uniquely identify function.

 You can't have two functions with the same name even if they have different number or type of parameters.

Example

contract greeter is mortal {

 function test() returns (int) {

 int age = 50;

 }

}

3.4.2 Return values

Info

 This tutorial shows how to declare function return a value.

 Return value is declared by using return keyword which can be used multiple times on different places inside function.

 If you want to return more than one value you can store them in an array or an object.

 You have to define data type returned by function.

3.4.2.1 None

Info

 This tutorial shows how to create and call method that has no return value.

 To declare function which returns no value you should simply omit using return keyword inside a function.

Example

contract greeter is mortal {

 function test() returns (int) {

 int age = 50;

 }

}

3.4.2.2 Single

Info

 This tutorial shows how to return single value from a function.

 Data type of returned value must be defined using keyword returns followed by data type specified inside brackets.

 Return value is declared using return statement which can be used multiple times on different places inside function.

Example using single return statement

contract greeter is mortal {

 function getAge() returns (int) {

 int age = 50;

 return age;

 }

 function greet() returns (int) {

 return getAge();

 }

}

Example using multiple return statements

contract greeter is mortal {

 function getAge() returns (int) {

 int number = 10;

 if (number == 10) { return 10; }

 else if (number == 11) { return 11; }

 else { return 100; }

 }

 function greet() returns (int) {

 return getAge();

 }

}

3.4.2.3 Multiple

Info

 This tutorial shows how to return multiple values from a method.

 Method can only return single value so if you want to return multiple values you can store them in an

● array which allows you to return multiple values of the same types

● struct which allows you to return multiple values of different types

Example using struct

contract greeter is mortal {

 struct Account {

 bool acess;

 int age;

 }

 function getAccount() private returns (Account) {

 Account ivor;

 ivor.acess = true;

 ivor.age = 50;

 return ivor;

 }

 function greet() returns (int) {

 return getAccount().age;

 }

}

Example using array

contract greeter is mortal {

 function getAccount() private returns (int[2]) {

 int[2] ivor;

 ivor[0] = 1;

 ivor[1] = 50;

 return ivor;

 }

 function greet() returns (int) {

 return getAccount()[0];

 }

}

3.4.3 Parameters

Info

 Function can have zero or more parameters.

 It can also have variable number of parameters meaning that not all parameters have to be given when calling function.

 Parameters which were not defined during function call will be given default values.

 For each parameter data type must be specified.

3.4.3.1 None

Info

 This tutorial show how to declare function that has no input parameters.

 If method should have no parameters simply leave the area between curved braces following function name empty.

Example

contract greeter is mortal {

 //Declare method.

 function test() private returns (int) {

 return 50;

 }

 //Call method.

 function greet() returns (int) {

 return test();

 }

}

3.4.3.2 Multiple

Info

 This tutorial shows how to declare function that has fixed number of input parameters.

 For each parameter you have to define type and optional name.

 If parameter was not given a name you won't be able to use it inside the function.

 And you also won't be able to call the function using JSON object.

 When such function is called you have to either provide

● list of parameters with the exact number of parameters in the order in which they are declared

● JSON object with parameter name-value pairs given in any order

Example

contract greeter is mortal {

 //Multple parameters.

 function calculate(int x, int y) private returns (int) {

 return x + y;

 }

 //List of parameters.

 function greet() returns (int) {

 return calculate(10, 5);

 }

 //JSON object with parameter name-value pairs.

 function greet2() returns (int) {

 return calculate({x:2, y:3});

 }

}

Example with unnamed parameter

contract greeter is mortal {

 //Multple parameters.

 function calculate(int x, int) private returns (int) {

 return x;

 }

 //List of parameters.

 function greet() returns (int) {

 return calculate(10, 5);

 }

}

3.4.4 Type

Info

 Function type can define from where the function can be referenced by using keywords

● public which defines that function can be called outside the contract (default scope)

● private which defines that function can be called only from other functions inside the same contract

 Function type can also define if function can change state of the contract by using keyword

● constant which defines that function is not allowed to modify the state of the contract

3.4.4.1 public

Info

 This tutorial show how to declare a public function which can be called outside the contract (default scope).

 Public functions represent contract's interface to the outside world, exposed functions that can be called.

Example

contract greeter is mortal {

 //Declare public method accessed from outside the contracts.

 function greet() public returns (int) {

 return 50;

 }

}

3.4.4.2 private

Info

 This tutorial show how to declare private function which can be called only from other functions inside the same contract

 Private functions represent contract's implementation and are invisible to the outside world.

Example

contract greeter is mortal {

 //Declare method accessed from inside the contract.

 function test() private returns (int) {

 return 50;

 }

 //Declare public method accessed from outside the contracts.

 function greet() public returns (int) {

 return test();

 }

}

3.4.4.3 constant

Info

 This tutorial show how to declare constant function which is not allowed to modify the state of the contract.

Example

contract greeter is mortal {

 //Declare constant method which is not allowed to modify the state of the contract.

 function greet() constant returns (int) {

 return 50;

 }

}

3.4.5 Reference

Info

 Function can be referenced by using

● Internal Function Call from the function in the same contract which is done by simply using its name

● External Function Call from the function in another contract which is done by referencing contract that contains

function that is being called by using contract address

3.4.5.1 Internal Function Call

Info

 This tutorial show how to reference function with Internal Function Call, from another function in the same contract.

 This is done simply by using function name followed by the list of parameters.

Example

contract greeter is mortal {

 //Multple parameters.

 function calculate(int x, int y) private returns (int) {

 return x + y;

 }

 //List of parameters.

 function greet() returns (int) {

 return calculate(10, 5);

 }

}

3.5 Contracts

Info

 Contracts are equivalent to classes in other OOPL (Object Oriented Programming Languages).

 They both have constructor, member variables, methods and can inherit from each other.

 Solidity contracts are deployed to the block chain as their permanent storage and are referenced by their address.

Contract declaration

 Contract is declared

● using keyword contract

● followed by the contract name

● followed by optional keyword is and the name of contract it inherits from (if inheritance is used)

● followed by the contract body inside curly brackets

Syntax

contract name is inheritedContractName { body }

Example

contract greeter is mortal {

 function greet() returns (int) {

 return 10;

 }

}

3.5.1 Name

Info

 This tutorial shows how to declare contract's name.

 Declaration of contract's name should follow keyword contract.

Example

contract greeter is mortal {

 function test() returns (int) {

 int age = 50;

 }

}

3.5.2 Fields

Info

 Fields are variables defined inside the contract but outside any method.

 Fields can have scope modifiers defining from where the field can be referenced where

● public keyword allows field to be accessed from outside the contract

● private keyword allows field to be accessed only from the methods of the same contract

Example

contract greeter is mortal {

 //Field.

 int private age = 50;

 //Method.

 function greet() returns (int) {

 return age;

 }

}

3.5.2.1 public

Info

 This tutorial show how to declare a public field which can be referenced outside the contract (default scope).

 Fields are public by default.

Example

contract greeter is mortal {

 //Field.

 int public age = 50;

}

output

Returned: "50"

3.5.2.2 private

Info

 This tutorial show how to declare private field which can be referenced only from functions & fields of the same contract.

Example

contract greeter is mortal {

 //Field.

 int private age = 50;

 //Method.

 function greet() returns (int) {

 return age;

 }

}

3.5.3 Methods

Info

 In Solidity all functions must be defined inside a contracts which means that all functions are methods.

 Therefore everything that was said for Functions can be applied to methods.

Example

contract greeter is mortal {

 //Method.

 function greet() returns (int) {

 return 10;

 }

}

3.5.4 Constructor

Info

 Constructor is special kind of method that has the same name as the contract.

 It is invoked only once when instantiating the contract after which it can't be called again on that instance.

 It is used to initialize created instance for example by setting field values as shown in below example.

Example

contract greeter is mortal {

 //Field.

 int private age;

 //Constructor.

 function greeter (int ageParam) {

 age = ageParam;

 }

 //Methos.

 function test() returns (int) {

 return age;

 }

}

3.5.5 Inheritance

Info

 Contracts support multiple inheritance allowing contracts to inheriting fields and methods of the parent contracts.

Example

contract mortal {

 address owner; /* Define address variable owner */

 function mortal() { owner = msg.sender; } /* Set owner during initialization */

 function kill() { if (msg.sender == owner) suicide(owner); } /* Get funds on killing contract */

}

contract singer {

 function sing() returns (int) { return 10; }

}

contract greeter is mortal, singer {

 string greeting; /* Define string variable greeting */

 function greeter(string _greeting) public { greeting = _greeting; } /* Run during initialization */

 function greet() constant returns (string) { return greeting; } /* Main function */

}

3.5.1 Data Types

Info [R]

 Solidity is a statically typed language, which means that the type of each variable needs to be specified at compile-time.

 Solidity provides several elementary types which can be combined to complex types like arrays.

 Variables of value types are always passed by value, they are always copied when they are used as function arguments

 bool, int, uint, address, byte

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.2 Scalar

Info

 Scalar datatypes are capable of containing a single item of information.

 Scalar datatypes include: bool, int, uint, address, byte

3.5.2.1 bool

Info [R]

 Bool variable can have values true or false.

 Bool variables can be combined using logical operators shown in the table below.

 They support Logical Operators.

Boolean

INTEGER SIZE DESCRIPTION

bool Can have values true or false

Example

contract greeter is mortal {

 function greet() returns (bool) {

 bool accessGranted = true;

 return accessGranted;

 }

}

output

Returned: true

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.2.2 int

Info [R]

 Int variable can store signed integers of various sizes as shown in the table below.

 Int is alias for int256.

Singed integers

INTEGER SIZE DESCRIPTION

int8 Signed integer with 8 bits

int16 Signed integer with 16 bits

int32 Signed integer with 32 bits

int64 Signed integer with 64 bits

int128 Signed integer with 128 bits

int256 or int Signed integer with 256 bits

Example

contract greeter is mortal {

 function greet() returns (int) {

 int temperature = -50;

 return temperature;

 }

}

output

Returned: "-50"

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.2.3 uint

Info [R]

 Uint variable can store signed integers of various sizes as shown in the table below.

 Uint is alias for uint256.

Unsinged integers

INTEGER SIZE DESCRIPTION

uint8 Unsigned integer with 8 bits

uint16 Unsigned integer with 16 bits

uint32 Unsigned integer with 32 bits

uint64 Unsigned integer with 64 bits

uint128 Unsigned integer with 128 bits

uint256 or uint Unsigned integer with 256 bits

Example

contract greeter is mortal {

 function greet() returns (uint) {

 uint age = 50;

 return age;

 }

}

output

Returned: "50"

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.2.4 address

Info [R]

 Address variable holds 20 byte value that represents an Ethereum address.

 They support Comparison Operators.

Address

INTEGER SIZE DESCRIPTION

address Holds 20 byte value that represents an Ethereum address

Example

contract greeter is mortal {

 function greet() returns (address) {

 address sender = msg.sender;

 return sender;

 }

}

output

Returned: "0xca35b7d915458ef540ade6068dfe2f44e8fa733c"

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.2.5 byte

Info [R]

 Byte variable holds fixed-size byte array: bytes1, bytes2, ... , bytes32.

 Byte is an alias for bytes1.

 They support Comparison Operators and Bit Operators.

Address

INTEGER SIZE DESCRIPTION

bytes1 or byte Holds array of 1 byte.

bytes2 Holds array of 2 bytes.

bytes3 Holds array of 3 bytes.

... ...

bytes32 Holds array of 32 bytes.

Example

contract greeter is mortal {

 function greet() returns (byte) {

 byte total = 10;

 return total;

 }

}

output

Returned: "0x0a00"

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.3 Compound

Info [R]

 Compound datatypes allow for multiple items of the same type to be aggregated.

 Compound datatypes include: struct, array, string, bytes.

Data locations

 For compound types like arrays and structs, you can define "data location" whether they are stored in

● memory by using keyword memory (default location for local variables)

● storage by using keyword storage (default location for state variables)

 Function parameters are automatically stored in data location "calldata" which behaves like temporary memory storage.

 Assignments between storage and memory and also to a state variable always create an independent copy

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.3.1 bytes

Info [R]

 Bytes holds dynamically-sized byte array, therefore it is a special type of array.

 A bytes is similar to byte[], but it is packed tightly in call data.

Bytes

INTEGER SIZE DESCRIPTION

bytes Bytes holds dynamically-sized byte array, therefore it is a special type of array.

Example

contract greeter is mortal {

 function test() returns (bytes) {

 //Person data.

 bytes password = 'mypassword';

 //Return value.

 return password;

 }

}

output

Returned: "0x"

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.3.2 string

Info [R]

 String holds dynamically-sized UTF8-encoded string implemented as an array.

 String is equal to bytes but does not allow length or index access (for now).

String

INTEGER SIZE DESCRIPTION

string Holds dynamically-sized UTF8-encoded string implemented as array

Example

contract greeter is mortal {

 function greet() returns (string) {

 string name = 'Ivor Online';

 return name;

 }

}

output

Returned: ""

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.3.3 struct

Info [R]

 Struct data type can contain multiple items of different type.

 Struct data type must be defined inside contract and outside member functions.

 It is not possible for a struct to contain a member of its own type but it can be the value type of a mapping member.

Example

contract greeter is mortal {

 //Define structure type Account.

 struct Account {

 string username ;

 int level;

 }

 function test(){

 //Create variable of structure type Account.

 Account ivor;

 ivor.username = 'IvorOnline';

 ivor.level = 10;

 }

}

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

3.5.3.4 array

Info [R]

 Array data types can contain multiple items of the same type.

 Each item has numerical index starting at 0.

 Solidity supports multidimensional array as discussed later.

Example

function test() returns (uint) {

 //Define arrays.

 uint [5] ages; //Fixed size.

 uint [] levels; //Variable size.

 //Person data.

 ages [0] = 40; //First elements has index 0.

 levels [0] = 1;

 //Return value.

 return ages.length;

 }

}

output

Returned: "5"

https://github.com/ethereum/wiki/wiki/Solidity-Tutorial#some-examples

4 Related Technologies

4.1 Chocolatey

Info [R]

 Chocolatey is application used to install other aplications.

 Chocolatey will be used to Install GETH Client.

4.1.1 Install

Info [R]

 This tutorial shows how to install Chocolatey either in

● custom directory in which case you must Create Environment Variable Chocolatey as shown below

● default directory "I:\ProgramData\chocolatey" in which case you can skip creating Environment Variable Chocolatey

Create Environment Variable ChocolateyInstall [R]

 Show Environment Variables

 User Variables

 New...

 Variable name: ChocolateyInstall

 Variable value: G:\Installed\Chocolatey

 3*OK

New User Variable

Specify custom directory

https://chocolatey.org/
https://chocolatey.org/
https://github.com/chocolatey/choco/wiki/Installation

Install Chocolatey

 Start Command Prompt

 (Paste below installation command)

Installation command

@powershell -NoProfile -ExecutionPolicy Bypass -Command "iex ((new-object

net.webclient).DownloadString('https://chocolatey.org/install.ps1'))" && SET

PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin

Installation in default directory I:\ProgramData\chocolatey

Installation in custom directory G:\Installed\Chocolatey

Results

 Installation will create directory structure as shown below either in default or custom directory.

 Additionally following Environment Variables are edited or created

● PATH is edited to point to directory containing choco.exe by adding "I:\ProgramData\chocolatey\bin"

● ChocolateyInstall is created pointing to installation directory (if you haven't created it manually as shown in first step)

Created directory structure

Updated Environment Variable PATH Updated Environment Variable ChocolateyInstall

Test

 Start Command Prompt

 choco

4.1.2 Uninstall

Info [R]

 This tutorial shows how to uninstall Chocolatey which is done by simply

● deleting installation directory which will also delete applications that were installed by Chocolatey in default directory

● removing Environment Variables if any were set

Procedure

 (Delete Installation Directory)

 Show Environment Variables

– (Delete Environment Variable ChocolateyInstall)

– (Remove "I:\ProgramData\chocolatey\bin" from Environment Variable PATH)

Delete Installation Directory

Delete highlighted text from Environment Variable PATH

Delete Environment Variable ChocolateyInstall

https://github.com/chocolatey/chocolatey/wiki/Uninstallation

4.2 Windows

Info

 Following tutorials show how to use different Windows applications which will be needed for using Ethereum.

4.2.1 Show Environment Variables

Info

 This tutorial shows show Windows Environment Variables in order to make changes to them.

Procedure

 Start

 Control Panel

 System

 Advanced System Settings

 Tab: Advanced

 Environment Variables

Environment Variables List of Environment Variables

4.2.2 Start Command Prompt

Info

 This tutorial shows how to start Command Prompt which is Windows Command Line Interface.

 To Start Command Prompt as administrator with elivated permissions use the modified second procedure shown below.

Start Normaly

 Press Windows Start button at lower left corner

 Type "cmd" in search box

 Select cmd.exe from the list

Press Start & Type "cmd" in search box Select cmd.exe from the list

Opened Command Prompt Console

Run as administrator

 Press Windows Start button at lower left corner

 Type "cmd" in search box

 RC on cmd.exe

 Run as Administrator

4.3 Python

Info

 Python is programming language which is needed to run a script that generates Genesis file.

4.3.1 Install

Info

 This tutorial shows how to install Python 2.7.10 which is needed to generate Genesis file.

 You should not install Python 3.4.3 to avoid getting SyntaxError json.dumps.

Download

 https://www.python.org/downloads/windows/

 Latest Python 2 Release - Python 2.7.10

 Windows x86-64 MSI installer

 Save as: G:\Downloads\python-2.7.10.amd64.msi

Install

 Execute G:\Downloads\python-2.7.10.amd64.msi

 Next

 Destination Directory: I:\Installed\Python\Python27

 Next

 Next

 Finish

Next Destination Directory: I:\Installed\Python

Next Finish

https://www.python.org/downloads/windows/

4.4 JSON Formatter

Info [R]

 This tutorial shows how to use JSON Formatter to format JSON data.

 This can be useful since Ethereum works with JSON data.

Procedure

 https://jsonformatter.curiousconcept.com/

 (Paste unformatted JSON data into JSON Data/URL box)

 Process

 (Formatted JSON appears below inside Formatted JSON Data box)

Unformatted JSON data

{"address":"cf394f168b75aa10ecc705aae5c2aa91d75b1cd8","Crypto":{"cipher":"aes-128-

ctr","ciphertext":"3106f829e8d3145127269a0976286147a8f82cb5bf43d2c5bcae65c689129b09","cipherparams":{"iv":"6a9c

34e1e41307dd6b9f29c359e1bc24"},"kdf":"scrypt","kdfparams":{"dklen":32,"n":262144,"p":1,"r":8,"salt":"89960487c6

b1b426d0f6e9735387edc6dc413c73007f7da1971ff3d779ff14b1"},"mac":"21db55bc4018b32c005822e7ab5c8eef45ae708bb47e3a6

c8745c19ea36d1ae9"},"id":"aa6584e4-65b1-44ec-854b-c0b5ce5b3aa4","version":3}

Formatted JSON data

{

 "address":"cf394f168b75aa10ecc705aae5c2aa91d75b1cd8",

 "Crypto":{

 "cipher":"aes-128-ctr",

 "ciphertext":"3106f829e8d3145127269a0976286147a8f82cb5bf43d2c5bcae65c689129b09",

 "cipherparams":{

 "iv":"6a9c34e1e41307dd6b9f29c359e1bc24"

 },

 "kdf":"scrypt",

 "kdfparams":{

 "dklen":32,

 "n":262144,

 "p":1,

 "r":8,

 "salt":"89960487c6b1b426d0f6e9735387edc6dc413c73007f7da1971ff3d779ff14b1"

 },

 "mac":"21db55bc4018b32c005822e7ab5c8eef45ae708bb47e3a6c8745c19ea36d1ae9"

 },

 "id":"aa6584e4-65b1-44ec-854b-c0b5ce5b3aa4",

 "version":3

}

https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/

JSON Formatter

5 Errors

5.1 SyntaxError json.dumps

Error Message

Error Message

File "mk_genesis_block.py", line 293

 print json.dumps(evaluate(), indent=4)

 ^

SyntaxError: invalid syntax

Command Prompt

Occurrence

 This error might occur while trying to generate Genesis file as shown in Generate Genesis File after executing command

 python mk_genesis_block.py --extradata 0x11bbe8db4e347b4e8c937c1c8370e4b5ed33adb3db69cbdb7a38e1e50b1b82fa --

insigh > genesis_block.json

Solution

 This error occurs if you are using Python 3.x.

 Install Python 2.7.10 instead as shown in Install Python.

5.2 TypeError: 'greet' is not a function

Error Message

Error Message

> greeter.greet()

ReferenceError: 'greeter' is not defined

 at <anonymous>:1:1

Command Prompt

Occurrence

 You might get this error while using Create Contract.

Reason

 This error occurs if you are trying to use contract that hasn't been deployed already.

 If this is the case then typing just greeter should give you undefined.

Solution

 You should follow all the steps given in Create Contract.

 For instant if your contract is "waiting to be mined..." use miner.start(); to start mining and wait for message

 "Contract mined! Address: 0x0aa261cc4efb737cb83492a0f85a9315d9b2b0a4"

 After that you can use miner.stop(); and now greeter.greet(); should work.

	1 Introduction
	1.1 Terms

	2 Clients
	2.1 GETH
	2.1.1 Setup
	2.1.1.1 Install
	2.1.1.2 Edit PATH Environment Variable

	2.1.2 Private Network
	2.1.2.1 Setup
	2.1.2.2 Connect

	2.1.3 Account
	2.1.3.1 Create
	2.1.3.2 Unlock
	2.1.3.3 Change Password
	2.1.3.4 Show All
	2.1.3.5 Delete
	2.1.3.6 Set Base Account
	2.1.3.7 Get balance

	2.1.4 Ether
	2.1.4.1 Mine
	2.1.4.2 Transfer

	2.1.5 SOLC
	2.1.5.1 Check if GETH is linked to SOLC
	2.1.5.2 Link GETH with SOLC

	2.1.6 Contracts
	2.1.6.1 Create using online SOLC - Browser Solidity
	2.1.6.2 Create using online SOLC - Ether Chain
	2.1.6.3 Create using installed SOLC
	2.1.6.4 Run by others
	2.1.6.5 Kill

	2.2 ETH
	2.2.1 Setup
	2.2.1.1 Install
	2.2.1.2 Edit PATH Environment Variable

	3 Solidity
	3.1 Comments
	3.1.1 Single Line
	3.1.2 Multi Line

	3.2 Operators
	3.2.1 Assignment
	3.2.2 Comparison
	3.2.3 Arithmetic
	3.2.4 Bitwise
	3.2.5 Logical

	3.3 Statements
	3.3.1 Conditional Branching
	3.3.1.1 if
	3.3.1.2 else
	3.3.1.3 else if

	3.3.2 Conditional Looping
	3.3.2.1 for
	3.3.2.2 while

	3.3.3 Unconditional Jumping
	3.3.3.1 break
	3.3.3.2 continue

	3.4 Functions
	3.4.1 Name
	3.4.2 Return values
	3.4.2.1 None
	3.4.2.2 Single
	3.4.2.3 Multiple

	3.4.3 Parameters
	3.4.3.1 None
	3.4.3.2 Multiple

	3.4.4 Type
	3.4.4.1 public
	3.4.4.2 private
	3.4.4.3 constant

	3.4.5 Reference
	3.4.5.1 Internal Function Call

	3.5 Contracts
	3.5.1 Name
	3.5.2 Fields
	3.5.2.1 public
	3.5.2.2 private

	3.5.3 Methods
	3.5.4 Constructor
	3.5.5 Inheritance

	3.5.1 Data Types
	3.5.2 Scalar
	3.5.2.1 bool
	3.5.2.2 int
	3.5.2.3 uint
	3.5.2.4 address
	3.5.2.5 byte

	3.5.3 Compound
	3.5.3.1 bytes
	3.5.3.2 string
	3.5.3.3 struct
	3.5.3.4 array

	4 Related Technologies
	4.1 Chocolatey
	4.1.1 Install
	4.1.2 Uninstall

	4.2 Windows
	4.2.1 Show Environment Variables
	4.2.2 Start Command Prompt

	4.3 Python
	4.3.1 Install

	4.4 JSON Formatter

	5 Errors
	5.1 SyntaxError json.dumps
	5.2 TypeError: 'greet' is not a function

