Andrew Shitov

Raku

One-Liners

Getting the most of Raku'’s expressive

syntax for your daily routines

DeepText — 2019

Raku One-Liners
Getting the most of Raku's expressive syntax for your daily routines
© Andrew Shitov, author, 2019

In this book, you will find a lot of short programs, so short that they can be
written in a single line of code. The seven chapters will guide you through
Raku’s syntax elements that help to create short, expressive, but still useful

programs.

It is assumed that the reader knows the basics of the Raku programming

language and understands programming in general.

Published on 18 October 2019

Published by DeepText, Amsterdam

www.deeptext.media

ISBN 978-90-821568-9-8

Contents

Chapter 1
Command-Line Options
Using command-line Options...........coeeiiuiiieeiiiiiiieeiiiiiee e 10
TSPt 10
o PRSPPIt 10
D e ee e e oo e e e e s e ee oo s s e s er e er e nr e enr e 11
Examples of short one-linesccccevviiioiiiiiiiiiiiiieceeiieee 12
Double-space a file.........cc.oeiiiiiiiiiiiiiieci e 12
Remove all blank lines...........cccocoiii 12
Number all lines in a file..........coooieiiiiiiiiiiiee, 12
Convert all text to UPPErcase.........coocuveiieiiiiiiieeiiiiiieeeiiiieeeens 12
Strip whitespace from the beginning and end of each line......... 12
Print the first line of a file ... 13
Print the first 10 lines of a filecccceeviiiiiiiiii 13
Reading files with $* ARGFILESccccooiiiiiiiiiiiiiiiieee 13
$*ARGFILES and MAINooooiiiiiiiiiiiiiieeeeeeieee e 14
Chapter 2
Working with Files
RENATIUNG FIES crrrvvveereeeereeeeeressoeseeeseesesseeseeseseseseessesseesssoesseseees 16
Merging files horizontallyccccoiiiiiiiiiiiie 17

Reversing a fileoooiiiiiiiiiii e 19

Chapter 3

Working with Numbers
Grepping multiples of 3 and 5.......cccoooviiiiiiiiiiii 22
Generating random INTEZETSccouuvrieeiiiiiieeiiiiieeeeeiiiee e 23
Working with big numbers.............ccccoiii 26
Testing palindromic numbers...........cccooooiiiiiiiii 27
Adding up even Fibonacci numbersccccoeiiiiiiiiiini 29
Playing with Fibonacci numbersccoccooiiiiiiii, 30
Distance between two POINtSeeeeiiiiiieriiiiiiee it 31
Playing with prime numbers.............ccooooiiiiiiiiiii 32
Using map and Seq to compute the value of T........cccooeiiiiinn 33
Computing totals..........oeeiiiiiiiiiiii e 36
Sum of the numbers equal to the sum of factorials of digits 37
42 via the cubes........ccooiiiii 38

Chapter 4

Working with Strings
Generating random passwordsoccueieeiiiiiieeiiiiiie e 42
The joy of Unicode.....cuviiiiiiiiiiiiiiiiiecieece e 43

Chapter 5

Working with Dates
What's the date today?ooooiiiiiiiii 46

How many days in the century match the condition?................... 47

Another solution of the same problem...........c..ccoooiiiiiiiininen. 49
Chapter 6
Raku Syntax
More on X, .., andoooiiiiiiiiiiie e 52
Reduction Operator.........cooouiiiiiiiiiiie et 54
Example 1: factorialcooiiiiiiiiiiiie 54
Example 2: using a function...........ccocevveeiiiiiiiieeiiee e 55
Example 3: matriCes......ooouuiiiiiiiiiieiiiiiee e 55
All the stars of Rakulocooiiiiiiiiiiie e 56
Multiplication Operator............cccuviiiiiiiiiieiiiiiie e 56
Exponentiation Operator...........coeeveeviiiiiiiiiiiiiieee e, 57
A regex repetition quantifier...........cccoeoviiiiiiiiiiiiie 57
Min to max repetitions........ceeeveeeeeeieiiieieieeeeeeeeee e 57
SIUIPY argUmMEntscouvviiiiiiiiiie e 58
SUrpy-SIUIPY «eeiee e 59
Twigil for dynamic SCOPE.......cuvveviiiieiiiiiiiie et 60
Compiler variablesccccoiiiiiiiiii 61
All methods named as this............occocciiiiiii 61
WRALEVET ..ot 63
WhateverCode........ocouviiiiiiiiiiiiiiiiee e 64
HOMEWOTK ... 68
Additional assignments.............coooiiiiiiiiiiiiiiie e 69
The EVAL rOUtine . ..ovveiiiiiiiiiiieiiee et 69

Chapter 7

Raku Golf
The fIrst TESt «ovviieiiiieeiii et 74
The SeCONd Steiiiiiiiiiieiiii e 75
Tips and ideas for the Raku Golf code.........ccoevviiiiiiiiiiiiiii. 77
Omitting SeMICOlONS ...eeiuiviiiiiiiiiii e 77
Omitting topic variable...........occociiiiiiiii 77
Using postfix fOrms........ccueeiiiiiiiiiiiiiie e 77
Using ranges for making loops..........cccceeviiiiiiiiiiiiiiiiceeee 77
Choosing between a range and a sequence............ccceeeeenuneeeennn. 78
Using map instead of a loop........cccoevviiiiiiiiiiiiii 78
Omitting parentheses and qUOTES...........cceviiiiiiiiiiiiiiiiiiieee, 78
Using chained comparisons.............ooooviiiiiiiiiiiiiiiiiceeieeee 79
Choosing between methods and functions.............cccceeeeeeniinn. 79
Using Unicode characters.........ccoeeeiiiiiiiiiiiiiiiiiiiceeiiee e 80
USING SUPETSCIIPLS c.eeeeeeeeeeeeeeeee e 80
Using \ to make sigilless variables................ccccccoiii . 80
Using default parameters...........occveeviiiiiiiiieiiiieiieeeee e 80
Using && instead of ifooooiiiiiiiiiiiiic e 81
Choosing between put and Say..........ccceeieiiiiiiieiiiiiiieiiiieeee 81

Appendix on Compiler Internals

What’s behind 0.1 4 0.2 ceunieeeeeee e 84

Preface

Dear reader,

You are reading a book about the Raku programming language. This language
has appeared as a rename of Perl 6 in October 2019.

Like its parent, Perl 5, the Raku language keeps the spirit of being a powerful
tool in many areas, from devops programs for configuration management

through different command-line applications to concurrent web servers.

In this book, you will find a number of short programs that you may want to
use in your daily practice. You will also find a number of one-line snippets

that can enter into your bigger programs.

The goal of the book is not to give a copy-and-paste list of coding examples,
but to explain the various bits of Raku that help to use the language more
efficiently.

To run the program examples from the rest of the book, you need to down-
load and install the most recent Rakudo Star compiler pack from its website,
rakudo.org. If you are using the previous, Perl 6-based compiler, create an
alias in your .profile file so that you can use the raku command to run the

compiler:
alias raku=perl6
[wish you a pleasant journey in the magic Raku language.

Andrew Shitov
Amsterdam, 18 October 2019

Chapter 1

Command-Line
Options

Using command-line options

Let us talk about the command-line options that the Rakudo* compiler of-

fers to us.
-€

The first option to know when working with Raku is -e. It takes a string with

your Perl 6 one-liner and executes it immediately.

For example, print the name of the current user:
$ perlée -e'$*USER'

ash
-n

This option repeats the code for each line of input data. This is quite handy
when you want to process a file. For example, here’s a one-liner that adds

up the values in a row and prints the sum:

$ raku -ne'say [+] .split(" ")' data.txt

If the data.txt file contains the following:

10 20 30 40
1234
5678

! Rakudo (rakudo.org) is an implementation of Raku. The rest of the book assumes
you are using the Rakudo compiler and run it as raku from command line. If you
have an older version, which has the perlé executable, make an alias in your .pro-
file: alias raku=perls6.

10

then the result of the one-liner is:

100
10
26

There’s no difference whether you use shell’s input redirection or not; the

following line also works:

$ raku -ne'say [+] .split(" ")' < data.txt

Make sure you place the e option the last in the list (so, not raku -en'...")

or split the options: raku -n -e'...".
P
This option is similar to -n but prints the topic variable after each iteration.

The following one-liner reverses the lines in the file and prints them to the

console:

$ raku -npe'.=flip' data.txt

For the same input file, the result will look like this:

04 03 02 o1
4321
8765

Notice that you have to update the $_ variable, so you type .=flip. If you
only have .flip, you only reverses the string, but the result is not used and

the original line is printed.

An equivalent program with .flip and with no -p looks like this:

$ raku -ne'.flip.say' data.txt

11

Examples of short one-lines

To warm up, let’s start with a few simple one-liners for working with files.
(There’s also the whole Chapter 2 which is about working with files).

Double-space a file

$ raku -npe's/$/\n/' text.txt
Remove all blank lines
$ raku -ne'.say if .chars' text.txt

Depending on how you define ‘blank’, you may want another one-liner that

skips the lines containing whitespaces:

$ raku -ne'.say if /\S/' text.txt
Number all lines in a file
$ raku -ne'say ++$ ~ ". " ~ $ ' text.txt

This code, probably, requires a comment. The $ variable is a state variable

and it can be used without declaration.

Convert all text to uppercase

$ raku -npe'.=uc' text.txt

Strip whitespace from the beginning and end of each line

$ raku -npe'.=trim' text.txt

12

Print the first line of a file

$ raku -ne'.say ; exit' text.txt

Print the first 10 lines of a file
$ raku -npe'exit if $++ == 10' text.txt

This time, the postfix ++ operator was applied to the $ variable.

Reading files with $* ARGFILES

$*ARGFILES is a built-in dynamic variable that may be handy when working
with multiple input files.

How do you read two or more files passed in the command line?

$ raku work.pl a.txt b.txt

If you need to process all files together as if they are a single data source,

you could ask the variable to do the job in a one-liner:

.say for $*ARGFILES.lines

Inside the program, you don’t have to think about looping over the files;
$*ARGFILES will automatically do that for you.

If there are no files in the command line, the variable will be attached to

STDIN:

$ cat a.txt b.txt | raku work.pl

Handy indeed, isn’t it?

13

$*ARGFILES and MAIN

[also have to warn you if you will want to use the $*ARGFILES variable in

bigger programs. Consider the following example:

sub MAIN(*@files) {
.say for $*ARGFILES.lines;

}

In the recent versions of Raku, $*ARGFILES works differently inside the MAIN

subroutine and outside of it.

This program will perfectly work with the earlier versions (before and in-
cluding Rakudo version 2018.10). Starting from Rakudo Star 2018.12,
$*ARGFILES, if used inside MAIN, is always connected to $*IN.

14

Chapter 2
Working
with Files

Renaming files

Let us solve a task to rename all the files passed in the command-line argu-
ments and give the files sequential numbers in the preferred format. Here is

an example of the command line:

$ raku rename.raku *.jpg img_0000.jpg

In this example, all image files in the current directory will be renamed to

img_0001.jpg, img_0002.jpg, etc.

And here’s the possible solution in Raku (save it in rename. raku):

@*ARGS[©..*-2].sort.map: *.Str.IO0.rename(++@*ARGS[*-1])

The pre-defined dynamic variable @*ARGS contains the arguments from the
command line. In the above example, the shell unrolls the *.jpg mask to a
list of files, so the array contains them all. The last element is the renaming

sample img_0000.jpg.

If you are familiar with C or Perl, notice that the variable is called ARGS, not
ARGY.

To loop over all the files (and skipping the last file item with the file mask),
we are taking the slice of @*ARGS. The 0. .*-2 construct creates a range of

indices to take all elements except the last one.

Then, the list is sorted (the original @*ARGS array stays unchanged), and we

iterate over the file names using the map method.

The body of map contains a WhateveCode block (see Chapter 6); it takes the
string representation of the current value, makes an 10: :Path object out of
it, and calls the rename method. Notice that the I0 method creates an object
of the 10: :Path class; while a bare 10 is a role in the hierarchy of the Raku

object system.

16

Finally, the increment operator ++ changes the renaming sample (which is
held in the last, *-1%, element of @*ARGS). When the operator is applied to a
string, it increments the numeric part of it, so we get img 0001.jpg,

img_0002.jpg, etc.

Merging files horizontally

Let us merge a few files into a single file. The task is to take two (or three,
or more) files and copy their contents line by line. For example, we want to

merge two log files, knowing that all their lines correspond to each other.

File a.txt:

2019/12/20 11:16:13
2019/12/20 11:17:58
2019/12/20 11:19:18
2019/12/20 11:24:30

File b.txt:

"/favicon.ico" failed (No such file)
"/favicon.ico" failed (No such file)
"/robots.txt" failed (No such file)
"/robots.txt" failed (No such file)

The first one-liner illustrates the idea:

.say for [Z~] @*ARGS.map: *.I0.lines;

It is assumed that the program is run as follows:

$ raku merge.raku a.txt b.txt

17

For each filename (@*.ARGS.map) in the command line, an I0: :Path object

is created (.I0), and the lines from the files are read (.1lines).

In the case of two files, we have two sequences which are concatenated line

by line using the zip meta-operator Z applied to the concatenation infix ~.

After that step, we get another sequence which we can print line by line

(.say for).

2019/12/20 11:16:13"/favicon.ico” failed (No such file)
2019/12/20 11:17:58"/favicon.ico” failed (No such file)
2019/12/20 11:19:18"/robots.txt" failed (No such file)
2019/12/20 11:24:30"/robots.txt" failed (No such file)

The result is formally correct, but let’s add a space between the original lines.

Here is an updated version of the one-liner:

.trim.say for [Z~] @*ARGS.map: *.IO0.lines.map: *~ ' '

Here, a space character is appended to the end of each line (.map: *~ ' '),
and as there will be one extra space at the end of the combined line, it is
removed by the trim method. Its sibling, trim-trailing, could be used in-
stead (or a regex if you care about original trailing spaces happened to be in
the second file).

With the above change, the files are perfectly merged now:

2019/12/20 11:16:13 "/favicon.ico" failed (No such file)
2019/12/20 11:17:58 "/favicon.ico" failed (No such file)
2019/12/20 11:19:18 "/robots.txt"™ failed (No such file)
2019/12/20 11:24:30 "/robots.txt"™ failed (No such file)

There’s no problem to merge the same file to itself, or to provide more than

two files, for example:

$ raku merge.raku a.txt a.txt a.txt

18

Reversing a file

In this section, we are creating a one-liner to print the lines of a text file in

reversed order (as tail -r does it).

The first one-liner does the job with the STDIN stream:

.say for $*IN.lines.reverse

Run the program as:

$ raku reverse.raku < text.txt

$*IN can be omitted in this case, which makes the one-liner even shorter:

.say for lines.reverse

If you want to read the files directly from Raku, modify the program a bit

to create a file handle out of the command-line argument:

.say for @*ARGS[@].IO0.open.lines.reverse

Now you run it as follows:

$ raku reverse.raku text.txt

[t is important to remember that the default behaviour of the 1ines method
is to exclude the newline characters from the final sequence of lines (the

method returns a Seq object, not an array or a list).

In Raku, the lines method splits the lines based on the value stored in the
.nl-in attribute of the I0: :Handle object.

You can look at the current value of the line separators with the following

tiny script:

dd $_ for @*ARGS[0].IO.open.nl-in

19

This is what you find there by default:
$["\n", "\r\n"]

The interesting thing is that you can control the behaviour of lines and tell

Raku not to exclude the newline characters:

@*ARGS[0].I0.0pen(chomp => False).lines.reverse.put

The chomp attribute is set to True by default. You can also change the default

separator:

@*ARGS[©].I0.0pen(
nl-in => "\r", chomp => False
).lines.reverse.put

Notice that without chomping, you do not need an explicit for loop over the
lines: in the last two one-liners, the .put method is called directly on the
sequence object. In the earlier versions, the strings did not contain the new-

line characters, and thus they would be printed as a single long line.

A small homework for you: Tell the difference between put and say.

20

