
Andrew Shitov 

 

 

 

Raku 
One-Liners 

 
Getting the most of Raku’s expressive 

syntax for your daily routines 

 

 

 

 

 

 

DeepText — 2019 



Raku One-Liners 
Getting the most of Raku’s expressive syntax for your daily routines 
© Andrew Shitov, author, 2019 

 

 

 

In this book, you will find a lot of short programs, so short that they can be 
written in a single line of code. The seven chapters will guide you through 
Raku’s syntax elements that help to create short, expressive, but still useful 
programs. 

It is assumed that the reader knows the basics of the Raku programming 
language and understands programming in general. 

 

 

 

 

 

Published on 18 October 2019 

Published by DeepText, Amsterdam 
www.deeptext.media 

 

ISBN 978-90-821568-9-8 



 3 

Contents 
 

Chapter 1 
Command-Line Options 

Using command-line options ....................................................... 10 

-e ............................................................................................ 10 

-n ........................................................................................... 10 

-p ........................................................................................... 11 

Examples of short one-lines ........................................................ 12 

Double-space a file .................................................................. 12 

Remove all blank lines ............................................................. 12 

Number all lines in a file .......................................................... 12 

Convert all text to uppercase ................................................... 12 

Strip whitespace from the beginning and end of each line ......... 12 

Print the first line of a file ....................................................... 13 

Print the first 10 lines of a file ................................................. 13 

Reading files with $*ARGFILES ................................................. 13 

$*ARGFILES and MAIN ........................................................ 14 

 
Chapter 2 
Working with Files 

Renaming files ............................................................................ 16 

Merging files horizontally ............................................................ 17 



 4 

Reversing a file ........................................................................... 19 

 
Chapter 3 
Working with Numbers 

Grepping multiples of 3 and 5..................................................... 22 

Generating random integers ........................................................ 23 

Working with big numbers .......................................................... 26 

Testing palindromic numbers ...................................................... 27 

Adding up even Fibonacci numbers ............................................. 29 

Playing with Fibonacci numbers .................................................. 30 

Distance between two points ...................................................... 31 

Playing with prime numbers ........................................................ 32 

Using map and Seq to compute the value of π ............................. 33 

Computing totals ........................................................................ 36 

Sum of the numbers equal to the sum of factorials of digits ......... 37 

42 via the cubes .......................................................................... 38 

 
Chapter 4 
Working with Strings 

Generating random passwords .................................................... 42 

The joy of Unicode ..................................................................... 43 

 
Chapter 5 
Working with Dates 

What’s the date today? ............................................................... 46 



 5 

How many days in the century match the condition? ................... 47 

Another solution of the same problem ......................................... 49 

 
Chapter 6 
Raku Syntax 

More on X, .., and … .................................................................. 52 

Reduction operator ..................................................................... 54 

Example 1: factorial ................................................................ 54 

Example 2: using a function ..................................................... 55 

Example 3: matrices ................................................................ 55 

All the stars of Raku ................................................................... 56 

Multiplication operator............................................................ 56 

Exponentiation operator .......................................................... 57 

A regex repetition quantifier.................................................... 57 

Min to max repetitions ............................................................ 57 

Slurpy arguments .................................................................... 58 

Slurpy-slurpy .......................................................................... 59 

Twigil for dynamic scope ......................................................... 60 

Compiler variables .................................................................. 61 

All methods named as this ....................................................... 61 

Whatever ................................................................................ 63 

WhateverCode ........................................................................ 64 

Homework ............................................................................. 68 

Additional assignments ............................................................ 69 

The EVAL routine ...................................................................... 69 



 6 

 
Chapter 7 
Raku Golf 

The first test .............................................................................. 74 

The second test .......................................................................... 75 

Tips and ideas for the Raku Golf code ......................................... 77 

Omitting semicolons ............................................................... 77 

Omitting topic variable ............................................................ 77 

Using postfix forms ................................................................. 77 

Using ranges for making loops .................................................. 77 

Choosing between a range and a sequence ................................ 78 

Using map instead of a loop ..................................................... 78 

Omitting parentheses and quotes ............................................. 78 

Using chained comparisons ...................................................... 79 

Choosing between methods and functions................................ 79 

Using Unicode characters ........................................................ 80 

Using superscripts ................................................................... 80 

Using \ to make sigilless variables............................................. 80 

Using default parameters ......................................................... 80 

Using && instead of if ............................................................. 81 

Choosing between put and say ................................................. 81 

 
Appendix on Compiler Internals 

What’s behind 0.1 + 0.2 ............................................................. 84 

 



 

Preface 
Dear reader, 

You are reading a book about the Raku programming language. This language 
has appeared as a rename of Perl 6 in October 2019.   

Like its parent, Perl 5, the Raku language keeps the spirit of being a powerful 
tool in many areas, from devops programs for configuration management 
through different command-line applications to concurrent web servers. 

In this book, you will find a number of short programs that you may want to 
use in your daily practice. You will also find a number of one-line snippets 
that can enter into your bigger programs. 

The goal of the book is not to give a copy-and-paste list of coding examples, 
but to explain the various bits of Raku that help to use the language more 
efficiently. 

To run the program examples from the rest of the book, you need to down-
load and install the most recent Rakudo Star compiler pack from its website, 
rakudo.org. If you are using the previous, Perl 6-based compiler, create an 
alias in your .profile file so that you can use the raku command to run the 
compiler: 

alias raku=perl6 

I wish you a pleasant journey in the magic Raku language. 

Andrew Shitov 
Amsterdam, 18 October 2019 



 

 

Chapter 1 
Command-Line 

Options



 10 

Using command-line options 
Let us talk about the command-line options that the Rakudo1 compiler of-
fers to us. 

-e 

The first option to know when working with Raku is -e. It takes a string with 
your Perl 6 one-liner and executes it immediately. 

For example, print the name of the current user: 

$ perl6 -e'$*USER' 

ash 

-n 

This option repeats the code for each line of input data. This is quite handy 
when you want to process a file. For example, here’s a one-liner that adds 
up the values in a row and prints the sum: 

$ raku -ne'say [+] .split(" ")' data.txt  

If the data.txt file contains the following: 

10 20 30 40 

1 2 3 4 

5 6 7 8 

                                                
1 Rakudo (rakudo.org) is an implementation of Raku. The rest of the book assumes 
you are using the Rakudo compiler and run it as raku from command line. If you 
have an older version, which has the perl6 executable, make an alias in your .pro-
file: alias raku=perl6. 



 11 

then the result of the one-liner is: 

100 

10 

26 

There’s no difference whether you use shell’s input redirection or not; the 
following line also works: 

$ raku -ne'say [+] .split(" ")' < data.txt  

Make sure you place the e option the last in the list (so, not raku -en'...') 
or split the options: raku -n -e'...'. 

-p 

This option is similar to -n but prints the topic variable after each iteration. 

The following one-liner reverses the lines in the file and prints them to the 
console: 

$ raku -npe'.=flip' data.txt 

For the same input file, the result will look like this: 

04 03 02 01 

4 3 2 1 

8 7 6 5 

Notice that you have to update the $_ variable, so you type .=flip. If you 
only have .flip, you only reverses the string, but the result is not used and 
the original line is printed. 

An equivalent program with .flip and with no -p looks like this: 

$ raku -ne'.flip.say' data.txt 



 12 

Examples of short one-lines 
To warm up, let’s start with a few simple one-liners for working with files. 
(There’s also the whole Chapter 2 which is about working with files). 

Double-space a file 

$ raku -npe's/$/\n/' text.txt 

Remove all blank lines 

$ raku -ne'.say if .chars' text.txt  

Depending on how you define ‘blank’, you may want another one-liner that 
skips the lines containing whitespaces: 

$ raku -ne'.say if /\S/' text.txt  

Number all lines in a file 

$ raku -ne'say ++$ ~ ". " ~ $_' text.txt 

This code, probably, requires a comment. The $ variable is a state variable 
and it can be used without declaration. 

Convert all text to uppercase 

$ raku -npe'.=uc' text.txt 

Strip whitespace from the beginning and end of each line 

$ raku -npe'.=trim' text.txt 



 13 

Print the first line of a file 

$ raku -ne'.say ; exit' text.txt 

Print the first 10 lines of a file 

$ raku -npe'exit if $++ == 10' text.txt 

This time, the postfix ++ operator was applied to the $ variable. 

 

Reading files with $*ARGFILES 
$*ARGFILES is a built-in dynamic variable that may be handy when working 
with multiple input files. 

How do you read two or more files passed in the command line? 

$ raku work.pl a.txt b.txt 

If you need to process all files together as if they are a single data source, 
you could ask the variable to do the job in a one-liner: 

.say for $*ARGFILES.lines 

Inside the program, you don’t have to think about looping over the files; 
$*ARGFILES will automatically do that for you. 

If there are no files in the command line, the variable will be attached to 
STDIN: 

$ cat a.txt b.txt | raku work.pl  

Handy indeed, isn’t it? 



 14 

$*ARGFILES and MAIN 

I also have to warn you if you will want to use the $*ARGFILES variable in 
bigger programs. Consider the following example: 

sub MAIN(*@files) { 

    .say for $*ARGFILES.lines; 

} 

In the recent versions of Raku, $*ARGFILES works differently inside the MAIN 
subroutine and outside of it. 

This program will perfectly work with the earlier versions (before and in-
cluding Rakudo version 2018.10). Starting from Rakudo Star 2018.12, 
$*ARGFILES, if used inside MAIN, is always connected to $*IN. 



 15 

Chapter 2 
Working 

with Files



 16 

Renaming files 
Let us solve a task to rename all the files passed in the command-line argu-
ments and give the files sequential numbers in the preferred format. Here is 
an example of the command line: 

$ raku rename.raku *.jpg img_0000.jpg 

In this example, all image files in the current directory will be renamed to 
img_0001.jpg, img_0002.jpg, etc. 

And here’s the possible solution in Raku (save it in rename.raku): 

@*ARGS[0..*-2].sort.map: *.Str.IO.rename(++@*ARGS[*-1]) 

The pre-defined dynamic variable @*ARGS contains the arguments from the 
command line. In the above example, the shell unrolls the *.jpg mask to a 
list of files, so the array contains them all. The last element is the renaming 
sample img_0000.jpg. 

If you are familiar with C or Perl, notice that the variable is called ARGS, not 
ARGV. 

To loop over all the files (and skipping the last file item with the file mask), 
we are taking the slice of @*ARGS. The 0..*-2 construct creates a range of 
indices to take all elements except the last one. 

Then, the list is sorted (the original @*ARGS array stays unchanged), and we 
iterate over the file names using the map method. 

The body of map contains a WhateveCode block (see Chapter 6); it takes the 
string representation of the current value, makes an IO::Path object out of 
it, and calls the rename method. Notice that the IO method creates an object 
of the IO::Path class; while a bare IO is a role in the hierarchy of the Raku 
object system. 



 17 

Finally, the increment operator ++ changes the renaming sample (which is 
held in the last, *-1st, element of @*ARGS). When the operator is applied to a 
string, it increments the numeric part of it, so we get img_0001.jpg, 
img_0002.jpg, etc. 

 

Merging files horizontally 
Let us merge a few files into a single file. The task is to take two (or three, 
or more) files and copy their contents line by line. For example, we want to 
merge two log files, knowing that all their lines correspond to each other. 

File a.txt: 

2019/12/20 11:16:13 

2019/12/20 11:17:58 

2019/12/20 11:19:18 

2019/12/20 11:24:30 

File b.txt: 

"/favicon.ico" failed (No such file) 

"/favicon.ico" failed (No such file) 

"/robots.txt" failed (No such file) 

"/robots.txt" failed (No such file) 

The first one-liner illustrates the idea: 

.say for [Z~] @*ARGS.map: *.IO.lines; 

It is assumed that the program is run as follows: 

$ raku merge.raku a.txt b.txt 



 18 

For each filename (@*.ARGS.map) in the command line, an IO::Path object 
is created (.IO), and the lines from the files are read (.lines). 

In the case of two files, we have two sequences which are concatenated line 
by line using the zip meta-operator Z applied to the concatenation infix ~. 

After that step, we get another sequence which we can print line by line 
(.say for). 

2019/12/20 11:16:13"/favicon.ico" failed (No such file) 

2019/12/20 11:17:58"/favicon.ico" failed (No such file) 

2019/12/20 11:19:18"/robots.txt" failed (No such file) 

2019/12/20 11:24:30"/robots.txt" failed (No such file) 

The result is formally correct, but let’s add a space between the original lines. 
Here is an updated version of the one-liner: 

.trim.say for [Z~] @*ARGS.map: *.IO.lines.map: *~ ' ' 

Here, a space character is appended to the end of each line (.map: *~ ' '), 
and as there will be one extra space at the end of the combined line, it is 
removed by the trim method. Its sibling, trim-trailing, could be used in-
stead (or a regex if you care about original trailing spaces happened to be in 
the second file). 

With the above change, the files are perfectly merged now: 

2019/12/20 11:16:13 "/favicon.ico" failed (No such file) 

2019/12/20 11:17:58 "/favicon.ico" failed (No such file) 

2019/12/20 11:19:18 "/robots.txt" failed (No such file) 

2019/12/20 11:24:30 "/robots.txt" failed (No such file) 

There’s no problem to merge the same file to itself, or to provide more than 
two files, for example: 

$ raku merge.raku a.txt a.txt a.txt 



 19 

Reversing a file 
In this section, we are creating a one-liner to print the lines of a text file in 
reversed order (as tail -r does it). 

The first one-liner does the job with the STDIN stream: 

.say for $*IN.lines.reverse 

Run the program as: 

$ raku reverse.raku < text.txt 

$*IN can be omitted in this case, which makes the one-liner even shorter: 

.say for lines.reverse 

If you want to read the files directly from Raku, modify the program a bit 
to create a file handle out of the command-line argument: 

.say for @*ARGS[0].IO.open.lines.reverse 

Now you run it as follows: 

$ raku reverse.raku text.txt 

It is important to remember that the default behaviour of the lines method 
is to exclude the newline characters from the final sequence of lines (the 
method returns a Seq object, not an array or a list). 

In Raku, the lines method splits the lines based on the value stored in the 
.nl-in attribute of the IO::Handle object. 

You can look at the current value of the line separators with the following 
tiny script: 

dd $_ for @*ARGS[0].IO.open.nl-in 



 20 

This is what you find there by default: 

$["\n", "\r\n"] 

The interesting thing is that you can control the behaviour of lines and tell 
Raku not to exclude the newline characters: 

@*ARGS[0].IO.open(chomp => False).lines.reverse.put 

The chomp attribute is set to True by default. You can also change the default 
separator: 

@*ARGS[0].IO.open( 

    nl-in => "\r", chomp => False 

).lines.reverse.put 

Notice that without chomping, you do not need an explicit for loop over the 
lines: in the last two one-liners, the .put method is called directly on the 
sequence object. In the earlier versions, the strings did not contain the new-
line characters, and thus they would be printed as a single long line. 

A small homework for you: Tell the difference between put and say.


