
Handling Strings with R

Gaston Sanchez
gastonsanchez.com

@ Copyright 2021.
All Rights Reserved.

https://www.gastonsanchez.com

Preface

Handling character strings in R? Wait a second . . . you exclaim, R is not a scripting
language like Perl, Python, or Ruby. Why would you want to use R for handling
and processing text? Well, because sooner or later (I would say sooner than later)
you will have to deal with some kind of string manipulation for your data analysis.
So it’s better to be prepared for such tasks and know how to perform them inside
the R environment.

If you have been formed and trained in “classical statistics” (as I was), I bet you
probably don’t think of character strings as data that can be analyzed. The bottom
line for your analysis is numbers or things that can be mapped to numeric values.
Text and character strings? Really? Are you kidding me? . . . That’s what I used
to think right after finishing college. During my undergraduate studies in statistics,
none of my professors mentioned analysis applications with strings and text data.
It was years later, in grad school, when I got the chance to be marginally involved
with some statistical text analysis.

Perhaps even worse is the not so uncommon believe that string manipulation is a
secondary non-relevant task. People will be impressed and will admire you for any
kind of fancy model, sophisticated algorithms, and black-box methods that you get
to apply. Everybody loves the haute cuisine of data analysis and the top notch
analytics. But when it comes to processing and manipulating strings, many will
think of it as washing the dishes or pealing and cutting potatos. If you want to be
perceived as a data chef, you may be tempted to think that you shouldn’t waste your
time in those boring tasks of manipulating strings. Yes, it is true that you won’t get
a Michelin star for processing character data. But you would hardly become a good
data cook if you don’t get your hands dirty with string manipulation. And to be

i

honest, it’s not always that boring. Whether you like it or not, no one should ever
claim to be a data analyst until he or she has done some manipulation of strings.
You don’t have to be an expert or some string processing hacker though. But you
do need to know the basics and have an idea on how to proceed in case you need
to play with text-character-string data.

Text Is Omnipresent

At its heart, computing involves working with numbers. That’s the main reason
why computers were invented: to facilitate mathematical operations around num-
bers: from basic arithmetic to more complex operations (e.g. trigonometry, algebra,
calculus, etc.) Nowadays, however, computers are used to work with data that are
not just numbers. We use them to write a variety of documents, we use them to
create and edit images and videos, to manipulate sound, among many other tasks.
Learning to manipulate those data types is fundamental to programming.

Just think about it. Today, there is a considerable amount of information and data
in the form of text. Look at any website: pretty much the contents are text and
images, with some videos here and there, and maybe some tables or list of numbers.

Likewise, most of the times you are going to be working with text files: script
files, reports, data files, source code files, etc. All the R script files that you use
are essentially plain text files. I bet you have a csv file or any other field delimited
format (or even in HTML, XML, JSON, etc), with some fields containing characters.
In all of these cases what you are working with is essentially a bunch of characters.

And then inside R we also have text. Things like row names and column names of
matrices, data frames, tables, and any other rectangular data structure. Lists may
contain names, vectors may also have names. And what about the text in graphics?
Things like titles, subtitles, axis labels, legends, colors, displayed text in a plot, etc.

At the end of the day all the data that is passed to the computer is converted to
binary format (zeros and ones) so computers can process it. But no one can deny
the fact that a lot of what we do with computers is working with text and character
strings.

Text is omnipresence. Whether you are aware of this or not, we are surrounded by
text.

About This Book

This book aims to help you get started with manipulating strings in R. What type of
manipulations am I talking about? For example, I’m sure that you have encountered
one or more of the following cases:

� You want to remove a given character in the names of your variables

� You want to replace a given character in your data

� Maybe you wanted to convert labels to upper case (or lower case)

� You’ve been struggling with xml (or html) files

� You’ve been modifying text files in excel changing labels, categories, one cell
at a time, or doing one thousand copy-paste operations

The content of the book is divided in four major parts:

1. Characters and Strings in R

2. Printing and Formatting

3. Regular Expressions

4. Applications

If you have minimal or none experience with R, the best place to start is Chapter
2: Character Strings in R. If you are already familiar with the basics of vectors
and character objects, you can quickly skim this chapter, or skip it, and then go to
another chapter of your interest.

Chapters 3 and 4 deal with basic string manipulations. By “basic” I mean any
type of manipulation and transformation that does not require the use of regular
expressions.

The second part of the book describes different ways to format text and numbers.
These are useful tools for when you want to produce output that will either be
displayed on screen, or that will be exported to a file.

The third part comprises working with regular expressions (regex). Here you will
learn about the basic concepts around regular expressions (regex), the intricacies
when working with regex in R, and becoming familiar with the regex functions in
the R package "stringr".

Last but not least, the fourth part of the book present a couple of case studies and
extended practical examples that cover the main topics covered in the book.

Having said that, I should say that this book is NOT about textual data analysis,
linguistic analysis, text mining, or natural language processing.

About The Reader

I am assuming three things about you. In decreasing order of importance:

1. You already know R—this is not an introductory text on R—.

2. You already use R for handling quantitative and qualitative data, but not
(necessarily) for processing strings.

3. You have some basic knowledge about Regular Expressions.

Main Resources

I should also say that this work is my third iteration on the subject of manipu-
lating strings, text and character data in R. I started writing the draft of my first
manuscript around 2012 when there was not much documentation on how to manip-
ulate character strings in R. Although the number of resources about this subject
has increased since then, the pace of these changes has been considerably slow.

What I wrote eight years ago is still valid today. There is not much documentation
on how to manipulate character strings and text data in R. There are great R books
for an enormous variety of statistical methods, graphics and data visualization, as
well as applications in a wide range of fields such as ecology, genetics, psychology,
finance, economics, etc. But not much for manipulating strings and text data.

I still believe that the main reason for this lack of resources is that R is not considered
to be qualified as a “scripting” language: R is primarily perceived as a language
for computing and programming with (mostly numeric) data. Quoting Hadley
Wickham (2010)

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf

“R provides a solid set of string operations, but because they have grown
organically over time, they can be inconsistent and a little hard to learn.

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf

Additionally, they lag behind the string operations in other program-
ming languages, so that some things that are easy to do in languages
like Ruby or Python are rather hard to do in R”

Most introductory books about R have small sections that briefly cover string ma-
nipulation without going further down. That is why I don’t have many books for
recommendation, if anything the book by Phil Spector Data Manipulation with R.

If published material is not abundant, we still have the online world. The good
news is that the web is full of hundreds of references about processing character
strings. The bad news is that they are very spread and uncategorized.

For specific topics and tasks, a good place to start with is Stack Overflow. This is a
questions-and-answers site for programmers that has a lot of questions related with
R. Just look for those questions tagged with "r":

http://stackoverflow.com/questions/tagged/r

There is a good number of posts related with handling characters and text, and they
can give you a hint on how to solve a particular problem. There is also R-bloggers,
http://www.r-bloggers.com, a blog aggregator for R enthusiasts in which is also
possible to find contributed material about processing strings as well as text data
analysis.

You can also check the following resources that have to do with string manipulations.
It is a very short list of resources but I’ve found them very useful:

� R Wikibook: Programming and Text Processing
http://en.wikibooks.org/wiki/R_Programming/Text_Processing

R wikibook has a section dedicated to text processing that is worth check it out.

� stringr: modern, consisting string processing by Hadley Wickham
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.

pdf

Article from the R journal introducing the package stringr by Hadley Wickham.

� Introduction to String Matching and Modification in R Using Regular Expressions
by Svetlana Eden
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/SvetlanaEdenRFiles/

regExprTalk.pdf

For things such as textual data analysis, linguistic analysis, text mining, or natural

http://stackoverflow.com/questions/tagged/r
http://www.r-bloggers.com
http://en.wikibooks.org/wiki/R_Programming/Text_Processing
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/SvetlanaEdenRFiles/regExprTalk.pdf
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/SvetlanaEdenRFiles/regExprTalk.pdf

language processing, I highly recommend you to take a look at the CRAN Task
View on Natural Language Processing (NLP):
http://cran.r-project.org/web/views/NaturalLanguageProcessing.html

While it is true that R may not be as rich and diverse as other scripting languages
when it comes to string manipulation, I’m one of those who believe it can take you
very far if you know how. By writing this book, my goal is to provide you enough
material to do more advanced string and text processing operations. My hope is
that, after reading this book, you will have the necessary tools in your toolbox for
dealing with these (and many) other situations that involve handling and processing
strings in R.

Citation

You can cite this work as:

Sanchez, G. (2021) Handling Strings with R
Trowchez Editions. Berkeley, 2021.

Gaston Sanchez
Berkeley, California
December, 2020

http://cran.r-project.org/web/views/NaturalLanguageProcessing.html

Contents

Preface . i

I Characters and Strings in R 1

1 Introductory Appetizer . 3
1.1 A Toy Example . 3

1.1.1 Abbreviating strings . 4
1.1.2 Getting the longest name . 6
1.1.3 Selecting States . 6
1.1.4 Some computations . 8

2 Character Strings in R . 11
2.1 Introduction . 11
2.2 Characters in R . 11
2.3 Getting Started with Strings . 12
2.4 Creating Character Strings . 13

2.4.1 Empty string . 15
2.4.2 Empty character vector . 15
2.4.3 Function c() . 16
2.4.4 is.character() and as.character() 17

2.5 Strings and R Objects . 18
2.5.1 Behavior of R objects with character strings 18

2.6 The Workhorse Function paste() 21
2.7 Getting Text into R . 23

2.7.1 Reading tables . 23
2.7.2 Reading raw text . 26

vii

3 Basic Manipulations With "base" Functions 29
3.1 Introduction . 29
3.2 Basic String Manipulations . 29

3.2.1 Count number of characters with nchar() 30
3.2.2 Convert to lower case with tolower() 31
3.2.3 Convert to upper case with toupper() 31
3.2.4 Upper or lower case conversion with casefold() 31
3.2.5 Character translation with chartr() 32
3.2.6 Abbreviate strings with abbreviate() 32
3.2.7 Replace substrings with substr() 33
3.2.8 Replace substrings with substring() 34

3.3 Set Operations . 35
3.3.1 Set union with union() . 35
3.3.2 Set intersection with intersect() 36
3.3.3 Set difference with setdiff() 36
3.3.4 Set equality with setequal() 37
3.3.5 Exact equality with identical() 37
3.3.6 Element contained with is.element() 38
3.3.7 Sorting with sort() . 38
3.3.8 Repetition with rep() . 39

4 Basic Manipulations With "stringr" Functions 41
4.1 Introduction . 41
4.2 Package "stringr" . 42
4.3 Basic String Operations . 43

4.3.1 Concatenating with str c() 43
4.3.2 Number of characters with str length() 44
4.3.3 Substring with str sub() . 45
4.3.4 Duplication with str dup() 47
4.3.5 Padding with str pad() . 48
4.3.6 Wrapping with str wrap() 49
4.3.7 Trimming with str trim() 50
4.3.8 Word extraction with word() 51

II Printing and Formatting 53

5 Formatting Text and Numbers . 55

5.1 Introduction . 55
5.2 Printing Characters . 55

5.2.1 Generic printing with print() 56
5.2.2 Unquoted characters with noquote() 57
5.2.3 Concatenate and print with cat() 58
5.2.4 Encoding strings with format() 60

6 C-style Formatting . 63
6.1 C-style Formatting Options . 64

6.1.1 Format Slot Syntax . 64
6.1.2 Example: basic sprintf() 66
6.1.3 Example: File Names . 67
6.1.4 Example: Fahrenheit to Celsius 68
6.1.5 Example: Car Traveled Distance 69
6.1.6 Example: Coffee Prices . 72
6.1.7 Converting objects to strings with toString() 74
6.1.8 Comparing printing methods 75

7 Input and Output . 77
7.1 Output . 77

7.1.1 Concatenating output . 77
7.1.2 Sinking output . 80

7.2 Exporting Tables . 80

III Regular Expressions 83

8 Getting Started With Regular Expressions 85
8.1 What are Regular Expressions? . 85

8.1.1 What are Regular Expressions used for? 86
8.1.2 A Word of Caution About Regex 86
8.1.3 About Regular Expressions in R 87

8.2 Regex Basics . 88
8.3 Literal Characters . 88

8.3.1 Matching Literal Characters 89
8.4 R Functions for Regular Expressions 90

8.4.1 Regex Functions in "base" Package 90
8.4.2 Regex Functions in Package "stringr" 91

8.5 Matching Literal Characters With "stringr" Functions 92
8.6 Metacharacters . 93

8.6.1 About Metacharacters . 93
8.6.2 The Wildcard Metacharacter 93
8.6.3 Escaping Metacharacters . 95

9 Character Sets . 99
9.1 Introduction . 99
9.2 Defining Character Sets . 99
9.3 Character Ranges . 101
9.4 Negative Character Sets . 103
9.5 Metacharacters Inside Character Sets 105
9.6 Character Classes . 107
9.7 POSIX Character Classes . 109

10 Anchors and Quantifiers . 113
10.1 Anchors . 113

10.1.1 Start of String . 114
10.1.2 End of String . 115

10.2 Quantifiers . 117
10.2.1 What Do Groups Mean In Regex? 119

10.3 Greedy vs Lazy Match . 120

11 Boundaries and Look Arounds . 123
11.1 Introduction . 123
11.2 Boundaries . 123
11.3 Look Arounds . 126

11.3.1 Look Aheads . 126
11.3.2 Look Behinds . 129

11.4 Logical Operators in Regex . 131
11.4.1 Logical OR . 131
11.4.2 Logical NOT . 132
11.4.3 Logical AND . 132

12 Regex Functions in R . 135
12.1 Introduction . 135
12.2 Pattern Finding Functions . 135

12.2.1 Function grep() . 136

12.2.2 Function grepl() . 137
12.2.3 Function regexpr() . 137
12.2.4 Function gregexpr() . 138
12.2.5 Function regexec() . 140

12.3 Pattern Replacement Functions . 141
12.3.1 Replacing first occurrence with sub() 142
12.3.2 Replacing all occurrences with gsub() 142

12.4 Splitting Character Vectors . 143
12.5 Regex Functions in "stringr" . 144

12.5.1 Detecting patterns with str detect() 145
12.5.2 Extract first match with str extract() 146
12.5.3 Extract all matches with str extract all() 146
12.5.4 Extract first match group with str match() 147
12.5.5 Extract all matched groups with str match all() 148
12.5.6 Locate first match with str locate() 149
12.5.7 Locate all matches with str locate all() 149
12.5.8 Replace first match with str replace() 150
12.5.9 Replace all matches with str replace all() 151
12.5.10 String splitting with str split() 152
12.5.11 String splitting with str split fixed() 154

IV Applications 157

13 Plots . 159
13.1 Me & You Plot . 159
13.2 Colored Jittery Text . 164

13.2.1 Assembling the plot . 168

14 Basic Examples . 171
14.1 Reversing A String . 171
14.2 Reversing a string by characters . 172
14.3 Reversing a string by words . 174
14.4 Names of Files . 175
14.5 Valid Color Names . 176

15 Matching HTML Tags . 179
15.1 Attributes href . 181

xii

15.1.1 Getting SIG Links . 181

16 Data Cleaning . 185
16.1 Import Data . 185
16.2 Extracting Meters . 187

16.2.1 Extracting Meters with Regular Expressions 188
16.3 Extracting Country . 188
16.4 Cleaning Dates . 189
16.5 Month and Day . 191
16.6 Extracting Year . 192
16.7 Athlete Names . 194

17 Log File . 199
17.1 Reading the text file . 200

17.1.1 JPG File Requests . 201
17.1.2 Extracting File Extensions of Image Files 203
17.1.3 Image Files . 203
17.1.4 Match Image Files With One Regex Pattern 204

18 Text Analysis of BioMed Central Journals 209
18.1 Introduction . 209
18.2 Analyzing Journal Names . 210

18.2.1 Preprocessing Steps . 211
18.2.2 Summary statistics . 213
18.2.3 Common words . 214
18.2.4 Wordcloud . 217

19 Sentiments In Tweets . 219
19.1 Data “Emotion in Text” . 219
19.2 Number of Characters per Tweet . 220
19.3 Sentiment . 224
19.4 Various Symbols and Strings . 227
19.5 Table of Average Number of Patterns by Sentiment 229

© Gaston Sanchez Handling Strings with R

Part I

Characters and Strings in R

1

Chapter 1

Introductory Appetizer

To give you an idea of some of the things we can do in R with string processing,
let’s play a bit with a simple example.

1.1 A Toy Example

For this crash informal introduction, we’ll use the data frame USArrests that al-
ready comes with R. Use the function head() to get a peek of the data:

take a peek of USArrests

head(USArrests)

Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0

Arkansas 8.8 190 50 19.5

California 9.0 276 91 40.6

Colorado 7.9 204 78 38.7

The labels on the rows such as Alabama or Alaska are displayed strings. Likewise,
the labels of the columns —Murder, Assault, UrbanPop and Rape— are also strings.

3

Chapter 1. Introductory Appetizer 4

1.1.1 Abbreviating strings

Suppose we want to abbreviate the names of the States. Furthermore, suppose we
want to abbreviate the names using the first four characters of each name. One way
to do that is by using the function substr() which substrings a character vector.
We just need to indicate the start=1 and stop=4 positions:

names of states

states <- rownames(USArrests)

substr

substr(x = states, start = 1, stop = 4)

[1] "Alab" "Alas" "Ariz" "Arka" "Cali" "Colo" "Conn" "Dela"

[9] "Flor" "Geor" "Hawa" "Idah" "Illi" "Indi" "Iowa" "Kans"

[17] "Kent" "Loui" "Main" "Mary" "Mass" "Mich" "Minn" "Miss"

[25] "Miss" "Mont" "Nebr" "Neva" "New " "New " "New " "New "

[33] "Nort" "Nort" "Ohio" "Okla" "Oreg" "Penn" "Rhod" "Sout"

[41] "Sout" "Tenn" "Texa" "Utah" "Verm" "Virg" "Wash" "West"

[49] "Wisc" "Wyom"

This may not be the best solution. Note that there are four states with the same
abbreviation "New " (New Hampshire, New Jersey, New Mexico, New York). Like-
wise, North Carolina and North Dakota share the same name "Nort". In turn,
South Carolina and South Dakota got the same abbreviation "Sout".

A better way to abbreviate the names of the states can be performed by using the
function abbreviate() like so:

abbreviate state names

states2 <- abbreviate(states)

remove vector names (for convenience)

names(states2) <- NULL

states2

[1] "Albm" "Alsk" "Arzn" "Arkn" "Clfr" "Clrd" "Cnnc" "Dlwr"

[9] "Flrd" "Gerg" "Hawa" "Idah" "Illn" "Indn" "Iowa" "Knss"

[17] "Kntc" "Losn" "Main" "Mryl" "Mssc" "Mchg" "Mnns" "Msss"

[25] "Mssr" "Mntn" "Nbrs" "Nevd" "NwHm" "NwJr" "NwMx" "NwYr"

© Gaston Sanchez Handling Strings with R

5 Chapter 1. Introductory Appetizer

[33] "NrtC" "NrtD" "Ohio" "Oklh" "Orgn" "Pnns" "RhdI" "SthC"

[41] "SthD" "Tnns" "Texs" "Utah" "Vrmn" "Vrgn" "Wshn" "WstV"

[49] "Wscn" "Wymn"

If we decide to try an abbreviation with five letters we just simply change the
argument minlength = 5

abbreviate state names with 5 letters

abbreviate(states, minlength = 5)

Alabama Alaska Arizona Arkansas

"Alabm" "Alask" "Arizn" "Arkns"

California Colorado Connecticut Delaware

"Clfrn" "Colrd" "Cnnct" "Delwr"

Florida Georgia Hawaii Idaho

"Flord" "Georg" "Hawai" "Idaho"

Illinois Indiana Iowa Kansas

"Illns" "Indin" "Iowa" "Kanss"

Kentucky Louisiana Maine Maryland

"Kntck" "Lousn" "Maine" "Mryln"

Massachusetts Michigan Minnesota Mississippi

"Mssch" "Mchgn" "Mnnst" "Mssss"

Missouri Montana Nebraska Nevada

"Missr" "Montn" "Nbrsk" "Nevad"

New Hampshire New Jersey New Mexico New York

"NwHmp" "NwJrs" "NwMxc" "NwYrk"

North Carolina North Dakota Ohio Oklahoma

"NrthC" "NrthD" "Ohio" "Oklhm"

Oregon Pennsylvania Rhode Island South Carolina

"Oregn" "Pnnsy" "RhdIs" "SthCr"

South Dakota Tennessee Texas Utah

"SthDk" "Tnnss" "Texas" "Utah"

Vermont Virginia Washington West Virginia

"Vrmnt" "Virgn" "Wshng" "WstVr"

Wisconsin Wyoming

"Wscns" "Wymng"

© Gaston Sanchez Handling Strings with R

Chapter 1. Introductory Appetizer 6

1.1.2 Getting the longest name

Now let’s imagine that we need to find the longest name. This implies that we need
to count the number of letters in each name. The function nchar() comes handy
for that purpose. Here’s how we could do it:

size (in characters) of each name

state_chars = nchar(states)

state_chars

[1] 7 6 7 8 10 8 11 8 7 7 6 5 8 7 4 6 8 9

[19] 5 8 13 8 9 11 8 7 8 6 13 10 10 8 14 12 4 8

[37] 6 12 12 14 12 9 5 4 7 8 10 13 9 7

longest name

states[which(state_chars == max(state_chars))]

[1] "North Carolina" "South Carolina"

1.1.3 Selecting States

To make things more interesting, let’s assume that we wish to select those states
containing the letter "k". How can we do that? Very simple, we just need to use the
function grep() for working with regular expressions. Simply indicate the pattern

= "k" as follows:

get states names with 'k'

grep(pattern = "k", x = states, value = TRUE)

[1] "Alaska" "Arkansas" "Kentucky"

[4] "Nebraska" "New York" "North Dakota"

[7] "Oklahoma" "South Dakota"

Instead of grabbing those names containing "k", say we wish to select those states
containing the letter "w". Again, this can be done with grep():

get states names with 'w'

grep(pattern = "w", x = states, value = TRUE)

[1] "Delaware" "Hawaii" "Iowa"

[4] "New Hampshire" "New Jersey" "New Mexico"

[7] "New York"

© Gaston Sanchez Handling Strings with R

7 Chapter 1. Introductory Appetizer

Notice that we only selected those states with lowercase "w". But what about those
states with uppercase "W"? There are several options to find a solution for this
question. One option is to specify the searched pattern as a character class "[wW]":

get states names with 'w' or 'W'

grep(pattern = "[wW]", x = states, value = TRUE)

[1] "Delaware" "Hawaii" "Iowa"

[4] "New Hampshire" "New Jersey" "New Mexico"

[7] "New York" "Washington" "West Virginia"

[10] "Wisconsin" "Wyoming"

Another solution is to first convert the state names to lower case, and then look for
the character "w", like so:

get states names with 'w'

grep(pattern = "w", x = tolower(states), value = TRUE)

[1] "delaware" "hawaii" "iowa"

[4] "new hampshire" "new jersey" "new mexico"

[7] "new york" "washington" "west virginia"

[10] "wisconsin" "wyoming"

Alternatively, instead of converting the state names to lower case we could do the
opposite (convert to upper case), and then look for the character "W", like so:

get states names with 'W'

grep(pattern = "W", x = toupper(states), value = TRUE)

[1] "DELAWARE" "HAWAII" "IOWA"

[4] "NEW HAMPSHIRE" "NEW JERSEY" "NEW MEXICO"

[7] "NEW YORK" "WASHINGTON" "WEST VIRGINIA"

[10] "WISCONSIN" "WYOMING"

A third solution involves specifying the argument ignore.case=TRUE inside grep():

get states names with 'w'

grep(pattern = "w", x = states, value = TRUE, ignore.case = TRUE)

[1] "Delaware" "Hawaii" "Iowa"

[4] "New Hampshire" "New Jersey" "New Mexico"

[7] "New York" "Washington" "West Virginia"

© Gaston Sanchez Handling Strings with R

Chapter 1. Introductory Appetizer 8

[10] "Wisconsin" "Wyoming"

1.1.4 Some computations

Besides manipulating strings and performing pattern matching operations, we can
also do some computations. For instance, we could ask for the distribution of the
State names’ length. To find the answer we can use nchar(). Furthermore, we can
plot a histogram of such distribution:

summary(nchar(states))

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.00 7.00 8.00 8.44 10.00 14.00

histogram

hist(nchar(states), las = 1, col = "gray80", main = "Histogram",

xlab = "number of characters in US State names")

Histogram

number of characters in US State names

F
re

qu
en

cy

4 6 8 10 12 14

0

5

10

15

20

© Gaston Sanchez Handling Strings with R

9 Chapter 1. Introductory Appetizer

Let’s ask a more interesting question. What is the distribution of the vowels in the
names of the States? For instance, let’s start with the number of a’s in each name.
There’s a very useful function for this purpose: regexpr(). We can use regexpr()

to get the number of times that a searched pattern is found in a character vector.
When there is no match, we get a value -1.

position of a's

positions_a <- gregexpr(pattern="a", text=states, ignore.case = TRUE)

how many a's?

num_a <- sapply(positions_a, function(x) ifelse(x[1]>0, length(x), 0))

num_a

[1] 4 3 2 3 2 1 0 2 1 1 2 1 0 2 1 2 0 2 1 2 2 1 1 0 0 2 2 2

[29] 1 0 0 0 2 2 0 2 0 2 1 2 2 0 1 1 0 1 1 1 0 0

If you inspect positions a you’ll see that it contains some negative numbers -1.
This means there are no letters a in that name. To get the number of occurrences
of a’s we are taking a shortcut with sapply().

The same operation can be performed by using the function str count() from the
package "stringr".

load stringr (remember to install it first)

library(stringr)

total number of a's

str_count(states, "a")

[1] 3 2 1 2 2 1 0 2 1 1 2 1 0 2 1 2 0 2 1 2 2 1 1 0 0 2 2 2

[29] 1 0 0 0 2 2 0 2 0 2 1 2 2 0 1 1 0 1 1 1 0 0

Notice that we are only getting the number of a’s in lower case. Since str count()

does not contain the argument ignore.case, we need to transform all letters to
lower case, and then count the number of a’s like this:

total number of a's

str_count(tolower(states), "a")

[1] 4 3 2 3 2 1 0 2 1 1 2 1 0 2 1 2 0 2 1 2 2 1 1 0 0 2 2 2

[29] 1 0 0 0 2 2 0 2 0 2 1 2 2 0 1 1 0 1 1 1 0 0

© Gaston Sanchez Handling Strings with R

Chapter 1. Introductory Appetizer 10

Once we know how to do it for one vowel, we can do the same for all the vowels:

calculate number of vowels in each name

vowels <- c("a", "e", "i", "o", "u")

num_vowels <- vector(mode = "integer", length = 5)

for (j in seq_along(vowels)) {
num_aux <- str_count(tolower(states), vowels[j])

num_vowels[j] <- sum(num_aux)

}

sort them in decreasing order

names(num_vowels) <- vowels

sort(num_vowels, decreasing = TRUE)

a i o e u

61 44 36 28 8

barplot

barplot(num_vowels, main = "Number of vowels in USA States names",

border = NA, xlim = c(0, 80), las = 1, horiz = TRUE)

a

e

i

o

u

Number of vowels in USA States names

0 20 40 60 80

© Gaston Sanchez Handling Strings with R

Chapter 2

Character Strings in R

2.1 Introduction

This chapter introduces you to the basic concepts for creating character vectors and
character strings in R. You will also learn how R treats objects containing characters.

2.2 Characters in R

In R, a piece of text is represented as a sequence of characters (letters, numbers,
and symbols). The data type that R provides for storing sequences of characters
is character. Formally, the class of object that holds character strings in R is
"character".

We express character strings by surrounding text within single quotes:

'a character string using single quotes'

or we can also surround text within double quotes:

"a character string using double quotes"

The important thing is that we must match the type of quotes that we are using.
A starting single quote must have an ending single quote. Likewise, a string with

11

Chapter 2. Character Strings in R 12

an opening double quote must be closed with a double quote.

Typing characters in R like in above examples is not very useful. Typically, we are
going to create objects or variables containing some strings. For example, we can
create a variable string that stores some string:

string <- 'do more with less'

string

[1] "do more with less"

Notice that when you print a character object, R displays it using double quotes
(regardless of whether the string was created using single or double quotes). This
allows us to quickly identify when an object contains character strings.

When writing strings, we can insert single quotes in a string with double quotes,
and vice versa:

"The 'R' project for statistical computing"

'The "R" project for statistical computing'

However, we cannot directly insert single quotes in a string with single quotes,
neither we can insert double quotes in a string with double quotes (Don’t do this!):

"This "is" totally unacceptable"

'This 'is' absolutely wrong'

In both cases R will give you an error due to the unexpected presence of either a
double quote within double quotes, or a single quote within single quotes.

If we really want to include a double quote as part of the string, we need to escape
the double quote using a backslash “\” before it:

"The \"R\" project for statistical computing"

We will talk more about escaping characters in the following chapters.

2.3 Getting Started with Strings

Perhaps the most common use of character strings in R have to do with:

© Gaston Sanchez Handling Strings with R

13 Chapter 2. Character Strings in R

� names of files

� names of data objects

� text displayed in plots

When we read a file, for instance a data table stored in a csv file, we typiclaly use
the read.table() function. Assuming that the file is in the working directory:

dat <- read.csv(file = 'dataset.csv')

The main parameter for the function read.csv() is file which requires a character
string with the pathname of the file.

Another example of a basic use of characters is when we assign names to the elements
of some data structure in R. For instance, if you want to name the elements of a
(numeric) vector, you can use the function names() as follows:

num_vec <- 1:5

names(num_vec) <- c('uno', 'dos', 'tres', 'cuatro', 'cinco')

num_vec

Likewise, many of the parameters in the plotting functions require some sort of
input string. Below is a hypothetical example of a scatterplot that includes several
graphical elements like the main title (main), subtitle (sub), labels for both x-axis
and y-axis (xlab, ylab), the name of the color, and the symbol for the point
character (pch)

plot(x, y,

main = 'Main Title',

sub = 'Subtitle',

xlab = 'x-axis label',

ylab = 'y-axis label',

col = 'red',

pch = 'x')

2.4 Creating Character Strings

Besides the single quotes '' or double quotes "", R provides the function character()

to create character strings. More specifically, character() is the function that cre-
ates vector objects of type "character".

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 14

When using character() you just have to specify the length of the vector. The
output will be a character vector filled of empty strings:

character vector with 5 empty strings

char_vector <- character(5)

char_vector

[1] "" "" "" "" ""

When would you use character()? A typical usage case is when you want to
initialize an empty character vector of a given length. The idea is to create an
object that you will modify later with some computation.

As with any other vector, once an empty character vector has been created, you can
add new components to it by simply giving it an index value outside its previous
range:

another example

example <- character(0)

example

character(0)

check its length

length(example)

[1] 0

add first element

example[1] <- "first"

example

[1] "first"

check its length again

length(example)

[1] 1

You can add more elements without the need to follow a consecutive index range:

example[4] <- "fourth"

example

© Gaston Sanchez Handling Strings with R

15 Chapter 2. Character Strings in R

[1] "first" NA NA "fourth"

length(example)

[1] 4

Notice that the vector example went from containing one-element to contain four-
elements without specifying the second and third elements. R fills this gap with
missing values NA.

2.4.1 Empty string

The most basic string: the empty string produced by consecutive quotation marks:
"". Technically, "" is a string with no characters in it, hence the name empty string :

empty string

empty_str <- ""

display

empty_str

[1] ""

class

class(empty_str)

[1] "character"

2.4.2 Empty character vector

Another basic string structure is the empty character vector produced by the
function character() and its argument length=0:

empty character vector

empty_chr <- character(0)

display

empty_chr

character(0)

class

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 16

class(empty_chr)

[1] "character"

It is important not to confuse the empty character vector character(0) with the
empty string ""; one of the main differences between them is that they have different
lengths:

length of empty string

length(empty_str)

[1] 1

length of empty character vector

length(empty_chr)

[1] 0

Notice that the empty string empty str has length 1, while the empty character
vector empty chr has length 0.

Also, character(0) occurs when we have a character vector with one or more
elements, and we attempt to subset the position 0:

string <- c('sun', 'sky', 'clouds')

string

[1] "sun" "sky" "clouds"

If we try to retrieve the element in position 0 we get:

string[0]

character(0)

2.4.3 Function c()

There is also the generic function c() (concatenate or combine) that we can use to
create character vectors. Simply pass any number of elements separated by commas:

string <- c('sun', 'sky', 'clouds')

string

[1] "sun" "sky" "clouds"

© Gaston Sanchez Handling Strings with R

17 Chapter 2. Character Strings in R

Again, notice that we can use single or double quotes to define the character ele-
ments inside c()

planets <- c("mercury", 'venus', "mars")

planets

[1] "mercury" "venus" "mars"

2.4.4 is.character() and as.character()

Related to character() we have its two sister functions: as.character() and
is.character(). These two functions are generic methos for creating objects of
type "character" and testing whether an R object is of type "character". For
instance, let’s define two objects a and b as follows:

define two objects 'a' and 'b'

a <- "test me"

b <- 8 + 9

To test if a and b are of type "character" use the function is.character():

are 'a' and 'b' characters?

is.character(a)

[1] TRUE

is.character(b)

[1] FALSE

Likewise, you can also use the function class() to get the class of an object:

classes of 'a' and 'b'

class(a)

[1] "character"

class(b)

[1] "numeric"

The function as.character() is a coercing method. For better or worse, R allows

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 18

you to convert (i.e. coerce) non-character objects into character strings with the
function as.character():

converting 'b' as character

b <- as.character(b)

b

[1] "17"

2.5 Strings and R Objects

Before continuing our discussion on functions for manipulating strings, we need to
talk about some important technicalities. R has five main types of objects to store
data: vector, factor, matrix (and array), data.frame, and list. We can use
each of those objects to store character strings. However, these objects will behave
differently depending on whether we store character data with other types of data.
Let’s see how R treats objects with different types of data (e.g. character, numeric,
logical).

2.5.1 Behavior of R objects with character strings

Vectors The most basic type of data container are vectors. You can think of
vectors as the building blocks for other more complex data structures. R has six
types of vectors, technically referred to as atomic types or atomic vectors: logical,
integer, double, character, complex, and raw.

Types of R vectors
Type Description
logical a vector containing logical values
integer a vector containing integer values
double a vector containing real values
character a vector containing character values
complex a vector containing complex values
raw a vector containing bytes

Vectors are atomic structures because their values must be all of the same mode.
This means that any given vector must be unambiguously either logical, numeric,

© Gaston Sanchez Handling Strings with R

19 Chapter 2. Character Strings in R

complex, character or raw.

So what happens when we mix different types of data in a vector?

vector with numbers and characters

c(1:5, pi, "text")

[1] "1" "2" "3"

[4] "4" "5" "3.14159265358979"

[7] "text"

As you can tell, the resulting vector from combining integers (1:5), the number pi,
and some "text" is a vector with all its elements treated as character strings. In
other words, when we combine mixed data in vectors, strings will dominate. This
means that the mode of the vector will be "character", even if we mix logical
values:

vector with numbers, logicals, and characters

c(1:5, TRUE, pi, "text", FALSE)

[1] "1" "2" "3"

[4] "4" "5" "TRUE"

[7] "3.14159265358979" "text" "FALSE"

In fact, R follows two basic rules of data types coercion. The most strict rule is: if a
character string is present in a vector, everything else in the vector will be converted
to character strings. The other coercing rule is: if a vector only has logicals and
numbers, then logicals will be converted to numbers; TRUE values become 1, and
FALSE values become 0.

Keeping these rules in mind will save you from many headaches and frustrating
moments. Moreover, you can use them in your favor to manipulate data in very
useful ways.

Matrices The same behavior of vectors happens when we mix characters and
numbers in matrices. Again, everything will be treated as characters:

matrix with numbers and characters

rbind(1:5, letters[1:5])

[,1] [,2] [,3] [,4] [,5]

[1,] "1" "2" "3" "4" "5"

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 20

[2,] "a" "b" "c" "d" "e"

Data frames With data frames, things are a bit different. By default, character
strings inside a data frame will be converted to factors:

data frame with numbers and characters

df1 = data.frame(numbers=1:5, letters=letters[1:5])

df1

numbers letters

1 1 a

2 2 b

3 3 c

4 4 d

5 5 e

examine the data frame structure

str(df1)

'data.frame': 5 obs. of 2 variables:

$ numbers: int 1 2 3 4 5

$ letters: Factor w/ 5 levels "a","b","c","d",..: 1 2 3 4 5

To turn-off the data.frame()’s default behavior of converting strings into factors,
use the argument stringsAsFactors = FALSE:

data frame with numbers and characters

df2 <- data.frame(

numbers = 1:5,

letters = letters[1:5],

stringsAsFactors = FALSE)

df2

numbers letters

1 1 a

2 2 b

3 3 c

4 4 d

5 5 e

© Gaston Sanchez Handling Strings with R

21 Chapter 2. Character Strings in R

examine the data frame structure

str(df2)

'data.frame': 5 obs. of 2 variables:

$ numbers: int 1 2 3 4 5

$ letters: chr "a" "b" "c" "d" ...

Even though df1 and df2 are identically displayed, their structure is different.
While df1$letters is stored as a "factor", df2$letters is stored as a "character".

Lists With lists, we can combine whatever type of data we want. The type of
data in each element of the list will maintain its corresponding mode:

list with elements of different mode

list(1:5, letters[1:5], rnorm(5))

[[1]]

[1] 1 2 3 4 5

##

[[2]]

[1] "a" "b" "c" "d" "e"

##

[[3]]

[1] -0.5375337 -0.4160729 -0.9606883 -0.9394698 0.8592440

2.6 The Workhorse Function paste()

The function paste() is perhaps one of the most important functions that we
can use to create and build strings. paste() takes one or more R objects, converts
them to "character", and then it concatenates (pastes) them to form one or several
character strings. Its usage has the following form:

paste(..., sep = " ", collapse = NULL)

The argument ... means that it takes any number of objects. The argument sep

is a character string that is used as a separator. The argument collapse is an
optional string to indicate if we want all the terms to be collapsed into a single
string. Here is a simple example with paste():

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 22

paste

PI = paste("The life of", pi)

PI

[1] "The life of 3.14159265358979"

As you can see, the default separator is a blank space (sep = " "). But you can
select another character, for example sep = "-":

paste

IloveR = paste("I", "love", "R", sep = "-")

IloveR

[1] "I-love-R"

If we give paste() objects of different length, then it will apply a recycling rule. For
example, if we paste a single character "X" with the sequence 1:5, and separator
sep = "." this is what we get:

paste with objects of different lengths

paste("X", 1:5, sep = ".")

[1] "X.1" "X.2" "X.3" "X.4" "X.5"

To see the effect of the collapse argument, let’s compare the difference with col-
lapsing and without it:

paste with collapsing

paste(1:3, c("!","?","+"), sep = '', collapse = "")

[1] "1!2?3+"

paste without collapsing

paste(1:3, c("!","?","+"), sep = '')

[1] "1!" "2?" "3+"

One of the potential problems with paste() is that it coerces missing values NA into
the character "NA":

© Gaston Sanchez Handling Strings with R

23 Chapter 2. Character Strings in R

with missing values NA

evalue = paste("the value of 'e' is", exp(1), NA)

evalue

[1] "the value of 'e' is 2.71828182845905 NA"

In addition to paste(), there’s also the function paste0() which is the equivalent
of

paste(..., sep = "", collapse)

collapsing with paste0

paste0("let's", "collapse", "all", "these", "words")

[1] "let'scollapseallthesewords"

2.7 Getting Text into R

We’ve seen how to express character strings using single quotes '' or double quotes
"". But we also need to discuss how to get text into R, that is, how to import and
read files that contain character strings. So, how do we get text into R? Well, it
basically depends on the type-format of the files we want to read.

We will describe two general situations. One in which the content of the file can
be represented in tabular format (i.e. rows and columns). The other one when the
content does not have a tabular structure. In this second case, we have characters
that are in an unstructured form (i.e. just lines of strings) or at least in a non-
tabular format such as html, xml, or other markup language format.

Another function is scan() which allows us to read data in several formats. Usually
we use scan() to parse R scripts, but we can also use to import text (characters)

2.7.1 Reading tables

If the data we want to import is in some tabular format (i.e. cells and columns)
we can use the set of functions to read tables like read.table() and its sister
functions—e.g. read.csv(), read.delim(), read.fwf()—. These functions read

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 24

a file in table format and create a data frame from it, with rows corresponding to
cases, and columns corresponding to fields in the file.

Functions to read files in tabular format
Function Description
read.table() main function to read file in table format
read.csv() reads csv files separated by a comma ","

read.csv2() reads csv files separated by a semicolon ";"

read.delim() reads files separated by tabs "\t"
read.delim2() similar to read.delim()

read.fwf() read fixed width format files

A word of caution about the built-in functions to read data tables: by default they
all convert characters into R factors. This means that if there is a column with
characters, R will treat this data as qualitative variable. To turn off this behavior,
we need to specify the argument stringsAsFactors = FALSE. In this way, all the
characters in the imported file will be kept as characters once we read them in R.

Let’s see a simple example reading a file from the Australian radio broadcaster
ABC (http://www.abc.net.au/radio/). In particular, we’ll read a csv file that
contains data from ABC’s radio stations. Such file is located at:
http://www.abc.net.au/local/data/public/stations/abc-local-radio.csv

To import the file abc-local-radio.csv, we can use either read.table() or
read.csv() (just choose the right parameters). Here’s the code to read the file
with read.table():

assembling url

abc <- "http://www.abc.net.au/"

radios <- "local/data/public/stations/abc-local-radio.csv"

abc_radiosl <- paste0(abc, radios)

read data from URL

radio <- read.table(

file = abc_radios,

header = TRUE,

sep = ',',

stringsAsFactors = FALSE)

© Gaston Sanchez Handling Strings with R

http://www.abc.net.au/radio/
http://www.abc.net.au/local/data/public/stations/abc-local-radio.csv

25 Chapter 2. Character Strings in R

In this case, the location of the file is defined in the object abc which is the first argu-
ment passed to read.table(). Then we choose other arguments such as header =

TRUE, sep = ",", and stringsAsFactors = FALSE. The argument header = TRUE

indicates that the first row of the file contains the names of the columns. The sep-
arator (a comma) is specifcied by sep = ",". And finally, to keep the character
strings in the file as "character" in the data frame, we use stringsAsFactors =

FALSE.

If everything went fine during the file reading operation, the next thing to do is to
chek the size of the created data frame using dim():

size of table in 'radio'

dim(radio)

[1] 53 18

Notice that the data frame radio is a table with 53 rows and 18 columns. If
we examine ths structure with str() we will get information of each column. The
argument vec.len = 1 indicates that we just want the first element of each variable
to be displayed:

structure of columns

str(radio, vec.len = 1)

'data.frame': 53 obs. of 18 variables:

$ State : chr "QLD" ...

$ Website.URL : chr "http://www.abc.net.au/brisbane/" ...

$ Station : chr "ABC Radio Brisbane" ...

$ Town : chr " Brisbane " ...

$ Latitude : num -27.5 ...

$ Longitude : num 153 ...

$ Talkback.number : chr "1300 222 612" ...

$ Enquiries.number: chr "07 3377 5222" ...

$ Fax.number : chr "07 3377 5612" ...

$ Sms.number : chr "0467 922 612" ...

$ Street.number : chr "114 Grey Street" ...

$ Street.suburb : chr "South Brisbane" ...

$ Street.postcode : int 4101 4700 ...

$ PO.box : chr "GPO Box 9994" ...

$ PO.suburb : chr "Brisbane" ...

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 26

$ PO.postcode : int 4001 4700 ...

$ Twitter : chr " abcbrisbane" ...

$ Facebook : chr " https://www.facebook.com/abcinbrisbane" ...

As you can tell, most of the 18 variables are in "character" mode. Only $Latitude,
$Longitude, $Street.postcode and $PO.postcode have a different mode.

2.7.2 Reading raw text

If what we want is to import text as is (i.e. we want to read raw text) then we
need to use the function readLines(). This function is the one we should use if we
don’t want R to assume that the data is in any particular form.

The way we work with readLines() is by passing it the name of a file or the name
of a URL that we want to read. The output is a character vector with one element
for each line of the file or url. The produced vector will contain as many elements
as lines in the read file.

Let’s see how to read a text file. For this example we will use a text file from
the site TEXTFILES.COM (by Jason Scott) http://www.textfiles.com/music/
. This site contains a section of music related text files. For demonstration purposes
let’s consider the “Top 105.3 songs of 1991” according to the “Modern Rock” radio
station KITS San Francisco. The corresponding txt file is located at: http://

www.textfiles.com/music/ktop100.txt.

To read the file with the function readLines():

read 'ktop100.txt' file

top105 <- readLines("http://www.textfiles.com/music/ktop100.txt")

readLines() creates a character vector in which each element represents the lines
of the URL we are trying to read. To know how many elements (i.e how many lines)
are in top105 we can use the function length(). To inspect the first elements (i.e.
first lines of the text file) use head()

how many lines

length(top105)

[1] 123

inspecting first elements

© Gaston Sanchez Handling Strings with R

http://www.textfiles.com/music/
http://www.textfiles.com/music/ktop100.txt
http://www.textfiles.com/music/ktop100.txt

27 Chapter 2. Character Strings in R

head(top105)

[1] "From: ed@wente.llnl.gov (Ed Suranyi)"

[2] "Date: 12 Jan 92 21:23:55 GMT"

[3] "Newsgroups: rec.music.misc"

[4] "Subject: KITS' year end countdown"

[5] ""

[6] ""

Looking at the output provided by head() the first four lines contain some infor-
mation about the subject of the email (KITS’ year end countdown). The fifth and
sixth lines are empty lines. If we inspect the next few lines, we’ll see that the list
of songs in the top100 starts at line number 11.

top 5 songs

top105[11:15]

[1] "1. NIRVANA SMELLS LIKE TEEN SPIRIT"

[2] "2. EMF UNBELIEVABLE"

[3] "3. R.E.M. LOSING MY RELIGION"

[4] "4. SIOUXSIE & THE BANSHEES KISS THEM FOR ME"

[5] "5. B.A.D. II RUSH"

Each line has the ranking number, followed by a dot, followed by a blank space,
then the name of the artist/group, followed by a bunch of white spaces, and then
the title of the song. As you can see, the number one hit of 1991 was “Smells like
teen spirit” by Nirvana.

What about the last songs in KITS’ ranking? In order to get the answer we can
use the tail() function to inspect the last n = 10 elements of the file:

inspecting last 10 elements

tail(top105, n = 10)

[1] "101. SMASHING PUMPKINS SIVA"

[2] "102. ELVIS COSTELLO OTHER SIDE OF ..."

[3] "103. SEERS PSYCHE OUT"

[4] "104. THRILL KILL CULT SEX ON WHEELZ"

[5] "105. MATTHEW SWEET I'VE BEEN WAITING"

[6] "105.3 LATOUR PEOPLE ARE STILL HAVING SEX"

© Gaston Sanchez Handling Strings with R

Chapter 2. Character Strings in R 28

[7] ""

[8] "Ed"

[9] "ed@wente.llnl.gov"

[10] ""

Note that the last four lines don’t contain information about the songs. Moreover,
the number of songs does not stop at 105. In fact the ranking goes till 106 songs
(last number being 105.3)

We’ll stop here the discussion of this chapter. However, it is importat to keep in
mind that text files come in a great variety of forms, shapes, sizes, and flavors. For
more information on how to import files in R, the authoritative document is the
guide on R Data Import/Export (by the R Core Team) available at:
http://cran.r-project.org/doc/manuals/r-release/R-data.html

© Gaston Sanchez Handling Strings with R

http://cran.r-project.org/doc/manuals/r-release/R-data.html

Chapter 3

Basic Manipulations With
"base" Functions

3.1 Introduction

In this chapter you will learn about the different functions to do what I call basic
manipulations. By “basic” I mean transforming and processing strings in such way
that we do not require to use regular expressions. More advanced manipulations
involve defining patterns of text and matching such patterns. This is the essential
idea behind regular expressions, which is the content of part 3 in this book.

3.2 Basic String Manipulations

Besides creating and printing strings, there are a number of very handy functions
in R for doing some basic manipulation of strings. In this section we will review the
following functions:

29

Chapter 3. Basic Manipulations With "base" Functions 30

Manipulation of strings
Function Description
nchar() number of characters
tolower() convert to lower case
toupper() convert to upper case
casefold() case folding
chartr() character translation
abbreviate() abbreviation
substring() substrings of a character vector
substr() substrings of a character vector

3.2.1 Count number of characters with nchar()

One of the main functions for manipulating character strings is nchar() which
counts the number of characters in a string. In other words, nchar() provides the
“length” of a string:

how many characters?

nchar(c("How", "many", "characters?"))

[1] 3 4 11

how many characters?

nchar("How many characters?")

[1] 20

Notice that the white spaces between words in the second example are also counted
as characters.

It is important not to confuse nchar() with length(). While the former gives us
the number of characters, the later only gives the number of elements in a
vector.

how many elements?

length(c("How", "many", "characters?"))

[1] 3

how many elements?

length("How many characters?")

© Gaston Sanchez Handling Strings with R

31 Chapter 3. Basic Manipulations With "base" Functions

[1] 1

3.2.2 Convert to lower case with tolower()

R comes with three functions for text casefolding. The first function we’ll discuss is
tolower() which converts any upper case characters into lower case:

to lower case

tolower(c("aLL ChaRacterS in LoweR caSe", "ABCDE"))

[1] "all characters in lower case"

[2] "abcde"

3.2.3 Convert to upper case with toupper()

The opposite function of tolower() is toupper. As you may guess, this function
converts any lower case characters into upper case:

to upper case

toupper(c("All ChaRacterS in Upper Case", "abcde"))

[1] "ALL CHARACTERS IN UPPER CASE"

[2] "ABCDE"

3.2.4 Upper or lower case conversion with casefold()

The third function for case-folding is casefold() which is a wraper for both
tolower() and toupper(). Its uasge has the following form:

casefold(x, upper = FALSE)

By default, casefold() converts all characters to lower case, but we can use the
argument upper = TRUE to indicate the opposite (i.e. characters in upper case):

lower case folding

casefold("aLL ChaRacterS in LoweR caSe")

[1] "all characters in lower case"

upper case folding

casefold("All ChaRacterS in Upper Case", upper = TRUE)

© Gaston Sanchez Handling Strings with R

Chapter 3. Basic Manipulations With "base" Functions 32

[1] "ALL CHARACTERS IN UPPER CASE"

3.2.5 Character translation with chartr()

There’s also the function chartr() which stands for character translation. chartr()
takes three arguments: an old string, a new string, and a character vector x:

chartr(old, new, x)

The way chartr() works is by replacing the characters in old that appear in x

by those indicated in new. For example, suppose we want to translate the letter a

(lower case) with A (upper case) in the sentence x:

replace 'a' by 'A'

chartr("a", "A", "This is a boring string")

[1] "This is A boring string"

It is important to note that old and new must have the same number of characters,
otherwise you will get a nasty error message like this one:

incorrect use

chartr("ai", "X", "This is a bad example")

Error in chartr("ai", "X", "This is a bad example"): ’old’ is longer

than ’new’

Here’s a more interesting example with old = "aei" and new = "#!?". This im-
plies that any a in x will be replaced by #, any e in x will be replaced by ?, and
any i in x will be replaced by ?:

multiple replacements

crazy = c("Here's to the crazy ones", "The misfits", "The rebels")

chartr("aei", "#!?", crazy)

[1] "H!r!'s to th! cr#zy on!s" "Th! m?sf?ts"

[3] "Th! r!b!ls"

3.2.6 Abbreviate strings with abbreviate()

Another useful function for basic manipulation of character strings is abbreviate().
Its usage has the following structure:

© Gaston Sanchez Handling Strings with R

33 Chapter 3. Basic Manipulations With "base" Functions

abbreviate(names.org, minlength = 4, dot = FALSE, strict = FALSE,

method = c("left.keep", "both.sides"))

Although there are several arguments, the main parameter is the character vector
(names.org) which will contain the names that we want to abbreviate:

some color names

some_colors = colors()[1:4]

some_colors

[1] "white" "aliceblue" "antiquewhite"

[4] "antiquewhite1"

abbreviate (default usage)

colors1 = abbreviate(some_colors)

colors1

white aliceblue antiquewhite antiquewhite1

"whit" "alcb" "antq" "ant1"

abbreviate with 'minlength'

colors2 = abbreviate(some_colors, minlength=5)

colors2

white aliceblue antiquewhite antiquewhite1

"white" "alcbl" "antqw" "antq1"

abbreviate

colors3 = abbreviate(some_colors, minlength=3, method="both.sides")

colors3

white aliceblue antiquewhite antiquewhite1

"wht" "alc" "ant" "an1"

3.2.7 Replace substrings with substr()

One common operation when working with strings is the extraction and replacement
of some characters. For such tasks we have the function substr() which extracts
or replaces substrings in a character vector. Its usage has the following form:

substr(x, start, stop)

x is a character vector, start indicates the first element to be replaced, and stop

© Gaston Sanchez Handling Strings with R

Chapter 3. Basic Manipulations With "base" Functions 34

indicates the last element to be replaced:

extract 'bcd'

substr("abcdef", 2, 4)

[1] "bcd"

replace 2nd letter with hash symbol

x = c("may", "the", "force", "be", "with", "you")

substr(x, 2, 2) <- "#"

x

[1] "m#y" "t#e" "f#rce" "b#" "w#th" "y#u"

replace 2nd and 3rd letters with happy face

y = c("may", "the", "force", "be", "with", "you")

substr(y, 2, 3) <- ":)"

y

[1] "m:)" "t:)" "f:)ce" "b:" "w:)h" "y:)"

replacement with recycling

z = c("may", "the", "force", "be", "with", "you")

substr(z, 2, 3) <- c("#", "@")

z

[1] "m#y" "t@e" "f#rce" "b@" "w#th" "y@u"

3.2.8 Replace substrings with substring()

Closely related to substr(), the function substring() extracts or replaces sub-
strings in a character vector. Its usage has the following form:

substring(text, first, last = 1000000L)

text is a character vector, first indicates the first element to be replaced, and
last indicates the last element to be replaced:

same as 'substr'

substring("ABCDEF", 2, 4)

[1] "BCD"

© Gaston Sanchez Handling Strings with R

35 Chapter 3. Basic Manipulations With "base" Functions

substr("ABCDEF", 2, 4)

[1] "BCD"

extract each letter

substring("ABCDEF", 1:6, 1:6)

[1] "A" "B" "C" "D" "E" "F"

multiple replacement with recycling

text = c("more", "emotions", "are", "better", "than", "less")

substring(text, 1:3) <- c(" ", "zzz")

text

[1] " ore" "ezzzions" "ar " "zzzter" "t an"

[6] "lezz"

3.3 Set Operations

R has dedicated functions for performing set operations on two given vectors. This
implies that we can apply functions such as set union, intersection, difference, equal-
ity and membership, on "character" vectors.

Set Operations
Function Description
union() set union
intersect() intersection
setdiff() set difference
setequal() equal sets
identical() exact equality
is.element() is element
%in%() contains
sort() sorting
paste(rep()) repetition

3.3.1 Set union with union()

Let’s start our reviewing of set functions with union(). As its name indicates, we
can use union() when we want to obtain the elements of the union between two

© Gaston Sanchez Handling Strings with R

Chapter 3. Basic Manipulations With "base" Functions 36

character vectors:

two character vectors

set1 = c("some", "random", "words", "some")

set2 = c("some", "many", "none", "few")

union of set1 and set2

union(set1, set2)

[1] "some" "random" "words" "many" "none" "few"

Notice that union() discards any duplicated values in the provided vectors. In the
previous example the word "some" appears twice inside set1 but it appears only
once in the union. In fact all the set operation functions will discard any duplicated
values.

3.3.2 Set intersection with intersect()

Set intersection is performed with the function intersect(). We can use this
function when we wish to get those elements that are common to both vectors:

two character vectors

set3 = c("some", "random", "few", "words")

set4 = c("some", "many", "none", "few")

intersect of set3 and set4

intersect(set3, set4)

[1] "some" "few"

3.3.3 Set difference with setdiff()

Related to the intersection, we might be interested in getting the difference of the
elements between two character vectors. This can be done with setdiff():

two character vectors

set5 = c("some", "random", "few", "words")

set6 = c("some", "many", "none", "few")

difference between set5 and set6

© Gaston Sanchez Handling Strings with R

37 Chapter 3. Basic Manipulations With "base" Functions

setdiff(set5, set6)

[1] "random" "words"

3.3.4 Set equality with setequal()

The function setequal() allows us to test the equality of two character vectors. If
the vectors contain the same elements, setequal() returns TRUE (FALSE otherwise)

three character vectors

set7 = c("some", "random", "strings")

set8 = c("some", "many", "none", "few")

set9 = c("strings", "random", "some")

set7 == set8?

setequal(set7, set8)

[1] FALSE

set7 == set9?

setequal(set7, set9)

[1] TRUE

3.3.5 Exact equality with identical()

Sometimes setequal() is not always what we want to use. It might be the case that
we want to test whether two vectors are exactly equal (element by element). For
instance, testing if set7 is exactly equal to set9. Although both vectors contain
the same set of elements, they are not exactly the same vector. Such test can be
performed with the function identical()

set7 identical to set7?

identical(set7, set7)

[1] TRUE

set7 identical to set9?

identical(set7, set9)

[1] FALSE

© Gaston Sanchez Handling Strings with R

Chapter 3. Basic Manipulations With "base" Functions 38

If we consult the help documentation of identical(), we can see that this function
is the “safe and reliable way to test two objects for being exactly equal”.

3.3.6 Element contained with is.element()

If we wish to test if an element is contained in a given set of character strings we
can do so with is.element():

three vectors

set10 = c("some", "stuff", "to", "play", "with")

elem1 = "play"

elem2 = "crazy"

elem1 in set10?

is.element(elem1, set10)

[1] TRUE

elem2 in set10?

is.element(elem2, set10)

[1] FALSE

Alternatively, we can use the binary operator %in% to test if an element is contained
in a given set. The function %in% returns TRUE if the first operand is contained in
the second, and it returns FALSE otherwise:

elem1 in set10?

elem1 %in% set10

[1] TRUE

elem2 in set10?

elem2 %in% set10

[1] FALSE

3.3.7 Sorting with sort()

The function sort() allows us to sort the elements of a vector, either in increasing
order (by default) or in decreasing order using the argument decreasing:

© Gaston Sanchez Handling Strings with R

39 Chapter 3. Basic Manipulations With "base" Functions

set11 = c("today", "produced", "example", "beautiful", "a", "nicely")

sort (decreasing order)

sort(set11)

[1] "a" "beautiful" "example" "nicely"

[5] "produced" "today"

sort (increasing order)

sort(set11, decreasing=TRUE)

[1] "today" "produced" "nicely" "example"

[5] "beautiful" "a"

If we have alpha-numeric strings, sort() will put the numbers first when sorting
in increasing order:

set12 = c("today", "produced", "example", "beautiful", "1", "nicely")

sort (decreasing order)

sort(set12)

[1] "1" "beautiful" "example" "nicely"

[5] "produced" "today"

sort (increasing order)

sort(set12, decreasing = TRUE)

[1] "today" "produced" "nicely" "example"

[5] "beautiful" "1"

3.3.8 Repetition with rep()

A very common operation with strings is replication, that is, given a string we want
to replicate it several times. Although there is no single function in R for that
purpose, we can combine paste() and rep() like so:

repeat "x" 4 times

paste(rep("x", 4), collapse = '')

[1] "xxxx"

© Gaston Sanchez Handling Strings with R

Chapter 3. Basic Manipulations With "base" Functions 40

© Gaston Sanchez Handling Strings with R

