DEVELOPING FOR

firefox 0S

- QUICK GUIDE -

ANDRE GARZIA

Quick Guide For Firefox OS App Development
Creating HTML5 based apps for Firefox OS

Andre Garzia
This book is for sale at http://leanpub.com/quickguidefirefoxosdevelopment

This version was published on 2015-12-28

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

ey

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License

http://leanpub.com/quickguidefirefoxosdevelopment
http://leanpub.com
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Tweet This Book!

Please help Andre Garzia by spreading the word about this book on Twitter!
The suggested tweet for this book is:

[am learning to develop for #FirefoxOS

The suggested hashtag for this book is #FirefoxOS.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#FirefoxOS

http://twitter.com
https://twitter.com/intent/tweet?text=I%20am%20learning%20to%20develop%20for%20%23FirefoxOS
https://twitter.com/search?q=%23FirefoxOS
https://twitter.com/search?q=%23FirefoxOS

To Elisangela Mendonca de Andrade Garzia

Contents

Acknowledgments L. i
This book is in perpetual beta Lo i
Me,myself,and I. i
How this book cametobe i
Stayinguptodate ii
Donations e e e e ii
How to contact theauthor. L ii
Cover Illustration L iii
Who should read thisbook o iii
Best Practices vs Beginner Friendliness 0 L. iii
More books about Firefox OS iv
Feedback & Pull Requests iv
Translations iv
Version history iv
Introduction 1
Firefox OS o e 1
Smart TVs o 3
IoT and the Web of Things 3
Runcible 3
The Platform That HTML5 Deserveso o i ittt i e 3
Accessing The Hardware Using The WebAPI 4
Freedom to Develop and Distribute o o 0L 4
Summary 5
Setup For Firefox OS App Development 6
The Gecko Engine 6
What applications do youneed? 6
WebIDE Setup 7
Summary e 9
Basic Concepts 10
The Application Manifest 10
Types of Application 12

Security Access Levels 13

CONTENTS

Mozilla’s WebAPIs 14
Summary e 17
Our First App 18
Creating the app manifest 21
Building the HTML 23
Crafting the JavaScript code 26
Testing the app withthe WebIDE 35
Summary e 39
Developer Tools e 40
Introducing the Responsive Design View 40
Developer tools 43
Summary e 44
The WebIDE 45
Adding Apps o o 45
Running yourapp e 47
Updating your app e e 47
Debugging 48
Testing appsonarealdevice L 49
Connecting with a Firefox OSdevice 50
Summary L 51
Distributing Your Apps 52
Hosted Apps« o o o 52
Packaged Apps 53
Summary 53
The Firefox Marketplace 54
Checklist before even thinking about sending an app to the marketplace. 55
Preparing your app for submission Lo o oo L 55
Submitting your app to the marketplace 0oL 56
Summary 59
Appendix 1: Useful links 61
Appendix 2: The Firefox OS Simulator 62
Setup L e 63
Adding Apps o o 65
Debugging 67
Testing appsonarealdevice 68
Connecting with a Firefox OSdevice 69

Summary 70

CONTENTS i

Acknowledgments

To my wife Lili, the best wife in the world!

To Motzilla for always believing in us, for keeping the web open and free and for always placing the
user first!

To the Brazilian Mozilla Community for receiving me so well and being just awesome!

To my GSoC mentor Marcos Caceres, the Mozilla WebAPI Team, the Mozilla Tech Evangelists and
Dev Engagement teams for being more than awesome!

To Google for the Google Summer of Code 2013! This program is wonderful.

[also say thank you from the bottom of my heart to all people who invested their time and
effort in sending me pull requests to make this book better: Ryuno-Ki, chisophugis, ghost, dholbert,
marcoscaceres.

This book is in perpetual beta

My plan is to update this book often, expanding its contents and revising the text as issues are found
by readers. Since some APIs are still being implemented by Firefox OS, you will want to make sure
you’re reading an up-to-date version of this book.

Also, always check the version history section because it lists what changed and has important
information about decisions made before releasing each book update.

Me, myself, and |

In this book you will find many parts where I express my personal opinion and make decisions
that may be different from what other programmers would do - particularly if it helps explain an
idea more easily. I will always try to make it clear and explain my reasoning when I am giving my
opinion. Anyway, if there is an error in what [am saying, I will revise the text and update the book.
See the Feedback & Pull Requests section for more information.

How this book came to be

Originally, I'd been writing this book in my spare time - but thanks to the good help of my Google
Summer of Code (GSoC) mentor, Marcos Caceres, this book became part of my GSoC project - which
aimed to create useful developer resources for Firefox OS. So, huge thanks to Google for funding
this work and to Mozilla’s Web API team for letting me join them over the summer.

CONTENTS ii

Staying up to date

This book is distributed for free using Leanpub'.

You can register your email to receive automatic updates when you download this book from its
book page at Leanpub®. The plan is to update this book many times per month. If you got this book
from a friend or from some other site, you should consider going to the page above to download and
register there thus making sure you will receive the update notices.

Donations

Writing a book requires a lot of work and I would like to dedicate more time in my life for this type
of activity after the 2013 Google Summer of Code is done. Those that think that this book is useful
(or cool) may move the price slider on Leanpub download page from zero to any desired amount
and give me some bucks.

Those that would rather donate using PayPal, I can receive donations under the agarzia@mac.com
account.

I can accept bitcoin donations at:
17TNW3pw9iJUD24k2CB4wv6rJaQkZUsGFU?

And dogecoin donations (such generosity, much development) at:
DQ4puwF5uFcdt7WZNMoo7V3Y373VD6aHFx*

Regardless of donations, you should fill your email on the download form to make sure that once
the book is updated you will receive a notice!

How to contact the author

To send comments and feedback please send an email to fxosquickguide@andregarzia.com®. My
website is http://andregarzia.com®. My Twitter account is @soapdog’.

If you want to help improve the content of this book, please see the Feedback & Pull Requests section.

"http://leanpub.com
®http://leanpub.com/quickguidefirefoxosdevelopment
*bitcoin:17TNW3pw9iJUD24k2CB4wv6rjaQkZUsGFU
*dogecoin:DQ4puwF5uFcdt7WZNMoo7V3Y373VD6aHFx
*mailto:fxosquickguide@andregarzia.com
®http://andregarzia.com

"http://twitter.com/soapdog

http://leanpub.com
http://leanpub.com/quickguidefirefoxosdevelopment
bitcoin:17TNW3pw9iJUD24k2CB4wv6rJaQkZUsGFU
dogecoin:DQ4puwF5uFcdt7WZNMoo7V3Y373VD6aHFx
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://twitter.com/soapdog
http://leanpub.com
http://leanpub.com/quickguidefirefoxosdevelopment
bitcoin:17TNW3pw9iJUD24k2CB4wv6rJaQkZUsGFU
dogecoin:DQ4puwF5uFcdt7WZNMoo7V3Y373VD6aHFx
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://twitter.com/soapdog

CONTENTS iii

Cover lllustration

The cover page was created by Raphael Eckhardt, a designer and illustrator from Brazil. You can
check out his work and contact him (he is a freelancer) at http://raphaeleckhardt.com/®.

Who should read this book

This book is written for readers with an intermediate knowledge of HTML, CSS and JavaScript who
wants to build mobile applications for Firefox OS. Teaching HTML, CSS and JavaScript is beyond
the scope of this book. I will give you links for good reference books though.

Best Practices vs Beginner Friendliness

Experienced developers will notice that sometimes I don’t follow all the good practices in the source
code of the examples of this book. Even though I am avoiding anti-patterns in here, I am trying to
keep the use of immediate functions and other similar practices to a minimum. The main reason
for that is to make the source code beginner friendly as this is an introductory book. Seasoned
programmers will know when and how to change things while beginner coders will still be able to
understand what is going on. All code here works and as I update this book I may revisit the code
and use more and more best practices depending on the readers feedback.

If you want to dive deeper in the world of high quality JavaScript coding here are some good books:

« JavaScript: The Good Parts’: The JavaScript Book.

« JavaScript Patterns': Patterns and best practices.

« JavaScript Enlightenment'': Advanced JavaScript techniques.

« Maintainable JavaScript'*: Writing code that is easy to maintain and work with.

« Javascript Allongé**: a wonderful book that makes you look to JS with a functional program-
ming lens. You'll learn more about functions, combinators, decorators and all the cool stuff
that you can do in our favorite web language.

®http://raphaeleckhardt.com/
*http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/0636920027713.do
http://shop.oreilly.com/product/0636920027713.do
https://leanpub.com/javascript-allonge

http://raphaeleckhardt.com/
http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/0636920027713.do
http://shop.oreilly.com/product/0636920027713.do
https://leanpub.com/javascript-allonge
http://raphaeleckhardt.com/
http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/0636920027713.do
http://shop.oreilly.com/product/0636920027713.do
https://leanpub.com/javascript-allonge

CONTENTS iv

More books about Firefox OS

I maintain a website listing the current known books about Firefox OS at http://firefoxosbooks.org*.
I've written another book about Firefox OS focused on Game Development'’, you might want to
check it out. Both books are available as a bundle as well*.

Feedback & Pull Requests

This is a Free and Open book and I am excited to receive all feedback that you people can give me.
All the content of the book is at a GitHub repository’” and is built using Markdown (with some
extensions by Leanpub). To give me feedback, bug fixes and improvements just send me a pull
request. Thanks in advance for all contributions.

The Git repository for this book is at https://github.com/soapdog/firefoxos-quick-guide®®.

Translations

This book was originally written in Portuguese and translated into English by me. Both versions are
available for free on the net at:

« Portuguese Version'’: Guia Rapido para Desenvolvimendo para Firefox OS.

English Version?’: Quick Guide for Firefox OS App Development.
Chinese Version®": Firefox OS App XXXX
Italian Version*”: Guida veloce allo sviluppo per Firefox OS.

I welcome all help to translate this book to even more languages (and to fix my broken English).

Version history

Version 0.4: WIP

+ Added bitcoin and dogecoin donation options.

"http://firefoxosbooks.org
https://leanpub.com/buildinggamesforfirefoxos
*®https://leanpub.com/b/firefoxosbooks
https://github.com/soapdog/firefoxos- quick-guide
Bhttps://github.com/soapdog/firefoxos-quick-guide
http://leanpub.com/guiarapidofirefoxos
%http://leanpub.com/quickguidefirefoxosdevelopment
*'https://leanpub.com/quickguidefirefoxos
*2https://leanpub.com/guidavelocesviluppofirefoxos

http://firefoxosbooks.org
https://leanpub.com/buildinggamesforfirefoxos
https://leanpub.com/b/firefoxosbooks
https://github.com/soapdog/firefoxos-quick-guide
https://github.com/soapdog/firefoxos-quick-guide
http://leanpub.com/guiarapidofirefoxos
http://leanpub.com/quickguidefirefoxosdevelopment
https://leanpub.com/quickguidefirefoxos
https://leanpub.com/guidavelocesviluppofirefoxos
http://firefoxosbooks.org
https://leanpub.com/buildinggamesforfirefoxos
https://leanpub.com/b/firefoxosbooks
https://github.com/soapdog/firefoxos-quick-guide
https://github.com/soapdog/firefoxos-quick-guide
http://leanpub.com/guiarapidofirefoxos
http://leanpub.com/quickguidefirefoxosdevelopment
https://leanpub.com/quickguidefirefoxos
https://leanpub.com/guidavelocesviluppofirefoxos

CONTENTS v

+ Moved the old simulator 1.1 chapter to an appendix.
« Updated content to use WebIDE.

The App Manager was replaced by the WebIDE and lots of the content of the book had to
be rewritten. Also the current work on Firefox OS Building Blocks is being done using Web
Components and will only work on devices running Firefox OS 2.3+. Most of the devices on the
market are running Firefox OS 1.x+ but not up to 2.3 which makes it impossible to recommend
using the Web Components solution at the moment.

This version is a interim release. I just wanted to do a quick update for the WebIDE stuff while
I write more content.

Version 0.3

Added new content for App Manager. Since most of the current devices still running Firefox OS
1.1 we're keeping the old simulator stuff.

This version was done as a quick update to include the App Manager section. This section will be
improved in the next releases. If you find anything wrong with this new section (or any section)
then please report the issues at issue tracker on GitHub®.

Version 0.2

Book was revised by Marcos Caceres of Mozilla’s WebAPI team. The content of each chapter was
checked for technical correctness, and many grammatical mistakes and typos were fixed throughout.

Version 0.1

This is the first version of this book. I am yet to run this through an editor and it was not revised for
typos, grammar mistakes and general bad things. English is not my first language so please correct
me when [am wrong. What you’re reading here begun on the 20th of August of 2013 as a quick guide
to be distributed at Brazil]S Conference®* that happened on the 22nd and 23rd. So you’re basically
reading a quick draft written in two days.

[am using the Leanpub?® system to write this book. This system allows me to iterate quickly and
manage this project while keeping me sane. This version is a quasi-literal translation from the
original in Portuguese.

Zhttps://github.com/soapdog/firefoxos-quick-guide/issues
**http://braziljs.com.br/
*http://leanpub.com

https://github.com/soapdog/firefoxos-quick-guide/issues
http://braziljs.com.br/
http://leanpub.com
https://github.com/soapdog/firefoxos-quick-guide/issues
http://braziljs.com.br/
http://leanpub.com

Introduction
Firefox OS

L @ .l =@ 10:12

Search or enter address

SO N

Phone Messages Telegra Macaw

—

3¢ J:

* Conta

E-Mail

Camera Marketplace Settings Twitter
Clock Calendar HERE Maps 9GAG

Hf LN

Firefox OS

Introduction 2

Firefox OS* is a new mobile platform developed by Mozilla*” and its partners. Devices running
Firefox OS are already available in many countries and will reach even more places by the end of
2015.

Originally targeted at emerging markets, Firefox OS has the mission of helping to bring the
next billion people online. To achieve this, Firefox OS devices are built to serve as a great first
smartphone along with competitive pricing. Firefox OS devices should not be compared with high-
end smartphones such as the Apple iPhone 6 and Samsung Galaxy S5; they are built to be an
alternative to feature phones so that people using said devices are able to upgrade to a Firefox OS
one at an affordable cost and receive the full smartphone experience.

In developing markets such as Brazil and Colombia, smartphones with decent performance are
generally too expensive for the average consumer. People are able to buy cheap phones, but the
platforms used in these phones are intended for high-end devices - as such, the phone’s hardware
tends to underperform, which leads to a terrible user experience. Firefox OS is specifically designed
to run on limited hardware while providing a decent user experience.

Another differentiating factor of Firefox OS is its openness. Consider that the current mainstream
mobile operating systems are proprietary silos, where each vendor has the privilege to force his
way on the developers and users regardless of their wishes (remember when Apple tried banning
languages other than Objective-C from the iTunes App Store?). In those proprietary ecosystems you
can only distribute your apps on authorized channels - and the vendor usually keeps a significant
part of the the money from any purchases made on the device.

Besides locking the developers to proprietary distribution channels, these systems lock you to their
software development kits (SDKs). If you want to build a native app for both iOS and Android
using the official toolkits you will need to code one app using Objective-C and another with Java
respectively. This means that, code-wise, a developer will reuse very little between projects (and
maybe reuse some media assets). That kind of effort requires that the developer learns two languages
and build the same software twice.

Firefox OS differentiates itself by using “HTML5” as the development platform. HTML5 is a
marketing term used to mean the ever-evolving collection of Web standards known as HTML,
CSS and JavaScript. These royalty free standards are implemented by the major web browsers, and
are what make web applications possible. By leveraging the technologies that encompass HTML5,
millions of web developers are already able to code for Firefox OS. And apps built for Firefox OS
are easy to port to another platform by using wrappers such as Phonegap?® and Cordova®.

Due to its open nature and flourishing community the new system has been ported to a number
of new platforms and is being used by business in devices beyond the smartphone form-factors. As
the new devices become available we plan to create chapters or maybe even new books about them.
Just to trigger a spark of curiosity we’ll list some of the new types of devices with links if you want
to check them out:

*Shttp://firefoxos.mozilla.community
*"http://mozilla.org
**http://phonegap.com
*http://cordova.io/

http://firefoxos.mozilla.community
http://mozilla.org
http://phonegap.com
http://cordova.io/
http://firefoxos.mozilla.community
http://mozilla.org
http://phonegap.com
http://cordova.io/

Introduction 3

Smart TVs

Panasonic is a partner of Mozilla and developed a range of Smart TVs powered by Firefox OS. As
of 2015 most of the Smart TVs platforms are converging to HTML5 based app ecosystems. LG is
using webOS, Samsung will soon launch Tizen based sets, Sony is rumored to go with Android. All
those systems are able to work with HTML5 based apps which makes web technologies a very good
investment. You can learn more about Mozilla and Panasonic Smart TVs here®® and on this debut
announcement®'.

loT and the Web of Things

The internet of things has a little sibling called the web of things which is composed of hardware
appliances talking to each other using web technologies. They are fun to build and easy to interface
with. A group of enthusiasts from Mozilla employees to volunteers is working to port Firefox OS to
the Raspberry Pi*” and could use more help. Once this is working, you’ll be able to experiment with
hardware design and construction and keep programming fun by using web stuff.

Runcible

Runcible is a new concept from Monohm?®* which is very disruptive. A brand new class of device to
provide you with the benefits of a connected device such as a Smartphone but none of the antisocial
problems of a nagging device. Also, its beautiful and round, like a pocket watch. Monohm is also
helping with porting Firefox OS to the Raspberry Pi and have a wonderful Web of Things SDK
available® for us to use.

The Platform That HTML5 Deserves

As we learned from the sections above, the web is everywhere. Its on your computer, mobile phone,
smart TV, and even in your video game consoles. The programming language of the web, JavaScript,
is one of the most popular languages in the world. As already mentioned, when people talk about
HTMLS they usually mean the collection of three technologies known as HTML, CSS and JavaScript.
Recent advances in HTML have brought in a range of new features - advanced form controls, Web
sockets, and more semantic markup - when compared to XHTML 1.0 and HTML 4.01. Advances in
CSS have also introduced lots of new features, such as Flexbox and CSS Animations, that make it
a lot easier to create beautiful responsive layouts. And recent advances in JavaScript have brought

*https://www.mozilla.org/en-US/firefox/os/devices/tv/
*Thttps://blog.mozilla.org/blog/2015/05/14/first-panasonic-smart-tvs-powered-by-firefox-os-debut-worldwide/
*?https://wiki.mozilla.org/Fxos_on_RaspberryPi

*http://mono.hm/runcible.html

**http://mono.hm/sensible.html

https://www.mozilla.org/en-US/firefox/os/devices/tv/
https://blog.mozilla.org/blog/2015/05/14/first-panasonic-smart-tvs-powered-by-firefox-os-debut-worldwide/
https://blog.mozilla.org/blog/2015/05/14/first-panasonic-smart-tvs-powered-by-firefox-os-debut-worldwide/
https://wiki.mozilla.org/Fxos_on_RaspberryPi
https://wiki.mozilla.org/Fxos_on_RaspberryPi
http://mono.hm/runcible.html
http://mono.hm/sensible.html
http://mono.hm/sensible.html
https://www.mozilla.org/en-US/firefox/os/devices/tv/
https://blog.mozilla.org/blog/2015/05/14/first-panasonic-smart-tvs-powered-by-firefox-os-debut-worldwide/
https://wiki.mozilla.org/Fxos_on_RaspberryPi
http://mono.hm/runcible.html
http://mono.hm/sensible.html

Introduction 4

significant performance improvements and new capabilities, all while remaining easy to use for both
beginners and seasoned developers alike.

Firefox OS is in essence, an extension of the mobile web. By making HTMLS5 a first class citizen,
Mozilla has opened its platform to millions of web developers. Even if some other browser vendors
implement HTMLS5 in their mobile offerings, Firefox OS goes beyond that by offering a collection
of APIs to access the underlying hardware and system using JavaScript. These APIs are collectively
known as the WebAPIs.

Accessing The Hardware Using The WebAPI

Some earlier platforms also tried to create operating systems that used web technologies for app
creation. For example, when the iPhone was introduced to the world, the only way to create apps
was using web technologies. However, those web apps were limited in that they had no hardware or
device access - meaning that only a limited range of applications could be built. When Apple then
allowed developers to code apps in Objective-C, and also access the device’s capabilities, it spurred
a huge amount of innovation. Sadly, web apps did not gain access to the device’s capabilities, and
were thus left as “second-class citizens” - this made them unattractive to both users and developers
alike, and unable to compete with native apps in that system.

When we say device capabilities we actually mean accessing hardware and OS level features and
services: We're talking about things such as updating the address book, sending SMS, and accessing
the camera and media gallery. On Firefox OS, the WebAPI*s are the means by which you will access
many of those capabilities.

Another earlier platform, WebOS, also offered hardware access via JavaScript but never tried to
standardize its APIs. Mozilla is working with the W3C and other stakeholders to make sure that
the WebAPIs are an open standard and that other browsers adopt them too. As these APIs are
implemented by other browsers, your apps will require less and less changes to work across different
platforms.

It’s important to emphasize that the WebAPIs are not exclusive to Firefox OS devices. Mozilla is
implementing it for the other platforms on which Firefox runs, such as desktop and android. This
way, you can use your open web app in Firefox OS, Firefox on the desktop and Firefox for Android.

Freedom to Develop and Distribute

Like everything that Mozilla does, Firefox OS is developed in the open and is free. All development
can be followed on the Mozilla B2G repository*® on GitHub. With Firefox OS you have the freedom
to follow and contribute with the development of the system and you also have the freedom to

*https://developer.mozilla.org/en-US/docs/WebAPT
*Shttps://github.com/mozilla-b2g/B2G

https://developer.mozilla.org/en-US/docs/WebAPI
https://github.com/mozilla-b2g/B2G
https://developer.mozilla.org/en-US/docs/WebAPI
https://github.com/mozilla-b2g/B2G

Introduction 5

distribute your applications on your own channels or on The Firefox Marketplace®’. What’s really
awesome is that all the system applications are written in HTML5, so you can check them out and
see how the are put together.

The main idea is that you’re not locked to Mozilla for anything. If you want to pick the source code
for the system and change it for your own needs, so be it. If you need to build apps for internal use
on your company, or if you want to distribute your creations only on your own web site, you’re free
to do it. Usually, in other platforms you’re locked into the official app store as the only channel to
distribute your apps. Firefox OS also has an official market called Firefox Marketplace which has
an approval process but you're free to distribute your app outside this store if you want. Like in the
web where you can host your web site anywhere you want, on Firefox OS you can do the same with
your applications.

This comes with a small caveat, sadly: some of the WebAPIs are too security sensitive to just allow
anyone to use them. To distribute apps that use some of the more “privileged” APIs, you will need
to get your applications signed and reviewed by Mozilla’s staff.

Summary

HTMLS5 is here to stay and will only get better. Firefox OS is the new open mobile operating system
by Mozilla completely based on web technologies. This system is built on the open and offers a
robust HTML5 implementation that goes beyond the other platforms by offering the WebAPI which
is a collection of APIs to access hardware and operating system services using JavaScript. These new
APIs are being standardized through the World Wide Web Consortium (W3C) and will hopefully
be adopted by other browsers in the future.

In the next chapter we’ll quickly get you set up with everything you need to develop for Firefox OS.

*"https://marketplace.firefox.com/

https://marketplace.firefox.com/
https://marketplace.firefox.com/

Setup For Firefox OS App
Development

The Gecko Engine

Browsers use different engines for rendering web pages: Google Chrome and Opera use Blink (a fork
of WebKit), Internet Explorer uses Trident, the new browser from Microsoft called Edge uses a new
engine, and Safari uses WebKit. Mozilla has its own engine, called Gecko which is used in Firefox
desktop, Firefox for Android, and Firefox OS. As these products use the same engine, it is possible
to develop for Firefox OS using the Firefox desktop browser (but with some caveats®®).

What applications do you need?
To develop and test apps made for Firefox OS you will need:

« A recent version of the Firefox Browser*”. We personally recommend using the new Firefox
Developer Edition** because it is updated more often and comes with new features for
developers.

« A text editor for programming*' or you can simply use the WebIDE editor that comes bundled
with Firefox.

If you're using an old Firefox OS 1.1 device

If you need to connect an old Firefox OS 1.0 or 1.1 device refer to the Appendix 2: The Firefox OS
Simulator.

%8 Although the same engine is used for all Mozilla products, the version of the engine in Firefox OS is generally behind that of the desktop browser.
This is because the release cycle of Firefox OS is currently slower than that of the Desktop browser. In practice, this will mean that some features may
not be available (or work as expected) when you try them out in Firefox OS - so always make sure you test your applications on a device that runs
Firefox OS. Also, be mindful that users might also be on different versions of Firefox OS, so they might not have all the bleeding edge features. Be
sure to always provide a fallback in case where some feature is unavailable. Also, did you knew that Mozilla is creating a brand new engine called
servo? This new engine will provide a safer browser with lots of benefits from its parallel processing engine, it will rock! You can learn more about it
on the Mozilla Servo github page.

**http://getfirefox.com

““https://www.mozilla.org/en-US/firefox/developer/

*!There are many good editors out there with different levels of complexity and features. A very popular one that I recommend for those that
don’t have a favorite one is Atom. Personally, I use WebStorm which is a complete IDE for web app creation.

http://getfirefox.com
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://github.com/servo/servo
http://getfirefox.com
https://www.mozilla.org/en-US/firefox/developer/
http://atom.io/
http://www.jetbrains.com/webstorm/

Setup For Firefox OS App Development 7

WebIDE Setup

If you’re running the current version of Firefox then you have the WebIDE available to you. Having
the WebIDE is not enough though. You still need to install the Firefox OS simulators on the WebIDE
itself to be able to test things without hooking a device to your machine. Mozilla has extensive
documentation about the WebIDE** so if you want to dive a bit deeper check it out.

The WebIDE is able to manage multiple Firefox OS versions so you can install simulators for version
1.2, up to 3.0, remember that the higher the version number the earlier it is. And by earlier | mean
buggy but since we can have multiple versions then we should just install them all so that we're
able to test our apps with different Firefox OS versions.

Lets take the new WebIDE for a spin and install the stuff we’ll need for later. To launch the it go to
the menu Tools -> Web Developer -> WebIDE.

m Window Help (4] 208NN &
Downloads 3#J
't? Add-ons Lr3BA FI‘-P-DSL.. . M The Mazil... . M Open We... . I
% Apps a
{ sz:c Now | > I L4 Search
| — —_ e
Toggle Tools <
Page Info 38l Inspector THC
HitpRequester “C38P Web Console K
Adblock Plus > Debugger S
| Style Editor 0F7
Performance {rF5
Network T#EQ
Storage Inspector {rFo
Developer Toolbar ftF2
Browser Console fr38d
Responsive Design View Y #M
Eyedropper
Scratchpad {rF4
Page Source F#EU
Connect...

Firefox OS Simulator
Get More Tools

&% FireFTP

£ FireSSH

Where you can find the Web IDE

After you launch the WebIDE you will see a screen like this

“*https://developer.mozilla.org/en-US/docs/Tools/WebIDE

https://developer.mozilla.org/en-US/docs/Tools/WebIDE
https://developer.mozilla.org/en-US/docs/Tools/WebIDE
https://developer.mozilla.org/en-US/docs/Tools/WebIDE

Setup For Firefox OS App Development

[BN] Firefox WebIDE

€ New App...

&= Open Packaged
App...

&9 Open Hosted App...

Main Process
2048

9GAG
Allrecipes Brasil

Bluetooth Manager

»oeemE O

The WebIDE main screen

[] lainfood

c

© Can't see your device?

©

lainfood

Firefox 0S 1.3
Firefox OS 2.1
Firefox OS 2.2

Firefox OS 3.0

O A 4 AR
AR

Install Simulator

OO Remnata Runtima

You need to click the Select Runtime button and select the Install Simulator option as seen below.

[BN] Firefox WebIDE

€ New App...

&= Open Packaged
App...

&9 Open Hosted App...

Main Process
2048
9GAG

Firefox OS simulators

Bluetooth Manager ~— |

»oeem(E O

[] lainfood

c

9 Can't see your device?

& lainfood

~f Firefox 0S 1.3

~f Firefox OS 2.1
~f Firefox 0S 2.2

IR 2R

~f Firefox OS 3.0

Click to install new
Allrecipes Brasil —q © Install Simulator

O Remnta Riuntime

That will lead you to the Extra Components screen where you have the options of installing
different simulator versions and both the ADB add-on and the tools add-on. The WebIDE uses
ADB to communicate with connected devices. It is able to handle all the ADB stuff for you if you

Setup For Firefox OS App Development 9

install the ADB Helper Add-on. The Tools Add-on will help you debug other connected devices
such as Android devices and iOS devices.

My recommendation is to install everything.

o0ce Firefox WebIDE
0 lainfood
€ NewApp... Open Add-ons Manager Close c
e — Extra Components © Cantsco your device?
App...
& Open Hosted App... ADB Helper Add-on Installed)
@ lainfood
uninstall
) Tools Adapters Add-on Installed R &
o Main Process)
uninstall f Firefox OS 2.1 o3
A f Firefox 0S 2.2 %
ﬂ 9GAG Firefox OS 1.3 Simulator (stable) Installed ~F Firefox 0S 3.0 %
@ Allrecipes Brasil uninstall © Install Simulator
0 Bluetooth Manager
Firefox OS 1.4 Simulator (stable) Not Installed T T
= Hemote Runtime
o Bookmark install
O Chrome Desktop
a- Browser
- ; . L1 Safari, Firsfox, and oth
O) Busn Firefox OS 2.0 Simulator (stable) Not Installed WotVions onigg. omner
install .
e Bugzilla Lite @ Runtime Info
The extra components page

In this chapter we learned that all we need to develop Firefox OS apps is the Firefox browser, the
WebIDE and Firefox OS Simulators (and a good text editor is a plus).

Now that we have setup all the tools we need, lets learn some basic concepts before we build our
first app.

©O© 00 N O U b W N =

(AN
Ll)

Basic Concepts

Before we get our hands dirty and build our first app, let’s learn some basic concepts about
developing for Firefox OS. We learned in the introduction that, just like web pages, apps in Firefox
OS are based on HTML5. However, we haven’t explained what makes Firefox OS apps different
from regular web pages.

If we use our collective knowledge about other mobile platforms we can see that native application
generally will have:

+ A name and an icon that the user can press to launch the app.
« Access to system services and hardware capabilities.

Looking at the big picture, a Firefox OS app is just a web page that has an icon, a name and is usually
able to work offline (depending on how the app is implemented). All the data about an application
such as name, icon and more is defined in a application manifest file that is the focus of our next
section.

The Application Manifest

The manifest*’ is a JSON** file that describes aspects of an hosted web app. Usually this file is called
manifest.webapp and lives next to your main HTML file that is usually called index.html.

Sample Manifest

{

"name": "Memos",

"version": "1.1",

"description": "A simple memo taking app",

"launch_path": "/index.html",

"permissions": {

"storage": {

"description": "Required for storing and retrieving notes."
}

3

"developer": {

“https://developer.mozilla.org/docs/ Apps/Manifest
“http://json.org

10

https://developer.mozilla.org/docs/Apps/Manifest
http://json.org
https://developer.mozilla.org/docs/Apps/Manifest
http://json.org

12
13
14
15
16
17
18
19

Basic Concepts 11

"name": "Andre Garzia",
"url": "http://andregarzia.com"
},
"icons": {
"60": "/style/icons/icon_60.png",
"128": "/style/icons/icon_128.png"
}

Above we can see the manifest for an application called memos*’. Among other things it describes
who created the application, which icons are used, what is the name of the app, what file is used to
launch the app (in this case it is index.html), what hardware access permissions your app requires,
etc. This file is used by Firefox OS to add the application to the device’s home screen and by the
Firefox Marketplace to display the application on the catalog as we can see in the image below.

800 Memos | Firefox Marketplace e
J M Memos | Firefox Marketplace u + L
@/‘l @ Mozilla Foundation (US) | https://marketplace.firefox.com/app/memos?src=search (5 | E]- Google Q .ﬂ'. T ?
* Firefox Marketplace sign In

‘) Memos

i 2 Reviews

This app is unavailable for your platform.

A simple memo taking app auto-save.
A simple note taking application with

Version

Latest version: 1.1

Memos app shown at the Firefox Marketplace

Note how the information from the manifest is used by the system to add the app to the homescreen,
as we can see on the following screenshot.

“>This is a sample app for Firefox OS as seen on the Firefox Marketplace for which the source code is on GitHub.

https://marketplace.firefox.com/app/memos
https://github.com/soapdog/memos-for-firefoxos

Basic Concepts 12

800 Firefox OS Simulator
o[}

O -0

Cémera Galeria Radio FM Configurago

5 A A@

Marketplace HERE Maps ToDos

Imgur Image

XX Ry

E3 k2

Memos on the simulator

By gathering your HTML, CSS, JavaScript, and a manifest file you already have an application
ready to run on Firefox OS. Moving on our topic about basic concepts let’s learn more about what
application types there are.

Types of Application

Firefox OS currently has two types of applications: hosted apps and packaged apps - though more
types may become available in the future (e.g. custom keyboards and the ability to create other
system services).

« Hosted Apps: Are hosted on a web server just like normal websites. This means that when the
user launches a hosted app, its content is loaded from the remote server (or from the cache, if
available).

 Packaged Apps: Are distributed as a zip file and copied to the device when installed. When
the user launches a packaged app, its contents are loaded from the zip file instead of a remote
server.

Basic Concepts 13

There are pros and cons to both types. On the one hand, hosted apps are easier to maintain, as all
you need to do is maintain files on your web server. However, it’s harder to make them work offline
because it requires the use of the much despised appcache*. Hosted apps are also limited in which
WebAPIs they can use, which means they can’t do all the things a packaged app can do.

On the other hand, packaged apps have all their content stored on the device - which means they
are always available when the user is offline. They also have the ability to access security-sensitive
WebAPIs that are not available to hosted apps. Updating them can be a bit painful, because you
need to upload any new version to the Firefox Marketplace - which means going through a review
process, which can take some time.

When trying to choose which type of application to build, consider: if you require advanced
WebAPIs, then you should use a packaged app. However, if your application works fine without
needing to access any advanced system services or device capabilities beyond those already available
in a web browser, then always choose a hosted app. It is ok to use packaged apps if you don’t have
a place to host it.

Above I mentioned that appcache can be problematic (which is sometimes required for hosted apps).
Don’t worry too much as there are tools available to make appcache generation and deployment
easier *.

In this book we're going to build a packaged app, as it will allow us to explore what is possible
with the WebAPIs. However, most of what we will learn about manifests applies to hosted apps. If
you want to know more about distributing hosted apps, check the hosted applications link at the
developer hub*®.

Now that we’ve covered the two types of applications that Firefox OS supports, let’s look at the
different levels of system access they can have.

Security Access Levels

There are three security levels on Firefox OS - with each level having more access to APIs than the
previous level.

« Plain (a.k.a. web): This is the default level for all applications. This level applies to hosted
apps and packaged apps that do not declare a type property in their manifest file. These apps
have access to the common set of APIs found in browsers - but don’t have access to any of
Mozilla’s WebAPIs.

» Privileged: This type of app has access to all common APIs found in the Firefox browser,
plus some additional ones, such as contacts, and system alarms. Only packaged apps can be
privileged apps and the package must be digitally signed by the Firefox OS Marketplace.

“*https://developer.mozilla.org/pt-BR/docs/HTML/Using_the_application_cache

“"There are many useful tools out there, check out Gulp, Grunt, Yeoman, Bower. There is a lot of overlap among these tools, its a matter of
preference which one you use. (I like Gulp more than Grunt mostly because gulpfiles are easier for me to read).

“®https://marketplace.firefox.com/developers/docs/hosted

https://developer.mozilla.org/pt-BR/docs/HTML/Using_the_application_cache
https://marketplace.firefox.com/developers/docs/hosted
https://marketplace.firefox.com/developers/docs/hosted
https://developer.mozilla.org/pt-BR/docs/HTML/Using_the_application_cache
https://github.com/gulpjs/gulp
http://gruntjs.com
http://yeoman.io/
http://bower.io/
https://marketplace.firefox.com/developers/docs/hosted

Basic Concepts 14

« Certified: For security reasons, this level is only available to Mozilla and its partners (e.g.
phone manufacturers, telecoms, etc.). Certified apps are able to access all the APIs, such as
telephony and more. An example of certified app is the Firefox OS dialer application.

During development, it is possible for us to access privileged APIs without needing any special
permission from Mozilla. But when we want to distribute a privileged app, it first needs to go to
the Firefox Marketplace. There, the code is checked as part of a rigorous approval process, and if it’s
found to be OK, it will be digitally signed - which tells users of Firefox OS that this application is
allowed to access sensitive APIs.

On the page about the WebAPIs on the Mozilla Developer Network*” we can see what APIs are
implemented on what platforms and what access level is needed to use each API.

Provides support for writable files with locking support.
IndexedDB

Client-side storage of structured data with support for high-performance
searches.

‘S, Privileged
Provides access to the user's contacts database, with support for adding,
reading, and modifying contact information.
Device Storage API ‘S, Privileged | | Mon-standard

Allows apps to create, read, and change files stored in a central location
on the device, such as the "pictures” folder on modern desktop platforms
or the photo storage on mobile devices.

Access levels for the APIs

As we can see on the image above, any application can access the IndexedDB API and FileHandle
API but only privileged apps can access the Contacts API and Device Storage APL

Mozilla’'s WebAPIs

Firefox OS provides us with the APIs that enable us to build applications that are just as capable as
native apps on other platforms. Access to hardware and services is done through the WebAPIs. To
learn more about the list of available APIs for the Firefox OS check out the Web API page on the
Mozilla Developers Network™.

Lets review some code examples to see how easy those APIs are to use. Don’t take this example as
a full documentation of the WebAPIs, they are just a small sample to make you understand how we
can access device features using JavaScript.

“https://developer.mozilla.org/en-US/docs/WebAPI
https://developer.mozilla.org/en-US/docs/Web/Reference/ APT

https://developer.mozilla.org/en-US/docs/WebAPI
https://developer.mozilla.org/en-US/docs/Web/Reference/API
https://developer.mozilla.org/en-US/docs/Web/Reference/API
https://developer.mozilla.org/en-US/docs/WebAPI
https://developer.mozilla.org/en-US/docs/Web/Reference/API

O O b W N =~

O 00 9 O O P W N =~

10

Basic Concepts 15

Example #1: Making calls

Imagine that you have an application that needs to open the dialer with a phone number already
filled in. You can just use the following code:

Sending a phone number to the dialer

var call = new MozActivity({
name: "dial",
data: {
number : "5555-9999"
}
1)

This code makes a request to the dialer app to call a particular number. Note that this doesn’t actually
place a call - the user will still need to tap the dial button to place the call. Requiring explicit user
action before executing some other action is pretty common: it’s a good security pattern because it
requires user interaction through consent before allowing something to happen. Other APIs that can
place calls without user interaction are available for more elevated access levels. Certified apps can
place calls without interaction for example. The API used in the code above, called “Web Activities”,
is available to all apps though.

Check out the the Mozilla Blog for more information about Web Activites®'.

Example #2: Saving a contact

Imagine that you have a company intranet and you want to provide a way to transfer a contact from
the online intranet address book to the phone address book. You can do that with the Contacts API

Saving a contact

var contact = new mozContact();
contact.init({name: "0din"});

var request = navigator.mozContacts.save(contact);
request.onsuccess = function() {
// contact saved successfully
b
request.onerror = function() {
// there was an error while trying to save the contact

};

Thttps://hacks.mozilla.org/2013/01/introducing-web-activities/

https://hacks.mozilla.org/2013/01/introducing-web-activities/
https://hacks.mozilla.org/2013/01/introducing-web-activities/

© 00 N O U b W N =

SN =Y
G0 O W N,

Basic Concepts 16

This API creates an object with the contact data and saves it into the phone address book without
requiring user interaction. Because access to contacts carries potential privacy implications, this API
is only available for privileged apps. This pattern where you create an object with a success and an
error callback is used in many of the WebAPIs.

To learn more about this API, read the page about the Contacts API on the Mozilla Wiki**.

Example #3: Picking an image from the camera

Imagine you are building an application that applies fancy filters to pictures. You want to place a
button in your app that allows the user to pick a photo from a photo album or from the camera.

Picking an image

var getphoto = new MozActivity({
name: "pick",
data: {
type: ["image/png", "image/jpg", "image/jpeg"]
}
1);

getphoto.onsuccess = function () {
var img = document.createElement("img");
if (this.result.blob.type.indexOf("image") != -1) {
img.src = window.URL.createObjectURL(this.result.blob);
}
b

getphoto.onerror = function () {

// error!

};

Here we see another example of a WebActivity®’. These activities are available to all applications. In
this specific sample we’re using the pick activity and passing in the MIME Types of the files that we
wish to retrieve. When this code is executed, the system shows a screen to the user asking where he
or she wants to retrieve the image from (camera, gallery, wallpapers). If the user selects an image,
the success callback is triggered. If the user cancels the operation, the error callback is executed. On
the image below, we can see the dialog that lets the user pick a photo from the device:

*?https://wiki.mozilla.org/WebAPI/ContactsAPI
>https://hacks.mozilla.org/2013/01/introducing-web-activities/

https://wiki.mozilla.org/WebAPI/ContactsAPI
https://hacks.mozilla.org/2013/01/introducing-web-activities/
https://wiki.mozilla.org/WebAPI/ContactsAPI
https://hacks.mozilla.org/2013/01/introducing-web-activities/

Basic Concepts 17

© O O Firefox 0S Simulator © O O Firefox 0S Simulator

B =

Share on imgur.com

Selecionar de:

%1 Papel de parede
{3 caleria
() camera

Cancelar

(alBle] G

Example of the pick activity

Summary

In this chapter we saw that, unlike regular web pages, both Firefox OS’ hosted apps and packaged
apps rely on a manifest file. We also saw that, from a security perspective, packaged apps can be
“privileged” or “certified”. Only privileged and certified apps can access Mozilla’s powerful set of
WebAPIs. The more sensitive WebAPIs are not available to hosted apps or to regular web pages.

Now it’s about time we get our hands dirty and create an app!

Our First App

800 Firefox OS Simulator

Welcome Memo

E3E=YE2

Memos, a minimalist notepad app

In this chapter we’re going to build a simple Memos application, which is an application for taking
notes. Before coding, let’s review how this app works.

The app has three screens. The first one is the main screen and has a list of your stored notes by
title. When you click a note (or add a new one) you’re moved to the detail screen that allows you to
edit the content and title of the given note. This is shown in the figure below.

18

Our First App 19

800 Firefox OS Simulator
) 12h43

¢ DT <

This is a note taking app. Use the plus sign
in the topleft corner of the main screen to
add a new memo. Click a memo to edit it.
All your changes are automatically saved.

[al[®][9]

Memos, editing screen

On the screen shown above the user can choose to delete the selected note by clicking on the trash
icon. This will cause a confirmation dialog to be shown.

Our First App 20

800 Firefox OS Simulator

P! @ 12h44

Confirmation

Are you sure you want to delete this
memo?

[al[®][?]

Memos, note removal confirmation screen

The source code for Memos is available at the Memos Github Repo®* (also available as a .zip** file).
I recommend you download the files, so it’s easier to follow along. Another copy of the source code
is available on the code folder inside the github repository for this book*®.

Memos uses IndexedDB®” to store the notes and the Firefox OS Building Blocks® to build the
interface. You can use any library and layout that you want. You’re not forced into using the Firefox
OS look and feel. We'll use it for our demo because it looks awesome.

Cool Frameworks & Libraries

There are many professional frameworks and libraries out there. In this book we’re using a minimal
source code created by yours truly just to make this demo but on your own apps you probably want
to consider using better solutions or even rolling your own. Below we list some popular frameworks
and libraries which we think deserve some attention.

>*https://github.com/soapdog/memos-for-firefoxos
>Shttps://github.com/soapdog/memos-for-firefoxos/archive/master.zip
*Shttps://github.com/soapdog/firefoxos-quick-guide
"https://developer.mozilla.org/en-US/docs/IndexedDB
https://developer.mozilla.org/en-US/Apps/Design/Firefox_OS_building_blocks

https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip
https://github.com/soapdog/firefoxos-quick-guide
https://developer.mozilla.org/en-US/docs/IndexedDB
https://developer.mozilla.org/en-US/Apps/Design/Firefox_OS_building_blocks
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip
https://github.com/soapdog/firefoxos-quick-guide
https://developer.mozilla.org/en-US/docs/IndexedDB
https://developer.mozilla.org/en-US/Apps/Design/Firefox_OS_building_blocks

Our First App 21

+ Enyo JS% Complete mobile app development framework. Easy to use, well documented,
sane. Its my favorite.

« Ember JS% A framework for creating ambitious web apps.

« React® A framework for creating user interfaces.

« Angular JS* A popular framework for building web applications.
+ jQuery Mobile® A touch optimized web framework.

Of course there are hundred others but these are all popular/good/interesting enough and should
serve you well depending on your needs.

*http://enyojs.com
bhttp://emberjs.com/
‘https://facebook.github.io/react/
dnttps://angularjs.org/
‘https://jquerymobile.com/

The first step is to create a folder for the application, let’s call this folder memos.

Creating the app manifest

Memos manifest is pretty straight forward. Create a file named manifest.webapp on the memos
folder. Manifests are JSON’ files that describes an application. In this file we place things such as
the name of the app, who the developer is, what icons are used, what file is used to launch the app,
what privileged APIs it would like to use, and more.

Below we can see the contents of the Memos app manifest. Attention when copying this data because
it’s very easy to place a comma on the wrong place and create an invalid JSON. There are many
tools that you can use to validate JSON files but there is a special one that is built specifically for
validating app manifests. You can check out this online tool at http://appmanifest.org/*°. To learn
more about app manifests read this page on MDN about them®".

>*http://json.org
®http://appmanifest.org/
®Thttps://developer.mozilla.org/docs/Apps/Manifest

http://enyojs.com
http://emberjs.com/
https://facebook.github.io/react/
https://angularjs.org/
https://jquerymobile.com/
http://enyojs.com
http://emberjs.com/
https://facebook.github.io/react/
https://angularjs.org/
https://jquerymobile.com/
http://json.org
http://appmanifest.org/
https://developer.mozilla.org/docs/Apps/Manifest
http://json.org
http://appmanifest.org/
https://developer.mozilla.org/docs/Apps/Manifest

o N O O b W N =

SR s
O b WO N =~ O O

16
17
18
19

Our First App 22

Memos manifest file (manifest.webapp)

{

"name": "Memos",
"version": "1.1",
"description”: "A simple memo taking app",
"launch_path": "/index.html",
"permissions”: {
"storage": {
"description": "Required for storing and retrieving notes."
}
3,
"developer": {
"name": "Andre Garzia",
"url": "http://andregarzia.com"
3
"icons": {
"60": "/style/icons/icon_60.png",
"128": "/style/icons/icon_128.png"

Let’s review the fields from the manifest above.

Field Description
name This is the name of the application.
version This is the current version of the app.

launch_path What file is used to launch your application.
permissions What API permissions your app requests. More information about

this below.
developer Who developed this application
icons The icons used by the app in many different sizes.

The most interesting part of this manifest is the permissions field where we ask for the storage
permission that allows us to use IndexedDB without size restrictions®” (thanks to that permission
we can store as many notes as we want - though we should be mindful not to use too much of the
user’s disk space!).

Now that the manifest is ready let’s move on to the HTML.

®2To learn more about permissions read the page on MDN about app permissions.

https://developer.mozilla.org/en-US/docs/Web/Apps/App_permissions

Our First App 23

Building the HTML

Before we start working on the HTML, let’s take a brief detour to talk quickly about the Gaia Building
Blocks®, which are a collection of reusable CSS and JS with the look and feel of Firefox OS that we
can use on our own apps.

Just like on the Web, you’re not required to use the look and feel of Firefox OS in your own app.
Using or not using the Gaia Building Blocks is a personal decision - and a good applications should
have its own distinctive style and user experience. The important thing to understand is that your
app will not suffer any type of prejudice or penalty on the Firefox Marketplace by not using the Gaia
look and feel. I am using it here because I am not a good designer so ready made UI toolkits appeal
to me (it’s either that or hiring a designer).

The HTML structure that we use in this application was built following the patterns adopted by
the Gaia Building Blocks where each screen is a <section> and the elements follow a predefined
format. If you haven’t already, download the source code from the memos repository®* so that you
have the files (including the Building Blocks) to use. For those not confident with git and GitHub,
the files are also available as a .zip file®.

A Warning: The version of the Gaia Building Blocks I used for this app is not the most up-
to-date available from Mozilla. Trying to update to the current version will, unfortunately,
break the Memos app. In your own projects, however, always use the latest version of the

Gaia Building Blocks.

Including the Building Blocks

Before doing anything else copy the shared and the styles folders that you obtained by downloading
the Memos repository to the memos folder you created. This will allow use to use the Gaia Building
Blocks in our app.

Let’s begin our index.html files by including the needed bits.

“http://buildingfirefoxos.com/building-blocks
**https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip

http://buildingfirefoxos.com/building-blocks
http://buildingfirefoxos.com/building-blocks
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip
http://buildingfirefoxos.com/building-blocks
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/memos-for-firefoxos/archive/master.zip

O N O O & W N~

S =Y
<N O O W N =r OO O

18
19

Our First App

<IDOCTYPE

<html>

<head>
<meta
<link
<link
<link
<link

<link

<link

<link

<link

<title
</head>

html>

charset="utf-8">

rel="stylesheet" type="text/css" href="style/base.css" />
rel="stylesheet" type="text/css" href="style/ui.css" />
rel="stylesheet" type="text/css" href="style/building_blocks
rel="stylesheet" type="text/css"
href="shared/style/headers.css" />

rel="stylesheet" type="text/css"
href="shared/style_unstable/lists.css" />
rel="stylesheet" type="text/css"
href="shared/style_unstable/toolbars.css" />
rel="stylesheet" type="text/css"
href="shared/style/input_areas.css" />

rel="stylesheet" type="text/css"
href="shared/style/confirm.css" />

>Memos</title>

.css" />

24

On line 01 we declare the DOCTYPE as HTMLS5. From line 05 up to 15 we include the CSS from the
various components that we’re going to use in our app such as headers, lists, text entry fields and

more.

Building the main screen

Now we can start building the various screens. As mentioned earlier, each screen used by our app is
a <section> inside the HTML <body>. The body tag must have an attribute role with its value equal
to application because that is used by the CSS selectors to build the interface, so our body tag will

be <body role="application">. Let’s build the first screen and declare our body tag as well.

<body role="application">

<section role="region" id="memo-list">

<header>

<menu type="toolbar">

add

</menu>
<h1>Memos</h1>
</header>
<article id="memolList" data-type="list"></article>

</section>

0 = O O b W N =~

NN NN NDNDNDNDDN A B 1 s s sy s
0 1 O O b WO N~ O 00 O O b W NN~ O

Our First App 25

Our screen has a <header> containing a button to add new notes and the application name. The
screen also has an <article> which will be used to hold the list of stored notes. We’re going to use
the button and the article IDs to capture events when we reach the JavaScript implementation part.

Be aware that each screen is a fairly straight forward HTML chunk. Building these same screens in
many languages usually requires a lot more work. All we’re doing is declaring our containers and
giving them IDs when we need to reference them later.

Now that the main screen is done, let’s build the editing screen.

Building the editing screen

The editing screen is a bit more complex because it also holds the dialog box used when the user
tries to delete a note.

<section role="region" id="memo-detail" class="skin-dark hidden">
<header>
<button id="back-to-list">back
</button>
<menu type="toolbar">
share</spa\
n>

</menu>
<form action="#">

<input id="memo-title" placeholder="Memo Title" required="required"

type="text">
<button type="reset">Remove text</button>
</form>
</header>

<p id="memo-area">
<textarea placeholder="Memo content" id="memo-content"></textarea>
</p>
<div role="toolbar"»>

<1li>
<button id="delete-memo" class="icon-delete">Delete</button>
</1i>

</div>
<form id="delete-memo-dialog" role="dialog" data-type="confirm"
class="hidden">
<section>

29
30
31
32
33
34
35
36
37

D W N~

Our First App 26

<h1>Confirmation</hi>
<p>Are you sure you want to delete this memo?</p>
</section>
<menu>
<button id="cancel-delete-action">Cancel</button>
<button id="confirm-delete-action" class="danger">Delete</button>
</menu>
</form>

</section>
At the top of the screen, represented by the <header> element, we have:

« a back button to return to the main screen,
« atext entry field that is used to hold the title of the given note,
- and a button that is used to share the note over email.

Below the top toolbar, we have a paragraph holding a <textarea> that holds the content of the note
and then another toolbar with a trashcan button used to delete the current viewed note.

These three elements and their child nodes are the editing screen. After them we have a <form> that
is used as a dialog box containing the confirmation screen that is presented to the user when he or
she tries to delete a note. This dialog box is pretty simple, it only contains the text of the confirmation
prompt and two buttons; one for deleting the note and another for canceling the action.

Now that we’re closing this <section> we have all our screens implemented and the remaining
HTML code is only there to include the JavaScript files and close the html file.

<script src="/js/model. js"></script>
<script src="/js/app.js"></script>
</body>

</html>

Crafting the JavaScript code

Now we’re going to breathe life into our app by adding JavaScript. To better organize this code, I've
divided the JavaScript code into two files:

« model.js: contains the routines to deal with storage and retrieval of notes but does not contain
any app logic or anything related to the interface or data entry. In theory, we could reuse this
same file in other apps that required text notes.

« app.js: attaches the HTML elements with their event handlers and contains the app logic.

Both files should be placed inside a js folder next to the style and shared folders.

0 I O O P W N =

B s s
0 9 0 O b 0ON =~ O

Our First App 27

model.js

We’re going to use IndexedDB®° to store our notes. Since we asked the sforage permission on the app
manifest we can store as many notes as we want - however, we should not abuse this! Firefox OS
devices generally have very limited storage space, so you always need to be mindful of what data
you store (users will delete and down-rate your app if it uses too much storage space!). And storing
excessive amounts of data will have a performance penalty, which will make your app feel sluggish.
Please also note that when you submit an application to the Firefox OS Marketplace, reviewers will
ask you why you need unlimited storage space - if you can’t justify why, your application will be
rejected.

The part of the code from model.js that is shown below is responsible for opening the connection
and creating the storage.

Important: This code was written to be understood easily and does not represent the best practices
for JS programming. Some global variables are used ('m so going to hell for this) among other
tidbits. The error handling code is basically non-existant. The main objective of this book is to
teach the workflow of developing apps for Firefox OS and not teaching best JS patterns. That being
said, depending on feedback, I will update the code in this book to better reflect best practices if
enough people think it will not impact the beginners.

var dbName = "memos";
var dbVersion = 1;
var db;

var request = indexedDB.open(dbName, dbVersion);

request.onerror = function (event) {
console.error("Can't open indexedDB!!!", event);
}s
request.onsuccess = function (event) {
console. log("Database opened ok");
db = event.target.result;

1
request.onupgradeneeded = function (event) {

console. log("Running onUpgradeNeeded");

“https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB

https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/IndexedDB/Using_IndexedDB

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Our First App 28

db = event.target.result;
if (!db.objectStoreNames.contains("memos")) {
console.log("Creating objectStore for memos");

var objectStore = db.createObjectStore("memos", {
keyPath: "id",
autoIncrement: true

1)

objectStore.createlndex("title", "title", {
unique: false

});

console.log("Adding sample memo");

var sampleMemol = new Memo();

sampleMemol .title = "Welcome Memo";

sampleMemol.content = "This is a note taking app. Use the plus sign " +
"in the topleft corner of the main screen to " +
"add a new memo. Click a memo to edit it. All " +

"your changes are automatically saved.";

objectStore.add(sampleMemol);

Important: Forgive me again for the globals, this is an educational resource only. Another detail is
that I removed the comments from the source code to save space in the book. If you pick the source
from GitHub you will get all the comments.

The code above creates a db object and a request object. The db object is used by other functions in
the source to manipulate the notes storage.

On the implementation of the request.onupgradeneeded function we also create a welcome note.
This function is executed when the application runs for the first time (or when the database version
changes). This way once the application launches for the first time, the database is initialized with
a single welcome note.

With our connection open and the storage initialized its time to implement the basic functions for
note manipulation.

O N O O & W N~

BB D WWWWWW W W W WNDNDNDDNDDNNDMNDNNDNNDNNAS PSS,
N P © O 0 39 O O b WONP O O 00N O O ik WOWNPHO O W NO0O O ik WOWN P~ O O

Our First App

function Memo() {

this.title = "Untitled Memo";
this.content = "";
this.created = Date.now();

this.modified = Date.now();

function listAllMemoTitles(inCallback) {
var objectStore = db.transaction("memos").objectStore("memos");

console.log("Listing memos...");

objectStore.openCursor().onsuccess = function (event) {
var cursor = event.target.result;
if (cursor) {
console.log("Found memo #" + cursor.value.id +
" " + cursor.value.title);
inCallback(null, cursor.value);

cursor.continue();

function saveMemo(inMemo, inCallback) {

var transaction = db.transaction(/"memos"], "readwrite");
console. log("Saving memo");

transaction.oncomplete = function (event) {
console.log("All done");

b
transaction.onerror = function (event) {
console.error("Error saving memo:", event);
inCallback({
error: event
}, null);

};

var objectStore = transaction.objectStore("memos");

inMemo.modified = Date.now();

43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
o8
59
60

Our First App 30

var request = objectStore.put(inMemo);

request.onsuccess = function (event) {
console.log("Memo saved with id: " + request.result);
inCallback(null, request.result);

function deleteMemo(inId, inCallback) {
console.log("Deleting memo...");
var request = db.transaction(/"memos"],
"readwrite").objectStore("memos").delete(inId);

request.onsuccess = function (event) {
console.log("Memo deleted!");
inCallback();

};

On the piece of code above we create a constructor function that creates new Memos with some
fields already initialized. After that we implement functions for listing, saving and removing notes.
Many of these functions receive a callback parameter called inCallback which is a function to be
called after the function does its thing. This is needed due to the asynchronous nature of IndexedDB.
All callbacks have the same signature which is callback(error, value) where one of the values is
null depending on the outcome of the previous function.

Since this is a beginner book I’ve opted not to use Promises®since many beginners are not familiar
with the concept. I recommend using such concepts to create easier to maintain code that is more
pleasant to read.

*https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise

Now that our note storage and manipulation functions are ready, let’s implement our app logic in a
file called app.js.

app.js

This file will contain our app logic. Since the source code is too large for me to place it all at once
on the book, I will break it in parts and explain each part piece by piece.

https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/Promise.jsm/Promise

O N O O & W N~

BB D WWWWWW W W W WNDNDNDDNDDNNDMNDNNDNNDNNAS PSS,
N P © O 0 39 O O b WONP O O 00N O O ik WOWNPHO O W NO0O O ik WOWN P~ O O

Our First App 31

var listView, detailView, currentMemo, deleteMemoDialog;

function showMemoDetail(inMemo) {
currentMemo = inMemo;
displayMemo();
listView.classlList.add("hidden");
detailView.classList.remove("hidden");

function displayMemo() {
document .getElementById("memo-title").value = currentMemo.title;
document .getElementById("memo-content").value = currentMemo.content;

function shareMemo() {
var shareActivity = new MozActivity({
name: "new",
data: {
type: "mail",
body: currentMemo.content,
url: "mailto:?body=" + encodeURIComponent(currentMemo.content) +

"&subject=" + encodeURIComponent(currentMemo.title)

});

shareActivity.onerror = function (e) {
console.log("can't share memo", e);

};

function textChanged(e) {
currentMemo.title = document.getElementById("memo-title").value;
currentMemo.content = document.getElementById("memo-content").value;
saveMemo(currentMemo, function (err, succ) {
console.log("save memo callback ", err, succ);
if (lerr) {
currentMemo.id = succ;

});

43
44
45
46

© 00 N O U b W N =

SR) S s s s s
00 3 O O b WOWDN =~

Our First App 32

function newMemo() {
var theMemo = new Memo();
showMemoDetail (theMemo);

At the beginning we declare some global variables (yuck!!!) to hold references to some DOM elements
that we want to use later inside some functions. The most interesting global is currentMemo which
is an object that holds the current note that the user is reading.

The showMemoDetail() and displayMemo() functions work together. The first one loads the selected
note into the currentMemo and manipulates the CSS of the elements so that the editing screen is
shown. The second one picks the content from the currentMemo variable and places it on the screen.
We could do both things on the same function but having them separate makes it easier to experiment
with new implementations.

The shareMemo() function uses a WebActivity®” to open the email application with a new message
pre-filled with the selected notes content.

The textChanged() function picks the data from the entry fields and place them into the current-
Memo object and then saves the note. This is done because the application is an auto-save app where
your content is always saved. All alterations on the content or title of the note will trigger this
function and the note will always be saved on the IndexedDB storage.

The newMemo() function creates a new note and opens the editing screen with it.

function requestDeleteConfirmation() {
deleteMemoDialog.classList.remove("hidden");

function closeDeleteMemoDialog() {
deleteMemoDialog.classlList.add("hidden");

function deleteCurrentMemo() {
closeDeleteMemoDialog();
deleteMemo(currentMemo.id, function (err, succ) {
console.log("callback from delete", err, succ);
if (lerr) {
showMemolList();

});

"https://hacks.mozilla.org/2013/01/introducing-web-activities/

https://hacks.mozilla.org/2013/01/introducing-web-activities/
https://hacks.mozilla.org/2013/01/introducing-web-activities/

19
20
21
22
23
24

0 = O O b W N =~

NN NN NN NN B B 1 b 1 s
N O O b WO N O © 03O0 O b WO N O O

Our First App 33

function showMemolList() {
currentMemo = null;
refreshMemoList();
listView.classList.remove("hidden");
detailView.classList.add("hidden");

The requestDeleteConfirmation() function is responsible for showing the note removal confirma-
tion dialog.

The closeDeleteMemoDialog() and deleteCurrentMemo() are triggered by the buttons on the
removal confirmation dialog.

The showMemoList() function does some clean up before showing the list of stored notes. For
example, it cleans the content of currentMemo since we’re not reading any memo yet.

function refreshMemoList() {
if (!db) {
// HACK:
// this condition may happen upon first time use when the
// indexDB storage is under creation and refreshMemolist()
// is called. Simply waiting for a bit longer before trying again
// will make it work.
console.warn("Database is not ready yet");
setTimeout(refreshMemolList, 1000);
return;

}

console.log("Refreshing memo list");

var memolListContainer = document.getElementById("memolList");

while (memolListContainer.hasChildNodes()) {
memolL istContainer.removeChild(memolListContainer.lastChild);

var memolList = document.createElement("ul");
memolL istContainer.appendChild(memoList);

listAllMemoTitles(function (err, value) {
var memoltem = document.createElement("1i");
var memoP = document.createElement("p");
var memoTitle = document.createTextNode(value.title);

28
29
30
31
32
33
34
35
36
37
38
39
40
41

0 N O O & W N =

B) S s s
<N O O b WO N =~ O O

Our First App 34

memoltem.addEventListener("click", function (e) {
console.log("clicked memo #" + value.id);
showMemoDetail(value);

1)

memoP . appendChild(memoTitle);
memoItem.appendChild(memoP);
memolList.appendChild(memoItem);

});

The refreshMemoList() function modifies the DOM by building element by element the list of
notes that is displayed on the screen. It would be a lot easier to use some templating aid such as
handlebars®® or underscore® but since this app is built using nothing but vanilla javascript we’re
doing everything by hand. This function is called by showMemoList() that was shown above.

These are all the functions used by our app. The only part of the code that is missing is the
initialization of the event handlers and the initial call of refreshMemolList().

window.onload = function () {
// elements that we're going to reuse in the code
listView = document.getElementById("memo-1list");
detailView = document.getElementById("memo-detail");
deleteMemoDialog = document.getElementById("delete-memo-dialog");

// All the listeners for the interface buttons and for the input changes
document .getElementById("back-to-list")
.addEventlListener("click", showMemolList);
document .getElementById("new-memo"
.addEventListener("click", newMemo);
document .getElementById("share-memo")
.addEventListener("click", shareMemo);
document.getElementById("delete-memo")
.addEventlListener("click", requestDeleteConfirmation);
document.getElementById("confirm-delete-action")
.addEventListener("click", deleteCurrentMemo);

®http://handlebarsjs.com/
**http://underscorejs.org/

http://handlebarsjs.com/
http://underscorejs.org/
http://handlebarsjs.com/
http://underscorejs.org/

18
19
20
21
22
23
24
25
26
27
28

Our First App 35

document.getElementById("cancel-delete-action")
.addEventlListener("click", closeDeleteMemoDialog);

document .getElementById("memo-content")
.addEventListener("input", textChanged);

document .getElementById("memo-title")
.addEventListener("input", textChanged);

// the entry point for the app is the following command
refreshMemoList();

};

Now all files are ready and we can begin trying our application on the simulator.

Testing the app with the Web IDE

Before we try our application on the simulator we’d better check out if the files are in the correct
place. Your memos folder should look like this one:

A index.html
¥ ks
< app.js
<& model.js
M manifest.webapp
™ README
P] shared
B L] style

List of files used by Memos

If you have a hunch that you wrote something wrong, just compare your version with the one on
the memos github repository’ (There is also a copy of the source code in a folder called code on the
book repository’*).

To open the Web IDE go to the menu for Tools -> Web Developer -> Web IDE.

"https://github.com/soapdog/memos-for-firefoxos
"Thttps://github.com/soapdog/guia-rapido-firefox-os

https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/guia-rapido-firefox-os
https://github.com/soapdog/memos-for-firefoxos
https://github.com/soapdog/guia-rapido-firefox-os

Our First App 36

m Window Help [4] 203N &
Downloads 3
|c_ Add-ons %A f:lf-Host... . M The Mezil... . M Open We... . |
" Apps >] Q, search
Sync Now r —
Toggle Tools Xl
Page Info | Inspector O
HttpRequester 3P Web Console LHK
Adblock Plus > Debugger #S
| Style Editor {rF7
Performance {tF5
Network T#Q
Storage Inspector {tFa
Developer Toolbar {rF2
WebIDE A
Browser Console 4 3d
Responsive Design View “CEM
Eyedropper
Scratchpad {FF4
Page Source U
Connect...
Firefox OS Simulator
Get More Tools
& FireFTP
i FireSSH

Where you can find the Web IDE

With the WebIDE open, click the Add Packaged App option on the Apps tab and browse to where
you placed the memos files and select that folder.

Our First App

Project File Edit Runtime View

@ New App...
Q

= EEE” Packaged <€———— |Jse this option to open our app!

Q Open Hosted App...
L 4
4'
L 4
47
L 4
(4]
=}
0

Adding a new app

If everything works as expected you will see the Memos app on the list of apps.

=

Cart see your device?

Firefox 0S 1.3 ke
Firefox 05 2.2 =
Firefox OS 2.6 ke
Firefox 05 2.6 (1) %
Firefox 0S 3.0 i

Install Simulator

Remote Runtime
Chrome Desktop

Safari, Firefox, and

Our First App 38

Project File Edit Runtime View

@ New App.. ! Memos “IF.9| Remove Project =

b s/ (7] Can't see your device?
= Open Packaged b shared/ ' 3 Memos
e

App-. k style/ PACKAGED WEB
@ Open Hosted App.. index.html
manifest.webapp D t
A simple memo taking app

':) Memos Lot

/home/soapdog/prog/memos-
for-firefoxos

Firefox 05 1.3
Firefox 05 2.2
Firefox 05 2.6

Firefox 0S 2.6 (1)

& & & & &

app.//62ba99d2-8b7f-
4b15-aac7-9abe77b55fa2
/manifestwebapp

Firefox 05 3.0

O 4 % % 4 X

Install Simulator

8]

Remote Runtime

P

Chrome Desktop

Safari, Firefox, and

Memos showing on the Web IDE

After adding your application, use the options on the right side of the WebIDE to run one of your
installed simulators. If you haven’t installed any simulator yet, I suggest you follow the instructions
on screen and install them all.

With the Simulator running press the Play button on the memos listing on the Web IDE to install
memos on the running Simulator. After the installation the memos icon will appear at the Simulator
home screen. You can just click it to run your app.

Our First App

eC
Settings FM Radio BuddyUp

| |
Bugzilla Lite Facebook Twitter

V4

Notes Calculator Usage

Memos

—

Memos installed on the Simulator

>

applic
e scre

—

39

This button will install and
run your application on the

active simulator

H Remove Project ‘ VALID

‘) Memos
PACKAGED WEB
e

ation
en.

Description

A simple memeo taking app

Location
/home/soapdog/prog/memos-
for-firefoxos

ApplD
app://62ba99d2-8b7f-
4b15-aac7-9abe77h55fa2
/manifest.webapp

Congratulations! You created and tested your first app. It’s not a complex or revolutionary app - but
I hope it helped you understand the development workflow of Firefox OS. As you can see, it’s not

very different from standard Web development.

Remember that whenever you alter some of the source files you need to press the Reload button to
update the copy of the app that is stored on the running Simulator.

Summary

In this chapter we built our first application for Firefox OS and saw it running on the simulator. In
the next chapter we’re going to check out the developer tools that comes bundled with Firefox, they
will make your life a lot easier when developing applications.

Developer Tools

Firefox has many tools to help web developers do their job. Many people are still using FireBug’
and haven’t realize that Firefox now has its own built-in tools. In this chapter we’re going to review
the tools that are most useful for developing apps for Firefox OS.

If you're interested in learning more about these tools, and what other dev tools goodness is about
to land in Firefox, check out the developer tools” page on Mozilla’s Developer Network (really, go
check that link! I will wait).

Introducing the Responsive Design View

A common workflow in Web development is changing a HTML file and then reloading the page in
the browser to see what’s changed. Unless you are using something like Grunt or Volo, generally
there won’t be the need for a compilation step or similar. Even though the Firefox OS Simulator
permits you to use that same workflow, the emulator is currently restricted to one resolution
(480x320). This is less than ideal if you are also designing your application to work on tablets,
phablets, giant TVs, or anything in between.

To check how your app will look on any screen resolution, you can use Firefox’s Responsive Design
View tool to change the screen (and viewport). It can be enabled by going to the Tools menu ->
Web Developer -> Responsive Design View as shown in the image below. When you activate this
tool, the window will change so that you can alter the viewport size using the drag corners or the
selection box.

"?https://addons.mozilla.org/pt-BR/firefox/addon/firebug/
"https://developer.mozilla.org/en-US/docs/Tools

40

https://addons.mozilla.org/pt-BR/firefox/addon/firebug/
https://developer.mozilla.org/en-US/docs/Tools
https://addons.mozilla.org/pt-BR/firefox/addon/firebug/
https://developer.mozilla.org/en-US/docs/Tools

Developer Tools 41

Window Help

Downloads 3] Nightly Start Page
J Add-ons TG BA L
Sync Now
Toggle Tools Xl _.ﬁ
Page Info #1 Web Console TeK B
Cookies Manager+ Inspector C
| Debugger C#S
Style Editor {F7
Profiler {Fs
Network TEQ
Developer Toolbar {tF2
Browser Console +38)

Responsive Design View
Scratchpad {tFa
Page Source #EU
Firefox OS Simulator

Cet More Tools

R

Activating Responsive Design View

Using the responsive design view is specially useful for testing out media queries’™, as it allows
you to resize the screen and see how your site responds to changes in layout in real time. Another
great feature of the Responsive Design View is that you can save predefined sizes. If you know what
viewport sizes you are targetting, then your can quickly check different viewport sizes without
needing to resize the actual browser window.

"*https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

Developer Tools 42

664x480 (custom) ~ rotate

We can alter the screen size using

nareGar Zla.com

ALL WE DO IS CODE

We can also use these'drag:corners to resize
the screen ‘

Mozilla? Come see my articles a
development.

Show me more

Responsive Design View Sample

At the time of writing, most of the Firefox OS phones that are on the market are running on a
480x320 resolution - and at a pixel density of about 96 pixels-per-inch. However, you should expect
this to change as new Firefox OS hardware becomes available as time goes on: screens will likely
pack more pixels and have higher pixel densities (just like Apple’s retina displays).

To future proof your app, don’t hard-code your CSS to any resolution or pixel density. Instead, you
should use media queries and the responsive design methodology to create apps that adapt to any
screen size. To learn more about responsive design, I recommend the following books Responsive
Web Design’> and Mobile First”.

In summary, the responsive design view allows us to test our web applications using many different
screen sizes without the need to resize the Firefox browser window itself. In my humble opinion
this is one of the most useful web developer tools available - but it has one big limitation: it does
not currently allow you to test different pixel densities (i.e. to see what your site would look like on
a “retina” display or better).

"http://www.abookapart.com/products/responsive-web-design
"Shttp://www.abookapart.com/products/mobile-first

http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/mobile-first
http://www.abookapart.com/products/responsive-web-design
http://www.abookapart.com/products/mobile-first

Developer Tools

Developer tools

43

Firefox’s developer tools are similar to FireBug and the tools available in other modern browsers.
Using these tools you can execute and debug your JavaScript using the console”’, and manipulate

both the DOM and the CSS on the current page.

To bring up the console, you can either:

* Go to "Tools menu > Web Developer > Web Console".

« right-click on the page you want to debug, and select “Inspect Element”, then click on

“Console” tab.

800 Principal | AndreGarzia.Com e
J Principal | AndreGarzia.Com u + L
@/I andregarzia.com/pages/pt/ = l ':E" Google Q.:' E] @
[]MyServer ~ [|Prog ~ [| pinboard { fon.nu [_JArt~ [_]MozDev~ [|Tangis ~ [| jsbeautifier [| X-Ray Goggles »
Nf v D)

AndreGarzia.on

ALL WE DO IS CODE

Forum links english

citacdes

Firefox OS

Desenvolvendo para a

> Console Inspector () Debugger [# style Editor (® Profiler

- ® Security ~ ® Logging ~ Clear

= Network s

Filter output

»

JavaScript Console

""https://developer.mozilla.org/en-US/docs/Web/API/console

https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console

Developer Tools 44

Besides the JavaScript Console there are many other tools available such as the style editor’®, the
network monitor’”®, the JavaScript profiler®, the JavaScript debugger®', the page inspector®* and
many others.

In the application we’ve built in the previous chapter, we used the console to check the progress of
our application. This is a pretty powerful way to debug our apps - but some developers are still using
alert() all over their JavaScript code as their “debug tool”.

Using alert() is really bad because if one forgets to remove any alert()s, it’s the user’s who will
ultimately pay the price. Using the console avoids this problem as it harmlessly (and silently!) routes
all messages to a place that user’s don’t normally access - so it doesn’t disrupt the user experience.
Using the console also means you don’t need to remove your console messages from your code,
unless you really want to. This can help with code maintenance and debugging if things do go
wrong (as they generally do with any software!).

Learning how to properly use the developer tools bundled with Firefox (or whatever browser you're
using) is an important step in becoming a better developer. That’s why I advise everyone to check
the links above and get more familiar with the various tools available in Firefox.

One special tool that was not mentioned above is the remote debugger®. That tool allows us to
connect to a phone running Android or Firefox OS, and use the developer tools to debug the code
that is running on the device in real time.

Summary

This chapter provided a brief tour of the developer tools that come bundled with Firefox. Using
these tools will make your development process easier, specially when you use them together with
the Firefox OS simulator. They are an indispensable combination for putting together an application.
In the next chapter we’re going to learn more about the simulator and how to make the best use of
it.

"8https://developer.mozilla.org/en-US/docs/Tools/Style_Editor
"*https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
8%https://developer.mozilla.org/en-US/docs/Tools/Profiler
#https://developer.mozilla.org/en-US/docs/Tools/Debugger
#https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector
Bhttps://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging

https://developer.mozilla.org/en-US/docs/Tools/Style_Editor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Profiler
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector
https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging
https://developer.mozilla.org/en-US/docs/Tools/Style_Editor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Profiler
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector
https://developer.mozilla.org/en-US/docs/Tools/Remote_Debugging

The WebIDE

Firefox WebIDE: Memaos

Project File Edit Runtime View

@ New App... ! Memos o % Remove Project ¢
b (7] i
£ Open Packaged . J:r:arew .) Memos Can't see your device?
ApP.. b style/ ‘_* PACKAGED WEB
@ Open Hosted App.. index.html
manifestwebapp I t £ F 2%
A simple memo taking app Firefox 05 1.3
() Memos _ ¥ Firefoxos22 ¥
/home/soapdoeg/prog/memos- o Firefox 05 2.6 %
for-firefoxos i
. + Firefox0s 26 (1) **
app.//62bad9d2-8h7i- ' Firefox 05 3.0 e
4b15-aac7-9a6e77b55fa2
J/manifestwebapp © Install Simulator

P

Remote Runtime

8]

Chrome Desktop

Safari, Firefox, and

The WebIDE

We’ve setup the WebIDE in the chapter about preparing the environment and we used it on the
chapter about building our first app. Now we’re going to take a deeper look into the WebIDE features
and learn how to do the most common tasks.

To learn more about it, check out the WebIDE page®* on MDN.

use the Firefox OS 1.1 Simulator extension with it and not the WebIDE. This Simulator is
explained in Appendix 2: The Firefox OS Simulator.

g Remember: that if you are using a device running Firefox OS 1.1 or older then you need to

Adding Apps

You can add both hosted and packaged apps to the WebIDE. Lets see how to add each type of app:

84https://developer.mozilla.org/en-US/docs/Tools/WebIDE

45

https://developer.mozilla.org/en-US/docs/Tools/WebIDE
https://developer.mozilla.org/en-US/docs/Tools/WebIDE

The WebIDE 46

Adding packaged apps
You already saw how to add packaged apps to the WebIDE during our first app creation, but we’re
going to do a recap so I can show you what else is possible.

To add a new packaged application click the Open Packaged App button on the WebIDE main
screen as shown in the screenshot below.

Firefox WebIDE

Project File Edit Runtime View

@ New App... c

(]]
& Open Packaged Cart see your device?

A <— Use this option to open our app!

Q Open Hosted App...

Firefox 0S 1.3

Firefox 0S 2.2

Firefox 05 2.6 (1)

£
¥
Firefox0S26 %
L
£

Firefox OS 3.0

© A A A AR

Install Simulator

P

Remote Runtime

P

Chrome Desktop

P

Safari, Firefox, and

Showing the Open Packaged App option that adds a packaged app to the WebIDE

When you click on the button highlighted on the image, Firefox opens a file selection dialog.
You should browse your hard drive and select the folder that contains the manifest file for the
application that you want to add to the WebIDE. If there are no issues with your manifest then your
app will be added to the list on screen.

Adding hosted apps

If you’re building a hosted app then you should test it by using a web server. Do not try to use the
method described above for hosted apps because you may miss some errors that will only happen
on a hosted environment - such as serving the manifest with the wrong MIME type. Note that the
simulator won’t warn you about things like incorrect MIME types, but it’s important to get such
things right if you submit your app to the Mozilla Marketplace.

Most of the hosted apps are not applications built exclusively for Firefox OS but responsive design
based websites that are able to adapt themselves to different devices and resolutions. These web apps

The WebIDE 47

usually have a complex backend that needs to be in-place for the application to work and that’s why
you need to test the app using a real web server running your backend stuff.

To run your app in the simulator, click the Open Hosted App button on the WebIDE main screen
and then fill the URL of your application in the text entry box and click the OK button on that dialog
box.

© New App... = Open Hosted App o
[Open Packaged @ Enter Manifest URL 0 Can't see your device?
App...
@ Open Hosted App...
Cancel OK
— f Firefox 0S 1.3 1%
~f Firefox 0S 2.1 o
... this dialog o Firefox 05 2.2 2
When you appears! f Freix0s30 4
; y TRy © Install Simu
click here... Fill it with the URL = ™™

to your manifest

o

Remote Runtime
m e aa e Ml P S,

Adding a hosted app to the WebIDE

After clicking the button, the manifest is verified and if it is correct the application will be added
and the WebIDE.

Running your app

Before you can run your application, you need to start your selected simulator. Choose one of your
installed options listed on the right side of the WebIDE main screen

Once you have a Simulator running you can click the Play button located at the top of the WebIDE
window and it will install and run the app on the active Simulator.

The application icon will appear at the home screen of the Simulator once the installation is complete.
You can just click it to run.

Updating your app

Every time you change some of your files and want to test again on the Simulator you need to press
the Reload button to update the installation of your app on the active Simulator.

The WebIDE 48

Debugging

After the application is added to the active Simulator we’re able to debug it by clicking the Wrench
button in the WebIDE window. This will launch the your app on the running Simulator and open a
JavaScript Console connected to your app.

o000 Firefox WebIDE: Memos

€ New App... . Memos O £k Rem. roject c
Bs Open > s/ © Can't see your device?
Packaged » shared/ Memos
App... » style/ CKAG
index.html o 4 PACKAGED WE
Q@ ggg" Hosted installhtmi
manifest.webapp Descriptio 0
. escription Firefox 0S 1.3
""Eka-ZIP b A simple memo ta&ing app 1 F %
package.webapp o Firefox 0S 2.1 1%
‘___) README Location .
Memos /Users/soapdog/mimo o Firefox 0522 fe
_—s f Firefox 0S 3.0 £
This button Aop 1D
e app.//e39¢7659-2758-0c4e-ab76-5388942ba84b o Install Simulator

installs and runs /menestwebaee

Remote Runtime

:rﬂ.l
|
|-°
|-°

(]

This button o
rome Desktop
opens debug tools o su Fretox ana

other WebViews on iOS

o

What button to press

After pressing this button you will see a screen like this:

The WebIDE 49

[IO Firefox WebIDE: Memos
- 2 (] Firefox 0S 2.2
© New App... ‘ Memos @ # Remove Project ‘ c
Bs Open > s/ © Can't see your device?
Packaged » shared/ Memos
App... » style/ -
Open Hosted index.html 4 F,":‘C*_C’VII_Ck tO dEbUg
Q@ Ope install.html =
GRDES manifest.webap~
D I t t I _) f Firefox 05 1.3 e
\EV e 0 p m e n 0 0 s A simple memo taking app
O """‘93 fzecrny o Firefox 0S 2.1 %
Memos /Users/soapdog/mermo «f Firefox 0S2.2 %
f Firefox 0S 3.0 £
app://e39c7659-2753-0c4e-ab76-5388942baf4b @ Install Simulator
ﬁ /manifest.webapp
R | £} Inspector _ (i) Debugger | { } Style Editor |) Performance = Network E% Scratchpad | & x
® Net ® CSS [d @ Security © Logging @ Server Clear Filter output
L i L R e e TR L A R e
Adding sample memo model.js:43:8
at request.onupgradeneeded (app://e39c7659-2753-0c4e-ab76-5388942ba%4b/js/model.js:43:8)
Database opened ok model.js:21:4
at request.onsuccess (app://e39c7659-2753-0cd4e-a676-5388942ba%4b/js/model.js:21:4)
Refreshing memo list app.js:163:4

at refreshMemoList (app://e39c7659-2753-0c4e-a676-5388942ba94b/js/app.js:103:4)

e PRGNS B s 2

»

Developer Tools connected to the app running on the simulator

With the tools connected to your app you can test your JavaScript, debug your DOM, edit styles,
etc. Like those startup guys like to say: pivot until your app is good.

Once your app is running well on the simulator it’s time to test on a real device.

Testing apps on a real device

Nothing replaces testing on a real device. On the simulator, you test things by using a mouse and
clicking on a computer screen; while on a real device you use your fingers on a touchscreen and by
using physical buttons. Its a very different user and development experience.

As an example why this type of testing matters, let me tell you a brief story: Many years ago, Raphael
Eckhardt (the designer who created the cover of this book) and I were building a puzzle game not
that disimilar to Bejeweled. Our game involved dragging and dropping some pieces on a board and
was working pretty well on the simulator.

When we then tested the game on an actual phone we realized our game components were not touch
friendly at all. When placing a hand over the screen the board would be hidden below the hand.
Even worst, the pieces the users were supposed to drag were smaller than the user’s finger tip, so
the user couldn’t see what they were doing! In summary, our UX sucked very badly. That happened
because we kept trying things only on the simulator using a mouse that had a tiny cursor. When we
decided to try with our fatter-than-a-cursor fingers we realized that we need to rework our UL

The WebIDE 50

To avoid having a similarly frustrating experience, always test on a real device... or two, or more if
you can get your hands on multiple devices. Test often with simple prototypes. Otherwise, you can
waste valuable time and money having to recreate assets.

Tip: Many cities have community run device labs where you can go and test your app in multiple
devices. You can check for Open Device Labs near you at https://opendevicelab.com/?

*https://opendevicelab.com/

Connecting with a Firefox OS device

If you have a Firefox OS device (and have any needed drivers installed) then you can push apps
directly from the WebIDE to the device using a USB connection of a WI-FI connection depending
on which version of Firefox OS you are running. In both cases you need to go to the Settings app
on the device -> Developer and mark the option to debug using ADB and DevTools. If your
device supports it then you can also mark the option to allow WI-FI debugging. Once your device
is recognized, it will appear on the right side area of the WebIDE main screen

[BN] Firefox WebIDE

[] lainfood

o newaro.. USB connected devices will ; c
© Can't see your device?

&= Open Packaged :

Oren Packeg g_p_pg_g_r here

&? Open Hosted App... Q@ lainfood

() Memos Devices that supp WIEFI f Firefox 0S 1.3 %
debugglng WI" app h ere o Firefox 0S 2.1 e

o Main Process = ~f Firefox 0S 2.2 b o 3

© 20 o Firefox 0S 3.0 e 3

e 9GAG 0 Install Simulator

o Allrecipes Brasil

-~ . - OO Remnata Runtima

Device Connected!

Clicking on a device (such as lainfood on that screenshot) will connect the WebIDE to it. After that
you can use the normal Play, Stop and Debug buttons to interact with your app and your device.

https://opendevicelab.com/
https://opendevicelab.com/

The WebIDE 51

Summary

In summary, the WebIDE is fantastic. Its much better than the old Firefox OS 1.1 Simulator Extension
since it has better developer tools and can run multiple Firefox OS versions. We can envision the
WebIDE getting better and better with its built-in editors and more.

Besides feeling awesome and empowered, by this point in the book you hopefully have a good grasp
of the workflow for building apps for Firefox OS.

In the next chapter we’ll talk about distributing your application. It is time to spread your app around
the world!

Distributing Your Apps

Now that our application is ready we need to figure out a way to get it to our users. In the
introduction chapter I mentioned that, unlike Apple, Mozilla does not force you to use their
distribution channels - we’re free to spread our creations as we wish. In this chapter we’re going to
learn how to distribute our app outside the Firefox Marketplace®.

In my humble opinion, distributing your application outside the Mozilla Marketplace makes sense
in the following two situations.

1. You’re developing an application for internal use within your company, or to a restricted/lim-
ited group of users. If you ship it to the marketplace then it will be available to anyone and if
you want to restrict the usage of the app to a group of people then you will need some kind
of authentication scheme with a server backend or something similar. For example, when the
Evernote application is launched for the first time, it asks the user to log in their servers.

2. You already have a huge user-base that you can tap into for your app distribution. An example
of this would be a news paper, like the Financial Times, which can simply distribute their app
on their own website and reach most of their users. Remember that you can distribute your
application outside the marketplace and in the marketplace at the same time, so if you already
have your own marketing channel you can leverage that while still using the marketplace for
reaching new users outside your own channel.

The distribution process for hosted and packaged apps is similar, but it uses different functions. Thats
why I'm discussing them separately. Regardless if your app is hosted or packaged, the workflow is
usually the same: you provide a button or link on your own home page that says something similar
to Click to Install Our App, or you use a special URL that when launched causes the installation
routine to run. In both cases, a dialog is presented to the user asking him or her to confirm that they
want to install the given app.

Hosted Apps

8 http://marketplace firefox.com

52

http://marketplace.firefox.com
http://marketplace.firefox.com

Distributing Your Apps 53

Code for hosted app installation

var installapp = navigator.mozApps.install(manifestURL);
installapp.onsuccess = function(data) {
// An App was installed.
¥
installapp.onerror = function() {
// An App was not installed, more information at

// installapp.error.name

};

0 = O O b W N =~

In the sample above manifestURL contains the address for the manifest file. When this code runs,
the system asks the user to confirm his desire to install the given application and depending on the
choice of the user it runs the success or the error callback.

To learn more about this API check the MDN page about application installation®.

Packaged Apps

Packaged app installation is similar but instead of callingmozApps . install() we callmozApps . installPackage()
as shown in the sample code below.

Code for packaged app installation

1 // Absolute url to package:
2 var packageURL = "http://myapp.example.com/myapp.zip";
3 wvar installapp = navigator.mozApps.installPackage(packageURL);

Warning: I have the impression that packaged app installation outside of the marketplace is
not possible on Firefox OS version 1.0.1. Even though the API is documented, I have never
tried it. Please if you try it, send me feedback so that I can update this book.

Summary

This chapter discussed options for distributing applications outside of the Firefox Marketplace by
using the installation and management APIs for Open Web Apps. There are many other routines
available to do things such as checking if your application is installed (so that you can hide that Click
Here To Install button). To learn more about those APIs check out the MDN page about application
installation®” (yes, gave you this link before - this time, click it! There is important stuff there).

In the next chapter we’re going to learn how to distribute our apps through the Firefox Marketplace.

8Shttps://developer.mozilla.org/docs/Apps/JavaScript_API
8 https://developer.mozilla.org/docs/Apps/JavaScript_API

https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API
https://developer.mozilla.org/docs/Apps/JavaScript_API

The Firefox Marketplace

800 Firefox Marketplace ‘a
J® Firefox Marketplace O S ——
@) @ Mozilla Foundation (US) | https://marketplace.firefox.com c] (B~ Google Q) E] @
[] MyServer ~ [|Prog ~ | | pinboard { |fon.nu [_|Art~ []MozDev~ [|Tangis > [| jsbeautifier | | X-Ray Goggles »
. Firefox Marketplace

== All Categories

Featured Apps View All
Buzz w 7
Feep

KAYAK Badoo BuzzFeed Loaun Wonderful ... Variety

Free Free Free Free Free Free

whkk ik La. a8 & i L& & & i Lk & & i

View Al

v v 3.0 8 O

Twitter Wikipedia SoundCloud YOUZEEK Calculator Pulse AccuWeather

Firefox Marketplace

The Firefox Marketplace®® is the online shop where you can buy or download applications for
Firefox OS, Firefox, and Firefox For Android. This is the main channel for distributing Firefox
OS applications, but you’re not required to use it. If you want to distribute things outside the
marketplace, read the previous chapter.

To place your apps on the marketplace you need to be identified via Mozilla Persona®. Just click
Sign Up and follow the instructions. Once you’re identified, you will be ready to submit apps to the
Firefox Marketplace.

8http://marketplace.firefox.com
#https://login.persona.org/about

54

http://marketplace.firefox.com
https://login.persona.org/about
http://marketplace.firefox.com
https://login.persona.org/about

The Firefox Marketplace 55

Checklist before even thinking about sending an app
to the marketplace

All applications that are submitted to the marketplace go through an approval process (less scary than
it sounds!). Hosted web applications go through a lighter process than privileged apps because they
use less sensitive APIs. Before sending your application to the marketplace check out the marketplace
review criteria’. The most important parts are (IMHO):

« Firefox OS devices do not have a back button like Android and your desktop browser. If the
user navigates to a screen inside your app where there is no way for them to get back to the
previous place (i.e. the user gets stuck), your app will be rejected.

« Your app should have a 60x60 icon and clear descriptions.

+ Your app should do what the description says. Saying one thing and providing something else
will get your app rejected.

« If your app asks for a given permission then you should use it somewhere in your code.
Flagging your application as a privileged app and not using any privileged app API will cause
your app to be rejected with a request that you submit again as a plain app.

« Your application needs to have a privacy policy in place.

+ Manifest files should be served with the correct MIME type and come from the same domain
as the app for hosted apps.

There are other criteria discussed in the link above - and the rules can change without notice. It will
be worth your time to read that page. Getting your application rejected because of small stuff that
is easy to fix is a huge waste of time. Better get things right the first time (reviewers love to approve

good apps!).

Preparing your app for submission

The steps required to submit your application to the marketplace are different depending on whether
it’s a hosted or a packaged app. For a hosted app, it just needs to be accessible on the Internet with
the correct MIME type and manifest in place. Packaged apps need to be compressed using zip and
deserve some extra attention.

Many developers make the mistake of selecting the folder containing the application files and zipping
it. This causes the zip file to contain a folder and this folder to contain the app. This is not the correct
way to zip a Firefox OS application. The correct way is to zip the files and folders needed so that
the manifest is on the root level of the zip file. On Mac OS X and Linux you can use the terminal to
navigate to your application folder and use a command such as zip -r myapp.zip * to compress
things correctly as shown on the screenshot below.

*https://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review._criteria

https://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria
https://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria
https://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria

The Firefox Marketplace

ndres-MacBook-Air: firefoxos-sample-app-image-uploader soapdog$ zip -r imgur.zip *

adding:
adding:
adding:
adding:
adding:
adding:
adding:
adding:
adding:
adding:
adding:
adding:
adding:

LICENSE (deflated 67%)

README .md (deflated 58%)

app.js (deflated 69%)

building_blocks/ (stored @%)

building_blocks/building_blocks.css (deflated 84%)
building_blocks/cross_browser.css (deflated 78%)
building_blocks/fonts/ (stored @%)

building_blocks/fonts/FeuraSans-1.8/ (stored @%)
building_blocks/fonts/FeuraSans-1.0/FeuraSans-Bold.woff (deflated %)
building_blocks/fonts/FeuraSans-1.8/FeuraSans-Light.woff (deflated @%)
building_blocks/fonts/FeuraSans-1.0/FeuraSans-Medium.woff (deflated @%)
building_blocks/fonts/FeuraSans-1.8/FeuraSans-Regular.woff (deflated @%)
building_blocks/fonts/FeuraSans-1.0/LICENSE (deflated 36%)

: building_blocks/fonts.css (deflated 85%)

: 0 ding ploCcK O

;

ored @

Correctly zipping the files

This zip file is what we send to the marketplace.

Submitting

your app to the marketplace

56

Now with your application ready, and with the firm knowledge that it meets the review criteria, its
time we send it to the marketplace. To do so browse to My Submissions using the gear button on
the top of the marketplace page.

Inside the application management page, you need to click on Submit An App on the top menu.

O

andre@andregarzia.com
Edit Account Settings

My Submissions

My Submissions

The Firefox Marketplace 57

PAYMENT KEYS SUBMIT A NEW APP

N

Submit An App

Kinda Obvious

This link will lead you to the form for submitting new apps, as seen in the screenshot below.
Submit an App

Agreement Submit

Free Paid / In-app

N

V¥

y @

Firefox OS Firefox Firefox Mobile Firefox Tablet
Fully open mobile ecosystem Windows, Mac and Linux Android smartphones Android tablets
o] O]
Hosted Packaged

Select a file...

Submit New App

On this screen you will select the following options:

« If the application is hosted or packaged.

« If it is free or paid (or uses in-app purchases).

« What type of devices it is available for (Firefox OS, Firefox Desktop, Firefox for Mobile on
phones, Firefox for Mobile on Tablets).

After making these choices you’re driven to the second screen. On this book we’re focusing on
packaged apps but hosted apps are similar.

In the remaining text of this chapter we’re assuming that we’re shipping a free Firefox OS packaged
app. In this case we need to upload the zip file we prepared on the previous section.

The Firefox Marketplace 58

After uploading the file, it undergoes an automated process and a report is shown with many options.

Hosted Packaged
Your packaged app should end with . zip.

Finished validating imgur.zip

100% complete - 683.83 KB of 683.83 KB

& Your app passed validation with no errors and 6 warnings.
See full validation report

App Minimum Requirements

Check the boxes of the features that your app requires to function properly. Your app will be hidden from users whose devices don't support it.

@ MNetwork Information navigator.mozConnection | | navigator.mozMobileConnection

The app requires the ability to get information about the network connection (the " navigator.mozConnection™ API).

Smartphone-Sized Displays (qHD)

The app requires the platform to have a smartphone-sized display (having gHD resolution). This option indicates that the app will be unusable on larger displays (e.g.,
tablets, desktop, large or high-DPI phones).

™ Web Activities MozActivity

The app requires Web Activities (the " MozActivity™ API).

After the zip upload

From the screen shot above we can see that the app I sent to the marketplace has no errors but
contains six warnings. Ignoring the warnings for the sake of this text, lets check what the minimum
requirements for this app are. In this case, the last option Smartphone-Sized Displays (qHD) should
be unchecked because our application adapts to any screen size.

The next step is called Step #3: Details and it is where you fill the information about your application
such as category, description, screen captures, etc.

The Firefox Marketplace 59

#f » » » » Submit App

Submit an App Q5020

Agreement Submit Details

Edit App Details

Please review your listing information below. We've pre-filled as much as we can from your manifest.

Imgur Image Uploader

https://marketplace.firefox.com/.../ imgur-image-uploader-1 Open details page
Edit

Description: *

An app to share images using the imgur service

Categories: * Pick one or two categories.
Entertainment Productivity Health & Fitness Sports
Business [+ Social Lifestyle Reference
Games Travel # Photo & Video Maps & Mavigs
Music Books Utilities

Filling details

After filling-in the details, the submission process is done. Now you just wait for the approval from
the marketplace reviewers. Congratulations you shipped a Firefox OS application!!!

On the Application Management page’ you can check the status of your submissions and alter
details if needed.

To learn more about submitting applications to the Firefox Marketplace read this article on the
Firefox OS developer hub?.

Summary

Congratulations!!! You have a new application on the Firefox Marketplace, you're exploring a brand
new market!

I hope you enjoyed this quick guide. I plan to update and expand this guide often - so keep your
eyes open and register for the updates. If you downloaded this book from Leanpub then its all good
because you will receive emails about any updates. If you downloaded it from somewhere else then

Thttps://marketplace.firefox.com/developers/submissions
**https://marketplace.firefox.com/developers/docs/submission

https://marketplace.firefox.com/developers/submissions
https://marketplace.firefox.com/developers/docs/submission
https://marketplace.firefox.com/developers/docs/submission
https://marketplace.firefox.com/developers/submissions
https://marketplace.firefox.com/developers/docs/submission

The Firefox Marketplace 60

please consider fetching it from the official page at Leanpub® and registering your email. It’s free
and, no, you won’t get any spam. Promise.

Please send me feedback. This book was written by pulling all-nights before a tech conference so you
can infer how much I enjoy this project and want to see it succeed. I can be reached for feedback on
my Twitter account at @soapdog’* and over email at fxosquickguide@andregarzia.com”. My home
page is at http://andregarzia.com”®.

Now that you’re a part of the group of Firefox OS app creators, come be a part of the greater
Mozilla community: Help keep the web free and open made by users for users. Join us at
http://www.mozilla.org/contribute/*” and help Firefox OS grow!

http://leanpub.com/quickguidefirefoxosdevelopment
*http://twitter.com/soapdog
*>mailto:fxosquickguide@andregarzia.com
*Shttp://andregarzia.com

*"http://www.mozilla.org/en-US/contribute/

http://leanpub.com/quickguidefirefoxosdevelopment
http://twitter.com/soapdog
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://www.mozilla.org/en-US/contribute/
http://leanpub.com/quickguidefirefoxosdevelopment
http://twitter.com/soapdog
mailto:fxosquickguide@andregarzia.com
http://andregarzia.com
http://www.mozilla.org/en-US/contribute/

Appendix 1: Useful links

+ Mozilla”®

+ Mozilla Brasil Community Page™

« Firefox OS Developer Hub'*

+ Mozilla Developers Network'*": Best documentation ever!
« Firefox OS'%?

+ WebAPI on Mozilla Wiki'*?

+ Books about Firefox OS***

**http://mozilla.org
*’http://mozillabrasi.org.br
1%http://marketplace.firefox.com/developers
19http://developer.mozilla.org/
1%%http://www.mozilla.org/pt-BR/firefox/os/
193http://wiki.mozilla.org/WebAPI
19%http://firefoxosbooks.org

61

http://mozilla.org
http://mozillabrasi.org.br
http://marketplace.firefox.com/developers
http://developer.mozilla.org/
http://www.mozilla.org/pt-BR/firefox/os/
http://wiki.mozilla.org/WebAPI
http://firefoxosbooks.org
http://mozilla.org
http://mozillabrasi.org.br
http://marketplace.firefox.com/developers
http://developer.mozilla.org/
http://www.mozilla.org/pt-BR/firefox/os/
http://wiki.mozilla.org/WebAPI
http://firefoxosbooks.org

Appendix 2: The Firefox OS Simulator

800 Simulator Dashboard - Firefox OS w
_J "} Simulator Dashboard - Firefox 05 u + l
Q]/'l resource://r2d2b2g-at-mozilla-dot-org/r2d2b2g/data/content/index.html (<] | 'Z_'El' GCoogle Q._Z' B~ T ?
[] My Server ~ [_|Prog ~ | |pinboard { |fon.nu [_|Art~ []MozDev~ [|Tangis > [| jsbeautifier | | X-Ray Goggles »
Firefox O Dashboard Add Directory Add URL Help
Simulat
Memos Packaged App [Push | ¢ Refresh = Connect X
Last updated: 25 days ago
-l Open Location /Users/soapdog/memo/manifest.webapp Receipt: | None :

Simulator | RUANING] | Validation Result: OK

Imgur Image Uploader rackaged App

Device connected. g g p ged App [0 Push = ¢ Refresh =/ Connect X
Last updated: 23 days ago
Open Location /Users/soapdog/mozilla/firefoxos-sample-a... Receipt: | None

Validation Result: OK

ToDos Packaged App [Push | C Refresh = Connect b
Last updated: 26 days ago

Open Location /Users/soapdog/mozilla/firefoxos-sample-a...
Validation Result: OK

Receipt: | None

Firefox OS Simulator Dashboard

A Attention: This chapter is here for compatibility with devices running Firefox OS 1.1. The
current method for testing and debugging apps is the WebIDE which we talked about in
the previous chapter. The content of this chapter is just for people testing stuff on Firefox

OS version 1.1.

62

Appendix 2: The Firefox OS Simulator 63

A Attention: If you’re running Firefox 29 or newer and you have a device running Firefox
OS 1.1 or earlier then you will need another version of the Firefox OS 1.1 Simulator that
is not currently listed on the add-ons marketplace. This version is BETA but its the best
we’ve got right now. You can fetch it for Mac OS X'*°, Linux'® or Windows'”’. Just drop
the xpi file on Firefox and follow the installation instructions. If you want to follow up on
the quest of making the Firefox OS 1.1 simulator work on Firefox 29 then check out bug
request #1001590 it'°%.

Setup

If you have a device running Firefox OS 1.1 then you need to install the Firefox OS 1.1 Simulator
because your device can’t communicate with the new Web IDE.

After installing Firefox, the next step is the installation of the Firefox OS Simulator that will be
used to test our applications. With Firefox installed and running, go to the Tools menu and select
Add-ons.

rks Window Hel
Downloads
Add-ons 0
Sync Now

Web Developer
Page Info
(7 Cookies Manager-

Ir

Tools menu with *Add-ons** menu selected

Using the search box on the top right corner, search for Firefox OS Simulator and install the add-on
by clicking the install button.

1% http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
1%http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
9%http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
1%%https://bugzilla.mozilla.org/show_bug.cgi?id=1001590

http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590

Appendix 2: The Firefox OS Simulator 64

Add-on manager showing the simulator add-on

A Attention: If you’re running Firefox 29 or newer and you have a device running Firefox
OS 1.1 or earlier then you will need another version of the Firefox OS 1.1 Simulator that
is not currently listed on the add-ons marketplace. This version is BETA but its the best
we’ve got right now. You can fetch it for Mac OS X'*°, Linux'*® or Windows"'". Just drop
the xpi file on Firefox and follow the installation instructions. If you want to follow up on
the quest of making the Firefox OS 1.1 simulator work on Firefox 29 then check out bug
request #1001590 it'*2.

After the installation of the add-on, you will be able to access the simulator by going to the menu
Tools -> Web Developer -> Firefox OS Simulator.

"% http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi

% ttp://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
"http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
"2https://bugzilla.mozilla.org/show_bug.cgi?id=1001590

http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-mac.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-linux.xpi
http://ftp.mozilla.org/pub/mozilla.org/labs/r2d2b2g/r2d2b2g-5.0pre7-windows.xpi
https://bugzilla.mozilla.org/show_bug.cgi?id=1001590

Appendix 2: The Firefox OS Simulator 65

Window Help

Downloads £ | Nightly Start Page
Add-ons T 3HA
J i
Sync Now
Toggle Tools g
Page Info E Web Console Tk [
Cookies Manager+ Inspector AW e
| Debugger NC#eS
Style Editor 4F7
Profiler {tFs
Network TEQ
Developer Toolbar {rF2
Browser Console 43
Responsive Design View “CHEM
Scratchpad {tF4
Page Source #EU

Firefox OS Simulator

Cet More Tools

-

Where you can find the simulator after is installed

Alternatively, you can navigate to the Firefox OS Simulator'*> addon page, and download the
simulator from there.

We’ve installed the Firefox OS Simulator in the chapter about preparing the environment and we
used it on the chapter about building our first app. Now we’re going to take a deeper look into the
simulator features and learn how to do the most common tasks.

To learn more about it, check out the Firefox OS Simulator documentation** on MDN.

Adding Apps
You can add both hosted and packaged apps to the simulator. Lets see how to add each type of app.

Adding packaged apps
You already saw how to add packaged apps to the simulator during our first app creation, but we’re
going to do a recap so I can show you what else is possible.

To add a new packaged application click the Add Directory button on the Simulator Dashboard
as shown in the screenshot below.

https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator

https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator
https://addons.mozilla.org/en-US/firefox/addon/firefox-os-simulator/
https://developer.mozilla.org/en-US/docs/Tools/Firefox_OS_Simulator

Appendix 2: The Firefox OS Simulator 66

L Dashboard Add Directory

Socket Test Packaged A

—*Click here‘to add packaged

Operrtocanon—rsers/soapdugroesKopesenmass

vaapps:to the simulator

Memos Packaged App
‘ Last updated: 18 days ago

- Open Location /AJsers/soapdog/Dropboxfleanpub/firefoxos
Validation Result: OK

Imgur Image Uploader rackaged app
Last updated: a month ago

L WY [N [[N SRS Wy S 1 I S ——" N

Showing the Add Directory button that adds a packaged app to the simulator

When you click on the button highlighted on the image, Firefox opens a file selection dialog. You
should browse your hard drive and select the app manifest file for the application that you want to
add to the simulator. If there are no issues with your manifest and your start file is ok, the application
will be added and the simulator will launch with your app running. If there is anything wrong with
your manifest, or some other issue, then an error report will be shown on the dashboard.

Memos Packaged App |
‘ Last updated: 25 days ago
-

Open Location /Users/soapdog/memo/manifest.webapp
Validation Result: INVALID {1 errors and 0 warningsj:
Errors:

o Unknown permission 'stoge'.

Example of an invalid manifest

Whenever you update your application you should click Refresh to update the version of the app
on the simulator (you can also press CMD/CTRL+R on the simulator window to refresh).

Adding hosted apps

If you’re building a hosted app then you should test it by using a web server. Do not try to use the
method described above for hosted apps because you may miss some errors that will only happen
on a hosted environment - such as serving the manifest with the wrong MIME type. Note that the
simulator won’t warn you about things like incorrect MIME types, but it’s important to get such
things right if you submit your app to the Mozilla Marketplace.

Most of the hosted apps are not applications built exclusively for Firefox OS but responsive design
based websites that are able to adapt themselves to different devices and resolutions. These web apps

Appendix 2: The Firefox OS Simulator 67

usually have a complex backend that needs to be in-place for the application to work and that’s why
you need to test the app using a real web server running your backend stuff.

To run your app in the simulator, fill the URL of your application in the text entry box on the top
and click the Add URL button.

Add Directory http://memos.andregarzia.com Add URL

1St Packaged App /

-1\Write;the address ... thenclick herex

in 2 leese isoapdog/Deskiopiteste/manifest.webapp Receipt: | Mone
esSUI UK

‘ackaged App ' Refresh | # Connec
Adding a hosted app to the simulator

After clicking the button, the manifest is verified and if it is correct the application is added and
the simulator is launched with your application running. Like when we’re adding packaged apps,
if something wrong happens with in the manifest you will see a report (e.g. “app submission to the
marketplace needs at least an 128 icon”).

As with packaged apps, whenever you update your application you should click Refresh to update
the version of the app on the simulator (you can also press CMD/CTRL+R on the simulator window).

Debugging

After the application is added to the simulator we’re able to debug it by clicking the Connect button
next to the application listing on the dashboard. This will launch the simulator with your application
running and the JavaScript Console open and connected to your app.

Memos Packaged App C Refresh | # Connect
‘ Last updated: 18 days ago
e on L'T.-io—] T e e P e e T 1| None
o’debugyourfapp'click
Validation Hesuﬂ:dﬂg y pp
connect!
Imgur Image Uploader Packaged App ¢ Refresh . Connect

What button to press

After pressing this button you will see a screen like this:

Appendix 2: The Firefox OS Simulator 68

FiI‘EfOX 0O Dashboard
Simulam&

Socket Test Packaged
Last updated: 18 hours agad

) Open Location /Users/sog|
simulator ([FGRRIRGN] | Validation Result: OK

Memos Packaged App

‘) Last updated: 18 days aga
—— Open Location Jsers/sog|
Validation Result: OK

' 8 00 Firefox OS Simulator

P &0 20h11 S

Welcome Memo

Imgur Image Upload 2
Last updated: a month agal .
Open Location /Users/soa 1| Non

> Console Inspector (i) Debugger

® IS - ® Security - # Logging

The toclbox is now connected to Memos
"Refreshing memc list"
"Listing memos...”

"Found memo #1 - Welcome Mema"

Developer Tools connected to
the Memos app running on the
simulator

Developer Tools connected to the app running on the simulator

With the tools connected to your app you can test your JavaScript, debug your DOM, edit styles,
etc. Like those startup guys like to say: pivot until your app is good.

Once your app is running well on the simulator it’s time to test on a real device.

Testing apps on a real device

Nothing replaces testing on a real device. On the simulator, you test things by using a mouse and
clicking on a computer screen; while on a real device you use your fingers on a touchscreen and by
using physical buttons. Its a very different user and development experience.

As an example why this type of testing matters, let me tell you a brief story: Some years ago, Raphael
Eckhardt (the designer who created the cover of this book) and I were building a puzzle game not
that disimilar to Bejeweled. Our game involved dragging and dropping some pieces on a board and
was working pretty well on the simulator.

When we then tested the game on an actual phone we realized our game components were not
touch friendly at all: when placing a hand over the screen the board would vanish behind the hand.

Appendix 2: The Firefox OS Simulator 69

Even worst, the pieces the users were supposed to drag were smaller than the user’s finger tip, so
the user couldn’t see what they were doing! In summary, our UX sucked very badly. That happened
because we're kept trying things only on the simulator with a mouse that used a tiny cursor. When
we decided to try with our fatter-than-a-cursor fingers we realized that we need to rework our UL

To avoid having a similarly depressing experience, always test on a real device... or two, or more if
you can get your hands on some. And test often with simple prototypes: otherwise, you can waste
valuable time and money having to recreate assets.

You can buy a developer preview phone running Firefox OS from the Geeksphone Shop'*’. 1
recommend using a Geeksphone Keon''® because this device has similar specs to the devices that
are being launched by Mozilla’s partners.

You can also buy a device targeted at consumers if you happen to live in one of the countries where
they are already available. A third way is that you can replace Android with Firefox OS on some
devices (some specific devices only, chance of bricking, don’t blame me!) - but I don’t recommend
this unless you’re a power user and like to spend a lot of time hacking.

Connecting with a Firefox OS device

If you have a Firefox OS device (and have any needed drivers installed) then you can push apps
directly from the simulator to the device if the device is connected to your computer. When the
simulator detects that you plugged a Firefox OS phone, it will display a notice saying Device

Connected.
Firefox O;
Simulat

Simulator [SRURRING |

D Device connected.

Device Connected!

If your phone is connected (and detected) the simulator will add a new button next to Refresh and
Connect called Push. When you press this button, a permission request dialog appears on the
device screen asking for confirmation to install the pushed app.

http://shop.geeksphone.com/en/
Shttp://www.geeksphone.com/

http://shop.geeksphone.com/en/
http://www.geeksphone.com/
http://shop.geeksphone.com/en/
http://www.geeksphone.com/

Appendix 2: The Firefox OS Simulator 70

j Memos Packegys Ann

‘ _ “““Click here toH O Push C Ref
Last updated: justnow

-t Open Location .-p_U.SD_a@pprIQo.-' nifest.weébapp Rec

Validation Hesuldevice

Which button to press to push apps to the connected device

And below we can see the permission request screen.

Not the best picture in the world but shows the permission screen (sorry for the face it was 4:25 AM)

With the application running on the device you can use remote debugging to connect a JavaScript
console and debug the app.

Summary

In summary, the Firefox OS Simulator is awesome for building Firefox OS specific apps - but has
some limitations if you are trying to build for a range of devices (e.g. currently, you can’t emulate
what Firefox OS would feel like on a tablet).

Besides feeling awesome and empowered, by this point in the book you hopefully have a good grasp
of the workflow for building apps for Firefox OS.

	Table of Contents
	Acknowledgments
	This book is in perpetual beta
	Me, myself, and I
	How this book came to be
	Staying up to date
	Donations
	How to contact the author
	Cover Illustration
	Who should read this book
	Best Practices vs Beginner Friendliness
	More books about Firefox OS
	Feedback & Pull Requests
	Translations
	Version history
	Introduction
	Firefox OS
	Smart TVs
	IoT and the Web of Things
	Runcible
	The Platform That HTML5 Deserves
	Accessing The Hardware Using The WebAPI
	Freedom to Develop and Distribute
	Summary

	Setup For Firefox OS App Development
	The Gecko Engine
	What applications do you need?
	WebIDE Setup
	Summary

	Basic Concepts
	The Application Manifest
	Types of Application
	Security Access Levels
	Mozilla's WebAPIs
	Summary

	Our First App
	Creating the app manifest
	Building the HTML
	Crafting the JavaScript code
	Testing the app with the Web IDE
	Summary

	Developer Tools
	Introducing the Responsive Design View
	Developer tools
	Summary

	The WebIDE
	Adding Apps
	Running your app
	Updating your app
	Debugging
	Testing apps on a real device
	Connecting with a Firefox OS device
	Summary

	Distributing Your Apps
	Hosted Apps
	Packaged Apps
	Summary

	The Firefox Marketplace
	Checklist before even thinking about sending an app to the marketplace
	Preparing your app for submission
	Submitting your app to the marketplace
	Summary

	Appendix 1: Useful links
	Appendix 2: The Firefox OS Simulator
	Setup
	Adding Apps
	Debugging
	Testing apps on a real device
	Connecting with a Firefox OS device
	Summary

