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A note on Python and C++
The choice of using the QuantLib Python bindings and Jupyter was due to their interactivity, which
make it easier to demonstrate features, and to the fact that the platform provides out of the box
excellent modules like matplotlib for graphing and pandas for data analysis.

This choice might seem to leave C++ users out in the cold. However, it’s easy enough to translate
the Python code shown here into the corresponding C++ code. An example of such translation is
shown in the appendix.



Code conventions used in this book
The recipes in this cookbook are written as Jupyter notebooks⁴, and follow their structure: blocks
of explanatory text, like the one you’re reading now, are mixed with cells containing Python code
(inputs) and the results of executing it (outputs). The code and its output—if any—are marked by In
[N] and Out [N], respectively, with N being the index of the cell. You can see an example in the
computations below:

In [1]: def f(x, y):
return x + 2*y

In [2]: a = 4
b = 2
f(a, b)

Out[2]: 8

By default, Jupyter displays the result of the last instruction as the output of a cell, like it did above;
however, print statements can display further results.

In [3]: print(a)
print(b)
print(f(b, a))

Out[3]: 4
2
10

Jupyter also knows a few specific data types, such as Pandas data frames, and displays them in a
more readable way:

In [4]: import pandas as pd
pd.DataFrame({ 'foo': [1,2,3], 'bar': ['a','b','c'] })

Out[4]:

⁴http://jupyter.org/

http://jupyter.org/
http://jupyter.org/


Code conventions used in this book iv

foo bar
0 1 a
1 2 b
2 3 c

The index of the cells shows the order of their execution. Jupyter doesn’t constrain it; however, in
all of the recipes of this book the cells were executed in sequential order as displayed. All cells
are executed in the global Python scope; this means that, as we execute the code in the recipes, all
variables, functions and classes defined in a cell are available to the ones that follow.

Notebooks can also include plots, as in the following cell:

In [5]: %matplotlib inline
import numpy as np
import utils
f, ax = utils.plot(figsize=(10,2))
ax.plot([0, 0.25, 0.5, 0.75, 1.0], np.random.random(5))

Out[5]: [<matplotlib.lines.Line2D at 0x7f615b41b3a0>]

As you might have noted, the cell above also printed a textual representation of the object returned
from the plot, since it’s the result of the last instruction in the cell. To prevent this, cells in the
recipes might have a semicolon at the end, as in the next cell. This is just a quirk of the Jupyter
display system, and it doesn’t have any particular significance; I’m mentioning it here just so that
you dont’t get confused by it.

In [6]: f, ax = utils.plot(figsize=(10,2))
ax.plot([0, 0.25, 0.5, 0.75, 1.0], np.random.random(5));
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Finally, the utilsmodule that I imported above is a short module containing convenience functions,
mostly related to plots, for the notebooks in this collection. It’s not necessary to understand its
implementation to follow the recipes, and therefore we won’t cover it here; but if you’re interested
and want to look at it, it’s included in the zip archive that you can download from Leanpub if you
purchased the book.



1. QuantLib basics
In this chapter we will introduce some of the basic concepts such as Date, Period, Calendar
and Schedule. These are QuantLib constructs that are used throughout the library in creation of
instruments, models, term structures etc.

In [1]: import QuantLib as ql
import pandas as pd

Date Class

The Date object can be created using the constructor as Date(day, month, year). It would be
worthwhile to pay attention to the fact that day is the first argument, followed by month and then
the year. This is different from the Python datetime object instantiation.

In [2]: date = ql.Date(31, 3, 2015)
print(date)

Out[2]: March 31st, 2015

The fields of the Date object can be accessed using the month(), dayOfMonth() and year()
methods. The weekday() method can be used to fetch the day of the week.

In [3]: print("%d-%d-%d" %(date.month(),
date.dayOfMonth(),
date.year()))

Out[3]: 3-31-2015

In [4]: date.weekday() == ql.Tuesday

Out[4]: True

The Date objects can also be used to perform arithmetic operations such as advancing by days, weeks,
months etc. Periods such as weeks or months can be denoted using the Period class. Period object
constructor signature is Period(num_periods, period_type). The num_periods is an integer
and represents the number of periods. The period_type can be Weeks, Months and Years.
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In [5]: type(date+1)

Out[5]: QuantLib.QuantLib.Date

In [6]: print("Add a day : {0}".format(date + 1))
print("Subtract a day : {0}".format(date - 1))
print("Add a week : {0}".format(date + ql.Period(1, ql.Weeks)))
print("Add a month : {0}".format(date + ql.Period(1, ql.Months)))
print("Add a year : {0}".format(date + ql.Period(1, ql.Years)))

Out[6]: Add a day : April 1st, 2015
Subtract a day : March 30th, 2015
Add a week : April 7th, 2015
Add a month : April 30th, 2015
Add a year : March 31st, 2016

One can also do logical operations using the Date object.

In [7]: print(date == ql.Date(31, 3, 2015))
print(date > ql.Date(30, 3, 2015))
print(date < ql.Date(1, 4, 2015))
print(date != ql.Date(1, 4, 2015))

Out[7]: True
True
True
True

The Date object is used in setting valuation dates, issuance and expiry dates of instruments. The
Period object is used in setting tenors, such as that of coupon payments, or in constructing payment
schedules.

Calendar Class

The Date arithmetic above did not take holidays into account. But valuation of different securities
would require taking into account the holidays observed in a specific exchange or country. The
Calendar class implements this functionality for all the major exchanges. Let us take a look at a
few examples here.



QuantLib basics 3

In [8]: date = ql.Date(31, 3, 2015)
us_calendar = ql.UnitedStates(ql.UnitedStates.GovernmentBond)
italy_calendar = ql.Italy()

period = ql.Period(60, ql.Days)
raw_date = date + period
us_date = us_calendar.advance(date, period)
italy_date = italy_calendar.advance(date, period)

print("Add 60 days: {0}".format(raw_date))
print("Add 60 business days in US: {0}".format(us_date))
print("Add 60 business days in Italy: {0}".format(italy_date))

Out[8]: Add 60 days: May 30th, 2015
Add 60 business days in US: June 24th, 2015
Add 60 business days in Italy: June 26th, 2015

The addHoliday and removeHoliday methods in the calendar can be used to add and remove
holidays to the calendar respectively. If a calendar has any missing holidays or has a wrong holiday,
then these methods come handy in fixing the errors. The businessDaysBetweenmethod helps find
out the number of business days between two dates per a given calendar. Let us use this method on
the us_calendar and italy_calendar as a sanity check.

In [9]: us_busdays = us_calendar.businessDaysBetween(date, us_date)
italy_busdays = italy_calendar.businessDaysBetween(date, italy_date)

print("Business days US: {0}".format(us_busdays))
print("Business days Italy: {0}".format(italy_busdays))

Out[9]: Business days US: 60
Business days Italy: 60

In valuation of certain deals, more than one calendar’s holidays are observed. QuantLib has
JointCalendar class that allows you to combine the holidays of two or more calendars. Let us
take a look at a working example.
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In [10]: joint_calendar = ql.JointCalendar(us_calendar, italy_calendar)

joint_date = joint_calendar.advance(date, period)
joint_busdays = joint_calendar.businessDaysBetween(date, joint_date)

print("Add 60 business days in US-Italy: {0}".format(joint_date))
print("Business days US-Italy: {0}".format(joint_busdays))

Out[10]: Add 60 business days in US-Italy: June 29th, 2015
Business days US-Italy: 60

Schedule Class

The Schedule object is necessary in creating coupon schedules or call schedules. Schedule object
constructors have the following signature:

Schedule(const Date& effectiveDate,
const Date& terminationDate,
const Period& tenor,
const Calendar& calendar,
BusinessDayConvention convention,
BusinessDayConvention terminationDateConvention,
DateGeneration::Rule rule,
bool endOfMonth,
const Date& firstDate = Date(),
const Date& nextToLastDate = Date())

and

Schedule(const std::vector<Date>&,
const Calendar& calendar,
BusinessDayConvention rollingConvention)

In [11]: effective_date = ql.Date(1, 1, 2015)
termination_date = ql.Date(1, 1, 2016)
tenor = ql.Period(ql.Monthly)
calendar = ql.UnitedStates(ql.UnitedStates.GovernmentBond)
business_convention = ql.Following
termination_business_convention = ql.Following
date_generation = ql.DateGeneration.Forward
end_of_month = False

schedule = ql.Schedule(effective_date,
termination_date,
tenor,
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calendar,
business_convention,
termination_business_convention,
date_generation,
end_of_month)

pd.DataFrame({'date': list(schedule)})

Out[11]:

date
0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 4th, 2016

Here we have generated a Schedule object that will contain dates between effective_date and
termination_date with the tenor specifying the Period to be Monthly. The calendar object is
used for determining holidays. Here we have chosen the convention to be the day following holidays.
That is why we see that holidays are excluded in the list of dates.

The Schedule class can handle generation of dates with irregularity in schedule. The two extra
parameters firstDate and nextToLastDate parameters along with a combination of forward or
backward date generation rule can be used to generate short or long stub payments at the front
or back end of the schedule. For example, the following combination of firstDate and backward
generation rule creates a short stub in the front on the January 15, 2015.

In [12]: # short stub in the front
effective_date = ql.Date(1, 1, 2015)
termination_date = ql.Date(1, 1, 2016)
first_date = ql.Date(15, 1, 2015)
schedule = ql.Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
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ql.DateGeneration.Backward,
end_of_month,
first_date)

pd.DataFrame({'date': list(schedule)})

Out[12]:

date
0 January 2nd, 2015
1 January 15th, 2015
2 February 2nd, 2015
3 March 2nd, 2015
4 April 1st, 2015
5 May 1st, 2015
6 June 1st, 2015
7 July 1st, 2015
8 August 3rd, 2015
9 September 1st, 2015
10 October 1st, 2015
11 November 2nd, 2015
12 December 1st, 2015
13 January 4th, 2016

Using the nextToLastDate parameter along with the forward date generation rule creates a short
stub at the back end of the schedule.

In [13]: # short stub at the back
effective_date = ql.Date(1, 1, 2015)
termination_date = ql.Date(1, 1, 2016)
penultimate_date = ql.Date(15, 12, 2015)
schedule = ql.Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
ql.DateGeneration.Forward,
end_of_month,
ql.Date(),
penultimate_date)

pd.DataFrame({'date': list(schedule)})

Out[13]:
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date
0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 December 15th, 2015
13 January 4th, 2016

Using the backward generation rule along with the firstDate allows us to create a long stub in the
front. Below the first two dates are longer in duration than the rest of the dates.

In [14]: # long stub in the front
first_date = ql.Date(1, 2, 2015)
effective_date = ql.Date(15, 12, 2014)
termination_date = ql.Date(1, 1, 2016)
schedule = ql.Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
ql.DateGeneration.Backward,
end_of_month,
first_date)

pd.DataFrame({'date': list(schedule)})

Out[14]:
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date
0 December 15th, 2014
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 4th, 2016

Similarly the usage of nextToLastDate parameter along with forward date generation rule can be
used to generate long stub at the back of the schedule.

In [15]: # long stub at the back
effective_date = ql.Date(1, 1, 2015)
penultimate_date = ql.Date(1, 12, 2015)
termination_date = ql.Date(15, 1, 2016)
schedule = ql.Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
ql.DateGeneration.Forward,
end_of_month,
ql.Date(),
penultimate_date)

pd.DataFrame({'date': list(schedule)})

Out[15]:
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date
0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 15th, 2016

Below the Schedule is generated from a list of dates.

In [16]: dates = [ql.Date(2,1,2015), ql.Date(2, 2,2015),
ql.Date(2,3,2015), ql.Date(1,4,2015),
ql.Date(1,5,2015), ql.Date(1,6,2015),
ql.Date(1,7,2015), ql.Date(3,8,2015),
ql.Date(1,9,2015), ql.Date(1,10,2015),
ql.Date(2,11,2015), ql.Date(1,12,2015),
ql.Date(4,1,2016)]

rolling_convention = ql.Following

schedule = ql.Schedule(dates, calendar,
rolling_convention)

pd.DataFrame({'date': list(schedule)})

Out[16]:

date
0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 4th, 2016
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Interest Rate

The InterestRate class can be used to store the interest rate with the compounding type, day
count and the frequency of compounding. Below we show how to create an interest rate of 5.0%
compounded annually, using Actual/Actual day count convention.

In [17]: annual_rate = 0.05
day_count = ql.ActualActual(ql.ActualActual.ISDA)
compound_type = ql.Compounded
frequency = ql.Annual

interest_rate = ql.InterestRate(annual_rate,
day_count,
compound_type,
frequency)

print(interest_rate)

Out[17]: 5.000000 % Actual/Actual (ISDA) Annual compounding

Lets say if you invest a dollar at the interest rate described by interest_rate, the compoundFactor
method in the InterestRate object gives you how much your investment will be worth after any
period. Below we show that the value returned by compound_factor for 2 years agrees with the
expected compounding formula.

In [18]: t = 2.0
print(interest_rate.compoundFactor(t))
print((1+annual_rate)*(1.0+annual_rate))

Out[18]: 1.1025
1.1025

The discountFactormethod returns the reciprocal of the compoundFactormethod. The discount
factor is useful while calculating the present value of future cashflows.

In [19]: print(interest_rate.discountFactor(t))
print(1.0/interest_rate.compoundFactor(t))

Out[19]: 0.9070294784580498
0.9070294784580498

A given interest rate can be converted into other compounding types and compounding frequency
using the equivalentRate method.
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In [20]: new_frequency = ql.Semiannual
new_interest_rate = interest_rate.equivalentRate(compound_type,

new_frequency, t)
print(new_interest_rate)

Out[20]: 4.939015 % Actual/Actual (ISDA) Semiannual compounding

The discount factor for the two InterestRate objects, interest_rate and new_interest_rate
are the same, as shown below.

In [21]: print(interest_rate.discountFactor(t))
print(new_interest_rate.discountFactor(t))

Out[21]: 0.9070294784580498
0.9070294784580495

The impliedRate method in the InterestRate class takes compound factor to return the
implied rate. The impliedRate method is a static method in the InterestRate class and can be
used without an instance of InterestRate. Internally the equivalentRate method invokes the
impliedRate method in its calculations.

Conclusion

This chapter gave an introduction to the basics of QuantLib. Here we explained the Date, Schedule,
Calendar and InterestRate classes.



2. Instruments and pricing engines
In this notebook, I’ll show how instruments and their available engines can monitor changes in their
input data.

Setup

To begin, we import the QuantLib module and set up the global evaluation date.

In [1]: import QuantLib as ql

In [2]: today = ql.Date(7, ql.March, 2014)
ql.Settings.instance().evaluationDate = today

The instrument

As a sample instrument, we’ll take a textbook example: a European option.

Building the option requires only the specification of its contract, so its payoff (it’s a call option
with strike at 100) and its exercise, three months from today’s date. Market data will be selected and
passed later, depending on the calculation methods.

In [3]: option = ql.EuropeanOption(ql.PlainVanillaPayoff(ql.Option.Call, 100.0),
ql.EuropeanExercise(ql.Date(7, ql.June, 2014)))

First pricing method: analytic Black-Scholes formula

The different pricing methods are implemented as pricing engines holding the required market data.
The first we’ll use is the one encapsulating the analytic Black-Scholes formula.

First, we collect the quoted market data. We’ll assume flat risk-free rate and volatility, so they can
be expressed by SimpleQuote instances: those model numbers whose value can change and that
can notify observers when this happens. The underlying value is at 100, the risk-free value at 1%,
and the volatility at 20%.
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In [4]: u = ql.SimpleQuote(100.0)
r = ql.SimpleQuote(0.01)
sigma = ql.SimpleQuote(0.20)

In order to build the engine, the market data are encapsulated in a Black-Scholes process object. First
we build flat curves for the risk-free rate and the volatility…

In [5]: riskFreeCurve = ql.FlatForward(0, ql.TARGET(),
ql.QuoteHandle(r), ql.Actual360())

volatility = ql.BlackConstantVol(0, ql.TARGET(),
ql.QuoteHandle(sigma), ql.Actual360())

…then we instantiate the process with the underlying value and the curves we just built. The inputs
are all stored into handles, so that we could change the quotes and curves used if we wanted. I’ll
skip over this for the time being.

In [6]: process = ql.BlackScholesProcess(ql.QuoteHandle(u),
ql.YieldTermStructureHandle(riskFreeCurve),
ql.BlackVolTermStructureHandle(volatility))

Once we have the process, we can finally use it to build the engine…

In [7]: engine = ql.AnalyticEuropeanEngine(process)

…and once we have the engine, we can set it to the option and evaluate the latter.

In [8]: option.setPricingEngine(engine)

In [9]: print(option.NPV())

Out[9]: 4.155543462156206

Depending on the instrument and the engine, we can also ask for other results; in this case, we can
ask for Greeks.
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In [10]: print(option.delta())
print(option.gamma())
print(option.vega())

Out[10]: 0.5302223303784392
0.03934493301271913
20.109632428723106

Market changes

As I mentioned, market data are stored in Quote instances and thus can notify the option when any
of them changes. We don’t have to do anything explicitly to tell the option to recalculate: once we
set a new value to the underlying, we can simply ask the option for its NPV again and we’ll get the
updated value.

In [11]: u.setValue(105.0)
print(option.NPV())

Out[11]: 7.27556357927846

Just for showing off, we can use this to graph the option value depending on the underlying asset
value. After a bit of graphic setup (don’t pay attention to the man behind the curtains)…

In [12]: %matplotlib inline
import numpy as np
from IPython.display import display
import utils

…we can take an array of values from 80 to 120, set the underlying value to each of them, collect the
corresponding option values, and plot the results.

In [13]: f, ax = utils.plot()
xs = np.linspace(80.0, 120.0, 400)
ys = []
for x in xs:

u.setValue(x)
ys.append(option.NPV())

ax.set_title('Option value')
utils.highlight_x_axis(ax)
ax.plot(xs, ys);
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Other market data also affect the value, of course.

In [14]: u.setValue(105.0)
r.setValue(0.01)
sigma.setValue(0.20)

In [15]: print(option.NPV())

Out[15]: 7.27556357927846

We can see it when we change the risk-free rate…

In [16]: r.setValue(0.03)

In [17]: print(option.NPV())

Out[17]: 7.624029148527754

…or the volatility.
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In [18]: sigma.setValue(0.25)

In [19]: print(option.NPV())

Out[19]: 8.531296969971573

Date changes

Just as it does when inputs are modified, the value also changes if we advance the evaluation date.
Let’s look first at the value of the option when its underlying is worth 105 and there’s still three
months to exercise…

In [20]: u.setValue(105.0)
r.setValue(0.01)
sigma.setValue(0.20)
print(option.NPV())

Out[20]: 7.27556357927846

…and then move to a date two months before exercise.

In [21]: ql.Settings.instance().evaluationDate = ql.Date(7, ql.April, 2014)

Again, we don’t have to do anything explicitly: we just ask the option its value, and as expected it
has decreased, as can also be seen by updating the plot.

In [22]: print(option.NPV())

Out[22]: 6.560073820974377

In [23]: ys = []
for x in xs:

u.setValue(x)
ys.append(option.NPV())

ax.plot(xs, ys, '--')
display(f)



Instruments and pricing engines 17

In the default library configuration, the returned value goes down to 0 when we reach the exercise
date.

In [24]: ql.Settings.instance().evaluationDate = ql.Date(7, ql.June, 2014)

In [25]: print(option.NPV())

Out[25]: 0.0

Other pricing methods

The pricing-engine mechanism allows us to use different pricing methods. For comparison, I’ll first
set the input data back to what they were previously and output the Black-Scholes price.
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In [26]: ql.Settings.instance().evaluationDate = today
u.setValue(105.0)
r.setValue(0.01)
sigma.setValue(0.20)

In [27]: print(option.NPV())

Out[27]: 7.27556357927846

Let’s say that we want to use a Heston model to price the option. What we have to do is to instantiate
the corresponding class with the desired inputs…

In [28]: model = ql.HestonModel(
ql.HestonProcess(

ql.YieldTermStructureHandle(riskFreeCurve),
ql.YieldTermStructureHandle(ql.FlatForward(0, ql.TARGET(),

0.0, ql.Actual360())),
ql.QuoteHandle(u),
0.04, 0.1, 0.01, 0.05, -0.75))

…pass it to the corresponding engine, and set the new engine to the option.

In [29]: engine = ql.AnalyticHestonEngine(model)
option.setPricingEngine(engine)

Asking the option for its NPV will now return the value according to the new model.

In [30]: print(option.NPV())

Out[30]: 7.295356086978629

Lazy recalculation

One last thing. Up to now, we haven’t really seen evidence of notifications going around. After all,
the instrument might just have recalculated its value every time, regardless of notifications. What
I’m going to show, instead, is that the option doesn’t just recalculate every time anything changes;
it also avoids recalculations when nothing has changed.

We’ll switch to a Monte Carlo engine, which takes a few seconds to run the required simulation.
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In [31]: engine = ql.MCEuropeanEngine(process, "PseudoRandom",
timeSteps=20,
requiredSamples=250000)

option.setPricingEngine(engine)

When we ask for the option value, we have to wait for the calculation to finish…

In [32]: %time print(option.NPV())

Out[32]: 7.248816340995633
CPU times: user 1.59 s, sys: 0 ns, total: 1.59 s
Wall time: 1.58 s

…but a second call to the NPV method will be instantaneous when made before anything changes.
In this case, the option didn’t calculate its value; it just returned the result that it cached from the
previous call.

In [33]: %time print(option.NPV())

Out[33]: 7.248816340995633
CPU times: user 1.53 ms, sys: 18 µs, total: 1.55 ms
Wall time: 1.65 ms

If we change anything (e.g., the underlying value)…

In [34]: u.setValue(104.0)

…the option is notified of the change, and the next call to NPV will again take a while.

In [35]: %time print(option.NPV())

Out[35]: 6.598508180782789
CPU times: user 1.56 s, sys: 4.84 ms, total: 1.57 s
Wall time: 1.56 s



3. EONIA curve bootstrapping
In the next notebooks, I’ll reproduce the results of the paper by F. M. Ametrano and M. Bianchetti,
Everything You Always Wanted to Know About Multiple Interest Rate Curve Bootstrapping but Were
Afraid to Ask (April 2, 2013). The paper is available at SSRN: http://ssrn.com/abstract=2219548.

In [1]: %matplotlib inline
import math
import utils

In [2]: import QuantLib as ql

In [3]: today = ql.Date(11, ql.December, 2012)
ql.Settings.instance().evaluationDate = today

First try

We start by instantiating helpers for all the rates used in the bootstrapping process, as reported in
figure 25 of the paper.

The first three instruments are three 1-day deposit that give us discounting between today and the
day after spot. They are modeled by three instances of the DepositRateHelper class with a tenor of
1 day and a number of fixing days going from 0 (for the deposit starting today) to 2 (for the deposit
starting on the spot date).

In [4]: helpers = [
ql.DepositRateHelper(ql.QuoteHandle(ql.SimpleQuote(rate/100)),

ql.Period(1,ql.Days), fixingDays,
ql.TARGET(), ql.Following,
False, ql.Actual360())

for rate, fixingDays in [(0.04, 0), (0.04, 1), (0.04, 2)]
]

Then, we have a series of OIS quotes for the first month. They are modeled by instances of the
OISRateHelper class with varying tenors. They also require an instance of the Eonia class, which
doesn’t need a forecast curve and can be shared between the helpers.
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In [5]: eonia = ql.Eonia()

In [6]: helpers += [
ql.OISRateHelper(2, ql.Period(*tenor),

ql.QuoteHandle(ql.SimpleQuote(rate/100)), eonia)
for rate, tenor in [(0.070, (1,ql.Weeks)), (0.069, (2,ql.Weeks)),

(0.078, (3,ql.Weeks)), (0.074, (1,ql.Months))]
]

Next, five OIS forwards on ECB dates. For these, we need to instantiate the DatedOISRateHelper
class and specify start and end dates explicitly.

In [7]: helpers += [
ql.DatedOISRateHelper(start_date, end_date,

ql.QuoteHandle(ql.SimpleQuote(rate/100)), eonia)
for rate, start_date, end_date in [

( 0.046, ql.Date(16,ql.January,2013), ql.Date(13,ql.February,2013)),
( 0.016, ql.Date(13,ql.February,2013), ql.Date(13,ql.March,2013)),
(-0.007, ql.Date(13,ql.March,2013), ql.Date(10,ql.April,2013)),
(-0.013, ql.Date(10,ql.April,2013), ql.Date(8,ql.May,2013)),
(-0.014, ql.Date(8,ql.May,2013), ql.Date(12,ql.June,2013))]

]

Finally, we add OIS quotes up to 30 years.

In [8]: helpers += [
ql.OISRateHelper(2, ql.Period(*tenor),

ql.QuoteHandle(ql.SimpleQuote(rate/100)), eonia)
for rate, tenor in [(0.002, (15,ql.Months)), (0.008, (18,ql.Months)),

(0.021, (21,ql.Months)), (0.036, (2,ql.Years)),
(0.127, (3,ql.Years)), (0.274, (4,ql.Years)),
(0.456, (5,ql.Years)), (0.647, (6,ql.Years)),
(0.827, (7,ql.Years)), (0.996, (8,ql.Years)),
(1.147, (9,ql.Years)), (1.280, (10,ql.Years)),
(1.404, (11,ql.Years)), (1.516, (12,ql.Years)),
(1.764, (15,ql.Years)), (1.939, (20,ql.Years)),
(2.003, (25,ql.Years)), (2.038, (30,ql.Years))]

]

The curve is an instance of PiecewiseLogCubicDiscount (corresponding to the PiecewiseYield-
Curve<Discount,LogCubic> class in C++; I won’t repeat the argument for this choice made in
section 4.5 of the paper). We let the reference date of the curve move with the global evaluation
date, by specifying it as 0 days after the latter on the TARGET calendar. The day counter chosen is
not of much consequence, as it is only used internally to convert dates into times. Also, we enable
extrapolation beyond the maturity of the last helper; that is mostly for convenience as we retrieve
rates to plot the curve near its far end.
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In [9]: eonia_curve_c = ql.PiecewiseLogCubicDiscount(0, ql.TARGET(),
helpers, ql.Actual365Fixed())

eonia_curve_c.enableExtrapolation()

To compare the curve with the one shown in figure 26 of the paper, we can retrieve daily overnight
rates over its first two years and plot them:

In [10]: today = eonia_curve_c.referenceDate()
end = today + ql.Period(2,ql.Years)
dates = [ ql.Date(serial) for serial in range(today.serialNumber(),

end.serialNumber()+1) ]
rates_c = [ eonia_curve_c.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),

ql.Actual360(), ql.Simple).rate()
for d in dates ]

In [11]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_c,'-')], format_rates=True)

However, we still have work to do. Out plot above shows a rather large bump at the end of 2012
which is not present in the paper. To remove it, we need to model properly the turn-of-year effect.
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Turn-of-year jumps

As explained in section 4.8 of the paper, the turn-of-year effect is a jump in interest rates due to an
increased demand for liquidity at the end of the year. The jump is embedded in any quoted rates
that straddles the end of the year and must be treated separately; the YieldTermStructure class
allows this by taking any number of jumps, modeled as additional discount factors, and applying
them at the specified dates.

Our problem is to estimate the size of the jump. To simplify analysis, we turn to flat forward rates
instead of log-cubic discounts; thus, we instantiate a PiecewiseFlatForward curve (corresponding
to PiecewiseYieldCurve<ForwardRate,BackwardFlat> in C++).

In [12]: eonia_curve_ff = ql.PiecewiseFlatForward(0, ql.TARGET(),
helpers, ql.Actual365Fixed())

eonia_curve_ff.enableExtrapolation()

To show the jump more clearly, I’ll restrict the plot to the first 6 months:

In [13]: end = today + ql.Period(6,ql.Months)
dates = [ ql.Date(serial) for serial in range(today.serialNumber(),

end.serialNumber()+1) ]
rates_ff = [ eonia_curve_ff.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),

ql.Actual360(), ql.Simple).rate()
for d in dates ]

In [14]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_ff,'-')], format_rates=True)
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As we see, the forward ending at the beginning of January 2013 is out of line. In order to estimate
the jump, we need to estimate a “clean” forward that doesn’t include it.

A possible estimate (although not the only one) can be obtained by interpolating the forwards
around the one we want to replace. To do so, we extract the values of the forwards rates and their
corresponding dates.

In [15]: nodes = list(eonia_curve_ff.nodes())

If we look at the first few nodes, we can clearly see that the seventh is out of line.

In [16]: nodes[:9]

Out[16]: [(Date(11,12,2012), 0.00040555533025081675),
(Date(12,12,2012), 0.00040555533025081675),
(Date(13,12,2012), 0.00040555533047721286),
(Date(14,12,2012), 0.00040555533047721286),
(Date(20,12,2012), 0.0007604110692568178),
(Date(27,12,2012), 0.0006894305026004767),
(Date(3,1,2013), 0.0009732981324671213),
(Date(14,1,2013), 0.0006728161005748453),
(Date(13,2,2013), 0.000466380545910482)]
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To create a curve that doesn’t include the jump, we replace the relevant forward rate with a simple
average of the ones that precede and follow…

In [17]: nodes[6] = (nodes[6][0], (nodes[5][1]+nodes[7][1])/2.0)
nodes[:9]

Out[17]: [(Date(11,12,2012), 0.00040555533025081675),
(Date(12,12,2012), 0.00040555533025081675),
(Date(13,12,2012), 0.00040555533047721286),
(Date(14,12,2012), 0.00040555533047721286),
(Date(20,12,2012), 0.0007604110692568178),
(Date(27,12,2012), 0.0006894305026004767),
(Date(3,1,2013), 0.000681123301587661),
(Date(14,1,2013), 0.0006728161005748453),
(Date(13,2,2013), 0.000466380545910482)]

…and instantiate a ForwardCurve with the modified nodes.

In [18]: temp_dates, temp_rates = zip(*nodes)
temp_curve = ql.ForwardCurve(temp_dates, temp_rates,

eonia_curve_ff.dayCounter())

For illustration, we can extract daily overnight nodes from the doctored curve and plot them
alongside the old ones:

In [19]: temp_rates = [ temp_curve.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),
ql.Actual360(), ql.Simple).rate()

for d in dates ]

In [20]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(temp_rates,'-'), (rates_ff,'--')],

format_rates=True)
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Now we can estimate the size of the jump. As the paper hints, it’s more an art than a science. I’ve
been able to reproduce closely the results of the paper by extracting from the two curves the forward
rate over the two weeks around the end of the year:

In [21]: d1 = ql.Date(31,ql.December,2012) - ql.Period(1,ql.Weeks)
d2 = ql.Date(31,ql.December,2012) + ql.Period(1,ql.Weeks)

In [22]: F = eonia_curve_ff.forwardRate(d1, d2, ql.Actual360(), ql.Simple).rate()
F_1 = temp_curve.forwardRate(d1, d2, ql.Actual360(), ql.Simple).rate()
print(utils.format_rate(F,digits=3))
print(utils.format_rate(F_1,digits=3))

Out[22]: 0.082 %
0.067 %

We want to attribute the whole jump to the last day of the year, so we rescale it according to

(F − F1) · t12 = J · tJ

where t12 is the time between the two dates and tJ is the time between the start and end date of
the end-of-year overnight deposit. This gives us a jump quite close to the value of 10.2 basis points
reported in the paper.
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In [23]: t12 = eonia_curve_ff.dayCounter().yearFraction(d1,d2)
t_j = eonia_curve_ff.dayCounter().yearFraction(ql.Date(31,ql.December,2012),

ql.Date(2,ql.January,2013))
J = (F-F_1)*t12/t_j
print(utils.format_rate(J,digits=3))

Out[23]: 0.101 %

As I mentioned previously, the jump can be added to the curve as a corresponding discount factor
1/(1 + J · tJ) on the last day of the year. The information can be passed to the curve constructor,
giving us a new instance:

In [24]: B = 1.0/(1.0+J*t_j)
jumps = [ql.QuoteHandle(ql.SimpleQuote(B))]
jump_dates = [ql.Date(31,ql.December,2012)]
eonia_curve_j = ql.PiecewiseFlatForward(0, ql.TARGET(),

helpers, ql.Actual365Fixed(),
jumps, jump_dates)

Retrieving daily overnight rates from the new curve and plotting them, we can see the jump quite
clearly:

In [25]: rates_j = [ eonia_curve_j.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),
ql.Actual360(), ql.Simple).rate()

for d in dates ]

In [26]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_ff,'-'), (rates_j,'o')],

format_rates=True)
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We can now go back to log-cubic discounts and add the jump.

In [27]: eonia_curve = ql.PiecewiseLogCubicDiscount(0, ql.TARGET(),
helpers, ql.Actual365Fixed(),
jumps, jump_dates)

eonia_curve.enableExtrapolation()

In [28]: rates_c = [ eonia_curve_c.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),
ql.Actual360(), ql.Simple).rate()

for d in dates ]
rates = [ eonia_curve.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),

ql.Actual360(), ql.Simple).rate()
for d in dates ]

In [29]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_c,'-'), (rates,'o')],

format_rates=True)
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As you can see, the large bump is gone now. The two plots in figure 26 can be reproduced as follows
(omitting the jump at the end of 2013 for brevity, and the flat forwards for clarity):

In [30]: dates = [ today+ql.Period(i,ql.Days) for i in range(0, 365*2+1) ]
rates = [ eonia_curve.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),

ql.Actual360(), ql.Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates,'.')], ymin=-0.001, ymax=0.002,

format_rates=True)
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In [31]: dates = [ today+ql.Period(i,ql.Months) for i in range(0, 12*60+1) ]
rates = [ eonia_curve.forwardRate(d, ql.TARGET().advance(d,1,ql.Days),

ql.Actual360(), ql.Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates,'-')], ymin=0.0, ymax=0.035,

format_rates=True)
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A final word of warning: as you saw, the estimate of the jumps is not an exact science, so it’s best
to check it manually and not to leave it to an automated procedure.

Moreover, jumps nowadays might be present at the end of each month, as reported for instance in
Paolo Mazzocchi’s presentation at the QuantLib User Meeting 2014¹. This, too, suggests particular
care in building the Eonia curve.

¹https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding

https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding
https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding


4. Constructing a yield curve
In this chapter we will go over the construction of treasury yield curve. Let’s start by importing
QuantLib and other necessary libraries.

In [1]: import QuantLib as ql
from pandas import DataFrame
import numpy as np
import utils
%matplotlib inline

This is an example based on Exhibit 5-5 given in Frank Fabozzi’s Bond Markets, Analysis and
Strategies, Sixth Edition.

In [2]: depo_maturities = [ql.Period(6,ql.Months), ql.Period(12, ql.Months)]
depo_rates = [5.25, 5.5]

# Bond rates
bond_maturities = [ql.Period(6*i, ql.Months) for i in range(3,21)]
bond_rates = [5.75, 6.0, 6.25, 6.5, 6.75, 6.80, 7.00, 7.1, 7.15,

7.2, 7.3, 7.35, 7.4, 7.5, 7.6, 7.6, 7.7, 7.8]

maturities = depo_maturities+bond_maturities
rates = depo_rates+bond_rates
DataFrame(list(zip(maturities, rates)),

columns=["Maturities","Curve"],
index=['']*len(rates))

Out[2]:

Maturities Curve
6M 5.25
12M 5.50
18M 5.75
24M 6.00
30M 6.25
36M 6.50
42M 6.75
48M 6.80
54M 7.00
60M 7.10
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Maturities Curve
66M 7.15
72M 7.20
78M 7.30
84M 7.35
90M 7.40
96M 7.50
102M 7.60
108M 7.60
114M 7.70
120M 7.80

Below we declare some constants and conventions used here. For the sake of simplicity, we assume
that some of the constants are the same for deposit rates and bond rates.

In [3]: calc_date = ql.Date(15, 1, 2015)
ql.Settings.instance().evaluationDate = calc_date

calendar = ql.UnitedStates(ql.UnitedStates.GovernmentBond)
business_convention = ql.Unadjusted
day_count = ql.Thirty360(ql.Thirty360.BondBasis)
end_of_month = True
settlement_days = 0
face_amount = 100
coupon_frequency = ql.Period(ql.Semiannual)
settlement_days = 0

The basic idea of bootstrapping is to use the deposit rates and bond rates to create individual rate
helpers. Then use the combination of the two helpers to construct the yield curve. As a first step, we
create the deposit rate helpers as shown below.

In [4]: depo_helpers = [
ql.DepositRateHelper(ql.QuoteHandle(ql.SimpleQuote(r/100.0)),

m,
settlement_days,
calendar,
business_convention,
end_of_month,
day_count)

for r, m in zip(depo_rates, depo_maturities)
]

The rest of the points are coupon bonds. We assume that the YTM given for the bonds are all par
rates. So we have bonds with coupon rate same as the YTM. Using this information, we construct
the fixed rate bond helpers below.
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In [5]: bond_helpers = []
for r, m in zip(bond_rates, bond_maturities):

termination_date = calc_date + m
schedule = ql.Schedule(calc_date,

termination_date,
coupon_frequency,
calendar,
business_convention,
business_convention,
ql.DateGeneration.Backward,
end_of_month)

bond_helper = ql.FixedRateBondHelper(
ql.QuoteHandle(ql.SimpleQuote(face_amount)),
settlement_days,
face_amount,
schedule,
[r/100.0],
day_count,
business_convention)

bond_helpers.append(bond_helper)

The union of the two helpers is what we use in bootstrapping shown below.

In [6]: rate_helpers = depo_helpers + bond_helpers

The get_spot_rates is a convenient wrapper function that we will use to get the spot rates on a
monthly interval.

In [7]: def get_spot_rates(
yieldcurve, day_count,
calendar=ql.UnitedStates(ql.UnitedStates.GovernmentBond),
months=121

):
spots = []
tenors = []
ref_date = yieldcurve.referenceDate()
calc_date = ref_date
for month in range(0, months):

yrs = month/12.0
d = calendar.advance(ref_date, ql.Period(month, ql.Months))
compounding = ql.Compounded
freq = ql.Semiannual
zero_rate = yieldcurve.zeroRate(yrs, compounding, freq)
tenors.append(yrs)
eq_rate = zero_rate.equivalentRate(
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day_count,compounding,freq,calc_date,d).rate()
spots.append(100*eq_rate)

return DataFrame(list(zip(tenors, spots)),
columns=["Maturities","Curve"],
index=['']*len(tenors))

The bootstrapping process is fairly generic in QuantLib. You can chose what variable you are
bootstrapping, and what is the interpolation method used in the bootstrapping. There are multiple
piecewise interpolation methods that can be used for this process. The PiecewiseLogCubicDis-
count will construct a piece wise yield curve using LogCubic interpolation of the Discount
factor. Similarly PiecewiseLinearZero will use Linear interpolation of Zero rates. Piecewise-
CubicZero will interpolate the Zero rates using a Cubic interpolation method.

In [8]: yc_logcubicdiscount = ql.PiecewiseLogCubicDiscount(calc_date,
rate_helpers,
day_count)

The zero rates from the tail end of the PiecewiseLogCubicDiscount bootstrapping is shown below.

In [9]: splcd = get_spot_rates(yc_logcubicdiscount, day_count)
splcd.tail()

Out[9]:

Maturities Curve
9.666667 7.981384
9.750000 8.005292
9.833333 8.028145
9.916667 8.050187
10.000000 8.071649

The yield curves using the PiecewiseLinearZero and PiecewiseCubicZero is shown below. The
tail end of the zero rates obtained from PiecewiseLinearZero bootstrapping is also shown below.
The numbers can be compared with that of the PiecewiseLogCubicDiscount shown above.
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In [10]: yc_linearzero = ql.PiecewiseLinearZero(
calc_date,rate_helpers,day_count

)
yc_cubiczero = ql.PiecewiseCubicZero(

calc_date,rate_helpers,day_count
)

splz = get_spot_rates(yc_linearzero, day_count)
spcz = get_spot_rates(yc_cubiczero, day_count)
splz.tail()

Out[10]:

Maturities Curve
9.666667 7.976804
9.750000 8.000511
9.833333 8.024221
9.916667 8.047934
10.000000 8.071649

All three are plotted below to give you an overall perspective of the three methods.

In [11]: fig, ax = utils.plot()
ax.plot(splcd["Maturities"],splcd["Curve"], '.',

label="LogCubicDiscount")
ax.plot(splz["Maturities"],splz["Curve"],'--',

label="LinearZero")
ax.plot(spcz["Maturities"],spcz["Curve"],

label="CubicZero")
ax.set_xlabel("Months", size=12)
ax.set_ylabel("Zero Rate", size=12)
ax.set_xlim(0.5,10)
ax.set_ylim([5.25,8])
ax.legend(loc=0);
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Conclusion

In this chapter we saw how to construct yield curves by bootstrapping bond quotes.



5. Dangerous day-count conventions
(Based on a question by Min Gao on the QuantLib mailing list. Thanks!)

In [1]: import QuantLib as ql

In [2]: today = ql.Date(22,1,2018)
ql.Settings.instance().evaluationDate = today

In [3]: %matplotlib inline
import utils

The problem

Talking about term structures in Implementing QuantLib¹, I suggest to use simple day-count
conventions such as Actual/360 or Actual/365 to initialize curves. That’s because the convention is
used internally to convert dates into times, and we want the conversion to be as regular as possible.
For instance, we’d like distances between dates to be additive: given three dates d1, d2 and d3, we
would expect that T (d1, d2) + T (d2, d3) = T (d1, d3), where T denotes the time between dates.

Unfortunately, that’s not always the case for some day counters. The property holds for most dates…

In [4]: dc = ql.Thirty360(ql.Thirty360.USA)

In [5]: d1 = ql.Date(1, ql.January, 2018)
d2 = ql.Date(15, ql.January, 2018)
d3 = ql.Date(31, ql.January, 2018)

In [6]: print(dc.yearFraction(d1,d2) + dc.yearFraction(d2,d3))
print(dc.yearFraction(d1,d3))

Out[6]: 0.08333333333333334
0.08333333333333333

…but doesn’t for some.

¹https://leanpub.com/implementingquantlib

https://leanpub.com/implementingquantlib
https://leanpub.com/implementingquantlib
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In [7]: d1 = ql.Date(1, ql.January, 2018)
d2 = ql.Date(30, ql.January, 2018)
d3 = ql.Date(31, ql.January, 2018)

In [8]: print(dc.yearFraction(d1,d2) + dc.yearFraction(d2,d3))
print(dc.yearFraction(d1,d3))

Out[8]: 0.08055555555555556
0.08333333333333333

That’s because some day-count conventions were designed to calculate the duration of a coupon,
not the distance between any two given dates. They have particular formulas and exceptions that
make coupons more regular; but those exceptions also cause some pairs of dates to have strange
properties. For instance, there might be no distance at all between some particular distinct dates:

In [9]: d1 = ql.Date(30, ql.January, 2018)
d2 = ql.Date(31, ql.January, 2018)

print(dc.yearFraction(d1,d2))

Out[9]: 0.0

The 30/360 convention is not the worst offender, either. Min Gao’s question came from using for the
term structure the same convention used for the bond being priced, that is, ISMA actual/actual. This
day counter is supposed to be given a reference period, as well as the two dates whose distance one
needs to measure; failing to do so will result in the wrong results…

In [10]: d1 = ql.Date(1, ql.January, 2018)
d2 = ql.Date(15, ql.January, 2018)

reference_period = (ql.Date(1, ql.January, 2018), ql.Date(1, ql.July, 2018))

In [11]: dc = ql.ActualActual(ql.ActualActual.ISMA)

print(dc.yearFraction(d1, d2, *reference_period))
print(dc.yearFraction(d1, d2))

Out[11]: 0.03867403314917127
0.038356164383561646

…and sometimes, in spectacularly wrong results. Here is what happens if we plot the year fraction
since January 1st, 2018 as a function of the date over that same year.
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In [12]: d1 = ql.Date(1, ql.January, 2018)
dates = [ (d1 + i) for i in range(366) ]
times = [ dc.yearFraction(d1, d) for d in dates ]

In [13]: fig, ax = utils.plot()
ax.xaxis.set_major_formatter(utils.date_formatter())
ax.plot_date([ utils.to_datetime(d) for d in dates ], times,'-');

Of course, that’s noway to convert dates into times. Using this day-count convention inside a coupon
is ok, of course. Using it inside a term structure, which doesn’t have any concept of a reference period,
leads to very strange behaviors.

In [14]: curve = ql.FlatForward(today, 0.01, ql.ActualActual(ql.ActualActual.ISMA))

In [15]: dates = [ (today + i) for i in range(366) ]
discounts = [ curve.discount(d) for d in dates ]
fig, ax = utils.plot()
ax.xaxis.set_major_formatter(utils.date_formatter())
ax.plot_date([ utils.to_datetime(d) for d in dates ], discounts,'-');
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Any solutions?

Not really, at this time. Work is underway to store a schedule inside an ISMA actual/actual day
counter and use it to retrieve the correct reference period, but that’s not fully working yet. In the
meantime, what I can suggest is to use the specified day-count conventions for coupons; but, unless
something prevents it, use a simple day-count convention such as actual/360 or actual/365 for term
structures.



6. Valuing European and American options
I have written about option pricing earlier. The introduction to option pricing¹ gave an overview of
the theory behind option pricing. The post on introduction to binomial trees² outlined the binomial
tree method to price options.

In this post, we will use QuantLib and the Python extension to illustrate a simple example. Here we
are going to price a European option using the Black-Scholes-Merton formula. We will price them
again using the Binomial tree and understand the agreement between the two.

In [1]: import QuantLib as ql
import utils
%matplotlib inline

European Option

Let us consider a European call option for AAPL with a strike price of 130 maturing on 15th Jan,
2016. Let the spot price be 127.62. The volatility of the underlying stock is know to be 20%, and has
a dividend yield of 1.63%. Let’s value this option as of 8th May, 2015.

In [2]: maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = ql.Option.Call

risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
calendar = ql.UnitedStates(ql.UnitedStates.GovernmentBond)

calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date

We construct the European option here.

¹http://gouthamanbalaraman.com/blog/option-model-handbook-part-I-introduction-to-option-models.html
²http://gouthamanbalaraman.com/blog/option-model-handbook-part-II-introduction-to-binomial-trees.html

http://gouthamanbalaraman.com/blog/option-model-handbook-part-I-introduction-to-option-models.html
http://gouthamanbalaraman.com/blog/option-model-handbook-part-II-introduction-to-binomial-trees.html
http://gouthamanbalaraman.com/blog/option-model-handbook-part-I-introduction-to-option-models.html
http://gouthamanbalaraman.com/blog/option-model-handbook-part-II-introduction-to-binomial-trees.html
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In [3]: payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)

The Black-Scholes-Merton process is constructed here.

In [4]: spot_handle = ql.QuoteHandle(
ql.SimpleQuote(spot_price)

)
flat_ts = ql.YieldTermStructureHandle(

ql.FlatForward(calculation_date,
risk_free_rate,
day_count)

)
dividend_yield = ql.YieldTermStructureHandle(

ql.FlatForward(calculation_date,
dividend_rate,
day_count)

)
flat_vol_ts = ql.BlackVolTermStructureHandle(

ql.BlackConstantVol(calculation_date,
calendar,
volatility,
day_count)

)
bsm_process = ql.BlackScholesMertonProcess(spot_handle,

dividend_yield,
flat_ts,
flat_vol_ts)

Lets compute the theoretical price using the AnalyticEuropeanEngine.

In [5]: european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print("The theoretical price is %lf" % bs_price)

Out[5]: The theoretical price is 6.749272

Lets compute the price using the binomial-tree approach.
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In [6]: def binomial_price(option, bsm_process, steps):
binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", steps)
option.setPricingEngine(binomial_engine)
return option.NPV()

steps = range(2, 200, 1)
prices = [binomial_price(european_option, bsm_process, step) for step in step\

s]

In the plot below, we show the convergence of binomial-tree approach by comparing its price with
the BSM price.

In [7]: fig, ax = utils.plot()
ax.plot(steps, prices, label="Binomial Tree Price", lw=2, alpha=0.6)
ax.plot([0,200],[bs_price, bs_price], "--", label="BSM Price", lw=2, alpha=0.\

6)
ax.set_xlabel("Steps", size=14)
ax.set_ylabel("Price", size=14)
ax.set_title("Binomial Tree Price For Varying Steps", size=14)
ax.legend();
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American Option

The above exercise was pedagogical, and introduces one to pricing using the binomial tree approach
and comparedwith Black-Scholes. As a next step, wewill use the Binomial pricing to value American
options.

The construction of an American option is similar to the construction of European option discussed
above. The one main difference is the use of AmericanExercise instead of EuropeanExercise use
above.

In [8]: payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)

Once we have constructed the american_option object, we can price them using the Binomial trees
as done above. We use the same function we constructed above.

In [9]: steps = range(2, 200, 1)
prices = [binomial_price(american_option, bsm_process, step) for step in step\

s]

In [10]: fig, ax = utils.plot()
ax.plot(steps, prices, label="Binomial Tree Price", lw=2, alpha=0.6)
ax.plot([0,200],[bs_price, bs_price], "--", label="BSM Price", lw=2, alpha=0\

.6)
ax.set_xlabel("Steps", size=14)
ax.set_ylabel("Price", size=14)
ax.set_title("Binomial Tree Price For Varying Steps", size=14)
ax.legend();
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Above, we plot the price of the American option as a function of steps used in the binomial tree,
and compare with that of the Black-Scholes price for the European option with all other variables
remaining the same. The binomial tree converges as the number of steps used in pricing increases.
American option is valued more than the European BSM price because of the fact that it can be
exercised anytime during the course of the option.

Conclusion

In this chapter we learnt about valuing European and American options using the binomial tree
method.



7. Duration of floating-rate bonds
(Based on a question by Antonio Savoldi on the QuantLib mailing list. Thanks!)

In [1]: import QuantLib as ql
from pandas import DataFrame

In [2]: today = ql.Date(8,ql.October,2014)
ql.Settings.instance().evaluationDate = today

The problem

We want to calculate the modified duration of a floating-rate bond. First, we need an interest-rate
curve to forecast its coupon rates: for illustration’s sake, let’s take a flat curve with a 0.2% rate.

In [3]: forecast_curve = ql.RelinkableYieldTermStructureHandle()
forecast_curve.linkTo(ql.FlatForward(today, 0.002, ql.Actual360(),

ql.Compounded, ql.Semiannual))

Then, we instantiate the index to be used. The bond has semiannual coupons, so we create a
Euribor6M instance and we pass it the forecast curve. Also, we set a past fixing for the current
coupon (which, having fixed in the past, can’t be forecast).

In [4]: index = ql.Euribor6M(forecast_curve)
index.addFixing(ql.Date(6,ql.August,2014), 0.002)

The bond was issued a couple of months before the evaluation date and will run for 5 years with
semiannual coupons.

In [5]: issueDate = ql.Date(8,ql.August,2014)
maturityDate = ql.Date(8,ql.August,2019)

schedule = ql.Schedule(issueDate, maturityDate,
ql.Period(ql.Semiannual), ql.TARGET(),
ql.Following, ql.Following,
ql.DateGeneration.Backward, False)

bond = ql.FloatingRateBond(settlementDays = 3,
faceAmount = 100,
schedule = schedule,
index = index,
paymentDayCounter = ql.Actual360())
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The cash flows are calculated based on the forecast curve. Here they are, together with their dates.
As expected, they each pay around 0.1% of the notional.

In [6]: dates = [ c.date() for c in bond.cashflows() ]
cfs = [ c.amount() for c in bond.cashflows() ]
DataFrame(list(zip(dates, cfs)),

columns = ('date','amount'),
index = range(1,len(dates)+1))

Out[6]:

date amount
1 February 9th, 2015 0.102778
2 August 10th, 2015 0.101112
3 February 8th, 2016 0.101112
4 August 8th, 2016 0.101112
5 February 8th, 2017 0.102223
6 August 8th, 2017 0.100556
7 February 8th, 2018 0.102223
8 August 8th, 2018 0.100556
9 February 8th, 2019 0.102223
10 August 8th, 2019 0.100556
11 August 8th, 2019 100.000000

If we try to use the function provided for calculating bond durations, though, we run into a problem.
When we pass it the bond and a 0.2% semiannual yield, the result we get is:

In [7]: y = ql.InterestRate(0.002, ql.Actual360(), ql.Compounded, ql.Semiannual)
print(ql.BondFunctions.duration(bond, y, ql.Duration.Modified))

Out[7]: 4.8609591731332165

which is about the time to maturity. Shouldn’t we get the time to next coupon instead?

What happened?

The function above is too generic. It calculates the modified duration as − 1

P

dP

dy
; however, it doesn’t

know what kind of bond it has been passed and what kind of cash flows are paid, so it can only
consider the yield for discounting and not for forecasting. If you looked into the C++ code, you’d
see that the bond price P above is calculated as the sum of the discounted cash flows, as in the
following:
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In [8]: y = ql.SimpleQuote(0.002)
yield_curve = ql.FlatForward(bond.settlementDate(), ql.QuoteHandle(y),

ql.Actual360(), ql.Compounded, ql.Semiannual)

dates = [ c.date() for c in bond.cashflows() ]
cfs = [ c.amount() for c in bond.cashflows() ]
discounts = [ yield_curve.discount(d) for d in dates ]
P = sum(cf*b for cf,b in zip(cfs,discounts))

print(P)

Out[8]: 100.03665363580889

(Incidentally, we can see that this matches the calculation in the dirtyPrice method of the Bond
class.)

In [9]: bond.setPricingEngine(
ql.DiscountingBondEngine(ql.YieldTermStructureHandle(yield_curve)))

print(bond.dirtyPrice())

Out[9]: 100.03665363580889

Finally, the derivative dP

dy
in the duration formula in approximated as P (y + dy)− P (y − dy)

2dy
, so that

we get:

In [10]: dy = 1e-5

y.setValue(0.002 + dy)
cfs_p = [ c.amount() for c in bond.cashflows() ]
discounts_p = [ yield_curve.discount(d) for d in dates ]
P_p = sum(cf*b for cf,b in zip(cfs_p,discounts_p))
print(P_p)

y.setValue(0.002 - dy)
cfs_m = [ c.amount() for c in bond.cashflows() ]
discounts_m = [ yield_curve.discount(d) for d in dates ]
P_m = sum(cf*b for cf,b in zip(cfs_m,discounts_m))
print(P_m)

y.setValue(0.002)

Out[10]: 100.03179102561501
100.0415165074028

In [11]: print(-(1/P)*(P_p - P_m)/(2*dy))

Out[11]: 4.8609591756253225
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which is the same figure returned by BondFunctions.duration.

The problem is that the above doesn’t use the yield curve for forecasting, so it’s not really considering
the bond as a floating-rate bond. It’s using it as a fixed-rate bond, whose coupon rates happen to
equal the current forecasts for the Euribor 6M fixings. This is clear if we look at the coupon amounts
and discounts we stored during the calculation:

In [12]: DataFrame(list(zip(dates, cfs, discounts,
cfs_p, discounts_p, cfs_m, discounts_m)),

columns = ('date','amount','discounts',
'amount (+)','discounts (+)',
'amount (-)','discounts (-)',),

index = range(1,len(dates)+1))

Out[12]:

date amount discounts amount (+) discounts (+) amount (-) discounts (-)
1 February 9th,

2015
0.102778 0.999339 0.102778 0.999336 0.102778 0.999343

2 August 10th,
2015

0.101112 0.998330 0.101112 0.998322 0.101112 0.998338

3 February 8th,
2016

0.101112 0.997322 0.101112 0.997308 0.101112 0.997335

4 August 8th,
2016

0.101112 0.996314 0.101112 0.996296 0.101112 0.996333

5 February 8th,
2017

0.102223 0.995297 0.102223 0.995273 0.102223 0.995320

6 August 8th,
2017

0.100556 0.994297 0.100556 0.994269 0.100556 0.994325

7 February 8th,
2018

0.102223 0.993282 0.102223 0.993248 0.102223 0.993315

8 August 8th,
2018

0.100556 0.992284 0.100556 0.992245 0.100556 0.992322

9 February 8th,
2019

0.102223 0.991270 0.102223 0.991227 0.102223 0.991314

10 August 8th,
2019

0.100556 0.990275 0.100556 0.990226 0.100556 0.990323

11 August 8th,
2019

100.000000 0.990275 100.000000 0.990226 100.000000 0.990323

where you can see how the discount factors changed when the yield was modified, but the coupon
amounts stayed the same.

The solution

Unfortunately, there’s no easy way to fix the BondFunctions.durationmethod so that it does the
right thing. What we can do, instead, is to repeat the calculation above while setting up the bond
and the curves so that the yield is used correctly. In particular, we have to link the forecast curve to
the flat yield curve being modified…
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In [13]: forecast_curve.linkTo(yield_curve)

…so that changing the yield will also affect the forecast rate of the coupons.

In [14]: y.setValue(0.002 + dy)
P_p = bond.dirtyPrice()
cfs_p = [ c.amount() for c in bond.cashflows() ]
discounts_p = [ yield_curve.discount(d) for d in dates ]
print(P_p)

y.setValue(0.002 - dy)
P_m = bond.dirtyPrice()
cfs_m = [ c.amount() for c in bond.cashflows() ]
discounts_m = [ yield_curve.discount(d) for d in dates ]
print(P_m)

y.setValue(0.002)

Out[14]: 100.03632329080955
100.03698398354918

Now the coupon amounts change with the yield (except, of course, the first coupon, whose amount
was already fixed)…

In [15]: DataFrame(list(zip(dates, cfs, discounts, cfs_p,
discounts_p, cfs_m, discounts_m)),

columns = ('date','amount','discounts',
'amount (+)','discounts (+)',
'amount (-)','discounts (-)',),

index = range(1,len(dates)+1))

Out[15]:

date amount discounts amount (+) discounts (+) amount (-) discounts (-)
1 February 9th,

2015
0.102778 0.999339 0.102778 0.999336 0.102778 0.999343

2 August 10th,
2015

0.101112 0.998330 0.101617 0.998322 0.100606 0.998338

3 February 8th,
2016

0.101112 0.997322 0.101617 0.997308 0.100606 0.997335

4 August 8th,
2016

0.101112 0.996314 0.101617 0.996296 0.100606 0.996333

5 February 8th,
2017

0.102223 0.995297 0.102734 0.995273 0.101712 0.995320

6 August 8th,
2017

0.100556 0.994297 0.101059 0.994269 0.100053 0.994325

7 February 8th,
2018

0.102223 0.993282 0.102734 0.993248 0.101712 0.993315
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date amount discounts amount (+) discounts (+) amount (-) discounts (-)
8 August 8th,

2018
0.100556 0.992284 0.101059 0.992245 0.100053 0.992322

9 February 8th,
2019

0.102223 0.991270 0.102734 0.991227 0.101712 0.991314

10 August 8th,
2019

0.100556 0.990275 0.101059 0.990226 0.100053 0.990323

11 August 8th,
2019

100.000000 0.990275 100.000000 0.990226 100.000000 0.990323

…and the duration is calculated correctly, thus approximating the four months to the next coupon.

In [16]: print(-(1/P)*(P_p - P_m)/(2*dy))

Out[16]: 0.33022533022465994

This also holds if the discounting curve is dependent, but not the same as the forecast curve; e.g., as
in the case of an added credit spread:

In [17]: discount_curve = ql.ZeroSpreadedTermStructure(
forecast_curve,
ql.QuoteHandle(ql.SimpleQuote(0.001)))

bond.setPricingEngine(
ql.DiscountingBondEngine(ql.YieldTermStructureHandle(discount_curve)))

This causes the price to decrease due to the increased discount factors…

In [18]: P = bond.dirtyPrice()
cfs = [ c.amount() for c in bond.cashflows() ]
discounts = [ discount_curve.discount(d) for d in dates ]
print(P)

Out[18]: 99.55107926688962

…but the coupon amounts are still the same.

In [19]: DataFrame(list(zip(dates, cfs, discounts)),
columns = ('date','amount','discount'),
index = range(1,len(dates)+1))

Out[19]:
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date amount discount
1 February 9th, 2015 0.102778 0.999009
2 August 10th, 2015 0.101112 0.997496
3 February 8th, 2016 0.101112 0.995984
4 August 8th, 2016 0.101112 0.994475
5 February 8th, 2017 0.102223 0.992952
6 August 8th, 2017 0.100556 0.991456
7 February 8th, 2018 0.102223 0.989938
8 August 8th, 2018 0.100556 0.988446
9 February 8th, 2019 0.102223 0.986932
10 August 8th, 2019 0.100556 0.985445
11 August 8th, 2019 100.000000 0.985445

The price derivative is calculated in the same way as above…

In [20]: y.setValue(0.002 + dy)
P_p = bond.dirtyPrice()
print(P_p)

y.setValue(0.002 - dy)
P_m = bond.dirtyPrice()
print(P_m)

y.setValue(0.002)

Out[20]: 99.55075966035385
99.55139887578544

In [21]: print(-(1/P)*(P_p - P_m)/(2*dy))

Out[21]: 0.3210489711903113

…and yields a similar result.



Translating QuantLib Python examples to
C++
It’s easy enough to translate the Python code shown in this book into the corresponding C++ code.
As an example, I’ll go through a bit of code from the notebook on instruments and pricing engines.

In [1]: import QuantLib as ql

This line imports the QuantLib module and provides a shorter alias that can be used to qualify the
classes and functions it contains. The C++ equivalent would be:

#include <ql/quantlib.hpp>

namespace ql = QuantLib;

In C++, however, I wouldn’t include the global quantlib.hpp header, which would inflate your
compilation times; instead, you can include the specific headers for the classes you’ll use.

Moreover, in C++ is not as discouraged as in Python to import the whole contents of a namespace
in a source file, that is, to use

using namespace QuantLib;

However, the above should not be used in header files; ask the nearest C++ guru if you’re not sure
why.

In [2]: today = ql.Date(7, ql.March, 2014)
ql.Settings.instance().evaluationDate = today

The code above has a couple of caveats. The first line is easy enough to translate; you’ll have to
declare the type to the variable (or use auto if you’re compiling in C++11 mode). The second line is
trickier. To begin with, the syntax to call static methods differs in Python and C++, so you’ll have to
replace the dot before instance by a double colon (the same goes for the namespace qualifications).
Then, evaluationDate is a property in Python but a method in C++; it was changed in the Python
module to be more idiomatic, since it’s not that usual in Python to assign to the result of a method.
Luckily, you won’t find many such cases. The translated code is:
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ql::Date today(7, ql::March, 2014);
ql::Settings::instance().evaluationDate() = today;

Next:

In [3]: option = ql.EuropeanOption(ql.PlainVanillaPayoff(ql.Option.Call, 100.0),
ql.EuropeanExercise(ql.Date(7, ql.June, 2014)))

Again, you’ll have to declare the type of the variable. Furthermore, the constructor of EuropeanOp-
tion takes its arguments by pointer, or more precisely, by boost::shared_ptr. This is hidden
in Python, since there’s no concept of pointer in the language; the SWIG wrappers take care of
exporting boost::shared_ptr<T> simply as T. The corresponding C++ code (note also the double
colon in Option::Call):

ql::EuropeanOption option(
boost::make_shared<ql::PlainVanillaPayoff>(ql::Option::Call, 100.0),
boost::make_shared<ql::EuropeanExercise(ql::Date(7, ql::June, 2014)));

(A note: in the remainder of the example, I’ll omit the boost:: and ql:: namespaces for brevity.)

In [4]: u = ql.SimpleQuote(100.0)
r = ql.SimpleQuote(0.01)
sigma = ql.SimpleQuote(0.20)

Quotes, too, are stored and passed around as shared_ptr instances; this is the case for most
polymorphic classes (when in doubt, you can look at the C++ headers and check the signatures
of the functions you want to call). The above becomes:

shared_ptr<SimpleQuote> u = make_shared<SimpleQuote>(100.0);
shared_ptr<SimpleQuote> r = make_shared<SimpleQuote>(0.01);
shared_ptr<SimpleQuote> sigma = make_shared<SimpleQuote>(0.20);

Depending on what you need to do with them, the variables might also be declared as shared_-
ptr<Quote>. I used the above, since I’ll need to call a method of SimpleQuote in a later part of the
code.

In [5]: riskFreeCurve = ql.FlatForward(0, ql.TARGET(),
ql.QuoteHandle(r), ql.Actual360())

volatility = ql.BlackConstantVol(0, ql.TARGET(),
ql.QuoteHandle(sigma), ql.Actual360())

The Handle template class couldn’t be exported as such, because Python doesn’t have templates.
Thus, the SWIG wrappers have to declare separate classes QuoteHandle, YieldTermStructure-
Handle and so on. In C++, you can go back to the original syntax.
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shared_ptr<YieldTermStructure> riskFreeCurve =
make_shared<FlatForward>(0, TARGET(),

Handle<Quote>(r), Actual360());
shared_ptr<BlackVolTermStructure> volatility =

make_shared<BlackConstantVol>(0, TARGET(),
Handle<Quote>(sigma), Actual360());

Next,

In [6]: process = ql.BlackScholesProcess(ql.QuoteHandle(u),
ql.YieldTermStructureHandle(riskFreeCurve),
ql.BlackVolTermStructureHandle(volatility))

turns into

shared_ptr<BlackScholesProcess> process =
make_shared<BlackConstantVol>(

Handle<Quote>(u),
Handle<YieldTermStructure>(riskFreeCurve),
Handle<BlackVolTermStructure>(volatility));

and

In [7]: engine = ql.AnalyticEuropeanEngine(process)

into

shared_ptr<PricingEngine> engine =
make_shared<AnalyticEuropeanEngine>(process);

So far, we’ve been calling constructors. Method invocation works the same in Python and C++,
except that in C++ we might be calling methods through a pointer. Therefore,

In [8]: option.setPricingEngine(engine)

In [9]: print(option.NPV())

In [10]: print(option.delta())
print(option.gamma())
print(option.vega())

where option is an object in C++, becomes
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option.setPricingEngine(engine);

cout << option.NPV() << endl;

cout << option.delta() << endl;
cout << option.gamma() << endl;
cout << option.vega() << endl;

whereas

In [11]: u.setValue(105.0)

since u is a (smart) pointer, turns into

u->setValue(105.0);

Of course, the direct translation I’ve been doing only applies to the QuantLib code; I’m not able to
point you to libraries that replace the graphing functionality in matplotlib, or the data-analysis
facilities in pandas, or the parallel math functions in numpy. However, I hope that the above can
still enable you to extract value from this cookbook, even if you’re programming in C++.
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