Quality Assurance Testing from
Beginner to Paid Professional

Part 1

Everything You Need to Know to Start a
Career in Manual and Automated QA Testing

Written By
Bolakale Aremu



Quality Assurance Testing from Beginner to Paid Professional, Part 1:
Everything You Need to Know to Start a Career in Manual and Automated QA Testing

A
Copyright © 2025

AB Publisher LLC
All rights reserved

Published in the United States

Limit of Liability/Disclaimer of Warranty
Both the author and publisher have made diligent efforts to ensure the accuracy of the information and
instructions provided. However, they disclaim any liability for errors or omissions, including any potential
damages arising from the use or reliance on this content. Readers use the information and instructions
provided at their own risk. If this book includes code samples or references to technology that are
governed by open-source licenses or other intellectual property rights, it is the reader's responsibility to
ensure compliance with those licenses and rights.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, nhow known or
hereafter invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publisher.


mailto:ABPublisherLLC@gmail.com

Table of Contents
Part 1: Introduction to Software Testing
1. Overview of Quality Assurance
1.1. What is Software Testing?
1.2. Importance of Quality Assurance in Software Development
1.2.1. Why Quality Assurance Matters
1.2.2. The Role of QA in the Software Development Lifecycle (SDLC)
1.3. Manualvs. Automated Testing - When to Use Each
1.3.1. What is Manual Testing?
1.3.2. What is Automated Testing?
1.3.3. Choosing the Right Approach
1.4. Skills Required to Become a QA Tester
Part 2: Fundamentals of Manual QA Testing
2: Understanding Quality Assurance
2.1. Definition of Quality Assurance (QA)
2.2. Key Aspects of QA
2.3. QA vs. Software Testing: Are They the Same?
2.4. Why is QA Important?
2.5. Role of QA in Software Development Lifecycle
2.6. QA in Different Phases of the SDLC
2.7. Benefits of QAinthe SDLC
3. Foundations of Test Cases
3.1. Types of Software Testing (Functional vs. Non-Functional)
3.2. Test Case Design Principles
3.3. Writing Clear and Effective Test Cases
4. Designing Effective Test Cases
4.1. Positive and Negative Test Scenarios

4.2. Boundary Value Analysis and Equivalence Partitioning



4.3. Common Mistakes in Test Case Design
4.4. Organizing Test Cases for Maximum Efficiency
5. Test Case Management
5.1. Using Test Case Management Tools (Jira, TestRail, etc.)
5.2. Organizing Test Cases for Maximum Efficiency
5.3. Creating and Managing Test Suites
6. Test Execution and Bug Reporting
6.1. How to Execute Manual Test Cases
6.2. Identifying and Logging Bugs Properly
6.3. Writing Effective Bug Reports (Steps to Reproduce, Screenshots, etc.)
6.4. Common Bug Tracking Tools (Jira, Bugzilla, etc.)
Part 3: Transitioning from Manual to Automated Testing
7. Introduction to Automation in QA
7.1. What is Test Automation?
7.2. Benefits and Challenges of Automation
7.3. When to Automate and When Not To
8. Writing Automation Scripts
8.1. Basics of Programming for Testers (Python, Java, JavaScript)
8.2. Writing Your First Automation Script
8.3. Debugging and Troubleshooting Automation Scripts
8.4. Practice Exercises on writing, debugging, and optimizing automation scripts
Exercise 1: Automating a Simple Google Search
Exercise 2: Verifying a Login Functionality
Exercise 3: Handling a Dynamic Drop-Down Menu
Exercise 4: Scraping Multiple Elements from a Web Page
Exercise 5: Automating an End-to-End E-Commerce Checkout
8.5. Solutions to Practice Exercises

9. How to Get Your First QA Job



9.1. Writing a Strong QA Resume
9.2. Preparing for QA Interviews (Common Interview Questions)
9.3. Freelancing & Remote Work Opportunities in QA

9.4. Unlocking Part 2: Advanced QA Automation—Mastering Test Frameworks, API
Testing, and CI/CD Integration

9.4.1. What You’ll Learn in Part 2 of the Book
9.4.2. Be on the Lookout for Part 2!
9.5. How to Get Further Help & Support

10. References



Part 1: Introduction to Software Testing

1. Overview of Quality Assurance

Everytime you open an app onyour phone orcomputer, have you ever stopped to wonder
why it works so smoothly? It’s not just luck—there’s a dedicated team behind the scenes
making sure everything functions perfectly. That’s where Manual QA Engineers come in.

Here’s how it works: Developers create the app, but before it reaches users like you,
Manual QA Engineers step in to test every feature. They click buttons, navigate menus,
and explore every function—just like a real user would. If they find errors, glitches, or
anything that seems off, they report them so developers can fix the issues before the app
goes live.

But testing isn’t just about finding bugs. As a Manual QA Engineer, you also help improve
the user experience. Should the checkout button be easier to find? Would the app feel
more intuitive if a menu was placed differently? You’ll be asking these questions and
shaping how users interact with software.

The best part? This is a high-demand job that pays well. Companies are always looking
for QA testers because every app, website, or software product needs thorough testing
before release. Many companies also offer remote work options, giving you the flexibility
to work from home or in a hybrid setup.

If you’re interested in remote user testing jobs, here are a couple of reputable platforms
you can explore:

1. Turing: This is a company that values top talent. Turing is looking for skilled
remote software testing engineers to design and implement precise test
procedures, ensuring optimal software performance. This is an excellent
opportunity to collaborate with leading experts while working with top U.S. firms.
https://www.turing.com/jobs/remote-software-testing-engineer.

2. uTest: A global community where testers can participate in various testing
projects, from usability to functional testing, and get paid for their contributions.
https://www.userlytics.com/user-experience-research/paid-ux-testing/.

3. Test 10: Offers freelance testers the opportunity to work on testing the latest
apps and websites, providing flexibility and the chance to earn extraincome.
https://test.io/company/become-a-tester.

These platforms allow individuals to engage in testing activities and earn money, making
them accessible options for those looking to start a career in software testing.

If you’re preparing for a QA Automation or SDET interview, the following job-oriented
Udemy course provides expert-curated questions and detailed answers to help you
ace your interview with confidence:

Top 200+ QA Automation Interview Questions & Resume Tips -
https://www.udemy.com/course/qa-automation-interview-prep/.


https://www.turing.com/jobs/remote-software-testing-engineer
https://www.userlytics.com/user-experience-research/paid-ux-testing/
https://test.io/company/become-a-tester
https://www.udemy.com/course/qa-automation-interview-prep/

Now, if you’re curious about how software works and love the idea of ensuring smooth
user experiences, this practical book is the perfect starting point. You'll learn everything
from the essential tools and testing processes to career growth strategies.

Packed with a bunch of code samples and hands-on practice exercises, this book
allows you to apply what you learn in real-world scenarios, helping you build
confidence and technical skills.

By the time you finish reading, you’ll have a clear roadmap to launching your career in
Manual and Automated QA Testing—no prior experience needed. With this book as
your guide, you can take the first step toward your new career today!

1.1. What is Software Testing?

When you interact with a software application, whether it’s a mobile app, a website, or a
desktop program, you expect it to work flawlessly. However, software is complex, and
mistakes can happen during development. That’s where software testing comes in.

Software testing is the process of evaluating a software application to ensure it meets
the required specifications and functions correctly. As a software tester, your job is to
identify bugs, defects, or any issues that could affect the user experience. By
systematically testing software, you help developers create reliable, high-quality
applications that work as expected.

You can think of software testing as a quality assurance process that validates whether
an application performs correctly under different conditions. It involves executing a
program to find defects before it reaches the hands of users. Without proper testing,
software may contain errors that could lead to security vulnerabilities, performance
failures, or usability issues.

To be an effective tester, you must adopt a systematic approach. This means:

1. Understanding Requirements: Before you start testing, you need to know what the
software is supposed to do. This involves reviewing specifications, user stories, or any
documentation that outlines expected behavior.

2. Planning and Designing Tests: Once you understand the requirements, you create
test cases—structured scenarios that outline what to test, how to test it, and what the
expected outcome should be.

3. Executing Tests: This is where you run the software and check if it behaves as
expected. You may perform manual testing (where you interact with the application
yourself) or automated testing (where scripts and tools help run tests more efficiently).

4. Identifying and Reporting Defects: If you find a bug, you document it and report it to
the development team so they can fix it.

5. Re-Testing and Regression Testing: After bugs are fixed, you test again to ensure that
previous issues have been resolved and that no new problems have been introduced.

By following this structured approach, you contribute to the software development



lifecycle (SDLC) and help deliver a product that is functional, reliable, and user-friendly.
Learn more about SDLC here:
https://en.wikipedia.org/wiki/Systems_development_life_cycle. Whether you are
testing a small mobile app or a large enterprise system, the goal remains the same—
ensuring software quality and customer satisfaction.

Later, you’ll explore the different types of software testing and how each plays a critical
role in the development process.

1.2. Importance of Quality Assurance in Software Development

Software development is not just about writing code—it’s about creating reliable, high-
performing, and secure applications that meet user expectations. Quality Assurance
(QA) plays a crucial role in achieving this goal. Without proper QA, software can be prone
to bugs, security vulnerabilities, and performance issues that can lead to customer
dissatisfaction, financial losses, and even legal consequences.

1.2.1. Why Quality Assurance Matters

1. Prevents Costly Errors

Fixing bugs in the later stages of development—or worse, after release—can be
extremely expensive. QA helps identify issues early, reducing the cost and effort
needed for fixes.

2. Ensures Software Reliability

Users expect software to function correctly under various conditions. QA ensures that
applications perform consistently, minimizing crashes, errors, and unexpected
behaviors.

3. Enhances Security

Cybersecurity threats are a major concern in today’s digital world. QA includes security
testing to identify vulnerabilities before hackers can exploit them, protecting sensitive
user data.

4. Improves User Experience (UX)
A well-tested application provides a seamless and intuitive user experience. QA helps
eliminate usability issues, making software more accessible and enjoyable to use.

5. Builds Customer Trust and Brand Reputation
High-quality software leads to satisfied customers who trust your product. A well-
tested application enhances your company’s reputation and encourages user loyalty.

6. Ensures Compliance with Industry Standards
Many industries require software to meet specific regulations and standards (e.g., ISO,
GDPR, HIPAA). QA helps ensure compliance, preventing legal and regulatory issues.

1.2.2. The Role of QA in the Software Development Lifecycle (SDLC)
QA is not a one-time activity—it is integrated throughout the entire SDLC:

« Requirement Analysis: QA teams review requirements to ensure they are clear,


https://en.wikipedia.org/wiki/Systems_development_life_cycle

complete, and testable.

e Design & Development: Test plans and test cases are prepared alongside
development.

o Testing Phase: Manual and automated tests are executed to detect defects.

e Deployment & Maintenance: QA continues with regression testing and
monitoring for any post-release issues.

By making QA a priority in software development, organizations can build products that
are not only functional but also robust, secure, and user-friendly.

1.3. Manual vs. Automated Testing — When to Use Each

When testing software, you have two primary approaches: manual testing and
automated testing. Each method has its strengths and is suited for different testing
scenarios. To ensure software quality, you must understand when to use manual testing
and when automation is the better option.

1.3.1. What is Manual Testing?

Manual testing is the process of executing test cases without the use of automation
tools. Atester manually interacts with the application, following predefined test cases or
exploring the software dynamically to uncover defects.

When to Use Manual Testing

Manual testing is best suited for scenarios that require human observation and
adaptability, such as:

1. Exploratory Testing: When testing a new feature, testers rely on intuition and
experience to find defects that might not be covered by predefined test cases.

2. Usability Testing: Evaluating the user interface (Ul) and user experience (UX)
requires human judgment to ensure the software is intuitive and user-friendly.

3. Short-Term or One-Time Testing: If a feature is only tested once or twice,
automating it may not be cost-effective.

4. Ad-hoc Testing: When no formal test cases exist, testers perform spontaneous
testing to uncover unexpected defects.

5. Small-Scale Projects: If a project has limited scope, manual testing can be more
practical than setting up automation frameworks.

Pros of Manual Testing:

e Requires no additional tools or setup
e |dealfor exploratory and usability testing
e Allows for quick adaptation to Ul changes



Cons of Manual Testing:

e Time-consuming and repetitive
e Proneto human error
e Not scalable for large projects

1.3.2. What is Automated Testing?

Automated testing uses scripts and tools to execute test cases, compare actual
outcomes with expected results, and generate reports. It is useful for repetitive and
large-scale testing.

When to Use Automated Testing

Automation is most effective when dealing with repetitive, time-sensitive, or large-scale
testing scenarios, such as:

1. Regression Testing: Ensures that recent code changes do not break existing
functionality.

2. Performance Testing: Simulating thousands of users interacting with an
application cannot be done manually.

3. Load and Stress Testing: Helps determine how software behaves under heavy
usage.

4. Repeated Test Scenarios: Tests that need to be run frequently, such as login
verification, can be automated to save time.

5. ComplexScenarios with Large Data Sets: Automating tests forapplications that
handle extensive data processing is more efficient than manual testing.

Pros of Automated Testing:

e Faster execution of test cases
e Increases accuracy and consistency
e Enables large-scale and repetitive testing

Cons of Automated Testing:

e Requires initial investmentin tools and setup
e Cannotreplace human intuition for exploratory or usability testing
e Scripts must be maintained as the application evolves



