

Aprendizaje Profundo con
PyTorch Paso a Paso: Una Guía

para Principiantes
Volumen I—Fundamentos

Daniel Voigt Godoy

Version 1.1.1

Aprendizaje Profundo con PyTorch Paso a Paso: Una Guía para

Principiantes

Volumen I—Fundamentos

por Daniel Voigt Godoy (Traducción de Jesús Martínez-Blanco)

Copyright © 2020-2022 Daniel Voigt Godoy. Todos los derechos reservados.

Agosto 2022: Primera edición

Para obtener más información, envíe un correo electrónico a

contact@dvgodoy.com

Si bien los autores han realizado el máximo esfuerzo para garantizar que la

información y las instrucciones contenidas en este libro sean precisas, bajo ninguna

circunstancia los autores serán responsables de ninguna pérdida, daño,

responsabilidad o gasto incurrido o sufrido como consecuencia, directa o

indirectamente del uso y/o aplicación de cualquiera de los contenidos de este libro.

Cualquier acción que realice en base a la información de este libro es estrictamente

bajo su propio riesgo. Si alguna muestra de código u otra tecnología que este libro

contiene o describe está sujeta a licencias de código abierto o a los derechos de

propiedad intelectual de otros, es su responsabilidad asegurarse de que su uso

cumpla con dichas licencias y/o derechos. Los autores no tienen ningún control y no

asumen ninguna responsabilidad por los sitios web de terceros o su contenido.

Todas las marcas registradas son propiedad de sus respectivos dueños. Las

capturas de pantalla se utilizan únicamente con fines ilustrativos.

Ninguna parte de este libro puede ser reproducida o transmitida de ninguna forma

o por ningún medio (electrónico, mecánico, fotocopiado, grabación u otro), o por

cualquier sistema de almacenamiento y recuperación de información sin el permiso

previo por escrito del propietario de los derechos de autor, excepto donde

permitido por la ley. Compre solo ediciones electrónicas autorizadas. Se agradece

su apoyo a los derechos de los autores.

mailto:contact@dvgodoy.com

"Lo que no puedo crear, no lo entiendo."

Richard P. Feynman

Tabla de Contenido

Prefacio . xi

Agradecimientos . xiii

Acerca de los Autores. xiv

Preguntas frecuentes. 1

¿Por qué PyTorch? . 1

¿Por qué Este Libro? . 2

¿Quién Debería Leer Este Libro?. 3

¿Qué Necesito Saber? . 3

Cómo Leer Este Libro . 4

¿Qué Es lo Siguiente?. 7

Guía de Configuración . 8

Repositorio Oficial . 8

Entornos de Programación . 8

Google Colab . 8

Binder . 9

Instalación Local . 11

1. Anaconda . 11

2. Entornos (virtuales) Conda . 12

3. PyTorch . 13

4. TensorBoard. 16

5. GraphViz y Torchviz (opcional) . 16

6. Git. 18

7. Jupyter. 20

Seguimos . 21

Capítulo 0: Visualizando el Descenso de Gradiente . 22

Spoilers . 22

Jupyter Notebook . 22

Imports. 23

Visualizando el Descenso de Gradiente . 23

Modelo . 24

Generación de Datos . 25

Generación de Datos Sintéticos . 26

Partición Entrenamiento-Validación-Test. 27

Paso 0 - Inicialización aleatoria. 29

Paso 1 - Calcular las Predicciones del Modelo . 29

Paso 2 - Calcular la Pérdida (Loss) . 30

Superficie de Pérdidas . 32

Puedes Leer Más . 37

Secciones Transversales . 38

Paso 3 - Calcular los Gradientes . 39

Visualización de los Gradientes. 41

Retropropagación (Backpropagation) . 42

Paso 4 - Actualizar los Parámetros . 43

Tasa de Aprendizaje . 45

Tasa de Aprendizaje Baja . 47

Tasa de Aprendizaje Alta. 48

Tasa de Aprendizaje Muy Alta . 49

"Mala" Variable . 50

Escalado / Estandarización / Normalización . 53

Paso 5 - ¡Aclarar y repetir! . 57

El trayecto del Descenso de Gradiente . 58

Recapitulando . 60

Capítulo 1: Un Problema Sencillo de Regresión. 63

Spoilers . 63

Jupyter Notebook . 63

Imports. 64

Un Problema Sencillo de Regresión . 64

Generación de Datos . 65

Generación de Datos Sintéticos . 65

Descenso de Gradiente. 66

Paso 0 Inicialización Aleatoria . 67

Paso 1 - Calcular las Predicciones del Modelo . 67

Paso 2 - Calcular la Pérdida (Loss). 67

Paso 3 - Calcular los Gradientes . 68

Paso 4 - Actualizar los Parámetros . 69

Paso 5 - ¡Aclarar y repetir! . 70

Regresión Lineal en Numpy . 71

PyTorch. 75

Tensor . 75

Carga de Datos, Dispositivos y CUDA . 80

Creación de Parámetros . 85

Autograd . 89

backward (hacia atrás) . 89

grad . 91

zero_ . 92

Actualizando Parámetros. 93

no_grad . 96

Grafo Computacional Dinámico . 97

Optimizador. 101

step / zero_grad . 102

Pérdida (Loss). 104

Modelo . 108

Parámetros . 110

state_dict . 111

Dispositivo (Device). 112

Pase hacia Adelante (Forward Pass) . 112

train . 114

Modelos Anidados. 115

Modelos Secuenciales . 117

Capas (Layers) . 119

Resumen de Todo lo Visto . 121

Preparación de Datos . 122

Configuración del modelo . 123

Entrenamiento del Modelo . 125

Recapitulando. 127

Capítulo 2: Repensando el Bucle de Entrenamiento. 129

Spoilers. 129

Jupyter Notebook. 129

Imports . 130

Repensando el Bucle de Entrenamiento . 130

Paso de Entrenamiento . 136

Conjunto de Datos (Dataset) . 140

TensorDataset . 142

Cargador de Datos (DataLoader) . 143

Bucle Interno de Mini-Batch . 149

Partición Aleatoria . 151

Evaluación. 153

Gráfico de las Pérdidas . 158

TensorBoard . 158

Ejecutándolo en un Notebook. 159

Ejecución por Separado (Instalación Local) . 160

Ejecutándolo por Separado (Binder) . 162

Redactor de Resúmenes (SummaryWriter) . 162

add_graph . 164

add_scalars . 165

Guardar y Cargar Modelos. 171

Estado del Modelo. 171

Guardar. 171

Retomando el Entrenamiento . 172

Producción / Haciendo Predicciones . 175

Configurando el Modo del Modelo . 177

Resumen de Todo lo Visto . 178

Recapitulando. 181

Capítulo 2.1: Vayamos con Clase . 183

Spoilers. 183

Jupyter Notebook. 183

Imports . 183

Vayamos con Clase. 184

La Clase. 184

El Constructor . 185

Argumentos. 185

Comodines (Placeholders) . 186

Variables. 188

Funciones . 189

Entrenamiento de Modelos . 196

Guardar y Cargar Modelos. 200

Métodos de Visualización . 202

El Código Completo . 203

Todos los Pasos, con Clase . 204

Entrenamiento del Modelo . 207

Haciendo Predicciones . 209

Checkpointing . 209

Retomando el Entrenamiento . 210

Resumen de Todo lo Visto . 212

Recapitulando. 215

Capítulo 3: Un Problema Sencillo de Clasificación . 217

Spoilers. 217

Jupyter Notebook. 217

Imports . 218

Un Problema Sencillo de Clasificación . 218

Generación de Datos. 219

Preparación de Datos . 221

Modelo . 221

Logits . 222

Probabilidades . 223

Razón de Posibilidades (Odds Ratio) . 223

Odds Ratio Logarítmica . 225

De Logits a Probabilidades . 227

Sigmoide. 228

Regresión Logística. 229

Pérdida (Loss). 232

BCELoss . 235

BCEWithLogitsLoss . 237

Conjunto de Datos Desequilibrado . 239

Configuración del Modelo . 242

Entrenamiento de Modelos . 243

Frontera de Decisión. 247

Umbral de Clasificación . 252

Matriz de Confusión. 254

Métricas . 256

Tasas de Positivos Verdaderos y Falsos . 256

Precisión y Exhaustividad . 259

Exactitud. 260

Equilibrios y Curvas . 261

Umbral Bajo . 262

Umbral Alto. 263

Curvas ROC y PR . 264

Lo extraño de la Precisión . 266

Mejores y Peores Curvas . 268

Comparación de Modelos . 269

Resumen de Todo lo Visto . 271

Recapitulando. 273

¡GRACIAS! . 275

Prefacio

Si estás leyendo esto, probablemente no necesito decirte que el aprendizaje

profundo (deep learning) es increíble y PyTorch es una librería genial, ¿verdad?

Pero déjame que te cuente brevemente cómo surgió la idea de escribir esta serie

de libros. En 2016 comencé a impartir una clase sobre aprendizaje automático

(machine learning) con Apache Spark y, un par de años más tarde, otra clase sobre

los fundamentos de aprendizaje automático.

Poco tiempo después andaba buscando una entrada de blog que explicara

visualmente, de una manera clara y concisa, el concepto de entropía cruzada

binaria (binary cross-entropy) para poder explicarla a mis estudiantes. Como no

pude encontrar ninguna que fuera adecuada, decidí escribir una yo mismo. Aunque

pensé que era un tema bastante básico, resultó ser mi artículo más popular[1]. Mis

lectores han dado la bienvenida a la manera sencilla, directa y llana en que expliqué

el tema.

Más tade, en 2019, usé el mismo enfoque para escribir otra publicación:

"Understanding PyTorch with an example: a step-by-step tutorial."[2] Una vez más,

¡me sorprendió la reacción de los lectores!

Fueron sus comentarios positivos los que me motivaron a escribir esta serie de

libros para ayudar a los principiantes a iniciar su viaje hacia el aprendizaje profundo

y PyTorch..

En este primer volumen, cubro los fundamentos del descenso de gradiente

(gradient descent), los fundamentos de PyTorch, las regresiones lineales y

logísticas, las métricas de evaluación etc. Si no tienes absolutamente ninguna

experiencia con PyTorch, verás que este libro es tu punto de partida.

El segundo volumen se centra principalmente en la visión artificial (computer

vision): modelos más profundos y funciones de activación, redes neuronales

convolucionales, esquemas de inicialización, schedulers y aprendizaje de

transferencia. Si tu objetivo es aprender sobre modelos de aprendizaje profundo

para la visión artificial, y ya te sientes cómodo entrenando modelos simples en

PyTorch, el segundo volumen es el adecuado para ti.

Luego, el tercer volumen se centra en todas las cosas relacionadas con secuencias:

redes neuronales recurrentes y sus variaciones, modelos de secuencia a secuencia,

atención, autoatención y la arquitectura del Transformer. El último capítulo del

| xi

tercer volumen es un curso intensivo sobre el procesamiento del lenguaje natural

(natural language processing): desde los conceptos básicos de la tokenización de

palabras hasta el ajuste de modelos grandes (BERT y GPT-2) utilizando la librería

HuggingFace. Este último volumen es más exigente que los otros dos, y vas a

disfrutarlo más si ya tienes una comprensión sólida de los modelos de aprendizaje

profundo.

Estos libros están diseñados para ser leídos en orden y, aunque pueden ser leídos de

forma independiente, te recomiendo encarecidamente que los leas de forma

secuencial, como si fuera un único libro :-)

Espero que disfrutes leyendo esta serie tanto como yo disfruté escribiéndola.

[1] https://bit.ly/2UW5iTg

[2] https://bit.ly/2TpzwxR

xii | Prefacio

https://bit.ly/2UW5iTg
https://bit.ly/2TpzwxR

Agradecimientos

En primer lugar, me gustaría darte las GRACIAS a ti, mi lector, por hacer posible

este libro. Si no fuera por los increíbles comentarios que recibí de los miles de

lectores de mi blog sobre PyTorch, ¡nunca habría reunido la fuerza para comenzar y

terminar una empresa tan importante como escribir una serie de 1,000 páginas!

Me gustaría agradecer a mis buenos amigos Jesús Martínez-Blanco (quien logró

leer absolutamente todo lo que escribí), Jakub Cieslik, Hannah Berscheid, Mihail

Vieru, Ramona Theresa Steck, Mehdi Belayet Lincon y António Góis por ayudarme

y dedicar una buena parte de su tiempo a leer, corregir y sugerir mejoras a mis

borradores. ¡Estaré siempre agradecido por vuestro apoyo! También me gustaría

agradecer a mi amigo José Luis López Pino por el empujón inicial que necesitaba

para realmente empezar a escribir este libro.

Muchas gracias a mis amigos José Quesada y David Anderson por aceptarme como

estudiante en el bootcamp Data Science Retreat en 2015 y, más tarde, por invitarme

a ser profesor allí. Ese fue el punto de partida de mi carrera como científico de

datos y como profesor.

También me gustaría agradecer a los desarrolladores de PyTorch por desarrollar

una librería tan increíble, y a los equipos de Leanpub y Towards Data Science por

hacer que sea increíblemente fácil para los creadores de contenido como yo

compartir su trabajo con la comunidad.

Por último, me gustaría dar las gracias a mi esposa, Jerusa, por ser siempre mi

apoyo durante toda la escritura de esta serie de libros, y por tomarse el tiempo

para leer cada página de la misma :-)

| xiii

Acerca de los Autores

Daniel es un científico de datos, desarrollador, escritor y profesor. Ha estado

enseñando aprendizaje automático y tecnologías de la computación distribuida en

Data Science Retreat, el bootcamp con sede en Berlín más antiguo, desde 2016,

ayudando a más de 150 estudiantes a progresar en sus carreras como científicos de

datos. Su trayectoria profesional incluye 20 años de experiencia trabajando para

empresas de varios sectores: banca, gobierno, fintech, venta al por menor y

movilidad.

Jesús es doctor en Física por la Universidad Autónoma de Madrid y ha trabajado

como tal en numerosas instituciones científicas. Siguiendo su pasión por la

modelización de datos y la automatización, empezó su carrera como científico de

datos a finales de 2015, trabajando en industrias como la publicidad online y la

movilidad. Actualmente es Pricipal Data Scientist en FlixBus, el proveedor de rutas

de autobús de larga distancia más grande de Europa. Es también profesor y mentor

en Data Science Retreat, donde imparte cursos de Visualización de Datos en el

contexto web.

xiv | Acerca de los Autores

Preguntas frecuentes

¿Por qué PyTorch?

En primer lugar, programar en PyTorch es divertido :-) En serio, tiene algo que hace

que sea agradable escribir código. Hay quien dice que es porque es muy pythonic, o

tal vez hay algo más, ¿quién sabe? ¡Espero que, al final de este libro, tú también lo

veas así! En segundo lugar, puede que haya incluso algunos beneficios inesperados

para tu salud, como dice Andrej Karpathy en este tweet[3].

Bromas aparte, PyTorch es la biblioteca de aprendizaje profundo que más ha

crecido[4] y existe un enorme ecosistema.[5] de herramientas y bibliotecas

desarrolladas en base a PyTorch. Es ya la biblioteca preferida[6] en el mundo

académico y está abriéndose rápidamente camino en la industria.

Varias empresas utilizan ya el poder de PyTorch;[7], como por ejemplo:

• Facebook: Esta compañía es la desarrolladora original de PyTorch, lanzado en

octubre de 2016.

• Tesla: Mira a Andrej Karpathy (director de IA en Tesla) hablar sobre "cómo

Tesla está usando PyTorch para desarrollar capacidades completas de

autoconducción para sus vehículos" en este video.[8]

• OpenAI: En enero de 2020, OpenAI decidió estandarizar su marco de

aprendizaje profundo en PyTorch.[9]

• fastai: fastai es una biblioteca[10] basada en PyTorch para simplificar el

entrenamiento de modelos y se utiliza en su curso "Practical Deep Learning for

Coders"[11]. La biblioteca fastai está estrechamente relacionada con PyTorch y

"no puedes ser realmente competente en el uso de fastai si no conoces bien PyTorch."
[12]

• Uber: La compañía es un contribuyente significativo al ecosistema de PyTorch,

habiendo desarrollado bibliotecas como Pyro[13] (programación probabilística) y

Horovod[14] (un marco de entrenamiento de modelos distribuido).

• Airbnb: PyTorch constituye el alma de su asistente de diálogo para el servicio al

cliente.[15]

Esta serie de libros tiene como objetivo introducirte en el mundo PyTorch a la vez

que te da una comprensión sólida de cómo funciona.

¿Por qué PyTorch? | 1

https://bit.ly/2MQoYRo
https://bit.ly/37uZgLB
https://bit.ly/37uZgLB
https://pytorch.org/ecosystem/
https://bit.ly/2MTN0Lh
https://bit.ly/2UFHFve
https://bit.ly/2XXJkyo
https://docs.fast.ai/
https://course.fast.ai/
https://course.fast.ai/
https://course.fast.ai/
https://course.fast.ai/
http://pyro.ai/
https://github.com/horovod/horovod

¿Por qué Este Libro?

Si estás buscando un libro donde puedas aprender sobre el aprendizaje profundo y

PyTorch sin tener que pasar horas descifrando texto y código críptico, si buscas un

libro que sea además fácil y agradable de leer, aquí lo tienes :-)

En primer lugar, éste no es el típico libro que empieza con algún sencillo problema de

clasificación de imágenes para ilustrar cómo usar PyTorch. Puede parecer una buena

idea, pero creo que te distrae del objetivo principal: aprender cómo funciona

PyTorch. En este libro presento un enfoque estructurado, incremental y a partir

de primeros principios para aprender PyTorch.

En segundo lugar, éste no es en absoluto un libro formal: escribo este libro como si

estuviera teniendo una conversación contigo, el lector. Te haré preguntas (y te

daré las respuestas poco después), y también haré (en ocasiones absurdos) chistes.

Mi trabajo aquí es hacerte entender los temas que vamos a abordar, así que evitaré

notación matemática sofisticada tanto como sea posible e intentaré usar un

español llano.

En este primer libro de la serie Aprendizaje Profundo con PyTorch Paso a Paso, te

guiaré a través del desarrollo de muchos modelos en PyTorch, mostrándote por

qué PyTorch hace que sea mucho más fácil y más intuitivo construir modelos en

Python: autograd, grafo computacional dinámico, clases del modelo, y mucho, mucho

más.

Vamos a construir, paso a paso, no solo los modelos en sí, sino también tu

comprensión de los mismos, ya que te mostraré el razonamiento que hay trás el

código y cómo evitar algunos escollos y errores comunes por el camino.

Hay otra ventaja de centrarse en lo básico: es probable que este libro tenga por

ello una vida útil más larga. Es bastante común que los libros técnicos,

especialmente los que se centran en tecnologías de vanguardia, se vuelvan

obsoletos rápidamente. Esperemos que este no sea el caso aquí, ya que tanto la

mecánica subyacente como los conceptos que la sustentan, no van a cambiar. Es

esperable que la sintaxis de algunos ejemplos de programación cambien con el

tiempo, pero no creo que esos cambios sean relevantes al menos para el futuro

inmediato.

2 | Preguntas frecuentes



Una cosa más: Si aún no te habías dado cuenta, me encanta hacer

uso de señales visuales, es decir, destacar el texto con negrita y

cursiva. Creo firmemente que esto ayuda al lector a comprender

más fácilmente las ideas clave que estoy intentando transmitir.

Puedes encontrar más sobre esto en la sección "Cómo leer este

libro."

¿Quién Debería Leer Este Libro?

Escribí este libro para principiantes en general, no solo para principiantes en

PyTorch. De vez en cuando dedicaré algún tiempo a explicar algunos conceptos

fundamentales que creo que son esenciales para tener una comprensión adecuada

del funcionamiento del código.

El mejor ejemplo es el descenso de gradiente (gradient descent), con el que la

mayoría de las personas están familiarizadas en mayor o menor medida. Tal vez

sepas cuál es la idea general, tal vez la hayas visto en el curso de aprendizaje

automático de Andrew Ng, o tal vez incluso hayas calculado algunas derivadas

parciales tú mismo.

En la vida real, la mecánica del descenso de gradiente será responsabilidad de

PyTorch (¡alerta de spoiler!). En cualquier caso, intentaré darte las claves de su

funcionamiento (a menos que elijas omitir el Capítulo 0 por completo, por

supuesto), porque muchos elementos en el código, así como opciones de

hiperparámetros (tasa de aprendizaje, tamaño de mini-batch, etc.), se pueden

entender mucho más fácilmente si sabes de dónde vienen.

Tal vez ya conozcas bien algunos de estos conceptos: Si es así, puedes simplemente

saltártelos, ya que he procurado que estas explicaciones sean lo más independientes

del resto del contenido como sea posible en cada caso.

Pero quiero asegurarme de que todos estamos al mismo nivel de entendimiento,

por lo que, si es la primera vez que escuchas sobre un concepto o si no estás seguro

de haberlo entendido por completo, estas explicaciones son para ti.

¿Qué Necesito Saber?

Este es un libro para principiantes, por lo que asumo un conocimiento previo tan

mínimo como sea posible; como ya dije en la sección anterior, me tomaré el tiempo

para explicar conceptos fundamentales siempre que sea necesario.

¿Quién Debería Leer Este Libro? | 3

Dicho esto, aquí va una lista de lo que espero de ti, el lector:

• ser capaz de programar en Python (si estás familiarizado con la programación

orientada a objetos [OOP por sus siglas en inglés], incluso mejor)

• ser capaz de utilizar las bibliotecas de PyData (numpy, matplotplib y pandas) y

los Jupyter Notebooks

• estar familiarizado con algunos conceptos básicos utilizados en aprendizaje

automático, como:

◦ aprendizaje supervisado: regresión y clasificación

◦ funciones error para problemas de regresión y clasificación (error

cuadrático medio, entropía cruzada, etc.)

◦ división del conjunto de datos en entrenamiento, validación y test

◦ subajuste y sobreajuste (dilema sesgo/varianza)

En cualquier caso, trataré algunos de estos temas solo de forma breve, de lo

contrario, ¡este libro sería gigantesco!

Cómo Leer Este Libro

Como este libro es una guía para principiantes, está diseñado para ser leído

secuencialmente, al tiempo que las ideas y los conceptos se van construyendo

progresivamente. Lo mismo ocurre con el código dentro del libro: deberías poder

reproducir todos los resultados, siempre que ejecutes los fragmentos de código en

el mismo orden en que se introducen.

Este libro es visualmente diferente a otros libros: Como ya he mencionado en la

sección "¿Por qué este libro?", me gusta mucho usar señales visuales. Aunque esto

no es, estrictamente hablando, una convención, así es como puedes interpretar esas

señales:

• Utilizo negrita para resaltar lo que creo que son las palabras más relevantes en

una frase o párrafo, mientras que las palabras en cursiva también se consideran

importantes (aunque no lo suficientemente importantes como para estar en

negrita)

• Variables, coeficientes, y parámetros en general, están en cursiva

• Clases y métodos están escritos en una fuente monoespaciada, y enlazan a la

documentación PyTorch[16] la primera vez que se introducen, para que puedas

4 | Preguntas frecuentes

https://bit.ly/3cT1aH2

encontrarlo fácilmente (a diferencia de otros enlaces en este libro, los enlaces a

la documentación son numerosos y por lo tanto no incluidos en las notas a pie de

página)

• Cada celda de código va seguida de otra celda que muestra los resultados

correspondientes (si las hubiera)

• Todo el código presente en este libro está disponible en el repositorio oficial

de GitHub:

https://github.com/dvgodoy/PyTorchStepByStep

Las celdas de código con títulos son una parte importante del flujo de trabajo:

El Título va aquí

1 # Lo que quiera que vaya aquí, va a tener un impacto en OTRAS
2 # celdas. Además, la mayoría de las celdas tienen COMENTARIOS
3 # que explican por dónde van los tiros
4 x = [1., 2., 3.]
5 print(x)

Si hay algún resultado de la celda de código, con título o sin él, habrá otra celda de

código que represente el resultado correspondiente para que puedas verificar si lo

has reproducido con éxito o no.

Output

[1.0, 2.0, 3.0]

Algunas celdas de código no tienen títulos, su ejecución no afecta al flujo de

trabajo:

Esas celdas ilustran CÓMO PROGRAMAR algo pero
NO son parte del flujo de trabajo principal
dummy = ['a', 'b', 'c']
print(dummy[::-1])

¡Pero incluso estas celdas muestran sus resultados!

Cómo Leer Este Libro | 5

https://github.com/dvgodoy/PyTorchStepByStep

Output

['c', 'b', 'a']

Utilizo textos al margen para comunicar diferentes cosas, dependiendo del icono

correspondiente:


ATENCIÓN

Algún problema en potencia o alguna cosa de la que debamos

estar atentos.


CONSEJO

Aspectos clave que realmente quiero que recuerdes.


INFORMACIÓN

Información importante a la que prestar atención.


IMPORTANTE

Información a la que realmente prestar atención.


TÉCNICO

Aspectos técnicos de parametrización o funcionamiento interno

de algoritmos.


PREGUNTA Y RESPUESTA

Haciéndome preguntas (pretendiendo ser tú, el lector) y

respondiéndolas, ya sea en el mismo bloque o poco después.


DISCUSIÓN

Discusión realmente breve sobre un concepto o tema.


DESPUÉS

Temas importantes que se tratarán con más detalle más adelante.

6 | Preguntas frecuentes


BROMA

Chistes, juegos de palabras, memes, citas de películas.

¿Qué Es lo Siguiente?

Es hora de configurar un entorno para tu aventura de aprendizaje utilizando la

Guía de configuración.

[3] https://bit.ly/2MQoYRo

[4] https://bit.ly/37uZgLB

[5] https://pytorch.org/ecosystem/

[6] https://bit.ly/2MTN0Lh

[7] https://bit.ly/2UFHFve

[8] https://bit.ly/2XXJkyo

[9] https://openai.com/blog/openai-pytorch/

[10] https://docs.fast.ai/

[11] https://course.fast.ai/

[12] https://course.fast.ai/

[13] http://pyro.ai/

[14] https://github.com/horovod/horovod

[15] https://bit.ly/30CPhm5

[16] https://bit.ly/3cT1aH2

¿Qué Es lo Siguiente? | 7

https://bit.ly/2MQoYRo
https://bit.ly/37uZgLB
https://pytorch.org/ecosystem/
https://bit.ly/2MTN0Lh
https://bit.ly/2UFHFve
https://bit.ly/2XXJkyo
https://openai.com/blog/openai-pytorch/
https://docs.fast.ai/
https://course.fast.ai/
https://course.fast.ai/
http://pyro.ai/
https://github.com/horovod/horovod
https://bit.ly/30CPhm5
https://bit.ly/3cT1aH2

Guía de Configuración

Repositorio Oficial

El repositorio oficial de este libro está disponible en GitHub:

https://github.com/dvgodoy/PyTorchStepByStep

Contiene un Jupyter notebook por cada capítulo de este libro. Cada notebook

contiene todo el código presente en el capítulo correspondiente, y deberías poder

ejecutar sus celdas secuencialmente para obtener los mismos resultados (outputs)

que se muestran en el libro. Creo firmemente que ser capaz de reproducir los

resultados infunde confianza en el lector.



A pesar de que hice todo lo posible para garantizar la

reproducibilidad de los resultados, es posible que encuentres

aún algunas diferencias menores en tus resultados

(especialmente durante el entrenamiento de los modelos).

Desgraciadamente, los resultados completamente reproducibles

no están garantizados en todas las versiones de PyTorch, y los

resultados pueden no ser reproducibles entre ejecuciones

usando la CPU y la GPU, incluso cuando se usan seeds idénticas.[17]

Entornos de Programación

Hay tres opciones para que ejecutes los Jupyter notebooks:

• Google Colab (https://colab.research.google.com)

• Binder (https://mybinder.org)

• Instalación local

Exploremos brevemente los pros y contras de cada una de estas opciones.

Google Colab

Google Colab "te permite escribir y ejecutar Python en tu navegador, sin necesidad de

configuración, acceso gratuito a GPU y la posibilidad de compartir tu código de forma

fácil."[18].

8 | Guía de Configuración

https://github.com/dvgodoy/PyTorchStepByStep
https://colab.research.google.com
https://mybinder.org

Puedes cargar los notebooks directamente desde GitHub con la URL especial de

Colab (https://colab.research.google.com/github/). Simplemente escribe el usuario u

organización de GitHub (como el mío, dvgodoy), y te mostrará una lista de todos sus

repositorios públicos (como la de este libro, PyTorchStepByStep).

Después de elegir un repositorio, se te mostrará una lista de los notebooks

disponibles y los enlaces correspondientes para abrirlos en una nueva pestaña del

navegador.

Figura S.1 - La URL especial de Google Colab

También tienes acceso a una GPU, que es muy útil para entrenar modelos de

aprendizaje profundo más rápido. Más importante aún, si realizas cambios en el

notebook, Google Colab los conservará. Esta forma de trabajar me parece muy

conveniente; las únicas desventajas que veo son:

• Tienes que haber iniciado sesión en una cuenta de Google.

• Necesitas (re)instalar paquetes de Python que no forman parte de la

configuración predeterminada de Google Colab.

Binder

Binder "te permite crear entornos personalizados de programación que pueden ser

compartidos y utilizados por muchos usuarios remotos."[19]

También puedes cargar notebooks directamente desde GitHub, pero el proceso es

ligeramente diferente. Binder creará algo así como una máquina virtual

(técnicamente, es un contenedor, pero dejémoslo ahí), clonará el repositorio e

iniciará Jupyter. Esto te permite tener acceso a la página de inicio de Jupyter en tu

navegador, igual que lo harías si lo estuvieras ejecutando localmente, pero todo se

está ejecutando en un servidor JupyterHub.

Entornos de Programación | 9

https://colab.research.google.com/github/

Simplemente ve a Binder (https://mybinder.org/) y escribe la URL del repositorio de

GitHub que quieras explorar (por ejemplo,

https://github.com/dvgodoy/PyTorchStepByStep) y haz clic en Launch (Iniciar).

Tardará un par de minutos en crear la imagen y abrir la página de inicio de Jupyter.

También puedes iniciar Binder para el repositorio de este libro directamente

utilizando el siguiente enlace: https://mybinder.org/v2/gh/dvgodoy/

PyTorchStepByStep/master.

Figura S.2 - La página de Binder

Binder es muy conveniente ya que no requiere de ningún tipo de configuración

previa. Es probable que los paquetes de Python necesarios para ejecutar

correctamente el entorno se instalen durante el inicio (si lo proporciona el autor

del repositorio).

Por otro lado, arrancar puede tardar tiempo, y no mantiene tus cambios después

de que expire tu sesión (por lo tanto, asegúrese de descargar cualquier notebook

que modifiques).

10 | Guía de Configuración

https://mybinder.org/
https://mybinder.org/v2/gh/dvgodoy/PyTorchStepByStep/master
https://mybinder.org/v2/gh/dvgodoy/PyTorchStepByStep/master

Instalación Local

Esta opción te dará más flexibilidad, pero requerirá más esfuerzo para

configurarla. Te animo a que intentes crear tu propio entorno de programación.

Puede parecer desalentador al principio, pero seguramente puedes lograrlo si

sigues estos siete pasos sencillos:

Lista de pasos

☐ 1. Instala Anaconda.

☐ 2. Crea y activa un entorno virtual.

☐ 3. Instala el paquete PyTorch.

☐ 4. Instala el paquete TensorBoard.

☐ 5. Instala el software GraphViz y el paquete TorchViz (opcional).

☐ 6. Instala git y clona el repositorio.

☐ 7. Inicia el Jupyter notebook.

1. Anaconda

Si aún no tienes instalada Anaconda’s Individual Edition[20], este sería un buen

momento para hacerlo. Es una forma conveniente de comenzar, ya que contiene la

mayoría de los paquetes de Python que un científico de datos necesitará para

desarrollar y entrenar modelos.

Sigue las instrucciones de instalación correspondientes a tu sistema operativo:

• Windows (https://docs.anaconda.com/anaconda/install/windows/)

• macOS (https://docs.anaconda.com/anaconda/install/mac-os/)

• Linux (https://docs.anaconda.com/anaconda/install/linux/)


Asegúrate de elegir la versión Python 3.X, ya que se ha dejado de

mantener Python 2 desde enero de 2020.

Después de instalar Anaconda, es hora de crear un entorno.

Entornos de Programación | 11

https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/linux/

2. Entornos (virtuales) Conda

Los entornos virtuales son una forma muy conveniente de aislar las instalaciones

de Python asociadas con diferentes proyectos.

 "¿Qué es un entorno?"

Es más o menos una réplica del propio Python y algunas (o todas) de sus

bibliotecas, por lo que, efectivamente, terminarás teniendo múltiples instalaciones

de Python en tu ordenador.

 "¿Por qué no puedo usar una sola instalación de Python para todo?"

Con tantas bibliotecas desarrolladas de forma independiente, cada una con

muchas versiones diferentes y cada versión con varias dependencias (de otras

bibliotecas), las cosas pueden salirse de control muy rápido.

No nos vamos a parar a debatir estos temas, pero puedes fiarte de mi palabra (¡o

busca en Google!): terminará yéndote mucho mejor si adquieres el hábito de crear

un entorno diferente para cada proyecto en el que comiences a trabajar.

 "¿Cómo creo un entorno?"

Primero, debes elegir un nombre para tu entorno :-) Llamemos al nuestro

pytorchbook (o cualquier otra cosa que te resulte fácil de recordar). A continuación,

deberás abrir una ventana de Terminal (en Ubuntu) o Anaconda Prompt (en

Windows o macOS) y escribir el siguiente comando:

$ conda create -n pytorchbook anaconda

El comando anterior crea un entorno de Conda llamado pytorchbook e incluye

todas los paquetes de Anaconda (puedes ir a tomarte un café, tardará un tiempo…

). Si deseas obtener más información sobre cómo crear y usar los entornos de

Conda, puedes consultar "Managing Environments"[21] de la guía del usuario.

¿Se terminó de crear el entorno? ¡Bien! Es hora de activarlo, lo que significa que

esa instalación de Python es la que se va a usar ahora. En la misma ventana del

terminal (o prompt de Anaconda), simplemente escribe:

12 | Guía de Configuración

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

$ conda activate pytorchbook

El prompt debería tener este aspecto (si usas Linux):

(pytorchbook)$

o así (si está usando Windows):

(pytorchbook)C:\>

¡Listo! Está utilizando un nuevo entorno de Conda ahora. Necesitarás activarlo

cada vez que abras un nuevo terminal, o, si eres usuario de Windows o macOS,

puedes abrir el prompt correspondiente de Anaconda (aparecerá como Anaconda

Prompt (pytorchbook), en nuestro caso), que lo tendrá activado desde el principio.



IMPORTANTE: A partir de ahora, asumo que activarás el entorno

pytorchbook cada vez que abras un terminal o un prompt de

Anaconda. Cualquier paso subsiguiente de instalación debe

ejecutarse dentro del entorno.

3. PyTorch

PyTorch es el mejor marco de aprendizaje profundo que existe, por si te saltaste la

introducción.

Es "un marco de aprendizaje automático de código abierto que reduce la distancia entre

los primeros prototipos creados al inicio de una investigación y la implementación de una

solución en producción."[22] No suena nada mal, ¿verdad? Bueno, probablemente ya

no tengo que convencerte sobre este extremo :-)

Es hora de instalar la biblioteca protagonista de este libro :-) Podemos ir

directamente a la sección Start Locally (https://pytorch.org/get-started/locally/) del

sitio web de PyTorch, y automáticamente seleccionará las opciones que mejor se

adapten a tu entorno local, y te mostrará el comando que debes ejecutar.

Entornos de Programación | 13

https://pytorch.org/get-started/locally/

Figura S.3 - La página Start Locally de PyTorch

Algunas de estas opciones son:

• PyTorch Build: selecciona siempre una versión estable.

• Paquete: Asumo que estás usando Conda.

• Language: Obviamente, Python.

Solo quedan dos opciones: Your OS (tu sistema operativo) y CUDA.

 "¿Qué es CUDA?", te preguntás.

Usar GPU / CUDA

CUDA "es una plataforma de computación en paralelo y un modelo de programación

desarrollado por NVIDIA para la computación general en Unidades de Procesamiento

Gráfico (GPU por sus siglas en inglés)."[23]

Si tienes una GPU en tu ordenador (probablemente una tarjeta gráfica GeForce),

puedes aprovechar su poder para entrenar modelos de aprendizaje profundo

mucho más rápido que usando una CPU. En este caso, debes elegir una instalación

de PyTorch que sea compatible con CUDA.

Sin embargo, esto no es suficiente: si aún no lo has hecho, necesitas instalar

controladores actualizados, el CUDA Toolkit y la biblioteca CUDA Deep Neural

Network (cuDNN). Desgraciadamente, indagar en unas instrucciones de

instalación más detalladas para CUDA están fuera del alcance de este libro.

14 | Guía de Configuración

La ventaja del uso de una GPU es que te permite iterar más rápido y experimentar

con modelos más complejos y una gama más amplia de hiperparámetros.

En mi caso, uso Linux, y tengo una GPU con CUDA versión 10.2 instalada. Así que

puedo ejecutar el siguiente comando en el terminal (después de activar el entorno):

(pytorchbook)$ conda install pytorch torchvision\
cudatoolkit=10.2 -c pytorch

Usar CPU

Si no tienes una GPU, debes elegir None para CUDA.

 "¿Puedo ejecutar el código sin una GPU?", te preguntarás.

¡Claro! El código y los ejemplos de este libro fueron diseñados para que todos los

lectores puedan seguirlos sin problemas. Puede que algunos ejemplos exijan un

poco más de potencia computacional, pero estamos hablando de un par de minutos

en una CPU, no de horas. Si no tienes una GPU, ¡no te preocupes! Además, siempre

puedes usar Google Colab si necesitas usar una GPU durante un tiempo.

Si tienes un ordenador con Windows y sin GPU, tienes que ejecutar el siguiente

comando en el prompt de Anaconda (pytorchbook):

(pytorchbook) C:\> conda install pytorch torchvision cpuonly\
 -c pytorch

Instalar CUDA

CUDA: Instalar controladores para una tarjeta gráfica GeForce, cuDNN de

NVIDIA y el CUDA Toolkit puede ser bastante complicado y depende en

gran medida del modelo de tarjeta que tengas y de tu sistema operativo.

Para instalar los controladores de GeForce, ve al sitio web de GeForce

(https://www.geforce.com/drivers), selecciona tu sistema operativo y el modelo

de tu tarjeta gráfica, y sigue las instrucciones de instalación.

Entornos de Programación | 15

https://www.geforce.com/drivers

Para instalar la biblioteca CUDA Deep Neural Network (cuDNN) de NVIDIA,

debes registrarte en https://developer.nvidia.com/cudnn.

Para instalar el CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit),

sigue las instrucciones para tu sistema operativo y elije un instalador local o

un archivo ejecutable.

macOS: Si eres usuario de macOS, ten en cuenta que los binarios de PyTorch

NO son compatibles con CUDA, lo que significa que necesitarás instalar

PyTorch desde la fuente si quieres usar tu GPU. Este es un proceso algo

complicado (como se describe en https://github.com/pytorch/pytorch#from-

source), así que si no tienes ganas de hacerlo, puedes elegir continuar sin

CUDA, y aún así podrás ejecutar el código presente en este libro de forma

rápida.

4. TensorBoard

TensorBoard es el kit de herramientas de visualización de TensorFlow, y

"proporciona la visualización y las herramientas necesarias para la experimentación con

aprendizaje automático."[24]

TensorBoard es una herramienta poderosa, y podemos usarla incluso si estamos

desarrollando modelos en PyTorch. Afortunadamente, no es necesario instalar

toda la biblioteca TensorFlow para obtenerlo; puedes fácilmente solo instalar

TensorBoard usando Conda. Solo necesitas ejecutar este comando en tu terminal

o prompt de Anaconda (de nuevo, después de activar el entorno):

 (pytorchbook)$ conda install -c conda-forge tensorboard

5. GraphViz y Torchviz (opcional)



Este paso es opcional, principalmente porque la instalación de

GraphViz a veces puede ser problemática (especialmente en

Windows). Si por alguna razón no logras instalarlo

correctamente, o si decides omitir este paso de instalación, aún

podrás ejecutar el código presente en este libro (salvo por un par

de celdas que generan imágenes de la estructura de un modelo en

la sección "Grafo Computacional Dinámico" del Capítulo 1).

16 | Guía de Configuración

https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuda-toolkit
https://bit.ly/30M6tnt
https://bit.ly/30M6tnt

GraphViz es un software de visualización de grafos de código abierto. Es "una forma

de representar información estructural como diagramas de grafos abstractos y redes."[25]

Necesitamos instalar GraphViz para usar TorchViz, un elegante paquete que nos

permitirá visualizar la estructura de un modelo. Consulta las instrucciones de

instalación para tu sistema operativo en https://www.graphviz.org/download/.


Si usas Windows, utiliza el instalador GraphViz 's Windows

Package que puedes encontrar en https://graphviz.gitlab.io/_pages/

Download/windows/graphviz-2.38.msi.



También es necesario añadir GraphViz en tu PATH (variable de

entorno) en Windows. Lo más probable es que puedas encontrar

el archivo ejecutable de GraphViz en

C:\ProgramFiles(x86)\Graphviz2.38\bin. Una vez que lo

encuentres, debes establecer o cambiar el PATH, añadiendo la

ubicación de GraphViz en él.

Para obtener más detalles sobre cómo hacerlo, consulta "How to

Add to Windows PATH Environment Variable."[26]

Para obtener información adicional, también puedes consultar la guía "How to

Install Graphviz Software"[27].

Después de instalar GraphViz, puedes instalar el paquete torchviz[28]. Este paquete

no es parte del Anaconda Distribution Repository[29] y solo está disponible en PyPI
[30], el Índice de Paquetes de Python, por lo que necesitamos usar pip install para

instalarlo.

Una vez más, abre una ventana de terminal o un prompt de Anaconda y ejecuta

este comando (recuerda, una vez más: después de activar el entorno):

(pytorchbook)$ pip install torchviz

Para comprobar tu instalación de GraphViz /TorchViz, puedes probar el siguiente

código de Python:

Entornos de Programación | 17

https://www.graphviz.org/download/
https://graphviz.gitlab.io/_pages/Download/windows/graphviz-2.38.msi
https://graphviz.gitlab.io/_pages/Download/windows/graphviz-2.38.msi
https://bit.ly/3fIwYA5
https://bit.ly/3fIwYA5
https://bit.ly/30Ayct3
https://bit.ly/30Ayct3
https://github.com/szagoruyko/pytorchviz
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://pypi.org/

(pytorchbook)$ python

Python 3.7.5 (default, Oct 25 2019, 15:51:11)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import torch
>>> from torchviz import make_dot
>>> v = torch.tensor(1.0, requires_grad=True)
>>> make_dot(v)

Si todo funciona correctamente, deberías ver algo como esto:

Output

<graphviz.dot.Digraph object at 0x7ff540c56f50>

Si te da un error de cualquier tipo (el que se muestra a continuación es bastante

común), significa que todavía hay algún tipo de problema de instalación con

GraphViz.

Output

ExecutableNotFound: failed to execute ['dot', '-Tsvg'], make
sure the Graphviz executables are on your systems' PATH

6. Git

Está mucho más allá del alcance de esta guía enseñarte cómo funciona el sistema de

control de versiones (version control) y su herramienta más popular: git. Si ya

estás familiarizado con él, ¡genial, puedes saltarte esta sección por completo!

18 | Guía de Configuración

conda install vs pip install

Aunque puedan parecer equivalentes a primera vista, es preferible usar

conda install en lugar de pip install cuando trabajas con Anaconda y sus

entornos virtuales.

Esto se debe a que conda install es sensible al entorno virtual activo: El

paquete se instalará solo para ese entorno. Si usas pip install, y el

comando pip no está instalado en el entorno que tienes activo, usará por

defecto el pip global, y eso no es lo que quieres.

¿Por qué no? ¿Recuerdas el problema con las dependencias que mencioné en

la sección de entornos virtuales? ¡Pues por eso! El instalador conda asume

que se usan todos los paquetes que forman parte de su repositorio y realiza

un seguimiento de la complicada red de dependencias entre ellos (para

obtener más información sobre esto, consulta este enlace[31]).

Para obtener más información sobre las diferencias entre conda y pip,

puedes leer "Understanding Conda and Pip."[32]

Como regla general, primero intenta instalar el paquete con conda install
y, solo si no lo encuentra ahí, utiliza pip install, como hicimos con

torchviz.

De lo contrario, te recomiendo que aprendas más sobre el tema; definitivamente

te será útil más adelante. Por el momento, te mostraré los conceptos básicos para

que puedas usar git para clonar el repositorio que contiene todo el código

presente en este libro y obtener tu propia copia local para modificarlo y

experimentar con él como quieras.

En primer lugar, necesitas instalarlo. Así que ve a la página de descargas (https://git-

scm.com/downloads) y sigue las instrucciones correspondientes a tu sistema

operativo. Una vez completada la instalación, abre un terminal nuevo o prompt de

Anaconda (no importa si cierras el anterior). En el nuevo terminal o prompt de

Anaconda, deberías poder ejecutar comandos git.

Para clonar el repositorio de este libro, solo necesitas ejecutar:

Entornos de Programación | 19

https://bit.ly/37onBTt
https://bit.ly/2AAh8J5
https://git-scm.com/downloads
https://git-scm.com/downloads

(pytorchbook)$ git clone https://github.com/dvgodoy/\
PyTorchStepByStep.git

El comando anterior creará una carpeta PyTorchStepByStep que contiene una

copia local de todo el código disponible en el repositorio de GitHub.

7. Jupyter

Después de clonar el repositorio, ve a la carpeta PyTorchStepByStep y, una vez

dentro de ella, inicia Jupyter en tu terminal o prompt de Anaconda:

(pytorchbook)$ jupyter notebook

Esto abrirá tu navegador y verás la página de inicio de Jupyter que contiene los

notebooks del repositorio y el código correspondiente.

Figura S.4 - Ejecutando Jupyter

20 | Guía de Configuración

Seguimos

Independientemente de cuál de los tres entornos elijas, ahora estás en disposición

de continuar y abordar el desarrollo de tu primer modelo PyTorch, paso a paso.

[17] https://pytorch.org/docs/stable/notes/randomness.html

[18] https://colab.research.google.com/notebooks/intro.ipynb

[19] https://mybinder.readthedocs.io/en/latest/

[20] https://www.anaconda.com/products/individual

[21] https://bit.ly/2MVk0CM

[22] https://pytorch.org/

[23] https://developer.nvidia.com/cuda-zone

[24] https://www.tensorflow.org/tensorboard

[25] https://www.graphviz.org/

[26] https://bit.ly/3fIwYA5

[27] https://bit.ly/30Ayct3

[28] https://github.com/szagoruyko/pytorchviz

[29] https://docs.anaconda.com/anaconda/packages/pkg-docs/

[30] https://pypi.org/

[31] https://bit.ly/37onBTt

[32] https://bit.ly/2AAh8J5

Seguimos | 21

https://pytorch.org/docs/stable/notes/randomness.html
https://colab.research.google.com/notebooks/intro.ipynb
https://mybinder.readthedocs.io/en/latest/
https://www.anaconda.com/products/individual
https://bit.ly/2MVk0CM
https://pytorch.org/
https://developer.nvidia.com/cuda-zone
https://www.tensorflow.org/tensorboard
https://www.graphviz.org/
https://bit.ly/3fIwYA5
https://bit.ly/30Ayct3
https://github.com/szagoruyko/pytorchviz
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://pypi.org/
https://bit.ly/37onBTt
https://bit.ly/2AAh8J5

Capítulo 0
Visualizando el Descenso de Gradiente

Spoilers

En este capítulo:

• definiremos un modelo de regresión lineal simple

• recorreremos cada paso del descenso de gradiente: inicialización de

parámetros, realizar un forward pass, calcular errores y pérdidas, calcular

gradientes y actualizar los parámetros

• comprenderemos el concepto de gradiente usando ecuaciones, código y

geometría

• comprenderemos la diferencia entre batch, mini-batch y descenso de

gradiente estocástico

• visualizaremos el impacto que tiene la tasa de aprendizaje sobre la pérdida (

loss)

• comprenderemos la importancia de estandarizar / escalar variables

• ¡y mucho, mucho más!

No hay código PyTorch en este capítulo… es Numpy todo el tiempo porque

nuestro objetivo aquí es entender, por dentro y por fuera, cómo funciona el

descenso de gradiente. Empezaremos con PyTorch en el siguiente capítulo.

Jupyter Notebook

El Jupyter notebook correspondiente al Capítulo 0[33] es parte del repositorio

oficial Deep Learning with PyTorch Step-by-Step de GitHub. También puedes

ejecutarlo directamente en Google Colab[34].

Si estás utilizando una instalación local, abre un terminal o prompt de Anaconda y ve

a la carpeta PyTorchStepByStep que clonaste de GitHub. A continuación, activa el

entorno pytorchbook y ejecuta jupyter notebook:

22 | Capítulo 0: Visualizando el Descenso de Gradiente

https://github.com/dvgodoy/PyTorchStepByStep/blob/master/Chapter00.ipynb
https://colab.research.google.com/github/dvgodoy/PyTorchStepByStep/blob/master/Chapter00.ipynb

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

Si estás utilizando la configuración predeterminada de Jupyter, este enlace debería

abrir el notebook del Capítulo 0. Si no es así, simplemente haz clic en

Chapter00.ipynb en la página de inicio de Jupyter.

Imports

Para organizarnos mejor, al principio de cada capítulo se importarán todas las

bibliotecas que se usen en el código utilizado en ese capítulo. Para este capítulo,

necesitaremos los siguientes imports:

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler

Visualizando el Descenso de Gradiente



Según Wikipedia[35]: "Descenso de Gradiente (Gradient Descent) es

un algoritmo de optimización iterativo de primer orden para

encontrar un mínimo local de una function diferenciable."

Pero yo diría: "El Descenso de Gradiente es una técnica iterativa

comúnmente utilizada en el aprendizaje automático y el

aprendizaje profundo para encontrar el mejor conjunto posible

de parámetros / coeficientes para un modelo dado, un conjunto

de datos y una función de pérdida, a partir de un estado inicial,

generalmente aleatorio."

 "¿Por qué visualizar el descenso de gradiente?"

Creo que la forma en que generalmente se explica el descenso del gradiente no es muy

intuitiva. A los estudiantes y los principiantes se les presenta un montón de

ecuaciones y recetas: esa no es la forma en que uno debe aprender un concepto tan

importante.

Visualizando el Descenso de Gradiente | 23

http://localhost:8888/notebooks/Chapter00.ipynb
https://en.wikipedia.org/wiki/Gradient_descent

Si realmente entiendes cómo funciona el descenso de gradiente, también

entenderás cómo las características de tus datos y tu elección de hiperparámetros

(tamaño de mini-batch y tasa de aprendizaje, por ejemplo) tienen un impacto en lo

bueno y lo rápido que va a ser el entrenamiento del modelo.

Cuando digo entender, no me refiero a desarrollar manualmente las ecuaciones:

esto tampoco desarrolla la intuición. Me refiero a visualizar los efectos de

diferentes configuraciones; me refiero a contar una historia para ilustrar el

concepto. Así es como desarrollas la intuición.

Dicho esto, cubriré los cinco pasos básicos que tendrías que seguir para usar el

descenso de gradiente. Te mostraré el código Numpy correspondiente mientras te

explico muchos conceptos fundamentales por el camino.

Pero primero, necesitamos un conjunto de datos para trabajar. En lugar de usar

cualquier conjunto externo de datos,

• definamos qué modelo queremos entrenar para comprender mejor el descenso

del gradiente; y

• vamos a generar datos sintéticos para ese modelo.

Modelo

El modelo debe ser simple y familiar, para que puedas concentrarte en el

funcionamiento interno del descenso de gradiente.

Por lo tanto, empezaré con un modelo tan simple como se pueda: una regresión

lineal con una sola variable, x.

Ecuación 0.1 - Modelo simple de regresión lineal

En este modelo, usamos una variable (x) para intentar predecir el valor de una

etiqueta (y). Hay tres elementos en nuestro modelo:

• parámetro b, el sesgo (bias o intercepción), que nos indica el valor medio

esperado de y cuando x es cero

• parámetro w, el peso (o pendiente), que nos dice cuánto aumenta y, en promedio,

si aumentamos x en una unidad

24 | Capítulo 0: Visualizando el Descenso de Gradiente

• y ese último término (¿por qué siempre tiene que ser una letra griega?), epsilon,

que está ahí para dar cuenta del ruido inherente; es decir, el error del que no

podemos deshacernos

También podemos concebir la misma estructura del modelo de una manera menos

abstracta:

salario = salario mínimo + aumento por año * años de experiencia + ruido

Y para hacerlo aún más concreto, digamos que el salario mínimo es de $1,000 (no

es importante qué moneda sea o qué periodo de tiempo consideremos). Con lo cual,

si no tienes ninguna experiencia, tu salario va a ser el salario mínimo (parámetro

b).

Además, digamos que, en promedio, obtienes un aumento de $2,000 (parámetro w)

por cada año de experiencia que acumules. Por lo tanto, si tienes dos años de

experiencia, se espera que ganes un salario de $5,000. Pero tu salario real es de

$5,600 (¡bien por ti!). Dado que el modelo no puede dar cuenta de esos $600 extra,

tu dinero extra es, técnicamente hablando, ruido.

Generación de Datos

Ya conocemos nuestro modelo. Para generar datos sintéticos, necesitamos

escoger valores para los parámetros del modelo. He elegido b = 1 y w = 2 (en miles

de dólares) del ejemplo anterior.

Primero, vamos a generar nuestra variable (x): Usamos el método rand() de Numpy

para generar aleatoriamente 100 (N) puntos entre 0 y 1.

A continuación usamos nuestra variable (x) y nuestros parámetros b y w en la

ecuación para calcular nuestras etiquetas (y). Pero necesitamos agregar algo de

ruido gaussiano[36] (epsilon) también; de lo contrario, nuestro conjunto de datos

sintéticos sería una línea perfectamente recta. Podemos generar ruido usando el

método randn() de_Numpy_, que extrae muestras de una distribución normal (de

media 0 y varianza 1), y luego lo multiplicamos por un factor para ajustar al nivel de

ruido. Como no quiero añadir demasiado ruido, he elegido un factor de 0.1.

Generación de Datos | 25

https://bit.ly/3jDIXSk
https://en.wikipedia.org/wiki/Gaussian_noise
https://bit.ly/2ZZeC9f

Generación de Datos Sintéticos

Generación de Datos

1 true_b = 1
2 true_w = 2
3 N = 100
4
5 # Generación de Datos
6 np.random.seed(42)
7 x = np.random.rand(N, 1)
8 epsilon = (.1 * np.random.randn(N, 1))
9 y = true_b + true_w * x + epsilon

¿Te diste cuenta del método np.random.seed (42) en la línea 6? Esta línea de

código es en realidad más importante de lo que parece. Garantiza que, cada vez que

ejecutamos este código, se generarán los mismos números aleatorios.


"Espera; ¿qué?! ¿No se supone que los números son aleatorios? ¿Cómo

van a ser los mismos números?" te preguntarás, tal vez incluso un

poco molesto por ello.

Números (no tan) Aleatorios

Bueno, ya sabes, los números aleatorios no son en realidad tan aleatorios…

Son en realidad pseudoaleatorios, lo que significa que el generador de

números de Numpy nos devuelve una secuencia de números que parece

aleatoria. Pero no lo es, en realidad.

Lo bueno de este comportamiento es que podemos decirle al generador que

inicie una secuencia particular de números pseudoaleatorios. Hasta cierto

punto, funciona como si le dijéramos al generador: "por favor, genera la

secuencia #42", y nos da una secuencia de números. Ese número, 42, que

funciona como el índice de la secuencia, se llama seed (semilla). Cada vez que

le damos la misma seed, genera los mismos números.

26 | Capítulo 0: Visualizando el Descenso de Gradiente

Esto significa que tenemos lo mejor de ambos mundos: por un lado,

generamos una secuencia de números que, a todos los efectos, se considera

aleatoria; por otro lado, tenemos el poder de reproducir cualquier

secuencia dada. ¡No te puedes imaginar lo conveniente que puede ser eso

para programas y encontrar bugs!

Además, se garantizara así que otras personas puedan reproducir tus

resultados. Imaginate lo molesto que sería ejecutar el código presente en

este libro y que obtengas diferentes resultados cada vez, teniendo que

preguntarte si hay algo mal en él. Pero como ya he establecido una seed,

tanto tú como yo podemos lograr los mismos resultados, incluso si se trata de

generar datos aleatorios!

A continuación, vamos a dividir nuestro conjunto de datos sintéticos en dos, uno

para entrenar (train) y otro para validar (validation), desordenando al azar las filas

(cada una con su índice) y utilizando las primeras 80 filas para el entrenamiento.


"¿Por qué necesitas desordenar los datos generados aleatoriamente?

¿No son lo suficientemente aleatorios?"

Sí, lo son, y desordenarlos es redundante en este ejemplo. Pero obtendrás mejores

resultados si desordenas al azar tus datos antes de entrenar un modelo, ya que eso

hará que el descenso de gradiente sea más efectivo.



Hay una excepción a la regla de "siempre desordenar

aleatoriamente": los problemas de series temporales, donde

desordenar aleatoriamente puede dar lugar a la fuga de

información entre el conjunto de datos para entrenar el modelo y

el conjunto que dejas para validarlo.

Partición Entrenamiento-Validación-Test

El objetivo de este libro no es explicar el razonamiento detrás de la partición

Entrenamiento-Validación-Test del conjunto de datos, pero hay dos cosas que me

gustaría explicar:

1. La partición debe siempre ser la primera cosa que hagas: antes de cualquier

procesamiento que necesites hacer a los datos, o transformaciones o lo que

Generación de Datos | 27

sea; nada debe afectar los datos antes de la partición. Por eso es que hacemos

esto inmediatamente después de la generación de los datos sintéticos.

2. En este capítulo usaremos solo el conjunto de entrenamiento, por lo que no me

molesté en crear un conjunto para el test, pero he hecho la partición de todos

modos para hacer hincapié en el punto #1 :-)

Partición Entrenamiento-Validación

 1 # Desordena los índices
 2 idx = np.arange(N)
 3 np.random.shuffle(idx)
 4 # Los primeros 80 índices aleatorios para el entrenamiento
 5 train_idx = idx[:int(N*.8)]
 6 # Los índices restantes para la validación
 7 val_idx = idx[int(N*.8):]
 8 # Genera los conjuntos de datos para entrenamiento y validación
 9 x_train, y_train = x[train_idx], y[train_idx]
10 x_val, y_val = x[val_idx], y[val_idx]


"¿Por qué no has usado train_test_split() directamente de Scikit-

Learn?" te preguntarás.

Ese es un buen punto. Más adelante, nos referiremos a los índices de los datos

pertenecientes a conjuntos de entrenamiento o validación, en lugar de los datos en

sí. Así que pensé que sería conveniente usarlos desde el principio.

Figura 0.1 - Datos sintéticos: conjuntos de entrenamiento y validación

28 | Capítulo 0: Visualizando el Descenso de Gradiente

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Sabemos que b = 1, w = 2, pero ahora veamos cuánto nos podemos aproximar a los

valores verdaderos usando descenso de gradiente y los 80 puntos en el conjunto

de entrenamiento (N = 80).

Paso 0 - Inicialización aleatoria

En nuestro ejemplo, ya conocemos los valores verdaderos de los parámetros, pero

esto obviamente nunca sucederá en la vida real: Si conociéramos los valores

verdaderos, ¿por qué molestarse en entrenar un modelo para encontrarlos?

Vale, dado que nunca sabremos el valor verdadero de los parámetros, necesitamos

darles un valor inicial*. ¿Cómo los elegimos? Resulta que un valor aleatorio** es

tan bueno como cualquier otro.



Aunque la inicialización es aleatoria, hay ciertos esquemas de

inicialización inteligentes que deben usarse cuando entrenemos

modelos más sofisticados. Volveremos a ellos (mucho) más

adelante, en el segundo volumen de la serie.

Para entrenar un modelo, debes inicializar aleatoriamente los parámetros / pesos

(Tenemos sólo dos, b y w).

Inicialización Aleatoria

1 # Paso 0 - Inicializa los parámetros "b" y "w" aleatoriamente
2 np.random.seed(42)
3 b = np.random.randn(1)
4 w = np.random.randn(1)
5 print(b, w)

Output

[0.49671415] [-0.1382643]

Paso 1 - Calcular las Predicciones del
Modelo

Este es el pase hacia adelante (forward pass); simplemente calcula las predicciones

del modelo utilizando los valores actuales de los parámetros / pesos. Al principio,

Paso 0 - Inicialización aleatoria | 29

produciremos predicciones realmente malas, ya que comenzamos con valores

aleatorios en el Paso 0.

Paso 1

1 # Paso 1 - Calcula las predicciones de nuestro modelo
2 # forward pass
3 yhat = b + w * x_train

Figura 0.2 - Predicciones del modelo (con parámetros aleatorios)

Paso 2 - Calcular la Pérdida (Loss)

Hay una diferencia sutil pero fundamental entre error y pérdida.

El error es la diferencia entre el valor real (etiqueta) y el valor predicho calculado

para un único dato. Así que, para un punto i-ésimo dado (de nuestro conjunto de

datos de N puntos), su error es:

Ecuación 0.2 - Error

El error del primer punto de nuestro conjunto de datos (i = 0) puede ser

representado así:

30 | Capítulo 0: Visualizando el Descenso de Gradiente

Figura 0.3 - Error de predicción (para un solo dato)

La pérdida, por otro lado, es una especie de agregación de errores para un

conjunto de datos.

Parece bastante evidente cómo calcular la pérdida correspondiente a todos (N) los

puntos, ¿verdad? Bueno, si y no. Aunque seguramente se llegará de manera más

eficiente desde los parámetros aleatorios iniciales hasta los parámetros que

minimizan la pérdida, también será seguramente demasiado lento.

Esto significa que seguramente tenemos que sacrificar (un poco) de estabilidad para a

cambio ir más rápidos en la optimización. Esto se logra fácilmente eligiendo al azar

(sin reemplazo) un subconjunto de n de los N datos cada vez que calculamos la

pérdida.



Batch, Mini-batch, y Descenso de Gradiente Stocástico

• Si utilizamos todos los puntos en el conjunto de

entrenamiento (n = N) para calcular la pérdida, estamos

realizando un gradiente de descenso por batches;

• Si usáramos un solo punto (n = 1) cada vez, sería un descenso

de gradiente estocástico;

• Cualquier otra cosa (n) entre 1 y N correspondería a un

descenso de gradiente por mini-batches;

Para un problema de regresión, la pérdida viene dada por el error cuadrático

medio (MSE, del inglés mean squared error); es decir, la media de todas las

Paso 2 - Calcular la Pérdida (Loss) | 31

diferencias al cuadrado entre etiquetas (y) y predicciones (b + wx).

Ecuación 0.3 - Pérdida: error cuadrático medio (MSE)

En el siguiente código, usamos todos los datos del conjunto de entrenamiento para

calcular la pérdida, por lo que n = N = 80, lo que significa que estamos realizando un

descenso de gradiente por batches.

Step 2

 1 # Step 2 - Calculando la pérdida
 2 # Usamos TODOS los datos, así que esto es descenso de gradiente
 3 # por BATCHES.
 4 # ¿Cuánto se equivoca nuestro modelo? ¡Ese es el error!
 5 error = (yhat - y_train)
 6
 7 # Es una regresión, por lo que se calcula el error
 8 # cuadrático medio (MSE)
 9 loss = (error ** 2).mean()
10
11 print(loss)

Output

2.7421577700550976

Superficie de Pérdidas

Acabamos de calcular la pérdida (2.74) correspondiente a nuestros parámetros

inicializados aleatoriamente (b = 0.49 y w = -0.13). ¿Qué pasaría si hiciéramos lo

mismo para TODOS los valores posibles de b y w? Bueno, no todos los valores

32 | Capítulo 0: Visualizando el Descenso de Gradiente

posibles, sino todas las combinaciones de valores uniformemente espaciados en un

rango determinado, como:

Recordatorio:
true_b = 1
true_w = 2

tenemos que dividir los rangos en 100 intervalos uniformemente
espaciados
b_range = np.linspace(true_b - 3, true_b + 3, 101)
w_range = np.linspace(true_w - 3, true_w + 3, 101)
meshgrid es una función muy útil para generar una matriz (grid)
de valores de b y w para todas las combinaciones
bs, ws = np.meshgrid(b_range, w_range)
bs.shape, ws.shape

Output

((101, 101), (101, 101))

El resultado de la operación meshgrid() fueron dos matrices (101, 101) que

representan los valores de cada parámetro dentro de una cuadrícula. ¿Qué pinta

tiene una de estas matrices?

bs

Output

array([[-2. , -1.94, -1.88, ..., 3.88, 3.94, 4.],
 [-2. , -1.94, -1.88, ..., 3.88, 3.94, 4.],
 [-2. , -1.94, -1.88, ..., 3.88, 3.94, 4.],
 ...,
 [-2. , -1.94, -1.88, ..., 3.88, 3.94, 4.],
 [-2. , -1.94, -1.88, ..., 3.88, 3.94, 4.],
 [-2. , -1.94, -1.88, ..., 3.88, 3.94, 4.]])

Es cierto que estamos haciendo un poco de trampa aquí, ya que sabemos los

verdaderos valores de b y w, con lo cual podemos elegir los rangos perfectos para

los parámetros. Pero es sólo con fines educativos :-)

Paso 2 - Calcular la Pérdida (Loss) | 33

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html

A continuación, podríamos usar esos valores para calcular las predicciones, errores

y pérdidas correspondientes. Comencemos tomando un único dato del conjunto de

entrenamiento y calculando las predicciones para cada combinación en nuestra

cuadrícula:

dummy_x = x_train[0]
dummy_yhat = bs + ws * dummy_x
dummy_yhat.shape

Output

(101, 101)

Gracias a la naturaleza vectorial de Numpy, esta biblioteca es capaz de entender

que queremos multiplicar el mismo valor x por cada entrada en la matriz ws. Esta

operación dio como resultado una cuadrícula de predicciones para ese único dato.

Ahora tenemos que repetir esto para cada uno de nuestros 80 datos del conjunto

de entrenamiento.

Podemos usar el método apply_along_axis() de Numpy para lograr esto:

 Mira mamá, ¡sin bucles!

all_predictions = np.apply_along_axis(
 func1d=lambda x: bs + ws * x,
 axis=1,
 arr=x_train,
)
all_predictions.shape

Output

(80, 101, 101)

¡Perfecto! Tenemos 80 matrices de tamaño (101, 101), una matriz para cada dato,

cada matriz contiene una cuadrícula de predicciones.

Los errores son la diferencia entre las predicciones y las etiquetas, pero no

34 | Capítulo 0: Visualizando el Descenso de Gradiente

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/reference/generated/numpy.apply_along_axis.html

podemos realizar esta operación de inmediato; necesitamos trabajar un poco en

nuestras etiquetas (y), para que tengan el tamaño adecuado para ello (la

vectorización es buena, pero no tan buena):

all_labels = y_train.reshape(-1, 1, 1)
all_labels.shape

Output

(80, 1, 1)

Nuestras etiquetas resultaron ser 80 matrices de tamaño (1, 1) —el tipo de matriz

más aburrida— pero es suficiente para que la vectorización haga su magia. Ahora ya

podemos calcular los errores:

all_errors = (all_predictions - all_labels)
all_errors.shape

Output

(80, 101, 101)

Cada predicción tiene su propio error, por lo que obtenemos 80 matrices de

tamaño (101, 101), una vez más, una matriz para cada dato, donde cada matriz

contiene una cuadrícula de errores.

El único paso que falta es calcular el error cuadrático medio. Primero, tomamos el

cuadrado de todos los errores. Luego, promediamos los cuadrados sobre todos los

datos. Dado que nuestros datos están en la primera dimensión, usamos axis=0
para calcular esta media:

all_losses = (all_errors ** 2).mean(axis=0)
all_losses.shape

Paso 2 - Calcular la Pérdida (Loss) | 35

Output

(101, 101)

El resultado es una cuadrícula de pérdidas, una matriz de tamaño (101, 101), cada

pérdida correspondiente a una combinación diferente de los parámetros b y w.

Esto es lo que llamamos la superficie de pérdidas (loss surface), que se puede

visualizar en una gráfica 3D, donde el eje vertical (z) representa los valores de la

pérdida. Si conectamos las combinaciones de b y w que dan lugar al mismo valor de

pérdida, obtendremos una elipse. Así que podemos dibujar esta elipse en el plano

original b x w (en azul, para un valor de pérdida de 3). Esto es, de hecho, lo que un

diagrama de contornos hace. A partir de ahora, siempre usaremos el diagrama de

contornos, en lugar de la versión 3D correspondiente.

Figura 0.4 - Superficie de pérdidas

En el centro de la gráfica, donde los parámetros (b, w) tienen valores cercanos a (1,

2), la pérdida está en su valor mínimo. Este es el punto que estamos tratando de

alcanzar usando el descenso de gradiente.

Abajo, un poco a la izquierda, está el punto de comienzo aleatorio, correspondiente

a nuestros valores inicializados aleatoriamente.

Esta es una de las cosas buenas de abordar un problema simple como una regresión

lineal con una sola variable: Tenemos solo dos parámetros, con lo cual podemos

calcular y visualizar la superficie de pérdidas.

36 | Capítulo 0: Visualizando el Descenso de Gradiente



Desgraciadamente, para la gran mayoría de los problemas,

calcular la superficie de pérdidas no va a ser factible: tenemos

que confiar en la capacidad del descenso de gradiente para

alcanzar un punto de valor mínimo, incluso si comienza en algún

punto aleatorio.

Puedes Leer Más

Comprar la versión completa: https://leanpub.com/pytorch_ES

Puedes Leer Más | 37

https://leanpub.com/pytorch_ES

