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Preface

If you're reading this, | probably don’t need to tell you that deep learning is amazing
and PyTorch is cool, right?

But | will tell you, briefly, how this book came to be. In 2016, | started teaching a
class on machine learning with Apache Spark and, a couple of years later, another
class on the fundamentals of machine learning.

At some point, | tried to find a blog post that would visually explain, in a clear and
concise manner, the concepts behind binary cross-entropy so that | could show it
to my students. Since | could not find any that fit my purpose, | decided to write one
myself. Although | thought of it as a fairly basic topic, it turned out to be my most
popular blog postd! My readers have welcomed the simple, straightforward, and
conversational way | explained the topic.

Then, in 2019, | used the same approach for writing another blog post:
"Understanding PyTorch with an example: a step-by-step tutorial."? Once again, |
was amazed by the reaction from the readers!

It was their positive feedback that motivated me to write this book to help
beginners start their journey into deep learning and PyTorch. | hope you enjoy
reading this book as much as | enjoyed writing it.

[1] https://bit.ly/2UWS5iTg
[2] https://bit.ly/2TpzwxR

xxiii | Preface


https://bit.ly/2UW5iTg
https://bit.ly/2TpzwxR

Acknowledgements

First and foremost, I'd like to thank YOU, my reader, for making this book possible.
If it weren’t for the amazing feedback | got from the thousands of readers of my
blog post about PyTorch, | would have never mustered the strength to start and
finish such a major undertaking as writing a 1,000-page book!

I'd like to thank my good friends Jestis Martinez-Blanco (who managed to read
absolutely everything that | wrote), Jakub Cieslik, Hannah Berscheid, Mihail Vieru,
Ramona Theresa Steck, Mehdi Belayet Lincon, and Anténio Gais for helping me out
and dedicating a good chunk of their time to reading, proofing, and suggesting
improvements to my drafts. I'm forever grateful for your support! I'd also like to
thank my friend José Luis Lopez Pino for the initial push | needed to actually start
writing this book.

Many thanks to my friends José Quesada and David Anderson for taking me as a
student at the Data Science Retreat in 2015 and, later on, for inviting me to be a
teacher there. That was the starting point of my career both as a data scientist and
as teacher.

I'd also like to thank the PyTorch developers for developing such an amazing
framework, and the teams from Leanpub and Towards Data Science for making it
incredibly easy for content creators like me to share their work with the
community.

Finally, I'd like to thank my wife, Jerusa, for always being supportive throughout
the entire writing of this book, and for taking the time to read every single page in it

=)

| xxiv



About the Author

Daniel is a data scientist, developer, writer, and teacher. He has been teaching
machine learning and distributed computing technologies at Data Science Retreat,
the longest-running Berlin-based bootcamp, since 2016, helping more than 150
students advance their careers.

Daniel is also the main contributor of two Python packages: HandySpark and
DeepReplay.

His professional background includes 20 years of experience working for
companies in several industries: banking, government, fintech, retail, and mobility.

xxv | About the Author


https://github.com/dvgodoy/handyspark
https://github.com/dvgodoy/deepreplay

Frequently Asked Questions (FAQ)
Why PyTorch?

First, coding in PyTorch is fun :-) Really, there is something to it that makes it very
enjoyable to write code in. Some say it is because it is very pythonic, or maybe
there is something else, who knows? | hope that, by the end of this book, you feel
like that too!

Second, maybe there are even some unexpected benefits to your health—check
Andrej Karpathy’s tweet® about it!

Jokes aside, PyTorch is the fastest-growing¥ framework for developing deep
learning models and it has a huge ecosystem.?’ That is, there are many tools and
libraries developed on top of PyTorch. It is the preferred framework'® in academia
already and is making its way in the industry.

Several companies are already powered by PyTorch;"? to name a few:
¢ Facebook: The company is the original developer of PyTorch, released in

October 2016.

o Tesla: Watch Andrej Karpathy (Al director at Tesla) speak about "how Tesla is
using PyTorch to develop full self-driving capabilities for its vehicles" in this video.

¢ OpenAl: In January 2020, OpenAl decided to standardize its deep learning
framework on PyTorch (source'?).

« fastai: fastaiis a library™? built on top of PyTorch to simplify model training and
is used in its "Practical Deep Learning for Coders"'%t course. The fastai library is

deeply connected to PyTorch and "you can’t become really proficient at using
fastai if you don’t know PyTorch well, too."2

o Uber: The company is a significant contributor to PyTorch’s ecosystem, having
developed libraries like Pyro¥! (probabilistic programming) and Horovod? (a
distributed training framework).

¢ Airbnb: PyTorch sits at the core of the company’s dialog assistant for customer
service.(source't)

This book aims to get you started with PyTorch while giving you a solid
understanding of how it works.

Why PyTorch?| 1
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Why This Book?

If you're looking for a book where you can learn about deep learning and PyTorch
without having to spend hours deciphering cryptic text and code, and one that’s
easy and enjoyable to read, thisisit :-)

The book covers from the basics of gradient descent all the way up to fine-tuning
large NLP models (BERT and GPT-2) using HuggingFace. It is divided into four
parts:

o Part I: Fundamentals (gradient descent, training linear and logistic regressions
in PyTorch)

e Part II: Computer Vision (deeper models and activation functions,
convolutions, transfer learning, initialization schemes)

e Part Ill: Sequences (RNN, GRU, LSTM, seq2seq models, attention, self-
attention, Transformers)

o Part IV: Natural Language Processing (tokenization, embeddings, contextual
word embeddings, ELMo, BERT, GPT-2)

This is not a typical book: most tutorials start with some nice and pretty image
classification problem to illustrate how to use PyTorch. It may seem cool, but |
believe it distracts you from the main goal: learning how PyTorch works. In this
book, | present a structured, incremental, and from-first-principles approach to
learn PyTorch.

Moreover, this is not a formal book in any way: | am writing this book as if | were
having a conversation with you, the reader. | will ask you questions (and give you
answers shortly afterward), and | will also make (silly) jokes.

My job here is to make you understand the topic, so | will avoid fancy
mathematical notation as much as possible and spell it out in plain English.

In this book, | will guide you through the development of many models in PyTorch,
showing you why PyTorch makes it much easier and more intuitive to build models
in Python: autograd, dynamic computation graph, model classes, and much, much
more.

We will build, step-by-step, not only the models themselves but also your
understanding as | show you both the reasoning behind the code and how to avoid
some common pitfalls and errors along the way.
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There is yet another advantage of focusing on the basics: this book is likely to have
a longer shelf life. It is fairly common for technical books, especially those focusing
on cutting-edge technology, to become outdated quickly. Hopefully, this is not
going to be the case here, since the underlying mechanics are not changing, and
neither are the concepts. It is expected that some syntax changes over time, but |
do not see backward compatibility breaking changes coming anytime soon.

One more thing: If you hadn’t noticed already, | really like to
make use of visual cues, that is, bold and italic highlights. | firmly

o believe this helps the reader to grasp the key ideas | am trying to
convey in a sentence more easily. You can find more on that in
the section "How to Read This Book."

Who Should Read This Book?

| wrote this book for beginners in general—not only PyTorch beginners. Every now
and then, | will spend some time explaining some fundamental concepts that |
believe are essential to have a proper understanding of what’s going on in the
code.

The best example is gradient descent, which most people are familiar with at some
level. Maybe you know its general idea, perhaps you've seen it in Andrew Ng’s
Machine Learning course, or maybe you've even computed some partial
derivatives yourself!

In real life, the mechanics of gradient descent will be handled automatically by
PyTorch (uh, spoiler alert!). But, | will walk you through it anyway (unless you
choose to skip Chapter O altogether, of course), because lots of elements in the
code, as well as choices of hyper-parameters (learning rate, mini-batch size, etc.),
can be much more easily understood if you know where they come from.

Maybe you already know some of these concepts well: If this is the case, you can
simply skip them, since I've made these explanations as independent as possible
from the rest of the content.

But | want to make sure everyone is on the same page, so, if you have just heard
about a given concept or if you are unsure if you have entirely understood it, these
explanations are for you.

Who Should Read This Book? | 3



What Do | Need to Know?

This is a book for beginners, so | am assuming as little prior knowledge as possible;
as mentioned in the previous section, | will take the time to explain fundamental
concepts whenever needed.

That being said, this is what | expect from you, the reader:
e to be able to code in Python (if you are familiar with object-oriented

programming [OOP], even better)

« to be able to work with PyData stack (numpy, matplotplib, and pandas) and
Jupyter notebooks

« to be familiar with some basic concepts used in machine learning, like:
o supervised learning: regression and classification

o loss functions for regression and classification (mean squared error, cross-
entropy, etc.)

o training-validation-test split
o underfitting and overfitting (bias-variance trade-off)

Even so, | am still briefly touching on some of these topics, but | need to draw a line
somewhere; otherwise, this book would be gigantic!

How to Read This Book

Since this book is a beginner’s guide, it is meant to be read sequentially, as ideas
and concepts are progressively built. The same holds true for the code inside the
book—you should be able to reproduce all outputs, provided you execute the
chunks of code in the same order as they are introduced.

This book is visually different than other books: As I've mentioned already in the
"Why This Book?" section, | really like to make use of visual cues. Although this is
not, strictly speaking, a convention, this is how you can interpret those cues:

¢ | use bold to highlight what | believe to be the most relevant words in a
sentence or paragraph, while italicized words are considered important too (not
important enough to be bold, though)

o Variables, coefficients, and parameters in general, are italicized
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e (lasses and methods are written in a monospaced font, and they link to PyTorch
¢l dJocumentation the first time they are introduced, so you can easily follow it
(unlike other links in this book, links to documentation are numerous and thus
not included in the footnotes)

« Every code cell is followed by another cell showing the corresponding outputs
(if any)

« All code presented in the book is available at its official repository on GitHub:
https://github.com/dvgodoy/PyTorchStepBySte
Code cells with titles are an important piece of the workflow:

Title Goes Here

1 # Whatever 1is being done here is going to impact OTHER code
2 # cells. Besides, most cells have COMMENTS explaining what
3 # is happening

4 x =1[1., 2., 3.]

5 print(x)

If there is any output to the code cell, titled or not, there will be another code cell
depicting the corresponding output so you can check if you successfully
reproduced it or not.

Output

[1.0, 2.0, 3.0]

Some code cells do not have titles—running them does not affect the workflow:

# Those cells illustrate HOW TO CODE something, but they are
# NOT part of the main workflow

dummy = ['a', 'b", 'c']

print(dummy[::-1])

But even these cells have their outputs shown!
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Output

['c', 'b', "a"]

| use asides to communicate a variety of things, according to the corresponding
icon:

g WARNING
Potential problems or things to look out for.

(,) TIP

- Key aspects | really want you to remember.
o INFORMATION
Important information to pay attention to.
o IMPORTANT
Really important information to pay attention to.
TECHNICAL
3o ] . . . .
o) Technical aspects of parameterization or inner workings of
algorithms.
QUESTION AND ANSWER

Asking myself questions (pretending to be you, the reader) and
answering them, either in the same block or shortly after.
Really brief discussion on a concept or topic.

LATER

" DISCUSSION

Important topics that will be covered in more detail later.

SILLY

Jokes, puns, memes, quotes from movies.
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What's Next?

It's time to set up an environment for your learning journey using the Setup Guide.

[3] https://bit.ly/2MQoYRo
[4] https://bit.ly/37uZgl B

[5] https://pytorch.org/ecosystem/
[6] https://bit.ly/2MTNOLh

[7] https://bit.ly/2UFHFve
[8] https://bit.ly/2XXJkyo
[9] https://openai.com/blog/openai-pytorch/

[14] https://github.com/horovod/horovod
[15] https://bit.ly/30CPhm5

]
]
]
[43] http://pyro.ai/
]
]
| https://bit.ly/3cT1aH2
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Setup Guide
Official Repository

This book’s official repository is available on GitHub:
https://github.com/dvgodoy/PyTorchStepBySte

It contains one Jupyter notebook for every chapter in this book. Each notebook
contains all the code shown in its corresponding chapter, and you should be able to
run its cells in sequence to get the same outputs, as shown in the book. | strongly
believe that being able to reproduce the results brings confidence to the reader.

Even though | did my best to ensure the reproducibility of the
results, you may still find some minor differences in your outputs

A (especially during model training). Unfortunately, completely
reproducible results are not guaranteed across PyTorch releases,
and results may not be reproducible between CPU and GPU
executions, even when using identical seeds.’Z!

Environment

There are three options for you to run the Jupyter notebooks:

» Google Colab (https.//colab.research.google.com)
« Binder (https://mybinder.orq)

¢ Local Installation

Let’s briefly explore the pros and cons of each of these options.

Google Colab

Google Colab "allows you to write and execute Python in your browser, with zero
configuration required, free access to GPUs and easy sharing."&.

You can easily load notebooks directly from GitHub using Colab’s special URL

(https.//colab.research.google.com/github/). Just type in the GitHub’'s user or

organization (like mine, dvgodoy), and it will show you a list of all its public
repositories (like this book’s, PyTorchStepByStep).
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After choosing a repository, it will list the available notebooks and corresponding
links to open them in a new browser tab.

Open notebook

— Enter a GitHub URL or search by organization or user
Examples > v ore

dvgodoy Q [J Include private repos

Recent > Repository: [£ Branch: (£
( dvgodoy/| PyTorchStepByStep) v master v
Google Drive >
Path

GitHub >

() chaptero0.ipynb R
Upload >

) chapter0tipynb [ ]

Figure S.1 - Google Colab’s special URL

You also get access to a GPU, which is very useful to train deep learning models
faster. More important, if you make changes to the notebook, Google Colab will
keep them. The whole setup is very convenient; the only cons | can think of are:

¢ You need to be logged in to a Google account.

« You need to (re)install Python packages that are not part of Google Colab’s
default configuration.

Binder

Binder "allows you to create custom computing environments that can be shared and
used by many remote users."t?

You can also load notebooks directly from GitHub, but the process is slightly
different. Binder will create something like a virtual machine (technically, it is a
container, but let’s leave it at that), clone the repository, and start Jupyter. This
allows you to have access to Jupyter’'s home page in your browser, just like you
would if you were running it locally, but everything is running in a JupyterHub
server on their end.

Just go to Binder’s site (https.//mybinder.org/) and type in the URL to the GitHub
repository you want to explore (for instance,
https://qithub.com/dvgodoy/PyTorchStepByStep) and click on Launch. It will take
a couple of minutes to build the image and open Jupyter’s home page.

You can also launch Binder for this book’s repository directly using the following
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link: https.//mybinder.org/v2/gh/dvgodoy/PyTorchStepByStep/master.

Build and launch a repository

GitHub repository name or URL

GitHub ~ [ https://github com/d»godoy/PyTorchStepByStepj

Git branch, tag, or commit Path to a notebook file (optional)
File «
Copy the URL below and share your Binder with others:
https://mybinder.org/v2/gh/dvgodoy/PyTorchStepByStep/master @
Copy the text below, then paste into your README to show a binder badge: »

Figure S.2 - Binder’s page

Binder is very convenient since it does not require a prior setup of any kind. Any
Python packages needed to successfully run the environment are likely installed
during launch (if provided by the author of the repository).

On the other hand, it may take time to start, and it does not keep your changes
after your session expires (so, make sure you download any notebooks you
modify).

Local Installation

This option will give you more flexibility, but it will require more effort to set up. |
encourage you to try setting up your own environment. It may seem daunting at
first, but you can surely accomplish it by following seven easy steps:

Checklist

O 1.Install Anaconda.

O 2.Create and activate a virtual environment.

O 3.Install PyTorch package.

O 4.Install TensorBoard package.

O 5. Install GraphViz software and TorchViz package (optional).
O 6. Install git and clone the repository.

O 7.Start Jupyter notebook.
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1. Anaconda

If you don’t have Anaconda’s Individual Edition'?' installed yet, this would be a
good time to do it. It is a convenient way to start since it contains most of the
Python libraries a data scientist will ever need to develop and train models.

Please follow the installation instructions for your OS:

« Windows (https://docs.anaconda.com/anaconda/install/windows/)
o macOS (https.//docs.anaconda.com/anaconda/install/mac-os/)

o Linux (https://docs.anaconda.com/anaconda/install/linux/)

ﬁ Make sure you choose Python 3.X version since Python 2 was
discontinued in January 2020.

After installing Anaconda, it is time to create an environment.

2. Conda (Virtual) Environments

Virtual environments are a convenient way to isolate Python installations
associated with different projects.

e "What is an environment?"

It is pretty much a replication of Python itself and some (or all) of its libraries, so,
effectively, you'll end up with multiple Python installations on your computer.

Q "Why can’t | just use one single Python installation for everything?"

With so many independently developed Python libraries, each having many
different versions and each version having various dependencies (on other
libraries), things can get out of hand real quick.

It is beyond the scope of this guide to debate these issues, but take my word for it
(or Google it!)—you’ll benefit a great deal if you pick up the habit of creating a
different environment for every project you start working on.

9 "How do | create an environment?"

First, you need to choose a name for your environment :-) Let’s call ours
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pytorchbook (or anything else you find easy to remember). Then, you need to open
a terminal (in Ubuntu) or Anaconda Prompt (in Windows or macQOS) and type the
following command:

$ conda create -n pytorchbook anaconda

The command above creates a Conda environment named pytorchbook and
includes all Anaconda packages in it (time to get a coffee, it will take a while...). If
you want to learn more about creating and using Conda environments, please
check Anaconda’s "Managing Environments"¥ user guide.

Did it finish creating the environment? Good! It is time to activate it, meaning,
making that Python installation the one to be used now. In the same terminal (or
Anaconda prompt), just type:

$ conda activate pytorchbook

Your prompt should look like this (if you’re using Linux):
(pytorchbook)$

or like this (if you're using Windows):
(pytorchbook)C:\>

Done! You are using a brand new Conda environment now. You'll need to activate
it every time you open a new terminal, or, if you're a Windows or macQOS user, you
can open the corresponding Anaconda prompt (it will show up as Anaconda
Prompt (pytorchbook), in our case), which will have it activated from the start.

IMPORTANT: From now on, | am assuming you'll activate the

o pytorchbook environment every time you open a terminal or
Anaconda prompt. Further installation steps must be executed
inside the environment.
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3. PyTorch

PyTorch is the coolest deep learning framework, just in case you skipped the
introduction.

It is "an open source machine learning framework that accelerates the path from
research prototyping to production deployment."2 Sounds good, right? Well, |
probably don’t have to convince you at this point :-)

It is time to install the star of the show :-) We can go straight to the Start Locally
(https.//pytorch.org/get-started/locally/) section of PyTorch’s website, and it will

automatically select the options that best suit your local environment, and it will
show you the command to run.

START LOCALLY

Select your preferences and run the install command. Stable represents the most currently tested and
supported version of PyTorch. This should be suitable for many users. Preview is available if you want the
latest, not fully tested and supported, builds that are generated nightly. Please ensure that you have met
the prerequisites below (e.g., numpy), depending on your package manager. Anaconda is our
recommended package manager since it installs all dependencies. You can also install previous versions of

PyTorch. Note that LibTorch is only available for C++.

NOTE: Latest PyTorch requires Python 3.8 or later. For more details, see Python section below.

PyTorch Build Preview (Nightly)
Your OS Mac Windows
Package Pip LibTorch Source

CUDA 11.8 CUDA 12.1 ROCm 5.7 CPU

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nv
idia

Compute Platform

Run this Command:
Figure 5.3 - PyTorch’s Start Locally page
Some of these options are given:

o PyTorch Build: Always select a Stable version.
¢ Package: | am assuming you'’re using Conda.

o Language: Obviously, Python.

So, two options remain: Your OS and CUDA.

Q "What is CUDA?" you ask.
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Using GPU / CUDA

CUDA "is a parallel computing platform and programming model developed by NVIDIA
for general computing on graphical processing units (GPUs)."'&!

If you have a GPU in your computer (likely a GeForce graphics card), you can
leverage its power to train deep learning models much faster than using a CPU. In
this case, you should choose a PyTorch installation that includes CUDA support.

This is not enough, though: If you haven’t done so yet, you need to install up-to-
date drivers, the CUDA Toolkit, and the CUDA Deep Neural Network library
(cuDNN). Unfortunately, more detailed installation instructions for CUDA are
outside the scope of this book.

The advantage of using a GPU is that it allows you to iterate faster and experiment
with more-complex models and a more extensive range of hyper-parameters.

In my case, | use Linux, and | have a GPU with CUDA version 11.8 installed. So |
would run the following command in the terminal (after activating the
environment):

(pytorchbook)$ conda install pytorch torchvision\
torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

Using CPU

If you do not have a GPU, you should choose None for CUDA.
9 "Would I be able to run the code without a GPU?" you ask.

Sure! The code and the examples in this book were designed to allow all readers to
follow them promptly. Some examples may demand a bit more computing power,
but we are talking about a couple of minutes in a CPU, not hours. If you do not have
a GPU, don’t worry! Besides, you can always use Google Colab if you need to use a
GPU for a while!

If I had a Windows computer, and no GPU, | would have to run the following
command in the Anaconda prompt (pytorchbook):
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(pytorchbook) C:\> conda install pytorch torchvision\
torchaudio cpuonly -c pytorch

Installing CUDA

CUDA: Installing drivers for a GeForce graphics card, NVIDIA’s cuDNN, and
CUDA Toolkit can be challenging and is highly dependent on which model
you own and which OS you use.

For installing GeForce’'s drivers, go to GeForce’s website

(https.//www.geforce.com/drivers), select your OS and the model of your
graphics card, and follow the installation instructions.

For installing NVIDIA’s CUDA Deep Neural Network library (cuDNN), you
need to register at https://developer.nvidia.com/cudnn.

For installing CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit), please
follow instructions for your OS and choose a local installer or executable file.

macOS: If you're a macOS user, please beware that PyTorch’s binaries DO
NOT support CUDA, meaning you’ll need to install PyTorch from source if
you want to use your GPU. This is a somewhat complicated process (as
described in https.//github.com/pytorch/pytorch#from-source), so, if you don’t
feel like doing it, you can choose to proceed without CUDA, and you'll still be
able to execute the code in this book promptly.

4. TensorBoard

TensorBoard is TensorFlow’s visualization toolkit, and "provides the visualization
and tooling needed for machine learning experimentation."2%

TensorBoard is a powerful tool, and we can use it even if we are developing models
in PyTorch. Luckily, you don’t need to install the whole TensorFlow to get it; you
can easily install TensorBoard alone using Conda. You just need to run this
command in your terminal or Anaconda prompt (again, after activating the
environment):

(pytorchbook)$ conda install -c conda-forge tensorboard
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5. GraphViz and Torchviz (optional)

This step is optional, mostly because the installation of GraphViz
can sometimes be challenging (especially on Windows). If for any
reason you do not succeed in installing it correctly, or if you

o decide to skip this installation step, you will still be able to
execute the code in this book (except for a couple of cells that
generate images of a model's structure in the "Dynamic
Computation Graph" section of Chapter 1).

GraphViz is an open source graph visualization software. It is "a way of representing
structural information as diagrams of abstract graphs and networks."'2!

We need to install GraphViz to use TorchViz, a neat package that allows us to
visualize a model’s structure. Please check the installation instructions for your OS
at https.//www.graphviz.org/download/.

If you are using Windows, please use the GraphViz’'s Windows
o Package installer at https.//graphviz.gitlab.io/ pages/Download,

windows/qraphviz-2.38.msi.

You also need to add GraphViz to the PATH (environment
variable) in Windows. Most likely, you can find the GraphViz
executable file at C:\ProgramFiles(x86)\Graphviz2.38\bin.

o Once you find it, you need to set or change the PATH accordingly,
adding GraphViz's location to it.

For more details on how to do that, please refer to "How to Add
to Windows PATH Environment Variable."2¢!
For additional information, you can also check the "How to Install Graphviz
Software"Z guide.

After installing GraphViz, you can install the torchviz?® package. This package is
not part of Anaconda Distribution Repository?? and is only available at PyPI22 the
Python Package Index, so we need to pip installit.

Once again, open a terminal or Anaconda prompt and run this command (just once
more: after activating the environment):
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(pytorchbook)$ pip install torchviz

To check your GraphViz / TorchViz installation, you can try the Python code below:

(pytorchbook)$ python

Python 3.9.0 (default, Nov 15 2020, 14:28:56)

[GCC 7.3.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or "license" for more
information.

>>> import torch

>>> from torchviz import make_dot

>>> v = torch.tensor(1.0, requires_grad=True)

>>> make_dot(v)

If everything is working correctly, you should see something like this:

Output

<graphviz.dot.Digraph object at 0x7ff540c56f50>

If you get an error of any kind (the one below is pretty common), it means there is
still some kind of installation issue with GraphViz.

Output

ExecutableNotFound: failed to execute ['dot', '-Tsvg'], make
sure the Graphviz executables are on your systems' PATH

6. Git

It is way beyond this guide’s scope to introduce you to version control and its most
popular tool: git. If you are familiar with it already, great, you can skip this section
altogether!

Otherwise, I'd recommend you to learn more about it; it will definitely be useful for
you later down the line. In the meantime, | will show you the bare minimum so you
can use git to clone the repository containing all code used in this book and get
your own, local copy of it to modify and experiment with as you please.
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First, you need to install it. So, head to its downloads page (https.//git-scm.com
downloads) and follow instructions for your OS. Once the installation is complete,
please open a new terminal or Anaconda prompt (it's OK to close the previous
one). In the new terminal or Anaconda prompt, you should be able to run git
commands.

To clone this book’s repository, you only need to run:

(pytorchbook)$ git clone https://github.com/dvgodoy/\
PyTorchStepByStep.qgit

The command above will create a PyTorchStepByStep folder that contains a local
copy of everything available on GitHub’s repository.

conda install vs pip install

Although they may seem equivalent at first sight, you should prefer conda
install over pip install when working with Anaconda and its virtual
environments.

This is because conda install is sensitive to the active virtual environment:
The package will be installed only for that environment. If you use pip
install, and pip itself is not installed in the active environment, it will fall
back to the global pip, and you definitely do not want that.

Why not? Remember the problem with dependencies | mentioned in the
virtual environment section? That’s why! The conda installer assumes it
handles all packages that are part of its repository and keeps track of the
complicated network of dependencies among them (to learn more about
this, check this link'3).

To learn more about the differences between conda and pip, read
"Understanding Conda and Pip."&?

As arule, first try to conda install a given package and, only if it does not
exist there, fall back to pip install, as we did with torchviz.
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7. Jupyter

After cloning the repository, navigate to the PyTorchStepByStep folder and, once
inside it, start Jupyter on your terminal or Anaconda prompt:

(pytorchbook)$ jupyter notebook

This will open your browser, and you will see Jupyter’'s home page containing the
repository’s notebooks and code.

~ Jupyter

Files Running Clusters
Select items to perform actions on them.
o ~ W/
[ data_generation
(3 data_preparation
[0 images
(3 model_configuration
(O model_training
3 plots
O runs
& Chapter00.ipynb

& Chapter01.ipynb

Figure 5.4 - Running Jupyter

Moving On

Regardless of which of the three environments you chose, now you are ready to
move on and tackle the development of your first PyTorch model, step-by-step!

[17] https://pytorch.org/docs/stable/notes/randomness.html

https://colab.research.google.com/notebooks/intro.ipynb

https://mybinder.readthedocs.io/en/latest/
https://www.anaconda.com/products/individual
https://bit.ly/2MVKOCM

https://pytorch.org/
https://developer.nvidia.com/cuda-zone
https://www.tensorflow.org/tensorboard

https://www.graphviz.org/
https://bit.ly/3flwYA5
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Chapter 0

Visualizing Gradient Descent

Spoilers
In this chapter, we will:

o define a simple linear regression model

o walk through every step of gradient descent: initializing parameters,
performing a forward pass, computing errors and loss, computing gradients,
and updating parameters

« understand gradients using equations, code, and geometry

« understand the difference between batch, mini-batch, and stochastic gradient
descent

« visualize the effects on the loss of using different learning rates
« understand the importance of standardizing / scaling features

¢ and much, much more!

There is no actual PyTorch code in this chapter... it is Numpy all along because our
focus here is to understand, inside and out, how gradient descent works. PyTorch
will be introduced in the next chapter.

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 02 is part of the official Deep
Learning with PyTorch Step-by-Step repository on GitHub. You can also run it
directly in Google Colab2*!

If you're using a local installation, open your terminal or Anaconda prompt and
navigate to the PyTorchStepByStep folder you cloned from GitHub. Then, activate
the pytorchbook environment and run jupyter notebook:

$ conda activate pytorchbook

(pytorchbook)$ jupyter notebook

If you're using Jupyter’'s default settings, this link should open Chapter Q’s
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notebook. If not, just click on Chapter@@.ipynb on your Jupyter’s home page.

Imports

For the sake of organization, all libraries needed throughout the code used in any
given chapter are imported at its very beginning. For this chapter, we’'ll need the
following imports:

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler

Visualizing Gradient Descent

According to Wikipedia®: "Gradient descent is a first-order
iterative optimization algorithm for finding a local minimum of a
differentiable function."

" But | would go with: "Gradient descent is an iterative technique
commonly used in machine learning and deep learning to find the
best possible set of parameters / coefficients for a given model,
data points, and loss function, starting from an initial, and usually
random, guess."

e "Why visualizing gradient descent?"

| believe the way gradient descent is usually explained lacks intuition. Students and
beginners are left with a bunch of equations and rules of thumb—this is not the way
one should learn such a fundamental topic.

If you really understand how gradient descent works, you will also understand how
the characteristics of your data and your choice of hyper-parameters (mini-batch
size and learning rate, for instance) have an impact on how well and how fast the
model training is going to be.

By really understanding, | do not mean working through the equations manually: this
does not develop intuition either. | mean visualizing the effects of different
settings; | mean telling a story to illustrate the concept. That’s how you develop
intuition.
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That being said, I'll cover the five basic steps you'd need to go through to use
gradient descent. I'll show you the corresponding Numpy code while explaining lots
of fundamental concepts along the way.

But first, we need some data to work with. Instead of using some external dataset,
let’s

« define which model we want to train to better understand gradient descent;
and

« generate synthetic data for that model.

Model

The model must be simple and familiar, so you can focus on the inner workings of
gradient descent.

So, | will stick with a model as simple as it can be: a linear regression with a single
feature, x!

y=>b+wr+e

Equation 0.1 - Simple linear regression model

In this model, we use a feature (x) to try to predict the value of a label (y). There are
three elements in our model:

« parameter b, the bias (or intercept), which tells us the expected average value of
y when x is zero

o parameter w, the weight (or slope), which tells us how much y increases, on
average, if we increase x by one unit

« and that last term (why does it always have to be a Greek letter?), epsilon, which
is there to account for the inherent noise; that is, the error we cannot get rid of

We can also conceive the very same model structure in a less abstract way:
salary = minimum wage + increase per year * years of experience + noise

And to make it even more concrete, let’s say that the minimum wage is $1,000
(whatever the currency or time frame, this is not important). So, if you have no
experience, your salary is going to be the minimum wage (parameter b).
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Also, let’s say that, on average, you get a $2,000 increase (parameter w) for every
year of experience you have. So, if you have two years of experience, you are
expected to earn a salary of $5,000. But your actual salary is $5,600 (lucky you!).
Since the model cannot account for those extra $600, your extra money is,
technically speaking, noise.

Data Generation

We know our model already. In order to generate synthetic data for it, we need to
pick values for its parameters. | chose b = 1 and w = 2 (as in thousands of dollars)
from the example above.

First, let’s generate our feature (x): We use Numpy's rand() method to randomly
generate 100 (N) points between 0 and 1.

Then, we plug our feature (x) and our parameters b and w into our equation to
compute our labels (y). But we need to add some Gaussian noise®® (epsilon) as well;
otherwise, our synthetic dataset would be a perfectly straight line. We can
generate noise using Numpy's randn() method, which draws samples from a normal
distribution (of mean 0 and variance 1), and then multiply it by a factor to adjust for
the level of noise. Since | don’t want to add too much noise, | picked 0.1 as my
factor.

Synthetic Data Generation

Data Generation

I
—

true b
true_w
N = 100

11
No

# Data Generation

np.random.seed(42)

x = np.random.rand(N, 1)

epsilon = (.1 * np.random.randn(N, 1))
y = true_b + true_w * x + epsilon

O 00 N O U1 & W N =

Did you notice the np.random.seed(42) at line 6? This line of code is actually more
important than it looks. It guarantees that, every time we run this code, the same
random numbers will be generated.

Data Generation | 25


https://bit.ly/3jDIXSk
https://en.wikipedia.org/wiki/Gaussian_noise
https://bit.ly/2ZZeC9f

"Wait; what?! Aren’t the numbers supposed to be random? How could
Q they possibly be the same numbers?" you ask, perhaps even a bit
annoyed by this.

(Not So) Random Numbers

Well, you know, random numbers are not quite random... They are really
pseudo-random, which means Numpy's number generator spits out a
sequence of numbers that looks like it’s random. But it is not, really.

The good thing about this behavior is that we can tell the generator to start a
particular sequence of pseudo-random numbers. To some extent, it works
as if we tell the generator: "please generate sequence #42," and it will spill out
a sequence of numbers. That number, 42, which works like the index of the
sequence, is called a seed. Every time we give it the same seed, it generates
the same numbers.

This means we have the best of both worlds: On the one hand, we do
generate a sequence of numbers that, for all intents and purposes, is
considered to be random; on the other hand, we have the power to
reproduce any given sequence. | cannot stress enough how convenient that
is for debugging purposes!

Moreover, you can guarantee that other people will be able to reproduce
your results. Imagine how annoying it would be to run the code in this book
and get different outputs every time, having to wonder if there is anything
wrong with it. But since I've set a seed, you and | can achieve the very same
outputs, even if it involved generating random data!

Next, let’s split our synthetic data into train and validation sets, shuffling the array
of indices and using the first 80 shuffled points for training.

Q "Why do you need to shuffle randomly generated data points? Aren’t
they random enough?"

Yes, they are random enough, and shuffling them is indeed redundant in this

example. But it is best practice to always shuffle your data points before training a
model to improve the performance of gradient descent.
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o There is one exception to the "always shuffle" rule, though: time
series problems, where shuffling can lead to data leakage.

Train-Validation-Test Split

It is beyond the scope of this book to explain the reasoning behind the train-
validation-test split, but there are two points I'd like to make:

1. The split should always be the first thing you do—no preprocessing, no
transformations; nothing happens before the split. That's why we do this
immediately after the synthetic data generation.

2. In this chapter we will use only the training set, so | did not bother to create a
test set, but | performed a split nonetheless to highlight point #1 :-)

Train-Validation Split

# Shuffles the indices
idx = np.arange(N)
np.random.shuffle(idx)

# Uses first 80 random indices for train
train_idx = idx[:int(N*.8)]

# Uses the remaining indices for validation
val_idx = idx[int(N*.8):]

0O N O U1 &~ W N =

9

10 # Generates train and validation sets

11 x_train, y_train = x[train_idx], y[train_idx]
12 x_val, y_val = x[val_idx], y[val_idx]

e "Why didn’t you use train test split() from Scikit-Learn?" you
may be asking.

That’s a fair point. Later on, we will refer to the indices of the data points belonging

to either train or validation sets, instead of the points themselves. So, | thought of
using them from the very start.
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Figure 0.1 - Synthetic data: train and validation sets

We know that b = 1, w = 2, but now let’s see how close we can get to the true
values by using gradient descent and the 80 points in the training set (for training,
N =80).

Step 0 - Random Initialization

In our example, we already know the true values of the parameters, but this will
obviously never happen in real life: If we knew the true values, why even bother to
train a model to find them?!

OK, given that we’ll never know the true values of the parameters, we need to set
initial values for them. How do we choose them? It turns out a random guess is as
good as any other.

Even though the initialization is random, there are some clever
x initialization schemes that should be used when training more-

complex models. We'll get back to them (much) later.

For training a model, you need to randomly initialize the parameters / weights (we
have only two, b and w).
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Random Initialization

1 # Step @ - Initializes parameters "b" and "w" randomly
2 np.random.seed(42)

3 b = np.random.randn(1)
4 w = np.random.randn(1)
5

6 print(b, w)

Output

[0.49671415] [-0.1382643]

Step 1 - Compute Model’s Predictions

This is the forward pass; it simply computes the model’s predictions using the current
values of the parameters / weights. At the very beginning, we will be producing really
bad predictions, as we started with random values in Step O.

Step 1

1 # Step 1 - Computes our model's predicted output - forward pass
2 yhat = b +w * x_train
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Figure 0.2 - Model’s predictions (with random parameters)
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Step 2 - Compute the Loss
There is a subtle but fundamental difference between error and loss.

The error is the difference between the actual value (label) and the predicted
value computed for a single data point. So, for a given i-th point (from our dataset
of N points), its error is:

eITOT; = Ui — Y
Equation 0.2 - Error

The error of the first point in our dataset (i = 0) can be represented like this:
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Figure 0.3 - Prediction error (for one data point)

The loss, on the other hand, is some sort of aggregation of errors for a set of data
points.

It seems rather obvious to compute the loss for all (N) data points, right? Well, yes
and no. Although it will surely yield a more stable path from the initial random
parameters to the parameters that minimize the loss, it will also surely be slow.

This means one needs to sacrifice (a bit of) stability for the sake of speed. This is easily
accomplished by randomly choosing (without replacement) a subset of n out of N
data points each time we compute the loss.
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Batch, Mini-batch, and Stochastic Gradient Descent

« If we use all points in the training set (n = N) to compute the
loss, we are performing a batch gradient descent;

o]
Qﬁ « If we were to use a single point (n = 1) each time, it would be a
stochastic gradient descent;

e Anything else (n) in between 1 and N characterizes a mini-
batch gradient descent;

For a regression problem, the loss is given by the mean squared error (MSE); that
is, the average of all squared errors; that is, the average of all squared differences
between labels (y) and predictions (b + wx).

1
MSE = — error;”
n <
1=1
1 n A 2
= ﬁ ' (Z/z - Z/z)
1=1
1 n
- 5Z<b+w%—yz>
i=1

Equation 0.3 - Loss: mean squared error (MSE)

In the code below, we are using all data points of the training set to compute the
loss, son =N =80, meaning we are indeed performing batch gradient descent.

Step 2

# Step 2 - Computing the loss

# We are using ALL data points, so this is BATCH gradient
# descent. How wrong is our model? That's the error!
error = (yhat - y_train)

# It is a regression, so it computes mean squared error (MSE)
loss = (error ** 2).mean()

O 00 N O U1l & W N =

print(loss)
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Output

2.7421577700550976

Loss Surface

We have just computed the loss (2.74) corresponding to our randomly initialized
parameters (b = 0.49 and w = -0.13). What if we did the same for ALL possible
values of b and w? Well, not all possible values, but all combinations of evenly spaced
values in a given range, like:

# Reminder:
# true b =1
# true w =2

# we have to split the ranges in 100 evenly spaced intervals each
b_range = np.linspace(true_b - 3, true_b + 3, 101)

w_range = np.linspace(true_w - 3, true_w + 3, 101)

# meshgrid is a handy function that generates a grid of b and w

# values for all combinations

bs, ws = np.meshgrid(b_range, w_range)

bs.shape, ws.shape

Output

((101, 101), (101, 101))

The result of the meshgrid() operation was two (101, 101) matrices representing
the values of each parameter inside a grid. What does one of these matrices look
like?

bs
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array([[-2. , -1.94,
[-2. , -1.94,
[-2. , -1.94,
[-2. , -1.94,
[-2. , -1.94,
[-2. , -1.94,

.88, ...
.88, ...
.88, ...

.88, ...
.88, ...
.88, ...

4. 1,
4. 1,
4. 1,
4. 1,
4. 1,
4. 11

Sure, we're somewhat cheating here, since we know the true values of b and w, so
we can choose the perfect ranges for the parameters. But it is for educational

purposes only :-)

Next, we could use those values to compute the corresponding predictions, errors,
and losses. Let’s start by taking a single data point from the training set and
computing the predictions for every combination in our grid:

dummy_x = x_train[0]

dummy_yhat = bs + ws * dummy_x

dummy_yhat.shape

Output

(101, 101)

Thanks to its broadcasting capabilities, Numpy is able to understand we want to
multiply the same x value by every entry in the ws matrix. This operation resulted
in a grid of predictions for that single data point. Now we need to do this for every
one of our 80 data points in the training set.

We can use Numpy's apply along axis() to accomplish this:

Look ma, no loops!
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all_predictions = np.apply_along_axis(
func1d=1ambda x: bs + ws * x,
axis=1,
arr=x_train,

)

all_predictions.shape

Output

(80, 101, 101)

Cool! We got 80 matrices of shape (101, 101), one matrix for each data point, each
matrix containing a grid of predictions.

The errors are the difference between the predictions and the labels, but we
cannot perform this operation right away—we need to work a bit on our labels (y),
so they have the proper shape for it (broadcasting is good, but not that good):

all_labels = y_train.reshape(-1, 1, 1)
all_labels.shape

Output

(80, 1, 1)

Our labels turned out to be 80 matrices of shape (1, 1)—the most boring kind of
matrix—but that is enough for broadcasting to work its magic. We can compute the
errors now:

all_errors = (all_predictions - all_labels)
all_errors.shape

Output

(80, 101, 101)

Each prediction has its own error, so we get 80 matrices of shape (101, 101), again,
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one matrix for each data point, each matrix containing a grid of errors.

The only step missing is to compute the mean squared error. First, we take the
square of all errors. Then, we average the squares over all data points. Since our
data points are in the first dimension, we use axis=0 to compute this average:

all _losses = (all_errors ** 2).mean(axis=0)
all_losses.shape

Output

(101, 101)

The result is a grid of losses, a matrix of shape (101, 101), each loss corresponding
to a different combination of the parameters b and w.

These losses are our loss surface, which can be visualized in a 3D plot, where the
vertical axis (z) represents the loss values. If we connect the combinations of b and
w that yield the same loss value, we'll get an ellipse. Then, we can draw this ellipse
in the original b x w plane (in blue, for a loss value of 3). This is, in a nutshell, what a
contour plot does. From now on, we’ll always use the contour plot, instead of the
corresponding 3D version.

Loss Surface
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Figure 0.4 - Loss surface
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In the center of the plot, where parameters (b, w) have values close to (1, 2), the loss
is at its minimum value. This is the point we're trying to reach using gradient
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descent.

In the bottom, slightly to the left, there is the random start point, corresponding to
our randomly initialized parameters.

This is one of the nice things about tackling a simple problem like a linear
regression with a single feature: We have only two parameters, and thus we can
compute and visualize the loss surface.

Unfortunately, for the absolute majority of problems, computing

o the loss surface is not going to be feasible: we have to rely on
gradient descent’s ability to reach a point of minimum, even if it
starts at some random point.

Cross-Sections

Another nice thing is that we can cut a cross-section in the loss surface to check
what the loss would look like if the other parameter were held constant.

Let’s start by making b = 0.52 (the value from b_range that is closest to our initial
random value for b, 0.4967). We cut a cross-section vertically (the red dashed line)
onour loss surface (left plot), and we get the resulting plot on the right:

Loss Surface Fixed: b = 0.52
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Figure 0.5 - Vertical cross-section; parameter b is fixed

Read More

Buy complete version: https://leanpub.com/pytorch
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