

Python REGEX
A Little Guide

Scientific Programmer

This book is for sale at http://leanpub.com/pythonregex

This version was published on 2018-09-09

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2018 Scientific Programmer

http://leanpub.com/pythonregex
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Python RegEx . 1
Python regex match function 4

CONTENTS 1

Python RegEx

Hello coders! Let’s start our quest with regular expressions (RegEx).
In Python, the module re provides full support for Perl-like regular
expressions in Python. We need to remember that there are many
characters in Python, which would have special meaning when
they are used in regular expression. To avoid bugs while dealing
with regular expressions, we use raw strings as r'expression'.

The re module in Python provides multiple methods to perform
queries on an input string. Here are the most commonly used
methods:

• re.match()

• re.search()

• re.split()

• re.sub()

• re.findall()

• re.compile()

We will look at these function and related flags with examples in
the next section.

Python Regular Expression Patterns List

The following table lists the regular expression syntax that is avail-
able in Python. Note that any Regex can be concatenated to form
new regular expressions; if X and Y are both regular expressions,
then XY is also a regular expression.

CONTENTS 2

Pattern Description

. Matches any single character except
newline. Using m option allows it to match
newline as well.

^ Matches the start of the string, and in
re.MULTILINE (see the next lesson on how to
change to multiline) mode also matches
immediately after each newline.

$ Matches end of line. In re.MULTILINE mode
also matches before a newline.

[.] Matches any single character in brackets.
[^.] Matches any single character not in brackets.
* Matches 0 or more occurrences of preceding

expression.
+ Matches 1 or more occurrence of preceding

expression.
? Matches 0 or 1 occurrence of preceding

expression.
{n} Matches exactly n number of occurrences of

preceding expression.
{n,} Matches n or more occurrences of preceding

expression.
{n, m} Matches at least n and at most m occurrences

of preceding expression. For example, x{3,5}
will match from 3 to 5 'x' characters.

Pattern Description

x y Matches either x or y.
\d Matches digits. Equivalent to [0-9].
\D Matches nondigits.
\w Matches word characters.
\W Matches nonword characters.
\z Matches end of string.
\G Matches point where last match finished.
\b Matches the empty string, but only at the

beginning or end of a word. Boundary
between word and non-word and /B is
opposite of /b. Example r"\btwo\b" for
searching two from 'one two three'.

CONTENTS 3

Pattern Description

\B Matches nonword boundaries.
\n, \t Matches newlines, carriage returns, tabs, etc.
\s Matches whitespace.
\S Matches nonwhitespace.
\A Matches beginning of string.
\Z Matches end of string. If a newline exists, it

matches just before newline.

Groups and Lookarounds

More details later:

Pattern Description

(re) Groups regular expressions and remembers
matched text.

(?: re) Groups regular expressions without
remembering matched text. For example,
the expression (?:x{6})* matches any
multiple of six ‘x’ characters.

(?#...) Comment.
(?= ...) Matches if ... matches next, but doesn’t

consume any of the string. This is called a
lookahead assertion. For example,
Scientific (?=Python) will match
Scientific only if it’s followed by Python.

(?!...) Matches if ... doesn’t match next. This is a
negative lookahead assertion.

(?<=...) Matches if the current position in the string
is preceded by a match for ... that ends at
the current position.

CONTENTS 4

Python regex match function

The match function attempts to match a re pattern to string with
optional flags.

Here is the syntax for this function âˆ’

1 re.match(pattern, string, flags=0)

Where,

• pattern is the regular expression to be matched,
• string is the string to be searched to match the pattern at the
beginning of string and

• flags, which you can specify different flags using bitwise OR
(|).

Match Flags

Modifier Description

re.I Performs case-insensitive matching.
re.L Interprets words according to the current

locale. This interpretation affects the
alphabetic group (\w and \W), as well as
word boundary behavior (\b and \B).

re.M Makes $ match the end of a line and makes
^ match the start of any line.

re.S Makes a period (dot) match any character,
including a newline.

re.U Interprets letters according to the Unicode
character set. This flag affects the behavior
of \w, \W, \b, \B.

re.X It ignores whitespace (except inside a set []
or when escaped by a backslash and treats
unescaped # as a comment marker.

CONTENTS 5

Return values

• The re.match function returns a match object on success and
None upon failure. -

• Use group(n) or groups() function of match object to get
matched expression, e.g., group(n=0) returns entire match (or
specific subgroup n)

• The function groups() returns all matching subgroups in a
tuple (empty if there weren’t any).

Example 1

Let’s find the words before and after the word to:

1 #!/usr/bin/python

2 import re

3

4 line = "Learn to Analyze Data with Scientific Python";

5

6 m = re.match(r'(.*) to (.*?) .*', line, re.M|re.I)

7

8 if m:

9 print "m.group() : ", m.group()

10 print "m.group(1) : ", m.group(1)

11 print "m.group(2) : ", m.group(2)

12 else:

13 print "No match!!"

The first group (.*) identified the string: Learn and the next group
(*.?) identified the string: Analyze. Output:

CONTENTS 6

1 m.group() : Learn to Analyze Data with Scientific Python

2 m.group(1) : Learn

3 m.group(2) : Analyze

Example 2

groups([default]) returns a tuple containing all the subgroups of
the match, from 1 up to however many groups are in the pattern.

1 #!/usr/bin/python

2 import re

3

4 line = "Learn Data, Python";

5

6 m = re.match(r'(\w+) (\w+)', line, re.M|re.I)

7

8 if m:

9 print "m.group() : ", m.groups()

10 print "m.group (1,2)", m.group(1, 2)

11 else:

12 print "No match!!"

Output:

1 m.group() : ('Learn', 'Data')

2 m.group (1,2) ('Learn', 'Data')

Example 3

groupdict([default]) returns a dictionary containing all the named
subgroups of the match, keyed by the subgroup name.

CONTENTS 7

1 #!/usr/bin/python

2 import re

3

4 number = "124.13";

5

6 m = re.match(r'(?P<Expotent>\d+)\.(?P<Fraction>\d+)', nu\

7 mber)

8

9 if m:

10 print "m.groupdict() : ", m.groupdict()

11 else:

12 print "No match!!"

Output: m.groupdict() : {'Expotent': '124', 'Fraction':

'13'}

Example 4

Start, end. How can we match the start or end of a string? We
can use the “A” and “Z” metacharacters. We precede them with
a backslash. We match strings that start with a certain letter, and
those that end with another.

1 import re

2

3 values = ["Learn", "Live", "Python"];

4

5 for value in values:

6 # Match the start of a string.

7 result = re.match("\AL.+", value)

8 if result:

9 print("START MATCH [L]:", value)

10

11 # Match the end of a string.

12 result2 = re.match(".+n\Z", value)

CONTENTS 8

13 if result2:

14 print("END MATCH [n]:", value)

Output:

1 output

2

3 ('START MATCH [L]:', 'Learn')

4 ('END MATCH [n]:', 'Learn')

5 ('START MATCH [L]:', 'Live')

6 ('END MATCH [n]:', 'Python')

Example 5

start([group]) and end([group]) return the indices of the start
and end of the substring matched by group. See the next lesson for
an example.

	Table of Contents
	Python RegEx
	Python regex match function

