

Python does PDF: pyFPDF

Edwood Ocasio

This book is for sale at http://leanpub.com/pythondoespdfpyfpdf

This version was published on 2016-04-09

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2016 Edwood Ocasio

http://leanpub.com/pythondoespdfpyfpdf
http://leanpub.com
http://leanpub.com/manifesto

Also By Edwood Ocasio
Interviews with leaders of the scientific open source software community Vol. 1

Interviews with leaders of the scientific open source software community Vol. 2

http://leanpub.com/u/eocasio
http://leanpub.com/floss-science-interviews-1
http://leanpub.com/floss-science-interviews-2

Contents

Introduction . 1

Installation . 2

Writing text . 3
Hello World! . 3
Change paper format to Letter and units to inches . 4
Text color . 5
Text color by color hex values using hex2dec function 6
Text color by color names using webcolors module . 7
Change font family and style . 8
Text alignment and borders . 10
Positioning text cells (boxes) . 11

Using empty text cells to place other text cells . 11
Using the effective page width to distribute content evenly 12
Using the effective page width to center text across a page 14
Using method set_xy() to exactly position a text cell 15

Wrapping text automatically (multi_cell) . 17
Simple use of multi_cell . 17

Putting two adjacent multi_cell blocks . 19
Three adjacent multi cell columns . 21
Coloring multi_cell blocks . 23
Adjust cell width and height exactly to the text . 25
Margins . 26

Default margins . 26
Changing margins . 28

Mix page orientations . 31

Introduction
Through this book I hope to share my hard earned knowledge about generating PDF documents
dynamically using Python and libraries like pyFPDF, the main subject of this book.

The content will keep expanding with topics such as: tables, images, filling already digitized forms,
use of document templates, tips and workarounds while using pyFPDF.

If you are a busy professional developer like I am you do not want to spend too much time reading
through lots of explanations. You want to get to the solution to your problem fast. That is why this
book is written in cookbook style, divided in some common themes. Most of the explaining will be
done in the code’s comments.

This book can help you add more value to client’s projects that require generating PDF reports and,
hopefully, that will mean more time and money for you.

All examples in this bookwill work for Python 2.7x, pyfpdf 1.7.2 and PIL 1.1.7 on Linux. The code was
not tested on Windows or Mac OS. Feedback is welcome on code performance on those platforms.

IMPORTANT: When you buy the book look here (“Introduction”) for the link to download a ZIP
file with all the code samples and resources.

1

Installation
PyFPDF¹ is a library for PDF document generation under Python, ported from PHP by Mariano
Reingart².

To install this library you can use pip:

1 sudo pip install pyfpdf

The Python Imaging Library (PIL)³ is only needed for GIF support. PNG and JPG support is built-in
and does not require any external dependency. If you need to install it you can also use pip:

1 sudo pip install pil

If you have issues with the installation of any of these packages, please refer to their respective
community forums.

¹https://github.com/reingart/pyfpdf
²https://github.com/reingart
³http://www.pythonware.com/products/pil/

2

https://github.com/reingart/pyfpdf
https://github.com/reingart
https://github.com/reingart
http://www.pythonware.com/products/pil/
https://github.com/reingart/pyfpdf
https://github.com/reingart
http://www.pythonware.com/products/pil/

Writing text
This chapter presents examples dealing with writing, formatting and positioning text.

Every piece of text in pyfpdf is contained in a cell. You can think of a cell as a rectangular container
or box. You can have every word on a sentence inside its own cell or have the whole sentence inside
a cell.

Hello World!

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 pdf=FPDF()

6 # Add new page. Without this you cannot create the document.

7 pdf.add_page()

8 # Set font to Arial, 'B'old, 16 pts. If you don't declare your font

9 # parameters you may get some font related errors.

10 pdf.set_font('Arial','B',16)

11 # Put a cell (box) 40 units wide and 10 units tall,

12 # beginning from the left margin, and write 'Hello World!' inside it.

13 pdf.cell(40,10,'Hello World!')

14 # Output content into a file ('F') named 'hello.pdf'

15 pdf.output('hello.pdf','F')

When you open ‘hello.pdf’ you will see this:

3

Writing text 4

Change paper format to Letter and units to inches

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7 # Add new page. Without this you cannot create the document.

8 pdf.add_page()

9 # Loop through some font sizes

10 for fs in range(8, 37):

11 # Regular font, notice the empty string ''

12 pdf.set_font('Arial','',fs)

13

14 # Create a cell 1.0 inches wide, automatic height

15 # and write some text

16 pdf.cell(1.0,0.0,'Hello World!')

17

18 # Insert break 0.15 inches in height

19 # Just like a carriage return

20 pdf.ln(0.15)

21

22 # output content into a file ('F') named 'hello2.pdf'

23 pdf.output('hello2.pdf','F')

When you open ‘hello2.pdf’ you will see this:

Writing text 5

Text color

The method set_text_color() allows us to color text if we provide the color in an RGB triplet
(RED, GREEN, BLUE), like pure green (0, 255, 0).

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7 # Add new page. Without this you cannot create the document.

8 pdf.add_page()

9 # Set font face to Times, size 10.0 pt

10 pdf.set_font('Times','',10.0)

11

12 # Set color red

13 pdf.set_text_color(255,0,0)

14 pdf.cell(1.0,0.0,'Hello World!')

15 # Line break 0.15 inches height

16 pdf.ln(0.15)

17

18 # Set color green

19 pdf.set_text_color(0,255,0)

20 pdf.cell(1.0,0.0,'Hello World!')

21 pdf.ln(0.15)

22

23 # Set color blue

24 pdf.set_text_color(0,0,255)

25 pdf.cell(1.0,0.0,'Hello World!')

26 pdf.ln(0.15)

27

28 # output content into a file ('F') named 'hello3.pdf'

29 pdf.output('hello3.pdf','F')

When you open ‘hello3.pdf’ you will see this:

Writing text 6

For a reference of RGB triplets and their color names (and a color picker) see Rapidtables RGB Color
Codes Chart⁴

Text color by color hex values using hex2dec function

pyFPDF comes with an HTML module that helps turning HTML to PDF. One of its utility functions
is hex2dec() which converts colors hex values to the RGB triplets we need for set_text_color().
The following code shows how to leverage that function.

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # IMPORTANT: Import html module inside fpdf package and import hex2dec

5 from fpdf.html import hex2dec

6

7 # Create instance of FPDF class

8 # Letter size paper, use inches as unit of measure

9 pdf=FPDF(format='letter', unit='in')

10

11 # Add new page. Without this you cannot create the document.

12 pdf.add_page()

13

14 # Remember to always put one of these at least once.

15 pdf.set_font('Times','',10.0)

16

17 # IMPORTANT: Notice the use of the operator '*' to unpack the triplet

18 pdf.set_text_color(*hex2dec('#8B6914'))

19 pdf.cell(0.5,0.0, u'Hello World!')

20 pdf.ln(0.15)

21

⁴http://www.rapidtables.com/web/color/RGB_Color.htm

http://www.rapidtables.com/web/color/RGB_Color.htm
http://www.rapidtables.com/web/color/RGB_Color.htm
http://www.rapidtables.com/web/color/RGB_Color.htm

Writing text 7

22 pdf.set_text_color(*hex2dec('#A020F0'))

23 pdf.cell(0.5,0.0, u'Hello World!')

24 pdf.ln(0.15)

25

26 pdf.set_text_color(*hex2dec('#FFA500'))

27 pdf.cell(0.5,0.0, u'Hello World!')

28 pdf.ln(0.15)

29

30 pdf.set_text_color(*hex2dec('#BFBFBF'))

31 pdf.cell(0.5,0.0, u'Hello World!')

32 pdf.ln(0.15)

33

34 pdf.output('colors-hex2dec.pdf','F')

When you open ‘colors-hex2dec.pdf’ you will see this:

For a reference of color hex values (and a color picker) see Rapidtables Web Color Codes⁵

Text color by color names using webcolorsmodule

For a Python module that can change color names to RGB triplets see webcolors⁶

webcolors can be installed by issuing the command:

1 pip install webcolors

The following code uses the module to facilitate declaring colors by their name, like ‘navy’.

⁵http://www.rapidtables.com/web/color/Web_Color.htm
⁶https://pypi.python.org/pypi/webcolors/1.3

http://www.rapidtables.com/web/color/Web_Color.htm
https://pypi.python.org/pypi/webcolors/1.3
http://www.rapidtables.com/web/color/Web_Color.htm
https://pypi.python.org/pypi/webcolors/1.3

Writing text 8

1 # Import FPDF class

2 from fpdf import FPDF

3 from webcolors.webcolors import name_to_rgb

4

5 # Create instance of FPDF class

6 # Letter size paper, use inches as unit of measure

7 pdf=FPDF(format='letter', unit='in')

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10 # Set font face to Times, size 10.0 pt

11 pdf.set_font('Times','',10.0)

12

13 # Set color navy

14 pdf.set_text_color(*name_to_rgb('navy'))

15 pdf.cell(1.0,0.0,'Hello World!')

16 pdf.ln(0.15)

17

18 # Set color dark olive green

19 pdf.set_text_color(*name_to_rgb('darkolivegreen'))

20 pdf.cell(1.0,0.0,'Hello World!')

21 pdf.ln(0.15)

22

23 # Set color salmon

24 pdf.set_text_color(*name_to_rgb('salmon'))

25 pdf.cell(1.0,0.0,'Hello World!')

26 pdf.ln(0.15)

27

28 pdf.output('hello4.pdf','F')

Notice the operator ‘*’ used before name_to_rgb to unpack the triplet.

When you open ‘hello4.pdf’ you will see this:

Change font family and style

Using the method pdf.set_font(font_family,font_style,font_size) we can change font at-
tributes at any moment through out the document.

Writing text 9

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7 # Add new page. Without this you cannot create the document.

8 pdf.add_page()

9

10 # Set font family to Times, regular style, size 10.0 pt

11 pdf.set_font('Times','',10.0)

12 pdf.cell(1.0,0.0,'Hello World!')

13 pdf.ln(0.25)

14

15 # Set font family to Arial, 'B'old, size 14.0 pt

16 pdf.set_font('Arial','B',14.0)

17 pdf.cell(1.0,0.0,'Hello World!')

18 pdf.ln(0.25)

19

20 # Set font family to Courier, 'I'talic, size 16.0 pt

21 pdf.set_font('Courier','I',16.0)

22 pdf.cell(1.0,0.0,'Hello World!')

23 pdf.ln(0.25)

24

25 # Set font family to Symbol, regular text, size 24.0 pt

26 pdf.set_font('Symbol','',24.0)

27 pdf.cell(1.0,0.0,'Hello World!')

28 pdf.ln(0.25)

29

30 # Add font from system. Font file path must be specified if it is not

31 # in an accesible path to pyFPDF.

32 # Second parameter is always empty for backward compatibility.

33 # uni=True enables Unicode

34 pdf.add_font('Comic Sans','','/usr/share/fonts/truetype/msttcorefonts/Comic_Sans\

35 _MS.ttf', uni=True)

36

37 # Set font family to Comic Sans, 'U'nderlined, size 14.0 pt

38 pdf.set_font('Comic Sans','U',14.0)

39 pdf.cell(1.0,0.0,'Hello World!')

40 pdf.ln(0.25)

41

42 # output content into a file ('F') named 'hello5.pdf'

Writing text 10

43 pdf.output('hello5.pdf','F')

When you open ‘hello5.pdf’ you will see this:

Text alignment and borders

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # Text will be left aligned in cell. This is the default alignment.

15 # Cell is 2.0 inches wide, will have a border and that is why we must now

16 # define a height of 0.15 inches

17 pdf.cell(2.0,0.15,'Hello World!', border=1)

18 pdf.ln(0.25)

19

20 # Text will be centered in cell.

21 # Cell is 3.0 inches wide, will have a border and that is why we must now

22 # define a height of 0.25 inches

23 pdf.cell(3.0,0.25,'Hello World!', border=1, align='C')

24 pdf.ln(0.50)

25

26 # Text will be right aligned in cell.

27 # Cell is 5.0 inches wide, will have a border and that is why we must now

Writing text 11

28 # define a height of 0.50 inches

29 pdf.cell(5.0,0.50,'Hello World!', border=1, align='R')

30 pdf.ln(0.25)

31

32 # output content into a file ('F') named 'hello6.pdf'

33 pdf.output('hello6.pdf','F')

When you open ‘hello6.pdf’ you will see this:

Positioning text cells (boxes)

To get the hang of pyFPDF text layout you must keep in mind that everything is a cell or box that
occupies an area of the document. You can put those boxes at precise coordinates or let pyFPDF
automatically place everything for you. For a simple one column document, like an essay or sales
letter, the automatic placement will be enough. For multi-column documents or tables, you have to
take charge.

Using empty text cells to place other text cells

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # Text in cell 2.5 inches wide, automatic height (0.0)

Writing text 12

15 # starting at left margin

16 pdf.cell(2.5,0.0,'Hello World!')

17

18 # Remember this? 0.25 inches line break

19 pdf.ln(0.25)

20

21 # Move 1.0 inch to the right

22 pdf.cell(1.0)

23 # Now write text in cell 2.5 inches wide, 0.15 in height.

24 # Notice we did not put any line break, so this text should follow

25 # immediately. Will leave borders to emphasize the cell concept.

26 pdf.cell(2.5,0.15,'Hello World!', border=1)

27 # Keep in the same line and write again.

28 pdf.cell(2.5,0.15,'Hello World Again!', border=1)

29

30 # Now a line break

31 pdf.ln(0.15)

32

33 # output content into a file ('F') named 'hello7.pdf'

34 pdf.output('hello7.pdf','F')

When you open ‘hello7.pdf’ you will see this:

Using the effective page width to distribute content evenly

The effective page width is the area between the left and right margin of the document. If those
margins are 1.0 inch wide and the paper format is letter (8.5x11 in) with portrait orientation then
the effective page width (or epw) is 8.5 - 1.0 - 1.0 = 6.5 inches. That is the area available to write or
draw.

Of course we have the entire page surface at our disposition, but it is within that region that users
expect the content.

Writing text 13

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # Text in cell 2.5 inches wide, automatic height (0.0)

15 # starting at left margin

16 pdf.cell(2.5,0.0,'Hello World!')

17 pdf.ln(0.25)

18

19 # Let's put 5 more of this so text goes beyond page margins. Ugly result.

20 # To avoid this you must always be aware of your page dimensions.

21 for i in range(5):

22 pdf.cell(2.5,0.0,'Hello World!')

23

24 pdf.ln(0.50)

25

26 # Let us use the page dimensions to better position those cells.

27 # The full page width is stored in pdf.w and the full height in pdf.h

28 # We will substract from pdf.w both left and right margins. Here we are

29 # infering both are the same dimension.

30

31 effective_page_width = pdf.w - 2*pdf.l_margin

32

33 pdf.set_font('Times','B',10.0)

34 pdf.cell(1.0, 0.0, 'Using effective page width of %s inches to adjust cells widt\

35 h to make them fit inside page dimensions' % effective_page_width, 'U')

36 pdf.ln(0.25)

37

38 pdf.set_font('Times','',10.0)

39

40 # Using page width we will adjust cell width to make them all fit

41 # inside the page. The length of the text will determine if this

42 # will work or not

Writing text 14

43

44 for i in range(5):

45 pdf.cell(effective_page_width/5.0,0.0,'Hello World!')

46

47

48 # output content into a file ('F') named 'hello08.pdf'

49 pdf.output('hello08.pdf','F')

When you open ‘hello08.pdf’ you will see this:

Using the effective page width to center text across a page

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # One easy way to center text in a page, like a title, is to use a cell as wide

15 # as the page available width and center the text it contains.

16 # To obtain the maximum widht available to write we substract the margins

17 # from the page_width 'pdf.w'. We are assuming left and right margins are of

18 # the same dimension

19 effective_page_width = pdf.w - 2*pdf.l_margin

20

21 pdf.cell(effective_page_width,0.0, 'Text centered in page', align='C')

22 pdf.ln(0.50)

Writing text 15

23

24 # Now with cell borders to visualize what we are doing.

25 # Remember to declare the cell height when doing borders.

26 pdf.cell(effective_page_width,0.15, 'Text centered in page', border=1, align='C')

27 pdf.ln(0.15)

28

29 # output content into a file ('F') named 'hello10.pdf'

30 pdf.output('hello10.pdf','F')

When you open ‘hello10.pdf’ you will see this:

Using method set_xy() to exactly position a text cell

We will also use methods pdf.get_x() and pdf.get_y() to get current x and y coordinates
respectively.

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # Text will be drawn 1.5 inches from the left, 2.5 inches from the top

15 pdf.set_xy(1.5, 2.5)

16 pdf.cell(2.5,0.0,'%s inches from left, %s inches from top' % (pdf.get_x(), pdf.g\

17 et_y()))

18 pdf.ln(0.25)

19

Writing text 16

20 # Text will be drawn 6 inches from the left, 4.0 inches from top

21 pdf.set_xy(6.0, 5.0)

22 pdf.cell(2.5,0.0,'%s inches from left, %s inches from top' % (pdf.get_x(), pdf.g\

23 et_y()))

24 pdf.ln(0.25)

25

26 # Text will be drawn 6.0 inches from the right, 1.0 inch from bottom.

27 # Notice the negative coordinate values. They are relative to the right and

28 # bottom of the page respectively.

29

30 pdf.set_xy(-6.0, -1.0)

31 pdf.cell(2.5,0.0,'%s inches from left, %s inches from top using negative values'\

32 % (pdf.get_x(), pdf.get_y()))

33 pdf.ln(0.25)

34

35 # output content into a file ('F') named 'hello9.pdf'

36 pdf.output('hello9.pdf','F')

When you open ‘hello9.pdf’ you will see this:

Writing text 17

Tip
Instead of pdf.get_x() and pdf.get_y() we can also use pdf.x and pdf.y.

Wrapping text automatically (multi_cell)

The method pdf.multi_cell() automatically breaks long lines of text, a paragraph for example,
within the available effective page width. We do not have to worry about word wrapping.

Simple use of multi_cell

Writing text 18

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # Long meaningless piece of text

15 loremipsum = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his opo\

16 rteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His ca\

17 se errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum con\

18 tentiones, in malis vitae viderer mel.

19

20 Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue su\

21 mmo vis. An vim quas torquatos, electram posidonium eam ea, eros blandit ea vel.\

22 Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae co\

23 nstituto, eam eu oratio soleat instructior. No deleniti quaerendum vim, assum sa\

24 epe munere ea vis, te tale tempor sit. An sed debet ocurreret adversarium, ne en\

25 im docendi mandamus sea.

26 """

27

28 effective_page_width = pdf.w - 2*pdf.l_margin

29

30 pdf.set_font('Times','B',10.0)

31 pdf.cell(1.0,0.0, 'Without multi_cell using effective page width:')

32 pdf.ln(0.25)

33 pdf.set_font('Times','',10.0)

34 # Cell is as wide as the effective page width

35 pdf.cell(effective_page_width, 0.0, loremipsum)

36 pdf.ln(0.5)

37 pdf.set_font('Times','B',10.0)

38 pdf.cell(1.0,0.0, 'Using multi_cell and effective page width:')

39 pdf.ln(0.25)

40

41 pdf.set_font('Times','',10.0)

42 # Cell is as wide as the effective page width

Writing text 19

43 # and multi_cell requires declaring the height of the cell.

44 pdf.multi_cell(effective_page_width, 0.15, loremipsum)

45 pdf.ln(0.5)

46

47 # Cell half as wide as the effective page width

48 # and multi_cell requires declaring the height of the cell.

49 pdf.set_font('Times','B',10.0)

50 pdf.cell(1.0,0.0, 'Using multi_cell and half the effective page width:')

51 pdf.ln(0.25)

52

53 pdf.set_font('Times','',10.0)

54 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum)

55 pdf.ln(0.5)

56

57 pdf.output('multi_cell.pdf','F')

When you open ‘multi_cell.pdf’ you will see this:

Putting two adjacent multi_cell blocks

There are times when we need to render a multi-column document with multi-line content. Here is
an idea on how to do that with multi_cell, although it may require lots of tweaking to make it work
for each use case. This example shows again the importance of take into account the dimensions of
the page, including its margins.

Writing text 20

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # Long meaningless piece of text

15 loremipsum_1 = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his o\

16 porteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His \

17 case errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum c\

18 ontentiones, in malis vitae viderer mel.

19 """

20

21 # Even more meaningless text

22 loremipsum_2 = """Vis at dolores ocurreret splendide. Noster dolorum repudiare v\

23 is ei, te augue summo vis. An vim quas torquatos, electram posidonium eam ea, er\

24 os blandit ea vel. Reque summo assueverit an sit. Sed nibh conceptam cu, pro in \

25 graeci ancillae constituto, eam eu oratio soleat instructior. No deleniti quaere\

26 ndum vim, assum saepe munere ea vis, te tale tempor sit. An sed debet ocurreret \

27 adversarium, ne enim docendi mandamus sea.

28 """

29

30 effective_page_width = pdf.w - 2*pdf.l_margin

31

32 # Some text full page width for position reference

33

34 pdf.multi_cell(effective_page_width, 0.15, loremipsum_2)

35 pdf.ln(0.5)

36

37 # First save the y coordinate just before rendering the first multi_cell

38 ybefore = pdf.get_y()

39 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_1)

40

41 # Now use ybefore to position the cursor at the same level of the first

42 # multi_cell.

Writing text 21

43 # Notice the use of "effective_page_width/2 + pdf.l_margin" as x to position

44 # the cursor horizontally just beyond the first multi_cell

45

46 pdf.set_xy(effective_page_width/2 + pdf.l_margin, ybefore)

47 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_2)

48 pdf.ln(0.5)

49

50 pdf.output('multi_cell_adjacent.pdf','F')

When you open ‘multi_cell_adjacent.pdf’ you will see this:

Three adjacent multi cell columns

I am including this snippet here to answer what seems to be one of the most asked question about
multi_cell in the Internet: How to put 3 adjacent columns with multi cell. Here is the code:

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 column_width = 2.0

Writing text 22

15 column_spacing = 0.15

16

17 # Here we save what will be the top of each columns

18 ybefore = pdf.get_y()

19

20 pdf.multi_cell(column_width, 0.15, "Mea tamquam constituto no, facete dissentiun\

21 t eos no. Eu agam delicata qui, ex mea utinam consetetur. Pro insolens vulputate\

22 id. Mea discere eligendi explicari eu, ut fugit soluta eum. Per wisi putant com\

23 modo at.")

24

25 # Notice we have to account for the left margin to get the spacing between

26 # columns right.

27

28 pdf.set_xy(column_width + pdf.l_margin + column_spacing, ybefore)

29

30 pdf.multi_cell(column_width, 0.15, "Vis at dolores ocurreret splendide. Noster d\

31 olorum repudiare vis ei, te augue summo vis. An vim quas torquatos, electram pos\

32 idonium eam ea, eros blandit ea vel. Reque summo assueverit an sit. Sed nibh con\

33 ceptam cu, pro in graeci ancillae constituto, eam eu oratio soleat instructior. \

34 No deleniti quaerendum vim, assum saepe munere ea vis, te tale tempor sit. An se\

35 d debet ocurreret adversarium, ne enim docendi mandamus sea.")

36

37 pdf.set_xy(2*(column_width + column_spacing) + pdf.l_margin, ybefore)

38

39 pdf.multi_cell(column_width, 0.15, "Lorem ipsum dolor sit amet, vel ne quando di\

40 ssentias. Ne his oporteat expetendis. Ei tantas explicari quo, sea vidit minimum\

41 menandri ea. His case errem dicam ex, mel eruditi tibique delicatissimi ut. At \

42 mea wisi dolorum contentiones, in malis vitae viderer mel.")

43

44 pdf.output('multi_cell_3_cols.pdf','F')

When you open ‘multi_cell_3_cols.pdf’ you will see this:

Writing text 23

Coloring multi_cell blocks

It is posible to paint the background of a multi_cell block by allowing filling each cell with a
background color. However, there is an annoying padding space between cells that cannot (it seems)
be removed easily. We will be using the same adjacent multi_cell code as before, but now with some
pdf.set_fill_color() commands.

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # Letter size paper, use inches as unit of measure

6 pdf=FPDF(format='letter', unit='in')

7

8 # Add new page. Without this you cannot create the document.

9 pdf.add_page()

10

11 # Remember to always put one of these at least once.

12 pdf.set_font('Times','',10.0)

13

14 # Long meaningless piece of text

15 loremipsum_1 = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his o\

16 porteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His \

17 case errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum c\

18 ontentiones, in malis vitae viderer mel.

19 """

20

21 loremipsum_2 = """Vis at dolores ocurreret splendide. Noster dolorum repudiare v\

Writing text 24

22 is ei, te augue summo vis. An vim quas torquatos, electram posidonium eam ea, er\

23 os blandit ea vel. Reque summo assueverit an sit. Sed nibh conceptam cu, pro in \

24 graeci ancillae constituto, eam eu oratio soleat instructior. No deleniti quaere\

25 ndum vim, assum saepe munere ea vis, te tale tempor sit. An sed debet ocurreret \

26 adversarium, ne enim docendi mandamus sea.

27 """

28

29 effective_page_width = pdf.w - 2*pdf.l_margin

30

31 # Set background color light gray, text 'J'ustified and allow filling

32 # the cell (fill=1)

33 pdf.set_fill_color(229, 229, 229)

34 pdf.multi_cell(effective_page_width, 0.15, loremipsum_2, fill=1, align='J')

35 pdf.ln(0.5)

36

37 # First save the y coordinate just before rendering the first multi_cell

38 ybefore = pdf.get_y()

39

40 # Set background color some light blue, centered text and allow filling

41 # the cell (fill=1)

42 pdf.set_fill_color(173, 216, 230)

43 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_1, fill=1, align='C')

44

45 # Set background color some light red, right justified and allow filling

46 # the cell (fill=1)

47 pdf.set_fill_color(255, 192, 203)

48

49 pdf.set_xy(effective_page_width/2 + pdf.l_margin, ybefore)

50 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_2, fill=1, align='R')

51 pdf.ln(0.5)

52

53 pdf.output('multi_cell_adjacent_colored.pdf','F')

When you open ‘multi_cell_adjacent_colored.pdf’ you will see this:

Writing text 25

Adjust cell width and height exactly to the text

Up until nowwe have been guessing howwide or tall our cells should be to contain their text. About
0.15 inches tall seems to be enough for a 10 pt font size. But how to know for sure?

The text width can be computed exactly using the get_string_width()method. This method takes
into account the font parameters to get the full width of the text when rendered.

However, there is not an equivalent function to compute the text height, because no computation is
needed. Text height is the same as the current font size.

The following code shows how to take advantage of these facts to calculate exactly the cell
dimensions needed to accomodate any text, including in multi-cell mode. Also you will see how
we use text height for our line breaks.

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Letter size paper, use inches as unit of measure

5 pdf=FPDF(format='letter', unit='in')

6 pdf.add_page()

7 pdf.set_font('Times','',10.0)

8

9 # Text to be rendered

10 phrases = ['Lorem ipsum', 'dolor sit amet, vel ne quando dissentias', \

11 'Ne his oporteat expetendis.']

12

13 paragraph = " ".join(phrases)

14

15 # The height of the rendered text is just the current font size

16 # which is stored internally as the ratio (font in points)/72.

Writing text 26

17 # In this case 10/72 or about 0.14 in.

18 th = pdf.font_size

19

20 for phrase in phrases:

21 # The width of the rendered text has yo account for the internal

22 # cell left and right margins (each 1 mm by default)

23 tw = pdf.get_string_width(phrase) + 2*pdf.c_margin

24

25 # Will draw cell borders to show how good the fit is.

26 pdf.cell(tw, th, phrase, border=1)

27

28 # Let's use the font height as the line break height.

29 pdf.ln(th)

30

31 # 2 line breaks as tall as the fon size

32 pdf.ln(2*th)

33

34 # Now in multi-cell mode using same height as before

35

36 pdf.multi_cell(1.0, th, paragraph)

37

38 pdf.output('cell-fits-text.pdf','F')

When you open ‘cell-fits-text.pdf’ you will see this:

Margins

Default margins

When you create an empty PDF document with pyFPDF it has already default margins. The following
code demonstrates how to get those margins and how to draw them.

Writing text 27

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 pdf=FPDF(format='letter',unit='in')

6 # Add new page. Without this you cannot create the document.

7 pdf.add_page()

8

9 # Get default margins

10 left = pdf.l_margin

11 right = pdf.r_margin

12 top = pdf.t_margin

13 bottom = pdf.b_margin

14

15 # Effective page width and height

16 epw = pdf.w - left - right

17 eph = pdf.h - top - bottom

18

19 # Draw margins for our viewing pleasure

20 pdf.rect(left, top, w=epw, h=eph)

21

22 # Draw margin sizes

23 # Need this line break, otherwise top line crosses text. Have not figure

24 # out why yet.

25 pdf.ln(0.15)

26

27 # Remember to put at least one of this font declarations when you are going

28 # to render text. Not needed if not drawing text.

29 pdf.set_font('Times','',12)

30 pdf.cell(0,0, 'Left: %s in, Right: %s in, Top: %s in, Bottom: %s in' % (left, \

31 right, top, bottom), align= 'C')

32

33 pdf.output('margins.pdf','F')

34

35 #~ import os

36 #~ os.system('evince margins.pdf')

When you open ‘margins.pdf’ you will see this:

Writing text 28

Changing margins

To change the margins of a page you need to set them before the add_page method or you won’t
see the changes.

Tip
You can set the margins using different methods: set_margins(), set_left_margin(),
set_top_margin(), set_right_margin() but I prefer to use the margin variables directly:
l_margin, r_margin, t_margin, b_margin. Is less verbose, concise and gives me more
control.

Writing text 29

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 pdf=FPDF(format='letter',unit='in')

6

7 # Set margins BEFORE add_page!

8 # Margin sizes multiples of default size

9 pdf.l_margin = pdf.l_margin*4.0

10 pdf.r_margin = pdf.r_margin*4.0

11 pdf.t_margin = pdf.t_margin*4.0

12 pdf.b_margin = pdf.b_margin*4.0

13

14 # Now we add a page. It is in this step that margins settings take effect.

15 pdf.add_page()

16

17 # Effective page width and height

18 epw = pdf.w - pdf.l_margin - pdf.r_margin

19 eph = pdf.h - pdf.t_margin - pdf.b_margin

20

21 # Draw new margins.

22 pdf.rect(pdf.l_margin, pdf.t_margin, w=epw, h=eph)

23

24

25 # Remember to put at least one of this font declarations when you are going

26 # to render text. Not needed if not drawing text.

27 pdf.set_font('Times','',12)

28

29 # Text height

30 th = pdf.font_size

31

32 # Draw margin sizes.

33 # Need this line break, otherwise top line crosses text. Still have not

34 # figure that one out but it has to do with how text is positioned with

35 # respect x and y coordinates.

36

37 pdf.ln(th)

38

39 pdf.cell(epw,0, 'Left: %s in, Right: %s in, Top: %s in, Bottom: %s in' % \

40 (pdf.l_margin, pdf.r_margin, pdf.t_margin, pdf.b_margin))

41

42 pdf.ln(2*th)

Writing text 30

43

44 loremipsum = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his opo\

45 rteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His ca\

46 se errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum con\

47 tentiones, in malis vitae viderer mel.

48

49 Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue su\

50 mmo vis. An vim quas torquatos, electram posidonium eam ea, eros blandit ea vel.\

51 Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae co\

52 nstituto, eam eu oratio soleat instructior. No deleniti quaerendum vim, assum sa\

53 epe munere ea vis, te tale tempor sit. An sed debet ocurreret adversarium, ne en\

54 im docendi mandamus sea.

55 """

56

57 pdf.multi_cell(epw,th, loremipsum)

58

59 pdf.output('margins-change.pdf','F')

60

61 #~ import os

62 #~ os.system('evince margins-change.pdf')

When you open ‘margins-change.pdf’ you will see this:

Writing text 31

Mix page orientations

Each page in a PDF document can have its own orientation. The trick lies in adding the parameter
orientation when using the add_page method.

Writing text 32

1 # Import FPDF class

2 from fpdf import FPDF

3

4 # Create instance of FPDF class

5 # You can set the orientation here also. 'P'ortait by default.

6 pdf=FPDF(format='letter',unit='in')

7

8 # Now we add a page. Since no orientation has been set, it is 'P'ortrait

9 # by default

10 pdf.add_page()

11

12 # Remember to put at least one of this font declarations when you are going

13 # to render text. Not needed if not drawing text.

14 pdf.set_font('Times','',12)

15

16 # Text height

17 th = pdf.font_size

18

19 loremipsum = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his opo\

20 rteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His ca\

21 se errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum con\

22 tentiones, in malis vitae viderer mel.

23

24 Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue su\

25 mmo vis. An vim quas torquatos, electram posidonium eam ea, eros blandit ea vel.\

26 Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae co\

27 nstituto, eam eu oratio soleat instructior. No deleniti quaerendum vim, assum sa\

28 epe munere ea vis, te tale tempor sit. An sed debet ocurreret adversarium, ne en\

29 im docendi mandamus sea.

30 """

31 # Since w=0 it will go all the way to the right margin.

32 pdf.multi_cell(0,th, loremipsum)

33

34 # Next page will be landscape.

35

36 pdf.add_page(orientation='L')

37

38 # Same text as before.

39 # Since w=0 it will go all the way to the right margin.

40 pdf.multi_cell(0,th, loremipsum)

41

42 pdf.output('mix-orientations.pdf','F')

Writing text 33

43

44 #~ import os

45 #~ os.system('evince mix-orientations.pdf')

When you open ‘mix-orientations.pdf’ you will see this:

	Table of Contents
	Introduction
	Installation
	Writing text
	Hello World!
	Change paper format to Letter and units to inches
	Text color
	Text color by color hex values using hex2dec function
	Text color by color names using webcolors module
	Change font family and style
	Text alignment and borders
	Positioning text cells (boxes)
	Using empty text cells to place other text cells
	Using the effective page width to distribute content evenly
	Using the effective page width to center text across a page
	Using method set_xy() to exactly position a text cell

	Wrapping text automatically (multi_cell)
	Simple use of multi_cell

	Putting two adjacent multi_cell blocks
	Three adjacent multi cell columns
	Coloring multi_cell blocks
	Adjust cell width and height exactly to the text
	Margins
	Default margins
	Changing margins

	Mix page orientations

