

[image: Python does PDF: pyFPDF]

 Python does PDF: pyFPDF

 Edwood Ocasio

 This book is for sale at http://leanpub.com/pythondoespdfpyfpdf

 This version was published on 2016-04-09

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2015 - 2016 Edwood Ocasio

 Table of Contents

 	
 Introduction

 	
 Installation

 	
 Writing text

 	
 Hello World!

 	
 Change paper format to Letter and units to inches

 	
 Text color

 	
 Text color by color hex values using hex2dec function

 	
 Text color by color names using webcolors module

 	
 Change font family and style

 	
 Text alignment and borders

 	
 Positioning text cells (boxes)

 	
 Using empty text cells to place other text cells

 	
 Using the effective page width to distribute content evenly

 	
 Using the effective page width to center text across a page

 	
 Using method set_xy() to exactly position a text cell

 	
 Wrapping text automatically (multi_cell)

 	
 Simple use of multi_cell

 	
 Putting two adjacent multi_cell blocks

 	
 Three adjacent multi cell columns

 	
 Coloring multi_cell blocks

 	
 Adjust cell width and height exactly to the text

 	
 Margins

 	
 Default margins

 	
 Changing margins

 	
 Mix page orientations

 Guide

 	
 Begin Reading

Introduction

Through this book I hope to share my hard earned knowledge about generating PDF documents dynamically using Python and libraries like pyFPDF, the main subject of this book.

The content will keep expanding with topics such as: tables, images, filling already digitized forms, use of document templates, tips and workarounds while using pyFPDF.

If you are a busy professional developer like I am you do not want to spend too much time reading through lots of explanations. You want to get to the solution to your problem fast. That is why this book is written in cookbook style, divided in some common themes. Most of the explaining will be done in the code’s comments.

This book can help you add more value to client’s projects that require generating PDF reports and, hopefully, that will mean more time and money for you.

All examples in this book will work for Python 2.7x, pyfpdf 1.7.2 and PIL 1.1.7 on Linux. The code was not tested on Windows or Mac OS. Feedback is welcome on code performance on those platforms.

 IMPORTANT: When you buy the book look here (“Introduction”) for the link to download a ZIP file with all the code samples and resources.

Installation

PyFPDF is a library for PDF document generation under Python, ported from PHP by Mariano Reingart.

To install this library you can use pip:

1 sudo pip install pyfpdf

The Python Imaging Library (PIL) is only needed for GIF support. PNG and JPG support is built-in and does not require any external dependency. If you need to install it you can also use pip:

1 sudo pip install pil

If you have issues with the installation of any of these packages, please refer to their respective community forums.

Writing text

This chapter presents examples dealing with writing, formatting and positioning text.

Every piece of text in pyfpdf is contained in a cell. You can think of a cell as a rectangular container or box. You can have every word on a sentence inside its own cell or have the whole sentence inside a cell.

Hello World!

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 pdf=FPDF()
 6 # Add new page. Without this you cannot create the document.
 7 pdf.add_page()
 8 # Set font to Arial, 'B'old, 16 pts. If you don't declare your font
 9 # parameters you may get some font related errors.
10 pdf.set_font('Arial','B',16)
11 # Put a cell (box) 40 units wide and 10 units tall,
12 # beginning from the left margin, and write 'Hello World!' inside it.
13 pdf.cell(40,10,'Hello World!')
14 # Output content into a file ('F') named 'hello.pdf'
15 pdf.output('hello.pdf','F')

When you open ‘hello.pdf’ you will see this:

 [image:]

Change paper format to Letter and units to inches

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7 # Add new page. Without this you cannot create the document.
 8 pdf.add_page()
 9 # Loop through some font sizes
10 for fs in range(8, 37):
11 # Regular font, notice the empty string ''
12 pdf.set_font('Arial','',fs)
13
14 # Create a cell 1.0 inches wide, automatic height
15 # and write some text
16 pdf.cell(1.0,0.0,'Hello World!')
17
18 # Insert break 0.15 inches in height
19 # Just like a carriage return
20 pdf.ln(0.15)
21
22 # output content into a file ('F') named 'hello2.pdf'
23 pdf.output('hello2.pdf','F')

When you open ‘hello2.pdf’ you will see this:

 [image:]

Text color

The method set_text_color() allows us to color text if we provide the color in an RGB triplet (RED, GREEN, BLUE), like pure green (0, 255, 0).

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7 # Add new page. Without this you cannot create the document.
 8 pdf.add_page()
 9 # Set font face to Times, size 10.0 pt
10 pdf.set_font('Times','',10.0)
11
12 # Set color red
13 pdf.set_text_color(255,0,0)
14 pdf.cell(1.0,0.0,'Hello World!')
15 # Line break 0.15 inches height
16 pdf.ln(0.15)
17
18 # Set color green
19 pdf.set_text_color(0,255,0)
20 pdf.cell(1.0,0.0,'Hello World!')
21 pdf.ln(0.15)
22
23 # Set color blue
24 pdf.set_text_color(0,0,255)
25 pdf.cell(1.0,0.0,'Hello World!')
26 pdf.ln(0.15)
27
28 # output content into a file ('F') named 'hello3.pdf'
29 pdf.output('hello3.pdf','F')

When you open ‘hello3.pdf’ you will see this:

 [image:]

For a reference of RGB triplets and their color names (and a color picker) see Rapidtables RGB Color Codes Chart

Text color by color hex values using hex2dec function

pyFPDF comes with an HTML module that helps turning HTML to PDF. One of its utility functions is hex2dec() which converts colors hex values to the RGB triplets we need for set_text_color(). The following code shows how to leverage that function.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # IMPORTANT: Import html module inside fpdf package and import hex2dec
 5 from fpdf.html import hex2dec
 6
 7 # Create instance of FPDF class
 8 # Letter size paper, use inches as unit of measure
 9 pdf=FPDF(format='letter', unit='in')
10
11 # Add new page. Without this you cannot create the document.
12 pdf.add_page()
13
14 # Remember to always put one of these at least once.
15 pdf.set_font('Times','',10.0)
16
17 # IMPORTANT: Notice the use of the operator '*' to unpack the triplet
18 pdf.set_text_color(*hex2dec('#8B6914'))
19 pdf.cell(0.5,0.0, u'Hello World!')
20 pdf.ln(0.15)
21
22 pdf.set_text_color(*hex2dec('#A020F0'))
23 pdf.cell(0.5,0.0, u'Hello World!')
24 pdf.ln(0.15)
25
26 pdf.set_text_color(*hex2dec('#FFA500'))
27 pdf.cell(0.5,0.0, u'Hello World!')
28 pdf.ln(0.15)
29
30 pdf.set_text_color(*hex2dec('#BFBFBF'))
31 pdf.cell(0.5,0.0, u'Hello World!')
32 pdf.ln(0.15)
33
34 pdf.output('colors-hex2dec.pdf','F')

When you open ‘colors-hex2dec.pdf’ you will see this:

 [image:]

For a reference of color hex values (and a color picker) see Rapidtables Web Color Codes

Text color by color names using webcolors module

For a Python module that can change color names to RGB triplets see webcolors

webcolors can be installed by issuing the command:

1 pip install webcolors

The following code uses the module to facilitate declaring colors by their name, like ‘navy’.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3 from webcolors.webcolors import name_to_rgb
 4
 5 # Create instance of FPDF class
 6 # Letter size paper, use inches as unit of measure
 7 pdf=FPDF(format='letter', unit='in')
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10 # Set font face to Times, size 10.0 pt
11 pdf.set_font('Times','',10.0)
12
13 # Set color navy
14 pdf.set_text_color(*name_to_rgb('navy'))
15 pdf.cell(1.0,0.0,'Hello World!')
16 pdf.ln(0.15)
17
18 # Set color dark olive green
19 pdf.set_text_color(*name_to_rgb('darkolivegreen'))
20 pdf.cell(1.0,0.0,'Hello World!')
21 pdf.ln(0.15)
22
23 # Set color salmon
24 pdf.set_text_color(*name_to_rgb('salmon'))
25 pdf.cell(1.0,0.0,'Hello World!')
26 pdf.ln(0.15)
27
28 pdf.output('hello4.pdf','F')

Notice the operator ‘*’ used before name_to_rgb to unpack the triplet.

When you open ‘hello4.pdf’ you will see this:

 [image:]

Change font family and style

Using the method pdf.set_font(font_family,font_style,font_size) we can change font attributes at any moment through out the document.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7 # Add new page. Without this you cannot create the document.
 8 pdf.add_page()
 9
10 # Set font family to Times, regular style, size 10.0 pt
11 pdf.set_font('Times','',10.0)
12 pdf.cell(1.0,0.0,'Hello World!')
13 pdf.ln(0.25)
14
15 # Set font family to Arial, 'B'old, size 14.0 pt
16 pdf.set_font('Arial','B',14.0)
17 pdf.cell(1.0,0.0,'Hello World!')
18 pdf.ln(0.25)
19
20 # Set font family to Courier, 'I'talic, size 16.0 pt
21 pdf.set_font('Courier','I',16.0)
22 pdf.cell(1.0,0.0,'Hello World!')
23 pdf.ln(0.25)
24
25 # Set font family to Symbol, regular text, size 24.0 pt
26 pdf.set_font('Symbol','',24.0)
27 pdf.cell(1.0,0.0,'Hello World!')
28 pdf.ln(0.25)
29
30 # Add font from system. Font file path must be specified if it is not
31 # in an accesible path to pyFPDF.
32 # Second parameter is always empty for backward compatibility.
33 # uni=True enables Unicode
34 pdf.add_font('Comic Sans','','/usr/share/fonts/truetype/msttcorefonts/Comic_Sans\
35 _MS.ttf', uni=True)
36
37 # Set font family to Comic Sans, 'U'nderlined, size 14.0 pt
38 pdf.set_font('Comic Sans','U',14.0)
39 pdf.cell(1.0,0.0,'Hello World!')
40 pdf.ln(0.25)
41
42 # output content into a file ('F') named 'hello5.pdf'
43 pdf.output('hello5.pdf','F')

When you open ‘hello5.pdf’ you will see this:

 [image:]

Text alignment and borders

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # Text will be left aligned in cell. This is the default alignment.
15 # Cell is 2.0 inches wide, will have a border and that is why we must now
16 # define a height of 0.15 inches
17 pdf.cell(2.0,0.15,'Hello World!', border=1)
18 pdf.ln(0.25)
19
20 # Text will be centered in cell.
21 # Cell is 3.0 inches wide, will have a border and that is why we must now
22 # define a height of 0.25 inches
23 pdf.cell(3.0,0.25,'Hello World!', border=1, align='C')
24 pdf.ln(0.50)
25
26 # Text will be right aligned in cell.
27 # Cell is 5.0 inches wide, will have a border and that is why we must now
28 # define a height of 0.50 inches
29 pdf.cell(5.0,0.50,'Hello World!', border=1, align='R')
30 pdf.ln(0.25)
31
32 # output content into a file ('F') named 'hello6.pdf'
33 pdf.output('hello6.pdf','F')

When you open ‘hello6.pdf’ you will see this:

 [image:]

Positioning text cells (boxes)

To get the hang of pyFPDF text layout you must keep in mind that everything is a cell or box that occupies an area of the document. You can put those boxes at precise coordinates or let pyFPDF automatically place everything for you. For a simple one column document, like an essay or sales letter, the automatic placement will be enough. For multi-column documents or tables, you have to take charge.

Using empty text cells to place other text cells

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # Text in cell 2.5 inches wide, automatic height (0.0)
15 # starting at left margin
16 pdf.cell(2.5,0.0,'Hello World!')
17
18 # Remember this? 0.25 inches line break
19 pdf.ln(0.25)
20
21 # Move 1.0 inch to the right
22 pdf.cell(1.0)
23 # Now write text in cell 2.5 inches wide, 0.15 in height.
24 # Notice we did not put any line break, so this text should follow
25 # immediately. Will leave borders to emphasize the cell concept.
26 pdf.cell(2.5,0.15,'Hello World!', border=1)
27 # Keep in the same line and write again.
28 pdf.cell(2.5,0.15,'Hello World Again!', border=1)
29
30 # Now a line break
31 pdf.ln(0.15)
32
33 # output content into a file ('F') named 'hello7.pdf'
34 pdf.output('hello7.pdf','F')

When you open ‘hello7.pdf’ you will see this:

 [image:]

Using the effective page width to distribute content evenly

The effective page width is the area between the left and right margin of the document. If those margins are 1.0 inch wide and the paper format is letter (8.5x11 in) with portrait orientation then the effective page width (or epw) is 8.5 - 1.0 - 1.0 = 6.5 inches. That is the area available to write or draw.

Of course we have the entire page surface at our disposition, but it is within that region that users expect the content.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # Text in cell 2.5 inches wide, automatic height (0.0)
15 # starting at left margin
16 pdf.cell(2.5,0.0,'Hello World!')
17 pdf.ln(0.25)
18
19 # Let's put 5 more of this so text goes beyond page margins. Ugly result.
20 # To avoid this you must always be aware of your page dimensions.
21 for i in range(5):
22 pdf.cell(2.5,0.0,'Hello World!')
23
24 pdf.ln(0.50)
25
26 # Let us use the page dimensions to better position those cells.
27 # The full page width is stored in pdf.w and the full height in pdf.h
28 # We will substract from pdf.w both left and right margins. Here we are
29 # infering both are the same dimension.
30
31 effective_page_width = pdf.w - 2*pdf.l_margin
32
33 pdf.set_font('Times','B',10.0)
34 pdf.cell(1.0, 0.0, 'Using effective page width of %s inches to adjust cells widt\
35 h to make them fit inside page dimensions' % effective_page_width, 'U')
36 pdf.ln(0.25)
37
38 pdf.set_font('Times','',10.0)
39
40 # Using page width we will adjust cell width to make them all fit
41 # inside the page. The length of the text will determine if this
42 # will work or not
43
44 for i in range(5):
45 pdf.cell(effective_page_width/5.0,0.0,'Hello World!')
46
47
48 # output content into a file ('F') named 'hello08.pdf'
49 pdf.output('hello08.pdf','F')

When you open ‘hello08.pdf’ you will see this:

 [image:]

Using the effective page width to center text across a page

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # One easy way to center text in a page, like a title, is to use a cell as wide
15 # as the page available width and center the text it contains.
16 # To obtain the maximum widht available to write we substract the margins
17 # from the page_width 'pdf.w'. We are assuming left and right margins are of
18 # the same dimension
19 effective_page_width = pdf.w - 2*pdf.l_margin
20
21 pdf.cell(effective_page_width,0.0, 'Text centered in page', align='C')
22 pdf.ln(0.50)
23
24 # Now with cell borders to visualize what we are doing.
25 # Remember to declare the cell height when doing borders.
26 pdf.cell(effective_page_width,0.15, 'Text centered in page', border=1, align='C')
27 pdf.ln(0.15)
28
29 # output content into a file ('F') named 'hello10.pdf'
30 pdf.output('hello10.pdf','F')

When you open ‘hello10.pdf’ you will see this:

 [image:]

Using method set_xy() to exactly position a text cell

We will also use methods pdf.get_x() and pdf.get_y() to get current x and y coordinates respectively.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # Text will be drawn 1.5 inches from the left, 2.5 inches from the top
15 pdf.set_xy(1.5, 2.5)
16 pdf.cell(2.5,0.0,'%s inches from left, %s inches from top' % (pdf.get_x(), pdf.g\
17 et_y()))
18 pdf.ln(0.25)
19
20 # Text will be drawn 6 inches from the left, 4.0 inches from top
21 pdf.set_xy(6.0, 5.0)
22 pdf.cell(2.5,0.0,'%s inches from left, %s inches from top' % (pdf.get_x(), pdf.g\
23 et_y()))
24 pdf.ln(0.25)
25
26 # Text will be drawn 6.0 inches from the right, 1.0 inch from bottom.
27 # Notice the negative coordinate values. They are relative to the right and
28 # bottom of the page respectively.
29
30 pdf.set_xy(-6.0, -1.0)
31 pdf.cell(2.5,0.0,'%s inches from left, %s inches from top using negative values'\
32 % (pdf.get_x(), pdf.get_y()))
33 pdf.ln(0.25)
34
35 # output content into a file ('F') named 'hello9.pdf'
36 pdf.output('hello9.pdf','F')

When you open ‘hello9.pdf’ you will see this:

 [image:]

 Tip

 Instead of pdf.get_x() and pdf.get_y() we can also use pdf.x and pdf.y.

Wrapping text automatically (multi_cell)

The method pdf.multi_cell() automatically breaks long lines of text, a paragraph for example, within the available effective page width. We do not have to worry about word wrapping.

Simple use of multi_cell

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # Long meaningless piece of text
15 loremipsum = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his opo\
16 rteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His ca\
17 se errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum con\
18 tentiones, in malis vitae viderer mel.
19
20 Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue su\
21 mmo vis. An vim quas torquatos, electram posidonium eam ea, eros blandit ea vel.\
22 Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae co\
23 nstituto, eam eu oratio soleat instructior. No deleniti quaerendum vim, assum sa\
24 epe munere ea vis, te tale tempor sit. An sed debet ocurreret adversarium, ne en\
25 im docendi mandamus sea.
26 """
27
28 effective_page_width = pdf.w - 2*pdf.l_margin
29
30 pdf.set_font('Times','B',10.0)
31 pdf.cell(1.0,0.0, 'Without multi_cell using effective page width:')
32 pdf.ln(0.25)
33 pdf.set_font('Times','',10.0)
34 # Cell is as wide as the effective page width
35 pdf.cell(effective_page_width, 0.0, loremipsum)
36 pdf.ln(0.5)
37 pdf.set_font('Times','B',10.0)
38 pdf.cell(1.0,0.0, 'Using multi_cell and effective page width:')
39 pdf.ln(0.25)
40
41 pdf.set_font('Times','',10.0)
42 # Cell is as wide as the effective page width
43 # and multi_cell requires declaring the height of the cell.
44 pdf.multi_cell(effective_page_width, 0.15, loremipsum)
45 pdf.ln(0.5)
46
47 # Cell half as wide as the effective page width
48 # and multi_cell requires declaring the height of the cell.
49 pdf.set_font('Times','B',10.0)
50 pdf.cell(1.0,0.0, 'Using multi_cell and half the effective page width:')
51 pdf.ln(0.25)
52
53 pdf.set_font('Times','',10.0)
54 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum)
55 pdf.ln(0.5)
56
57 pdf.output('multi_cell.pdf','F')

When you open ‘multi_cell.pdf’ you will see this:

 [image:]

Putting two adjacent multi_cell blocks

There are times when we need to render a multi-column document with multi-line content. Here is an idea on how to do that with multi_cell, although it may require lots of tweaking to make it work for each use case. This example shows again the importance of take into account the dimensions of the page, including its margins.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # Long meaningless piece of text
15 loremipsum_1 = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his o\
16 porteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His \
17 case errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum c\
18 ontentiones, in malis vitae viderer mel.
19 """
20
21 # Even more meaningless text
22 loremipsum_2 = """Vis at dolores ocurreret splendide. Noster dolorum repudiare v\
23 is ei, te augue summo vis. An vim quas torquatos, electram posidonium eam ea, er\
24 os blandit ea vel. Reque summo assueverit an sit. Sed nibh conceptam cu, pro in \
25 graeci ancillae constituto, eam eu oratio soleat instructior. No deleniti quaere\
26 ndum vim, assum saepe munere ea vis, te tale tempor sit. An sed debet ocurreret \
27 adversarium, ne enim docendi mandamus sea.
28 """
29
30 effective_page_width = pdf.w - 2*pdf.l_margin
31
32 # Some text full page width for position reference
33
34 pdf.multi_cell(effective_page_width, 0.15, loremipsum_2)
35 pdf.ln(0.5)
36
37 # First save the y coordinate just before rendering the first multi_cell
38 ybefore = pdf.get_y()
39 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_1)
40
41 # Now use ybefore to position the cursor at the same level of the first
42 # multi_cell.
43 # Notice the use of "effective_page_width/2 + pdf.l_margin" as x to position
44 # the cursor horizontally just beyond the first multi_cell
45
46 pdf.set_xy(effective_page_width/2 + pdf.l_margin, ybefore)
47 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_2)
48 pdf.ln(0.5)
49
50 pdf.output('multi_cell_adjacent.pdf','F')

When you open ‘multi_cell_adjacent.pdf’ you will see this:

 [image:]

Three adjacent multi cell columns

I am including this snippet here to answer what seems to be one of the most asked question about multi_cell in the Internet: How to put 3 adjacent columns with multi cell. Here is the code:

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 column_width = 2.0
15 column_spacing = 0.15
16
17 # Here we save what will be the top of each columns
18 ybefore = pdf.get_y()
19
20 pdf.multi_cell(column_width, 0.15, "Mea tamquam constituto no, facete dissentiun\
21 t eos no. Eu agam delicata qui, ex mea utinam consetetur. Pro insolens vulputate\
22 id. Mea discere eligendi explicari eu, ut fugit soluta eum. Per wisi putant com\
23 modo at.")
24
25 # Notice we have to account for the left margin to get the spacing between
26 # columns right.
27
28 pdf.set_xy(column_width + pdf.l_margin + column_spacing, ybefore)
29
30 pdf.multi_cell(column_width, 0.15, "Vis at dolores ocurreret splendide. Noster d\
31 olorum repudiare vis ei, te augue summo vis. An vim quas torquatos, electram pos\
32 idonium eam ea, eros blandit ea vel. Reque summo assueverit an sit. Sed nibh con\
33 ceptam cu, pro in graeci ancillae constituto, eam eu oratio soleat instructior. \
34 No deleniti quaerendum vim, assum saepe munere ea vis, te tale tempor sit. An se\
35 d debet ocurreret adversarium, ne enim docendi mandamus sea.")
36
37 pdf.set_xy(2*(column_width + column_spacing) + pdf.l_margin, ybefore)
38
39 pdf.multi_cell(column_width, 0.15, "Lorem ipsum dolor sit amet, vel ne quando di\
40 ssentias. Ne his oporteat expetendis. Ei tantas explicari quo, sea vidit minimum\
41 menandri ea. His case errem dicam ex, mel eruditi tibique delicatissimi ut. At \
42 mea wisi dolorum contentiones, in malis vitae viderer mel.")
43
44 pdf.output('multi_cell_3_cols.pdf','F')

When you open ‘multi_cell_3_cols.pdf’ you will see this:

 [image:]

Coloring multi_cell blocks

It is posible to paint the background of a multi_cell block by allowing filling each cell with a background color. However, there is an annoying padding space between cells that cannot (it seems) be removed easily. We will be using the same adjacent multi_cell code as before, but now with some pdf.set_fill_color() commands.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # Letter size paper, use inches as unit of measure
 6 pdf=FPDF(format='letter', unit='in')
 7
 8 # Add new page. Without this you cannot create the document.
 9 pdf.add_page()
10
11 # Remember to always put one of these at least once.
12 pdf.set_font('Times','',10.0)
13
14 # Long meaningless piece of text
15 loremipsum_1 = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his o\
16 porteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His \
17 case errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum c\
18 ontentiones, in malis vitae viderer mel.
19 """
20
21 loremipsum_2 = """Vis at dolores ocurreret splendide. Noster dolorum repudiare v\
22 is ei, te augue summo vis. An vim quas torquatos, electram posidonium eam ea, er\
23 os blandit ea vel. Reque summo assueverit an sit. Sed nibh conceptam cu, pro in \
24 graeci ancillae constituto, eam eu oratio soleat instructior. No deleniti quaere\
25 ndum vim, assum saepe munere ea vis, te tale tempor sit. An sed debet ocurreret \
26 adversarium, ne enim docendi mandamus sea.
27 """
28
29 effective_page_width = pdf.w - 2*pdf.l_margin
30
31 # Set background color light gray, text 'J'ustified and allow filling
32 # the cell (fill=1)
33 pdf.set_fill_color(229, 229, 229)
34 pdf.multi_cell(effective_page_width, 0.15, loremipsum_2, fill=1, align='J')
35 pdf.ln(0.5)
36
37 # First save the y coordinate just before rendering the first multi_cell
38 ybefore = pdf.get_y()
39
40 # Set background color some light blue, centered text and allow filling
41 # the cell (fill=1)
42 pdf.set_fill_color(173, 216, 230)
43 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_1, fill=1, align='C')
44
45 # Set background color some light red, right justified and allow filling
46 # the cell (fill=1)
47 pdf.set_fill_color(255, 192, 203)
48
49 pdf.set_xy(effective_page_width/2 + pdf.l_margin, ybefore)
50 pdf.multi_cell(effective_page_width/2, 0.15, loremipsum_2, fill=1, align='R')
51 pdf.ln(0.5)
52
53 pdf.output('multi_cell_adjacent_colored.pdf','F')

When you open ‘multi_cell_adjacent_colored.pdf’ you will see this:

 [image:]

Adjust cell width and height exactly to the text

Up until now we have been guessing how wide or tall our cells should be to contain their text. About 0.15 inches tall seems to be enough for a 10 pt font size. But how to know for sure?

The text width can be computed exactly using the get_string_width() method. This method takes into account the font parameters to get the full width of the text when rendered.

However, there is not an equivalent function to compute the text height, because no computation is needed. Text height is the same as the current font size.

The following code shows how to take advantage of these facts to calculate exactly the cell dimensions needed to accomodate any text, including in multi-cell mode. Also you will see how we use text height for our line breaks.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Letter size paper, use inches as unit of measure
 5 pdf=FPDF(format='letter', unit='in')
 6 pdf.add_page()
 7 pdf.set_font('Times','',10.0)
 8
 9 # Text to be rendered
10 phrases = ['Lorem ipsum', 'dolor sit amet, vel ne quando dissentias', \
11 'Ne his oporteat expetendis.']
12
13 paragraph = " ".join(phrases)
14
15 # The height of the rendered text is just the current font size
16 # which is stored internally as the ratio (font in points)/72.
17 # In this case 10/72 or about 0.14 in.
18 th = pdf.font_size
19
20 for phrase in phrases:
21 # The width of the rendered text has yo account for the internal
22 # cell left and right margins (each 1 mm by default)
23 tw = pdf.get_string_width(phrase) + 2*pdf.c_margin
24
25 # Will draw cell borders to show how good the fit is.
26 pdf.cell(tw, th, phrase, border=1)
27
28 # Let's use the font height as the line break height.
29 pdf.ln(th)
30
31 # 2 line breaks as tall as the fon size
32 pdf.ln(2*th)
33
34 # Now in multi-cell mode using same height as before
35
36 pdf.multi_cell(1.0, th, paragraph)
37
38 pdf.output('cell-fits-text.pdf','F')

When you open ‘cell-fits-text.pdf’ you will see this:

 [image:]

Margins

Default margins

When you create an empty PDF document with pyFPDF it has already default margins. The following code demonstrates how to get those margins and how to draw them.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 pdf=FPDF(format='letter',unit='in')
 6 # Add new page. Without this you cannot create the document.
 7 pdf.add_page()
 8
 9 # Get default margins
10 left = pdf.l_margin
11 right = pdf.r_margin
12 top = pdf.t_margin
13 bottom = pdf.b_margin
14
15 # Effective page width and height
16 epw = pdf.w - left - right
17 eph = pdf.h - top - bottom
18
19 # Draw margins for our viewing pleasure
20 pdf.rect(left, top, w=epw, h=eph)
21
22 # Draw margin sizes
23 # Need this line break, otherwise top line crosses text. Have not figure
24 # out why yet.
25 pdf.ln(0.15)
26
27 # Remember to put at least one of this font declarations when you are going
28 # to render text. Not needed if not drawing text.
29 pdf.set_font('Times','',12)
30 pdf.cell(0,0, 'Left: %s in, Right: %s in, Top: %s in, Bottom: %s in' % (left, \
31 right, top, bottom), align= 'C')
32
33 pdf.output('margins.pdf','F')
34
35 #~ import os
36 #~ os.system('evince margins.pdf')

When you open ‘margins.pdf’ you will see this:

 [image:]

Changing margins

To change the margins of a page you need to set them before the add_page method or you won’t see the changes.

 Tip

 You can set the margins using different methods: set_margins(), set_left_margin(), set_top_margin(), set_right_margin() but I prefer to use the margin variables directly: l_margin, r_margin, t_margin, b_margin. Is less verbose, concise and gives me more control.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 pdf=FPDF(format='letter',unit='in')
 6
 7 # Set margins BEFORE add_page!
 8 # Margin sizes multiples of default size
 9 pdf.l_margin = pdf.l_margin*4.0
10 pdf.r_margin = pdf.r_margin*4.0
11 pdf.t_margin = pdf.t_margin*4.0
12 pdf.b_margin = pdf.b_margin*4.0
13
14 # Now we add a page. It is in this step that margins settings take effect.
15 pdf.add_page()
16
17 # Effective page width and height
18 epw = pdf.w - pdf.l_margin - pdf.r_margin
19 eph = pdf.h - pdf.t_margin - pdf.b_margin
20
21 # Draw new margins.
22 pdf.rect(pdf.l_margin, pdf.t_margin, w=epw, h=eph)
23
24
25 # Remember to put at least one of this font declarations when you are going
26 # to render text. Not needed if not drawing text.
27 pdf.set_font('Times','',12)
28
29 # Text height
30 th = pdf.font_size
31
32 # Draw margin sizes.
33 # Need this line break, otherwise top line crosses text. Still have not
34 # figure that one out but it has to do with how text is positioned with
35 # respect x and y coordinates.
36
37 pdf.ln(th)
38
39 pdf.cell(epw,0, 'Left: %s in, Right: %s in, Top: %s in, Bottom: %s in' % \
40 (pdf.l_margin, pdf.r_margin, pdf.t_margin, pdf.b_margin))
41
42 pdf.ln(2*th)
43
44 loremipsum = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his opo\
45 rteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His ca\
46 se errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum con\
47 tentiones, in malis vitae viderer mel.
48
49 Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue su\
50 mmo vis. An vim quas torquatos, electram posidonium eam ea, eros blandit ea vel.\
51 Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae co\
52 nstituto, eam eu oratio soleat instructior. No deleniti quaerendum vim, assum sa\
53 epe munere ea vis, te tale tempor sit. An sed debet ocurreret adversarium, ne en\
54 im docendi mandamus sea.
55 """
56
57 pdf.multi_cell(epw,th, loremipsum)
58
59 pdf.output('margins-change.pdf','F')
60
61 #~ import os
62 #~ os.system('evince margins-change.pdf')

When you open ‘margins-change.pdf’ you will see this:

 [image:]

Mix page orientations

Each page in a PDF document can have its own orientation. The trick lies in adding the parameter orientation when using the add_page method.

 1 # Import FPDF class
 2 from fpdf import FPDF
 3
 4 # Create instance of FPDF class
 5 # You can set the orientation here also. 'P'ortait by default.
 6 pdf=FPDF(format='letter',unit='in')
 7
 8 # Now we add a page. Since no orientation has been set, it is 'P'ortrait
 9 # by default
10 pdf.add_page()
11
12 # Remember to put at least one of this font declarations when you are going
13 # to render text. Not needed if not drawing text.
14 pdf.set_font('Times','',12)
15
16 # Text height
17 th = pdf.font_size
18
19 loremipsum = """Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his opo\
20 rteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His ca\
21 se errem dicam ex, mel eruditi tibique delicatissimi ut. At mea wisi dolorum con\
22 tentiones, in malis vitae viderer mel.
23
24 Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue su\
25 mmo vis. An vim quas torquatos, electram posidonium eam ea, eros blandit ea vel.\
26 Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae co\
27 nstituto, eam eu oratio soleat instructior. No deleniti quaerendum vim, assum sa\
28 epe munere ea vis, te tale tempor sit. An sed debet ocurreret adversarium, ne en\
29 im docendi mandamus sea.
30 """
31 # Since w=0 it will go all the way to the right margin.
32 pdf.multi_cell(0,th, loremipsum)
33
34 # Next page will be landscape.
35
36 pdf.add_page(orientation='L')
37
38 # Same text as before.
39 # Since w=0 it will go all the way to the right margin.
40 pdf.multi_cell(0,th, loremipsum)
41
42 pdf.output('mix-orientations.pdf','F')
43
44 #~ import os
45 #~ os.system('evince mix-orientations.pdf')

When you open ‘mix-orientations.pdf’ you will see this:

 [image:]

OEBPS/images/leanpub_key.png

OEBPS/images/helloworld7.png
Hello World!

[Hello World! [Hello World Again!

OEBPS/images/helloworld8.png
Hello World!
Hello World!

Hello World! Hello World!

Using effective page width of 7.7125 inches to adjust cells width to make them fit inside page dimensions

Hello World!

Hello World! Hello World! Hello World!

Hello World!

Hello Wor

OEBPS/images/helloworld10.png
Text centered in page

Text centered in page

OEBPS/images/colors-hex2dec.png
Hello World!
Hello World!
Hello World!

OEBPS/images/helloworld4.png
Hello World!
Hello World!
Hello World

OEBPS/images/helloworld5.png
Hello World!
Hello World!
Hello World!

HeAAo QOopAd!

Hello World!

OEBPS/images/helloworld6.png
[Hello World!

Hello World!

Hello World!

OEBPS/images/helloworld1.png
Hello World!

OEBPS/images/helloworld2.png

OEBPS/images/helloworld3.png
Hello World!
Hello World!
Hello World!

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
Python does PDF
pyFPDF

code and unsolicited advice

OEBPS/images/mix-orientations.png

OEBPS/images/multi_cell_adjacent_colored.png
Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue summo vis. An vim quas torquatos, electram posidonium
eam ea, eros blandit ea vel. Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae constituto, eam eu oratio soleat
instructior. No deleniti quaerendum vim, assum saepe munere ea Vvis, te tale tempor sit. An sed debet ocurreret adversarium, ne enim
docendi mandamus sea.

Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei,
oporteat expetendis. Ei tantas explicari quo, sea vidit minimum te augue summo vis. An vim quas torquatos, electram posidonium
menandri ea. His case errem dicam ex, mel eruditi tibique eam ea, eros blandit ea vel. Reque summo assueverit an sit. Sed
delicatissimi ut. At mea wisi dolorum contentiones, in malis vitae nibh conceptam cu, pro in graeci ancillae constituto, eam eu oratio
viderer mel. soleat instructior. No deleniti quaerendum vim, assum saepe

munere ea vis, te tale tempor sit. An sed debet ocurreret
adversarium, ne enim docendi mandamus sea.

OEBPS/images/cell-fits-text.png
Lorem ipsum
dolor sit amet, vel ne quando dissentias |

Ne his oporteat expetendis.

Lorem ipsum
dolor sit amet,
vel ne quando
entias Ne
his oporteat
expetendis.

OEBPS/images/margins.png
Lot 039375 i, Right:039375 n, Top 0.39375 i, Battos: 0775

OEBPS/images/margins-change.png
Lt 1575 n, Right 1575 n, Top: 1575 n, Botom: 315 n

Lorem ipsum dolor sit amet, vel e quando dissenias. Ne his oportca
| expeendie Ei tanas xplicari g, st vidt minimum menanci a. Hi case
Jemem dicam ex. mel crudi thigue delicuisimi w. At mea wis dolorum|
Caentiones.in e vitae viderr el

Vis ot dolres ccureret splendide. Noster dolorum repodiae visci, te auguc|
summ Vs An vim s oo leciam posidonium cam e, e blani|
4 vel. Rooe summa asueverit a st Sed nibh conceptam i, pro n graei
il consinuio. cam e amtio sleat mstnitior, No el quarenim|
Vi, sscum saspe munere ca vis, 1c e femper Sit. An sed debet ocurree|
[dvrsarium, e cnim docendi madamus s

OEBPS/images/helloworld9.png

OEBPS/images/multi_cell.png
Without multi_cell using effective page width:

Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his oporteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri ea. His ca

Using multi_cell and effective page width:

Ne his oporteat expetendis. Ei tantas explicari quo, sea vidit minimum menandri
mi ut. At mea wisi dolorum contentiones, in malis vitae viderer mel.

Lorem ipsum dolor sit amet, vel ne quando dissenti
ea. His case errem dicam ex, mel eruditi tibique delicati

Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue summo vis. An vim quas torquatos, electram posidonium
eam ea, eros blandit ea vel. Reque summo assueverit an sit. Sed nibh conceptam cu, pro in graeci ancillae constituto, eam eu oratio soleat
instructior. No deleniti quaerendum vim, assum saepe munere ea vis, te tale tempor sit. An sed debet ocurreret adversarium, ne enim
docendi mandamus sea.

OEBPS/images/multi_cell_adjacent.png
Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei, te augue summo vis. An vim quas torquatos, electram posidonium

eam ea, eros blandit ea vel. Reque summo assueverit an
instructior. No deleniti quaerendum vim, assum
docendi mandamus sea.

Lorem ipsum dolor sit amet, vel ne quando dissentias. Ne his
oporteat expetendis. Ei tantas explicari quo, sea vidit minimum
menandri ea. His case errem dicam ex, mel eruditi tibique
delicatissimi ut. At mea wisi dolorum contentiones, in malis vitae
viderer mel.

t. Sed nibh conceptam cu, pro in graeci ancillae constituto, eam eu oratio soleat
saepe munere ea Vvis, te tale tempor sit. An sed debet ocurreret adversarium, ne enim

Vis at dolores ocurreret splendide. Noster dolorum repudiare vis ei,
te augue summo vis. An vim quas torquatos, electram posidonium
eam ea, eros blandit ea vel. Reque summo assueverit an sit. Sed
nibh conceptam cu, pro in graeci ancillae constituto, eam eu oratio
soleat instructior. No deleniti quaerendum vim, assum saepe
munere ea vis, te tale tempor sit. An sed debet ocurreret
adversarium, ne enim docendi mandamus sea.

OEBPS/images/multi_cell_3_columns.png
Mea tamquam constiuto o,
facete dissentiunt s 0. Eu agans
delicaa qui. ex mea uinam
consettur. Pro insolens vulputte
. Mea discere eligendi explicari
eu, ut fugit soluta cum. Per wisi
putant commodo at.

Vis at dolores ocurreret splendide.
Noster dolorum repudise vis ci,
e angue summo vis. An vim quas
torquatos, electram posidoniun
eam ea, eros blanditea vel. Reque
Summo asueverit an sit. Sed nibh
concepam cu. pro in graeci
ancillae consitio, eam eu oratio
Soleat insructior, No._deleniti
quierendum_vim, asum sicpe
munere ea vis, te tale tempor si.
An el deber ocumerel
adversarium, ne enim docendi
mandamus sea.

Lorem ipsum dolor sit amet, vel
ne quando dissentios. Ne his
oporeat expetendis. Ei tantas
explicari quo. sea vidit minimun
menundri ea. His cise errem
dicamex, mel erudii thigue
delicatisimi ut. AU mea wisi
dolorumcontentiones, in malis
Vitae viderer mel,

