ith

illsw
Python for Journal

k

Data S

ts

Like a Pro

IS

it fo Ana/_(jze and Visualize Data

k

yOMI" TOO

Amr Eleraqi

Data Skills with
Python for Journalists

Your Toolkit to Analyze and Visvalize Data Like a Pro

By: Amr Eleraqi

Second Edition

Copyright 2025 by Amr Eleraqi

All Rights reserved

Imprint: Independently published

Data Skills with Python for Journalists 1

-> This book is part of the Data + Stories series, dedicated to
helping professionals transform data into compelling
narratfives.

Data Skills with Python for Journalists 2

Introduction

Welcome to a New Era of Journalism

In an age where information flows faster than ever, journalism is undergoing
a profound fransformation. The stories we tell are no longer just about who,
whaft, when, and where—they’re about understanding the why and the how
behind the headlines. And increasingly, that understanding comes from data.

Data is everywhere: in government reports, corporate filings, social media
feeds, environmental databases, and more. It’s not just for tech experts or
data scientists—it’s for all of us. Whether you’re covering politics, health,
education, or culture, data can deepen your reporting, uncover hidden
truths, and bring clarity to complex issues.

But here’s the challenge: data isn’t always easy to work with. Spreadsheets
can only take you so far, and manually siffing through thousands of records
is fime-consuming and often impractical. That’s where coding comes in.

This book is your guide to embracing this new era of journalism. It’s about
equipping you with the skills to harness the power of data and coding, not as
a replacement for traditional reporting, but as a way to enhance it. Together,
we’ll explore how Python—a versatile and beginner-friendly programming
language—can become your ally in uncovering stories that matter.

Learning to Code: A New Superpower for Journalists

Learning to code is like acquiring a superpower. When I wrote my first line
of code—print("Hello, World!")—it wasn’t just a technical exercise; it was the

Data Skills with Python for Journalists 3

beginning of a journey that would redefine my approach fo journalism.
Coding isn’t just a tool; it’s a language that unlocks new ways to
communicate, investigate, and tell stories.

While traditional tools like spreadsheets have their limits, Python empowers
you to tackle massive datasets and ask questions that were once
impossible. Imagine trying to analyze a million records in Excel—it would
buckle under the weight. Python, however, thrives on such challenges. It’s
not just about efficiency; it’s about possibility. Coding removes the
constraints of traditional tools and opens up a world of opportunities for
storytelling and investigation.

In a profession built on curiosity and storytelling, coding has become my
gateway o uncovering stories hidden within rows and columns of data.
Just as we interview human sources to uncover insights, coding allows us
to “interview” data—exploring its patterns, anomalies, and contradictions as
if we were having a conversation with it.

Coding isn’t just for “data journalists.” It’s for any journalist who wants to
work smarter, dig deeper, and tell more compelling stories. It’s about using
technology to enhance your reporting, not replace it. With coding, you can:

- Automate repetitive tasks, like collecting or cleaning data, so you
can focus on the story.

- Analyze large datasets to uncover trends, patterns, and anomalies
that might otherwise go unnoticed.

= Visualize data in ways that make complex information accessible
and engaging for your audience.

Think of coding as a new tool in your toolkit—one that complements your
existing skills and expands what’s possible.

Big Data and Journalism

Data is as integral to our world as language itself. As society has become
increasingly data-driven, journalists have had to adapt, integrating data into

Data Skills with Python for Journalists 4

their reporting in the same way they would a frusted source or a key piece
of evidence. This shift is essential: in a world where everything from public
policies to corporate behaviors is quantified and recorded, the ability to
understand, analyze, and interpret data has become a fundamental skill for
journalists.

Big Data refers to the enormous volumes of structured and unstructured
information that are constantly generated from sources like social media,
IoT devices, fransaction logs, and digital documents. For journalists, Big
Data means access to a wealth of information that can provide insights into
topics ranging from electoral patterns to environmental crises, public health
trends, and consumer behaviors.

But while data has become more available, the challenge lies in making
sense of it. This is where coding and computer-assisted reporting (CAR)
come into play: they enable us to parse through mountains of information
and exfract meaningful insights, even as the volume of data grows
exponentially.

Take, for instance, an investigation info campaign finance records for
political candidates. With a dataset spanning thousands of confributions
from individuals and organizations, a journalist could spend days combing
through records manually. But with a few lines of Python code, this tedious
process can be streamlined: filtering data by donor type, confribution size,
or geographic region, allowing us to pinpoint tfrends and patterns that
might have otherwise gone unnoticed. The ability to wrangle Big Data with
code doesn’t just save time—it enables us to ask questions and uncover
stories that are only accessible through data.

Interviewing Data

In many ways, working with data mirrors the process of conducting an
inferview. Just as we listen to human sources, follow up on leads, and probe
deeper to gain clarity, interviewing data requires us to approach it with
curiosity, skepticism, and rigor. Each dataset holds a story, but it doesn’t

Data Skills with Python for Journalists 5

reveal itself without a bit of coaxing. We need to ask the right questions,
filter through the noise, and identify what is relevant to our narrative.

Coding allows us to “speak” to datfa in a structured way, asking it specific
questions, identifying frends, and even cross-referencing it with other
datasets for context. For example, let’s imagine a journalist investigating
the allocation of public funds in education. By interviewing the
data—querying different subsets, running analyses, and visualizing
relationships between variables—patterns emerge, such as disparities in
funding distribution or correlations with student outcomes. These insights
are invaluable; they inform the story and give it a backbone rooted in data.

Working with data is also like sitting down with a spreadsheet over a cup of
coffee, just as you would a human source. You comb through the rows and
columns, making notes, highlighting anomalies, and, just as in a human
conversation, listening carefully for what stands out. This process is
journalism in its digital form: reporting from the desk, equipped with a
computer as a primary tool, to uncover stories hidden within data.

Journo-Coder

Computer-assisted reporting (CAR) is not a new concepft, but it has become
more vital than ever in the digital age. Early pioneers of CAR used
rudimentary databases and spreadsheets to analyze numbers and detect
anomalies, tfransforming raw data into investigative leads. Today, coding has
brought CAR to a new level of sophistication. Python and other
programming languages enable journalists to automate tasks, scrape data
from websites, analyze patterns in vast datasets, and even build predictive
models that can forecast trends.

Python is central to modern CAR because of its versatility and accessibility.
With its extensive libraries—such as Pandas for data manipulation,
BeautifulSoup for web scraping, and Matplotlib for visualization—Python
enables journalists to handle virtually any type of data they might
encounter in an investigation. This adaptability is crucial, especially when
working on stories that demand quick turnarounds, such as fracking

Data Skills with Python for Journalists 6

government spending, analyzing social media sentiment, or examining
public health data.

For example, let’s say we’re tracking the spread of misinformation on social
media. With Python, we can create a script that pulls data from social media
platforms, analyzes trends in language or hashtags, and identifies clusters
of activity. This process, which would tfake weeks manually, can be
completed in hours or even minutes with code. By automating repetitive
tasks and enhancing our ability to parse large datasets, CAR allows us to
spend more time on analysis and storytelling rather than manual data entry.

A Practical Guide: Real-World Examples and Case Studies

This book is a practical guide for journalists who want to harness the power
of coding to uncover stories buried in data. It’s about learning to
"interview" data much like you would a human source—exploring its
nuances, patterns, and sometimes even contradictions. Python, with its
simplicity and extensive ecosystem of libraries, has become central o this
practice. It allows journalists to automate tedious tasks, sort through
massive datasets, and generate visuals that reveal insights at a glance.

Throughout the chapters, you will find numerous real-world examples and
case studies that illustrate how Python can be applied to journalism. we’ll
look at scenarios like investigating campaign finance, tracking public
spending, analyzing social media trends, and uncovering hidden
connections in large datasets. Each chapter provides hands-on exercises
that build on each other, culminating in larger projects that allow you to
dive deep into data-driven investigative journalism.

The future of journalism is data-rich, and coding is no longer optional for
journalists—it’s essential. As data continues to grow in volume and
complexity, so too does our need to understand and interpret it. Coding
allows us to transform data into a new kind of source—one that is vast,
powerful, and waiting fo be explored.

By the end of this book, you'll have not only the technical skills but also the
investigative mindset needed to thrive in this data-rich environment. You’ll

Data Skills with Python for Journalists 7

see how coding is more than a technical skill—it’s a method of approaching
stories, one that can unearth new angles, insights, and fruths. Just as we
trust our instincts when interviewing a human source, coding allows us to
frust our instincts with data, digging deeper, asking questions, and shaping
narratives that reveal what might otherwise remain hidden.

What You’ll Learn in This Book

This book is a practical guide to coding for journalists, focusing on
real-world applications and hands-on exercises. Throughout the chapters,
you will:

- Learn the basics of Python and its applications in journalism.
- Explore techniques for scraping, cleaning, and analyzing data.

- Discover how to visualize data effectively using Python libraries.

= Apply coding skills to investigative projects, from tracking public
spending fo analyzing social media trends.

Each chapter builds on the last, culminating in larger projects that showcase
how Python can elevate your reporting. By the end of this book, you will
have not only the fechnical skills but also the investigative mindset needed

to thrive in a data-rich environment.
Who Is This Book For?

This book is for every journalist—whether you’re a seasoned reporter with
years of experience or someone just starting out in the field. It’s for the
curious minds who want to explore how coding can elevate their
storytelling, as well as for those who’ve never wriftten a single line of code
but are eager to learn.

If you've ever felt overwhelmed by spreadsheets, struggled to make sense
of large datasets, or wondered how to uncover hidden stories buried in
numbers, this book is for you. It’s for journalists covering politics, health,

Data Skills with Python for Journalists 8

education, business, or culture—any beat where data can add depth and
clarity to your reporting.

You don’t need a background in math, statistics, or computer science to get
started. This book is designed with journalists in mind, breaking down
complex concepts into simple, actionable steps. All you need is a
willingness to learn, a passion for storytelling, and a desire to embrace the
tools of the digital age.

Whether you’re looking tfo automate repetitive tasks, analyze large datasets,
or create compelling visualizations, this book will equip you with the skills
to work smarter, dig deeper, and tell stories that resonate with your
audience. If you’re ready to take your journalism to the next level, this book
is your guide.

Welcome to the Future of Journalism =

The future of journalism is data-rich, and coding is no longer
optional—it’s essential. As data continues to grow in volume and
complexity, so too does our need to understand and interpret it.
Coding allows us o transform data into a new kind of source—one
that is vast, powerful, and waiting to be explored.

This book is your guide to mastering Python as a ool for storytelling.
It’s your invifation to take on the challenges of data journalism in the
Big Data era. Together, we’ll explore how coding empowers
journalists to write the stories of tomorrow, today.

Data Skills with Python for Journalists 9

About the Author

Amr Eleraqi is a data scientist, educator, and journalism
innovator with over a decade of experience turning
data into impactful stories. He teaches at Toronto
Metropolitan University in Canada and previously led
InfoTimes, the award-winning Arabic data journalism

tfeam. Amr has also served as a Knight Fellow with the
International Center for Journalists and as regional
coordinator for the Facebook Journalism Project in the Middle East. His
work automating media monitoring for the Egyptian Cabinet’s Information
Center advanced data-driven decision-making at the highest levels. Amr is
passionate about empowering journalists to harness the power of data in
storytelling.

https.//www.linkedin.com/in/amreleraqi

Data Skills with Python for Journalists 10

To Rasha and Yusuf, my heart and my joy—thank you for your endless love
and support. This book is for you.

Data Skills with Python for Journalists 11

Chapter 1: Intro to

Python and Google
Colab - A Byte of
Python

4, 1.1 Introduction to Python

.. 1.2 What is Python?
Brief History of Python
Why Choose Python?
Advantages and Disadvantages of Python
Installing Python Locally

m 1.3 Setting Up Your Workspace on Google Colab
1.3.1 Accessing Google Colab
1.3.2 Exploring the Colab Interface
1.3.3 Useful Shortcuts in Colab

/" 1.4 Python Basics
1.4.1 The Beginning: Running Your First Python Script
1.4.2 Data Types and Variables
1.4.3 Whitespaces and Indentation
1.4.4 Lists, Dictionaries, and DataFrames
1.4.5 Loops and Conditionals

== 1.5 Mathematical Operations

Data Skills with Python for Journalists 16

Basic Mathematical Operators (+, -, *, /, **, %, //)
Practical Examples
If11.6 Comparison Operators
Overview of Comparison Operators
% 1.7 Logical Operators
Overview of Logical Operators (and, or, not)
Practical Examples with Logical Operators
[] 1.8 Common Commands and Functions
print(Q), len(), type(), sum(), sorted()
Using Common Commands in Data Journalism
X 1.9 Hands-on Exercise
i 1.10 Essential Libraries for Data Journalism
1.9.1 Data Collection and Web Scraping
1.9.2 Data Manipulation and Analysis
1.9.3 Data Visualization
1.11 Project: Building and Analyzing a DataFrame of Articles
C,, 1.12 Additional Tips for Journalists

s 1.13 Chapter Summary

Data Skills with Python for Journalists 17

©, 1.1 Introduction to Python

In today’s fast-paced media landscape, journalists are expected to do more
than just write compelling stories—they need to uncover truths hidden in
data, whether it’s election results, public health trends, or corporate filings.
But you don’t have to be a “data journalist” to benefit from data.

This chapter is for every journalist—whether you're a reporter, editor, or
freelancer. It’s for those who want o work smarter, dig deeper, and tell
stories that stand out. Python, a powerful yet beginner-friendly
programming language, can help you do just that. From automating tedious
tasks to analyzing large datasets and creating eye-catching visuals, Python
is a tool that can enhance your reporting, no matter your beat or
experience level.

Think of this as your first step into a new way of working—one where data
becomes your ally, not your obstacle. Let’s get started.

.. 1.2 What is Python?

Python is a high-level programming language created by Guido van Rossum
in 1991. Python’s design emphasizes readability and simplicity, making it
accessible for beginners and highly efficient for complex applications.
Today, Python is one of the most widely used languages in fields ranging
from data science and web development to machine learning and
automation.

Data Skills with Python for Journalists 18

Why Choose Python?

Why Python is a Journalist's Best Friend?

Wide Library Support: Python

/iﬂ;i;@ . / has a vast library ecosystem
(\ T that allows for specialized
S~— e fasks.

Ease of Use: Python has a a ~ - P A ~

straightforward syntax that / g /e N

makes it accessible $o those /
with minimal coding experience. X

\ | / o
Py ' / ‘o8
&\\!, N ’ \ &)
- - Interoperability: Python
Versatility: Pythen's l’ integrates well with other

applicability goes beyond programming lanquages.
r% Strong Community and
: Fo] 9 %'/ Support: Python’s

simple data andlysis.
popularity has led to a

large and active community.

1. Ease of Use: Python has a sfraightforward synfax that makes it
accessible to those with minimal coding experience.

2. Wide Library Support: Python has a vast library ecosystem that
allows for specialized tasks. Libraries (pre-built tools) like Pandas,
BeautifulSoup, and Matplotlib make data manipulation, web
scraping, and visualization straightforward, while more advanced
libraries like NLTK and spaCy enable natural language processing

and text analysis.

3. Versatility: Python’s applicability goes beyond simple data analysis.
Journalists can use it for automation (automating routine tasks),
web scraping (gathering data from the web), data visualization

Data Skills with Python for Journalists 19

(creating charts and graphs), and machine learning (predictive

analysis and insights from large data sets).

4. Interoperability: Python integrates well with other programming
languages and can be combined with tools like SQL for database

queries, making it easy to work with data from different sources.

5. Strong Community and Support: Python’s popularity has led to a

large and active community, with numerous tutorials, forums, and

resources. This makes it easier to find solutions to problems, learn

new fechniques, and stay updated on the latest frends and tools.

Advantages and Disadvantages of Python in Data Journalism

Advantages

Disadvantages

Broader Applicability: data analysis,
automation, web scraping, and
machine learning

Fewer specialized packages for
specific statistical needs

Easy for beginners to learn

Visualization options can be more
limited than R

Works well with other
programming languages

Multiple setup options
(environments) can be confusing

Large community and lots of
tutorials available

How to Install Python on Your Computer (Locally)

If you plan to use Google Colab as your environment, you don’t

need to install Python locally. Google Colab provides a

pre-installed Python environment in the cloud. However, if you plan

to run Jupyter Notebook for local projects, you will need Python

installed on your computer.

Data Skills with Python for Journalists

20

If you want to run Python locally on your computer (outside of Google
Colab), here’s a quick installation guide:

e python’ . I

About Downloads Documentation Community Success Stories News Events

9 . v
Download the latest version for Windows m \
4
|
Download Python 3.13.1 wi
S? Python for ws, / g

st development versions of Python 3.142 P
Docker images

The Python download for windows
1. Download Python:

o Visit the official Python website:

https://www.pvthon.or wnl

o Select the latest version (Python 3.x) and download the
installer for your operating system (Windows, macOS, or
Linux).

2. Install Python:
o Open the downloaded installer.

o On the setup screen, check the box that says “Add Python
to PATH?” (this makes it easier to run Python from the
command line).

o Click Install Now and follow the installation prompts.
3. Verify the Installation:

o Open your command prompt (Windows) P or terminal
(macOS/Linux).

Data Skills with Python for Journalists 21

https://www.python.org/downloads/
https://www.python.org/downloads/

o Type python --version or python3 --versionand
press Enter. You should see the installed Python version
displayed.

4. Install a Package Manager (pip):

o pipis Python’s package manager, which helps you install

additional libraries (e.g., Pandas, BeautifulSoup).

o pipisincluded with Python by default, but you can verify it

by running pip --version in your tferminal.

m 1.3 Setting Up Your Workspace on Google
Colab

Google Colab is a free, cloud-based platform developed by Google that lets
you write and run Python code in your browser. Colab’s simplicity and
online accessibility make it an ideal environment for journalists, who may

not want to install software on their computers.

1.3.1 Accessing Google Colab

1. Open Google Colab http://colab.new
2. Log in with your Google account.
3. Create a new notebook by selecting File > New notebook.

¢ Tip: You'll need a Google account to access Google Colab. This allows
you to save your work directly to Google Drive, making it easy to access
and share your projects from any device.

Data Skills with Python for Journalists 22

http://colab.new/

First Task: Print "Hello, World!"
Let’s start with the classic first program:

1. 1Inthe first cell of your new notebook, type the following
code:

x = "Hello World!"
print (x)

2. Run the cell by pressing Shift + Enter or clicking the Run

button.
3. You should see the output:

Hello, World!

Congratulations! You’ve written and executed your first Python
program on Google Colab. &

1.3.2 Exploring the Colab Interface

Google Colab’s interface is organized into cells where you can write and
execute code or add explanatory text. Here’s a breakdown of the main
components and tabs in the inferface:

X

€O untted Es
o ogle or type UR

[m]
(¢}
co & Untitled B comment & Share £ i a

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text Connect ~ = @ColabAl = A

SH=K- NN I
Q © start coding or generate with AI.

Data Skills with Python for Journalists

23

= Main Tabs and Their Features

Main Tabs

Features

File

Create, open, and save notebooks.

Edit

Undo, redo, cut, copy, and paste cells.

View

Access the table of contents and organize your notebook.

Insert

Add code cells (for Python code) or text cells (for notes).

Runtime

Run, manage, and configure the notebook’s runtime (e.g.,
CPU, GPU).

Tools

Access settings, keyboard shortcuts, and the command
palette.

Help

Documentation and resources for assistance.

1. File

2. Edit

3. View

New notebook: Creates a new Colab notebook.

Open notebook: Opens a saved notebook from Google
Drive, GitHub, or local files.

Save a copy in Drive: Saves a copy of the current notebook
in your Google Drive.

Download: Allows you to download the notebook in various

formats, such as .ipynb or .py for local use.

Undo/Redo: Quickly undo or redo recent actions.

Cut, Copy, Paste Cells: Copy or move cells within the
notebook.

Find and Replace: Searches for text within the notebook,
helpful for larger projects.

Table of contents: Displays a collapsible table of contents,
making navigation easier for longer notebooks.

Mode: Switch between edit and command mode for
different cell interactions.

Data Skills with Python for Journalists 24

o Code snippets: Provides a library of pre-written code
snippets to help with common tasks, accessible directly in
the notebook.

4. Insert

o Code cell: Adds a new code cell to the notebook for Python
code.

o Text cell: Adds a new text cell where you can write
markdown text for explanations, titles, or instructions.

5. Runtime

o Run all: Executes all cells in the notebook.

o Change runtime type: Enables you to select CPU, GPU, or
TPU for processing. GPU or TPU accelerators are useful for
tasks requiring extra computing power, like machine
learning.

o Manage sessions: Shows the memory usage and allows
restarting or disconnecting from the runtime to free up
resources.

6. Tools

o Settings: Configure the notebook’s appearance, including
font size, theme, and other display options.

o Keyboard shortcuts: Lists and customizes shortcuts to
enhance productivity.

o Command paletfte: A searchable command center to access
various actions quickly.

7. Help

o Documentation: Access Google Colab and Python library
documentation for quick references.

o Report a bug: Submit bug reports or give feedback on the
Colab interface.

Data Skills with Python for Journalists 25

= Cells: The Building Blocks of Colab

() & Untitled.ipynb

PRO " File Edit View Insert Runtime Tools Help

+ Code + Text

O\ ° Start coding or generate with AI.

{x}

o)

0O

e Code Cells: Where you write Python code. Each code cell can be run
independently, allowing for incremental testing and debugging.

Each code cell can be run independently, allowing for incremental
testing and debugging.

How to Use:

[J Click inside a code cell to edit it.

[J Press Shift + Enter or click the Run button to execute the
code.

¢ Tip: Outputs from code cells (e.g., text, graphs, or errors) appear
directly below the cell, keeping everything organized and easy to
follow.

e Text Cells: Use markdown to create formatted text for explanations,
insfructions, or notes, making it easier o document your workflow
and results.

How to Use:

[CJ] Double-click a text cell to edit it.

[J Use Markdown syntax for formatting (e.g., # for headings, *
for italics).

Data Skills with Python for Journalists 26

[J Press Shift + Enter to render the formatted text.

v Tip: Document your workflow with text cells to make your

L

notebook clear and shareable. Use headings, bullet points, and links
for better readability.

1.3.3 Useful Shortcuts in Colab

Shortcut Function

Shift + Enter Run the current cell and move to the next

Ctrl + Enter Run the current cell and stay in place

Alt + Enter Run the current cell and insert a new one below
Ctrl + M + M Convert a cell to markdown

Ctrl + M + Y Convert a cell to code

Ctrl + M + D Delete the current cell

Ctrl + / Comment or uncomment selected lines

¢ Tips:

e Use commenting (# This is a comment) to explain code to yourself
or collaborators.

e Experiment with Markdown in text cells to add structure and
explanations to your notebook.

Data Skills with Python for Journalists 27

/' 1.4 Python Basics

With Google Colab set up, let’s dive into Python fundamentals essential for
data journalism. These basics will cover data types, variables, how Python
inferprets whitespace and indentation, and adding comments to code.

1.4.1 The Beginning: Running Your First Python Script

As a journalist, you often need to verify the phone numbers of your sources.
Let’s write a simple Python script to validate a single phone number based
on a standard format (e.g., starting with a + and having at least 10 digits).
This time, we’ll make it interactive by asking the user fo input the phone
number.

Creating phone_validator.py

() -

Create .
Write Run Output Save and
Python ﬁ Code # Script % Displayed ﬁ Run File

Script

1. Open Google Colab

Visit http://colab.new to open a new notebook.

2. Name Your Notebook

e Click on the default notebook name (usually "Untitled" at the
top left).

e Rename it to phone_validator and press Enter.
3. Insert a Text Cell

e Click on + Text (located at the top left of the toolbar).

e Inthe new text cell, type: # Validating a Human
Source Phone Number

Data Skills with Python for Journalists 28

http://colab.new

Press Enter fo finish editing.

4. Insert a Code Cell

Explanation:

Click on + Code (also in the toolbar).
In the new code cell, write:
Ask the user to input a phone number

phone_number = input("Enter a phone number to
validate: ")

Check if the phone number is valid

if phone_number.startswith("+") and
len(phone_number) >= 10:

print(f"{phone_number} is valid.")
else:
print(f"{phone_number} is NOT valid.")

Press Shift + Enter or click the Run button (the play icon on
the left of the cell).

e User Input: The input() function prompts the user to enter a phone

number.

e Validation: The script checks if the phone number starts with a +

(indicating a country code) and has at least 10 digits.

e Output: The print() function displays whether the phone number is

valid or not.

¢ Tip:

This script is interactive—you can run it multiple times and test different
phone numbers. For example, try entering "+1234567890", "123-456-7890",
or "+44 20 7946 0958" to see the results.

Data Skills with Python for Journalists 29

1.4.2 Data Types and Variables

In Python, variables are used to store
data, and data types define the kind
of data a variable can hold.
Understanding these is essential for
organizing and analyzing information
in your journalism projects.

age = 43

Variable

Variable)

Name

Here’s a breakdown of the key data types you’ll encounter:

e Integer: Integers are whole numbers, positive or negative, without

decimals. They’re useful for counting or representing discrete

values.

e Float: Floats are decimal numbers, useful for representing precise

measurements or averages.

e String: Strings are sequences of characters, used o store text data

like names, headlines, or descriptions.

e Boolean: Booleans represent True or False values. They’re often

used for decision-making in your code.

“hello”

True

Examples of Python data types. Integer (43), Float (6.5), String ("hello”),
Boolean (True).

Data Skills with Python for Journalists

30

Examples

Integer

number_of_articles = 10 # Stores the number of articles
written

Float

average_rating = 4.7 # Stores the average rating of a news
article

String

headline = "Breaking News: Election Results Announced" #
Stores a news headline

Boolean

is_published = True # Indicates whether an article has
been published

Printing in One Line

print("Headline:", headline, "Word Count:", word_count,
"Average Reading Time (minutes):", average_reading_time,
"Published:", is_published)

Each value is printed on the same line, separated by a space.

Output: Headline: Climate Change Summit Yields New Agreements Word
Count: 850 Average Reading Time (minutes): 3.5 Published: True

¢ Tips:

e Strings in Python should always be enclosed in quotes, either
double (" ") or single (' "). Both work the same, but it’s best

practice fo use them consistently.

e When creating a variable, use the assignment operator (=) fo assign
a value fo it.

Data Skills with Python for Journalists 31

Variable Naming Conventions in Python

When naming variables in Python, follow these simple rules to

make your code clear and easy to understand:

1. Use Descriptive Names

2. Use Snake Case

For multi-word variable names, use underscores (_) fo separate
words. This is called snake_case.

3. Start with a Letter or Underscore

Variable names must start with a letter (a-z, A-Z) or an underscore
(). They cannot start with a number.

4. Avoid Reserved Words
Do not use Python keywords like print, len, if, etc., as variable

names, as this can cause errors in your code.

Example: Good vs. Bad
Z& headline, view_count, is_published are good names because

they reflect the variable's content.

AN

£ a, x, datal are poor names because they do not convey the
variable’s purpose.
/k total_views, author_name

totalviews, AuthorName

4

1.4.3 Whitespaces and Indentation

In Python, whitespace (spaces and fabs) and indentation (how far you

move code to the right) are super important. They help Python understand

how your code is organized, almost like how paragraphs and bullet points

help organize a document.

Data Skills with Python for Journalists

In Python, indentation is used to group lines of code together. Think of it
like this:

e Indented code is like a sub-point under a main point.
e Non-indented code is like the main point itself.

Python doesn’t use curly braces {} (like some other languages) to group
code. Instead, it uses indentation to figure out which lines of code belong

together.
Example of Proper Indentation Main Point
Sub~point |

views = 1500 Sub~point 2

if views > 1000: Another Main Point
print("This article is Sub-point |

popular!")

else:

print("This article is less popular.”)

What’s Happening Here?

e The first line (views = 1500) is not indented—it’s the main point.

e The if and else lines are like questions:

e If the article has more than 1000 views, Python runs the indented
line under if.

e If not, it runs the indented line under else.

¢ Tips:

e Python requires consistent indentation, typically four spaces or a
single tab. Mixing spaces and tabs can cause errors, so stick to one
method throughout your code.

e Use 4 spaces or 1 tab for indentation.

e Don’t mix spaces and tabs—it confuses Python and can cause

errors.

Data Skills with Python for Journalists 33

1.4.4 Comments

Comments are like sticky notes you add to your code to explain what it
does or why you wrote it. Python ignores these notes when running your
code—they’re just for humans to read.

Comments begin with a # symbol.

- Single-Line Comments

Start a comment with the # symbol. Use single-line comments to quickly
explain what a specific line of code does.

This is a comment explaining the next line of code
- Multi-Line Comments

Python doesn’t have a built-in multfi-line comment feature. However, you

can use friple quotes to create block comments that span multiple

lines.

This section of the code initializes
variables and prints a welcome message.

¢ Tip: Write Helpful Comments

e Explain why, not what: Don’t just repeat what the code
does—explain why it’s there.

e Keep it simple: Write clear, concise comments.

e Update them: If you change your code, update the comments too.

By adding comments to your code, you’ll make it more readable and
maintainable. It’s like leaving a frail of breadcrumbs for yourself and others
to follow.

Data Skills with Python for Journalists 34

1.4.5 Lists, Dictionaries, and DataFrames

- Lists

Lists are like containers that let you store multiple items in one place.
They’re super useful for organizing data, especially when the order of items
matters—like a list of news headlines or article fitles. You can easily add
items to a list and access them by their position, or index.

Creating a List

You create a list by putting items inside square brackets [] and separating
them with commas.

Example:

headlines = ["Climate Change Report", "Election Results"]

Adding to a List

You can add elements to a list using the .append() method (to add one
item) or .extend() method (to add multiple items).
Example:

headlines = ["Climate Change Report", "Election Results"]

Add a single item
headlines.append("New Policy Updates")

print(headlines) # Output: ["Climate Change Report",
"Election Results", "New Policy Updates"]

Add multiple items
headlines.extend(["Economy News", "Sports Highlights"])

print(headlines) # Output: ["Climate Change Report",

"Election Results"”, "New Policy Updates", "Economy News",
"Sports Highlights"]

Data Skills with Python for Journalists 35

Indexing in a List

Each itfem in a list has a position, called an index. Python starts counting
from 0O, so the first item is at index 0, the second at index 1, and so on. You
can also use negative numbers to count from the end of the list.

Positive Index -g% I 2 3 4 5

3 4 6 10 8

5 4y -3 -2 4 %Q Negative Index

Illustration of list indexing in Python: Positive indices (O fo 4) and negative
indices (-5 to -1) for the list my_list = [3, 4, 6, 10, 8]
Access the first item
print(headlines[@]) # Output: "Climate Change Report"

Access the last item
print(headlines[-1]) # Output: "Sports Highlights"

¢ Tip: Lists are ideal for ordered collections where the sequence of items
is important, such as a list of news headlines sorted by publish time.

-> Dictionaries

Dictionaries store data as key-value pairs, allowing you to label each item,
which is useful for more structured data. You can add new key-value pairs
or update existing ones, and you access values by their keys rather than by
position.

Creating a Dictionary

You create a dictionary by putting key-value pairs inside curly braces {},
with each key separated from its value by a colon :
article = {

Data Skills with Python for Journalists 36

“title": "Climate Change Report",
"author": "Jane Doe",

"views": 1500

key value key value key value

r 1 r 1 11

article= {"title": "Climate Change Report", "author":"Jane Doe", "views":1500 }

T T T

article dictionary, where each key (e.q., "title”, "author”, "views") maps to a
corresponding value (e.g., "Climate Change Report”, "Jane Doe”’, 1500).

Adding to a Dictionary

To add or update an entry in a dictionary, assign a value to a new or existing
key.

Add a new key-value pair
article["date"] = "2024-01-01"

print(article) # Output: {'title': 'Climate Change
Report', 'author': 'Jane Doe', 'views': 1500, 'date':
'2024-01-01"}

Update an existing key-value pair

article["views"] = 1600

print(article) # Output: {'title': 'Climate Change
Report', ‘'author': 'Jane Doe', 'views': 1600, 'date':

'2024-01-01"}

Data Skills with Python for Journalists 37

Indexing in a Dictionary

In dictionaries, data is accessed by key rather than by position.
You can access values by their keys. Using .get() is safer because it won’t
cause an error if the key doesn’t exist—it just returns None.

Access the value for a specific key
print(article["title"]) # Output: "Climate Change Report"

print(article.get("author”)) # Output: "Jane Doe"

¢ Tip: Using .get () is safer for accessing dictionary values, as it returns

None if the key doesn’t exist rather than causing an error.

-> DataFrames

DataFrames, provided by the Pandas library, are 2-dimensional, tabular
structures with labeled axes (rows and columns). They’re ideal for handling
larger datasets with multiple types of data. You can add new columns or
rows and access data by index or label.

Structure of DataFrame

1. Rows: Each row represents a single record or entry.
2. Columns: Each column represents a different feature or attribute of
the data.

Consider a simple DataFrame of news articles:

Index | Title Author Views | Date

0 Climate Change Report Jane Doe 1500 2024-01-01
1 Election Results John Smith 1200 2024-01-02
2 New Policy Updates Alice Brown | 800 2024-01-03

Data Skills with Python for Journalists 38

Key Parts of DataFrame

e Index: The first column on the left (often labeled “Index” by default)
represents the row numbers, which uniquely identify each row.

e Columns: The top row lists the column names, each representing a
specific type of information (e.g., Title, Author, Views, Date).

e Values: The cells within the DataFrame contain values for each
column and row combination.

[4]
" NN B

column names

[3.6]
(3]

Illustration of a DataFrame structure: Rows (index) and columns (header)
with labeled axes, showing how data is organized in a tabular format with
values (v1, v2, etc.) in each cell.

Basic Operations on DataFrames

Adding Column

To add a new column, specify the new column name and assign values fo it.
For example:
df["Category"] = ["Environment", "Politics", "Policy"]

Data Skills with Python for Journalists 39

Adding Row

To add a row, you can use the .append() method (note that .append() is
deprecated in Pandas and will be replaced by pd.concat() in future
updates):

new_row = {"Title": "Sports Update", "Author": "Bob White",
"Views": 900, "Date": "2024-01-04", "Category": "Sports"}

df = df.append(new_row, ignore_index=True)
Accessing Data by Column or Row

Column Access: Access a column by name, such as df["Title"], which
would give:

Row Access by Index (iloc): access a row by its integer index using
.iloc[]

Access the first row
print(df.iloc[0])

Row and Column Access (loc): access specific rows and columns by label.
Access the 'author’ column for the first row

print(df.loc[@, "author"])
Output: "Jane Doe"

Accessing Multiple Rows and Columns: access multiple rows and columns
at once using slicing or lists.

Access the first two rows

print(df.iloc[0:2])

Accessing Multiple Columns:
Access the "Title" and "Views" columns

print(df[["Title", "Views"]])

Data Skills with Python for Journalists 40

Summary

Here’s a quick reference for adding and indexing in each data structure:

Data Structure | Adding Data Indexing Data

List .append(item), list[index] for specific
.extend([item1, item2]) [items by position

Dictionary dict[key] = value dict[key] or
dict.get(key)

DataFrame df["new_column"] = df["column"],
[values], .append(row) df.iloc[index],
df.loc[]

By mastering these basics, you can efficiently manage data in lists,
dictionaries, and DataFrames, which are essential for organizing and
analyzing data in data journalism projects.

1.4.6 Loops and Conditionals

Imagine you have a basket of fruits @ . &, and you want to check what
type of fruit each one is. Instead of picking up each fruit and saying, “This is
an apple, this is a banana, this is a grape,” one by one, you can just say:

“For each fruit in the basket, check its name!”

This is what a loop does—it lets you repeat the same action for every item
in a group!

Now, imagine you also want to separate the fruits info two baskets: one for
apples and one for everything else. You'd say:

Data Skills with Python for Journalists 41

“If the fruit is an apple, put it in the apple basket. Otherwise, put it in the
other basket.”

This is what a conditional (or if statement) does—it lets you make decisions
based on certain conditions.

e Loops: Tools that let you repeat an action for every item in a group
(like a list of fruits or headlines).

e Conditionals: Tools that let you check a condition and decide what
to do next (like filtering popular articles).

For Loop: Iterates over a list of items, allowing you to perform actions on
each item. Useful for analyzing or displaying data for multiple articles, e.g.,
printing each headline in a list.

Example:

headlines = ["Climate Change Report", "Election Results",
"New Policy Updates"”]

for headline in headlines:
print(headline)
The loop goes through each headline and prints it.

If Statement: Checks a condition and executes code if the condition is true.
Essential for filtering data, such as identifying popular articles.

Example:
if views > 1000:

print("This article is popular!")
The code checks if views are greater than 1,000.

¢ Tip: Combining loops and conditionals allows you to apply filters or
conditions to data sets. For example, if you have a list of headlines, you can
use a loop to iterate through each and print only the headlines that mention
“Election.”

Data Skills with Python for Journalists 42

Example:

headlines = ["Climate Change Report", "Election Results",
"New Policy Updates"]

for headline in headlines:
if "Election" in headline:
print("Election-related headline:", headline)

The loop goes through each headline. If the headline contains “Election,” it

prints it.
Key Takeaways:
3 —_ v | X . ;
Iterate Items -~ - - Check Conditions
Perform Actions -- Execute Code
Filter Data

Conditional Actions

Illustration of loops and conditionals in programming:

e For Loops: Use them fo repeat an action for every item in a list.

e If Statements: Use them to check conditions and run actions only
when the condition is true.

e Combining Loops and Conditionals: Lets you filter data while going
through a list, making it a powerful tool for tasks like analyzing
articles or datasets.

Data Skills with Python for Journalists 43

== 1.5 Mathematical Operations

Python provides built-in operators for mathematical calculations, which are

often needed in data analysis.

Operator Operation Example Result
+ Addition 10 + 5 15

- Subftraction 20 - 5 15

* Multiplication 4 * 5 20

/ Division 10 / 2 5.0
*k Exponentiation 2 ** 3 8

% Modulus (remainder) 10 % 3 1

// Floor Division 9 // 2 4

opexkatoR

-
J/

MATHEMATICAL
OPERATORS

V4 A NN AR

10+S

Data Skills with Python for Journalists

20-S 4*S

0/2

2% 3

10% 3

Overview of Python’s mathematical operators

97/ 2

44

@ Practical Exercise:

Imagine you're a journalist working on a data-driven story about the
performance of your newsroom’s articles. Your editor-in-chief has asked
you to analyze key metrics—such as total engagement, projected growth,
and the equitable impact of each article—to help the team make informed
decisions about fufure content.

This case study walks you through the process of using Python to analyze
article performance. We’ll calculate total engagement, project future views,
and determine the share of impact for each article. By the end, you’ll have a
clear understanding of how o use Python to solve real-world journalism
problems and present your findings in a professional report.

You've been given the following data for three recently published articles:

e Total views: 1,500
e Number of articles: 3

e Total comments: 275

Your task is to answer the following questions:

1. What is the tofal engagement (views + comments) across all
articles?

2. What is the expected number of views next month if they double?
3. What is the average engagement (views + comments) per article?

4. What is the share of views for each article if we assume equal
impact?

Data Skills with Python for Journalists 45

data
views = 1500
articles = 3

comments = 275

1. Total engagement (views + comments)

total_engagement = views + comments

print("Total engagement (views + comments):",
total_engagement)

Output: Total engagement (views + comments): 1775

2. Projected views for next month (double current views)

projected_views_next_month = views * 2

print("Projected views for next month:",
projected_views_next_month)
Output: Projected views for next month: 3000

3. Average engagement per article
average_engagement_per_article = (views + comments) /

articles

print("Average engagement per article:",
average_engagement_per_article)
Output: Average engagement per article: 591.67

4. Share of views per article (assuming equal impact)

views_per_article = views / articles

print("Share of views per article (assuming equal
impact):", views_per_article)

Output: Share of views per article (assuming equal impact): 500.0

Data Skills with Python for Journalists

46

1 1.6 Comparison Operators

Comparison operators are used to compare two values or variables. They

return a Boolean value: True if the comparison is correct, and False if it

isn’t.

Operator Name Example Result
== Equal to 5==25 True
1= Not equal to 5 1=3 True
> Greater than 5>3 True
< Less than 5<3 False
>= Greater than or equal to 5>=75 True
<= Less than or equal to 5 <=4 False

% 1.7 Logical Operators

Logical operators allow you to combine conditions, useful for filtering data

based on multiple criteria.

Operator | Description Example Result
and True if both conditions (views > 1000) and True
are true (year == 2024)
or True if at least one (views > 2000) or True
condition is true (year == 2024)
not Reverses the condition not (views > 2000) True
Data Skills with Python for Journalists 47

@ Practical Exercise:

Imagine you're analyzing a dataset of news articles to identify
high-performing content. You wanft to filter articles based on specific
conditions, such as view count, publication year, and publication status.
Logical operators like and, or, and not can help you create complex filters to
extract the exact data you need.

This case study walks you through the process of using logical operators in
Python to analyze article data. By the end, you’ll understand how to
combine conditions fo filter data effectively and make data-driven
decisions for your newsroom.

You've been given the following data for a specific article:

e Views: 1,500
e Year: 2024
e Author: "Jane Doe"

e Publication Status: True (published)

Your task is to answer the following questions:
5. Is this a popular article from the current year?
6. Is this article either highly viewed or published?

7. Does this article have fewer than 2,000 views?

data

views = 1500 # Number of views
year = 2024 # Publication year
author = "Jane Doe" # Author name

is_published = True # Publication status

1. Check if the article is popular and from the current year

if (views > 1000) and (year == 2024):

Data Skills with Python for Journalists 48

print("This is a popular article from the current
year.")

output: This is a popular article from the current year.

2. Check if the article is either highly viewed or published
if (views > 2000) or (is_published):

print("This article is either highly viewed or it is
published.")

output: This arficle is either highly viewed or it is published.

3. Check if the article has fewer than 2000 views
if not (views > 2000):
print("This article has fewer than 2000 views.")

output: This article has fewer than 2000 views.

Data Skills with Python for Journalists 49

(@ Practical Exercise:
Analyzing News Views Data in Colab

Imagine you’re a journalist analyzing the performance of a news article
over two days. You’ve been given the number of views for today and
yesterday, and your task is to calculate the difference, fotal views, and
determine whether views have increased or decreased. This case study
will guide you through the process of using Python in Google Colab to
analyze this data.

Here’s the data you’ve been given:

e Views Today: 1,200
e Views Yesterday: 900

Your task is to:

1. Calculate the difference in views between today and yesterday.
2. Calculate the total views over the two days.
3. Determine if views have increased or decreased.

Exercise Steps

1. Create Variables: Define two variables, views_today and
views_yesterday, representing the views for an article on two
different days.

2. Mathematical Operations: Perform basic arithmetic operations to
analyze the difference and total views.

3. Logical Operations: Use conditional statements to check if the
views have increased or decreased.

4. Print and Explore Data: Use basic functions to display the length,
type, and results of operations.

Data Skills with Python for Journalists 50

¢ ProTips:

v

e Use type() to verify the data type of each variable, which is helpful
for debugging or working with different types of data.

e Using len() on strings or lists is a quick way to check their length,
useful when dealing with text data or article fitles in journalism.

e Try adding more variables (e.g., views_last_week) and use
additional operations, like calculating weekly averages, for further
practice.

EI 1.8 Common Commands and Functions

Python provides built-in functions to help you work more effectively with
data:

sum(): Adds all elements in a list, useful for summing view counts or totals.
total_views = sum([1500, 1200, 800])

sorted(): Sorts lists (alphabetically or numerically).
sorted_headlines = sorted(headlines)

max () and min() functions return the highest and lowest values in a list,
respectively. They’re useful for finding the most and least viewed articles.

count () function counts the number of times a specific value appears in a
list or string. It’s useful for analyzing frequency, such as counting how often
a keyword appears in a dataset.

round () function rounds a number to a specified number of decimal
places. It’s useful for cleaning up numerical data for reporting.

find () function returns the index of the first occurrence of a substring in a
string. I’s useful for searching fext data, such as finding keywords in
headlines.

Data Skills with Python for Journalists 51

1.9 Hands-On Exercises:

This section provides a series of practical exercises to help you master
working with DataFrames in Python using the Pandas library. By completing
these exercises, you’ll gain hands-on experience in creating, manipulating,
and analyzing tabular data—essential skills for journalists working with
datasets.

Each exercise builds on the previous one, guiding you through:

Creating DataFrames
Adding columns and rows
Accessing specific values
Performing calculations

g A NN =

Filtering data

By the end of this section, you’ll be able to confidently use DataFrames to
organize, analyze, and present data effectively. Let’s dive in!

Exercise 1: Creating a DataFrame:

You are working with a dataset of articles and their engagement stafisfics.
Create a DataFrame using the following data:

Article Views Likes
Climate Report 1500 200
Election Update 2000 350
Tech Trends 1200 150

1. Name the DataFrame df.
2. Print the DataFrame to verify it was created correctly.

Data Skills with Python for Journalists 52

Steps to Solve:

Import the Pandas library:
import pandas as pd

Define the data: Use a dictionary to define the data for the columns:
data = {

"Article": ["Climate Report", "Election Update", "Tech

Trends"],
"Views": [1500, 2000, 1200],
"Likes": [20@, 350, 150]

}

Create the DataFrame: Use pd.DataFrame() fo create the DataFrame:
df = pd.DataFrame(data)

Print the DataFrame: Verify the data by printing the DataFrame:
print(df)

Explanation:

e The pd.DataFrame() function converts the dictionary info a
table-like structure.

e Each key in the dictionary represents a column, and its values
represent the rows.

Tips:

e Always check for typos in your column names to avoid errors later.
e Prinfing the DataFrame helps verify its structure.

Data Skills with Python for Journalists 53

Exercise 2: Adding a New Column

Add a new column called Comments fo the df DataFrame with the following
values: 50, 120, 30

Print the updated DataFrame to confirm the new column was added.
Steps to Solve:

Add the new column:
df["Comments"] = [50, 120, 30]

Print the updated DataFrame:
print(df)

Explanation:

e Thesyntax df["Comments"] = [...] adds a new column to
the DataFrame.

e Thelist [568, 120, 30] specifies the values for each row.
Tips:

° Ensure the number of values matches the number of rows in the
DataFrame.

e Use descriptive column names for clarity.

Exercise 3: Adding a New Row
Add a new row to the df DataFrame with the following data:

e Article: "Sports Highlights"
e Views: 1800
e Likes: 250

e Comments: 80

Data Skills with Python for Journalists 54

Steps to Solve:

Add the new row using loc:
df.loc[len(df)] = ["Sports Highlights", 1800, 250, 80]

Print the updated DataFrame:
print(df)

Explanation:

e df.loc[len(df)] specifies the position for the new row (after

the last row).
e The list of values represents the new row.

Tips:

e Use len(df) to ensure the new row is added at the correct
position.

e Always check the updated DataFrame to confirm the new row
was added correctly.

Exercise 4: Accessing a Specific Value:
Use iloc and loc to access specific values:

1. Find the value of Likes for the second row ("Election Update")
using iloc.
Find the value of Comments for the last row using iloc.
Find the value of Views for the row where the Article is "Tech

Trends" using loc.

Data Skills with Python for Journalists

55

Steps to Solve:
Access the Likes value for the second row:
print("Likes for 'Election Update':", df.iloc[1]["Likes"])

Access the Comments value for the last row:
print("Comments for last row:", df.iloc[-1]["Comments"])

Access the Views value for "Tech Trends":

print("Views for 'Tech Trends':", df.loc[df["Article"] ==
"Tech Trends", "Views"].values[0])
Explanation:

e iloc accesses rows and columns by their position (index).
e loc accesses rows and columns by their labels (name or

condition).
Tips:

e Useiloc[-1] to access the last row dynamically.
e When using loc with conditions, always verify the .values[0]
to extfract the value.

Exercise 5: Adding a Calculated Column
Add a new column Engagement Rate (%) with the formula:
(Likes + Comments) / Views * 100

Steps to Solve:

Calculate and add the column:
df["Engagement Rate (%)"] = (df["Likes"] + df["Comments"])
/ df["Views"] * 100

Data Skills with Python for Journalists 56

Print the updated DataFrame:
print(df)

Explanation:

e The formula calculates the percentage of engagement based on
Likes and Comments.

e The result is stored in a new column.
Tips:

e Use parentheses to ensure the correct order of operations.
e Confirm that the calculation is applied to all rows.

Exercise 6: Filtering Data

Filter the DataFrame to include only rows where Views are greater than or
equal to 1500. Save the filtered data in a new DataFrame called
df_filtered.

Steps to Solve:

Filter the rows:
df_filtered = df[df["Views"] >= 1500]

Print the filtered DataFrame:
print(df_filtered)

Explanation:

e The condition df["Views"] >= 1500 creates a filter for the
rOWS.

e Only rows that meet the condition are included in df _filtered.

Data Skills with Python for Journalists 57

Tips:

e Use descriptive names like df _filtered for the new DataFrame.
e Always double-check the filtered data for accuracy.

Bonus Challenge: Combining Everything

1. Create a new DataFrame with 4 rows and columns: Article, Views,
Likes, Comments.
Add a column Engagement Rate (%).
Filter rows where Likes are greater than or equal to 300, and save

them in a new DataFrame.

Steps to Solve:

Create the DataFrame:
data = {

"Article": ["Article A", "Article B", "Article C",
"Article D"],

"Views": [1000, 2000, 1500, 1800],
"Likes": [200, 400, 300, 250],
"Comments": [50, 100, 70, 90]

}

df = pd.DataFrame(data)

Add the Engagement Rate (%):
df["Engagement Rate (%)"] = (df["Likes"] + df["Comments"])
/ df["Views"] * 100

Filter rows by Likes:
df_filtered = df[df["Likes"] >= 300]

print(df_filtered)

Data Skills with Python for Journalists 58

Expected Skills After Completing:

e Creating and manipulating DataFrames.

e Accessing and filtering data dynamically.

e Performing calculations to derive insights.

) 1.10 Essential Libraries

Python libraries are crucial in data journalism, simplifying tasks like data

collection, manipulation, analysis, and visualization. Here’s an organized list

of libraries by role, detailing their use, installation command, and import

command.

1.10.1 Data Collection and Web Scraping

Library Use Installation Import
Command
Requests Making HTTP I'pip install import
requests for requests requests
APIs or web
scraping
BeautifulSoup Parsing HTML Ipip install from bs4
and XML beautifulsoup4 import
documents for BeautifulSoup
scraping
Scrapy Advanced web | !'pip install scrapy import scrapy
scraping
framework
Newspaper3k Extracting text | !pip install from
from news newspaper3k newspaper
articles import
Article

Data Skills with Python for Journalists

59

Tweepy

Collecting
tweets through
the Twitter API

Ipip install tweepy

import tweepy

¢ Tip: Use Requests for quick HTTP requests and Scrapy for complex

scraping projects that require spidering and asynchronous requests.

1.10.2 Data Manipulation and Analysis

Library Use Installation Import
Command
Pandas Data analysis and I'pip install pandas import
manipulation pandas as pd
Numpy Numerical Ipip install numpy import numpy
computations, array as np
manipulation
Dask Parallel computing Ipip install dask import
with large datasets dask.datafra
me as dd
SQLite3 Managing relational | Included with Python import
databases sqlite3
OpenpyxI Reading/writing Ipip install openpyxl | import
Excel files openpyxl

¢ Tip: Use Pandas for general data manipulation and Dask for larger

datasets that don’t fit into memory.

Data Skills with Python for Journalists

60

1.10.3 Data Visualization

visualization

geopandas

Library Use Installation Import
Command
Matplotlib Basic data Ipip install import
visualization matplotlib matplotlib.pyp
(charts, plots) lot as plt
Seaborn Statistical data Ipip install seaborn import seaborn
visualization with as sns
aesthetics
Plotly Interactive data Ipip install plotly import
visualizations plotly.express
as px
Altair Declarative Ipip install altair import altair
statistical as alt
visualizations
Geopandas Geospatial data Ipip install import

geopandas as
gpd

<

¢ Tip: Checking if a Library is Installed

If you’re not sure whether a library is installed in your Python environment,

yOu can:

1. Run !pip show <library_name>inacell (e.g., !'pip show

pandas) to check if the library is installed and see details like

version and location.

2. Usepip listina cell to view a full list of installed packages along

with their versions:

Ipip list

Data Skills with Python for Journalists

61

- | 1.11 Project: Building and Analyzing a
DataFrame of Articles

In this project, you’ll create a DataFrame containing article information,
then explore basic operations to analyze the data.

Step 1: Set Up Your Google Colab Environment

1. Open Google Colab.
2. Creatfe a new notebook (File > New Notebook).

Step 2: Import the Pandas Library

Pandas is the library we’ll use to create and manipulate DataFrames.
import pandas as pd

Step 3: Create a DataFrame

Let’s start by creating a list of dictionaries, where each dictionary
represents an article with information such as title, author, views, and

date. Then, we’ll convert this list intfo a DataFrame.
Define article data as a list of dictionaries

articles = |

{"title": "Climate Change Report", "author": "Jane

Doe", "views": 1500, "date": "2024-01-01"},

{"title": "Election Results", "author": "John Smith",
"views": 1200, "date": "2024-01-02"},

{"title": "Policy Update", "author": "Alice Brown",
"views": 800, "date": "2024-01-03"},

{"title": "Sports Highlights", "author": "Bob White",
"views": 900, "date": "2024-01-04"},

Data Skills with Python for Journalists 62

{"title": "Economic Analysis", "author": "Emily Davis",
"views": 2000, "date": "2024-01-05"}

]

Convert the list of dictionaries into a DataFrame

df = pd.DataFrame(articles)
Display the DataFrame
df

Output:

The df variable now contains a DataFrame that looks like this:

title author views date
0 Climate Change Jane Doe 1500 2024-01-01
Report
1 Election Results John Smith 1200 2024-01-02
2 Policy Update Alice Brown 800 2024-01-03
3 Sports Highlights Bob White 900 2024-01-04
4 Economic Analysis Emily Davis 2000 2024-01-05

Step 4: Basic DataFrame Operations

View the First Few Rows Use the .head () function to display the first few
rows of the DataFrame.

df.head()

Check Data Types View the data types of each column with .dtypes.

df.dtypes

Data Skills with Python for Journalists 63

Get Summary Statistics Use .describe() to get basic statistics like mean,

min, and max for numeric columns.

df.describe()
Step 5: Adding and Modifying Columns

Add a "Category” Column Add a new column called "category” with some

sample data.
df["category"] = ["Environment", "Politics", "Policy",
"Sports", "Economics"]

Calculate Average Views Calculate the average number of views across all
articles and add it as a new column called "average_views".

df["average_views"] = df["views"].mean()
df
Step 6: Filtering Data

Filter Popular Articles Select articles with views greater than 1000 and

create a new DataFrame popular_articles.

popular_articles = df[df["views"] > 1000]
popular_articles

Filter by Category Find articles in a specific category, such as "Politics".
politics_articles = df[df["category"] == "Politics"]

politics_articles

Data Skills with Python for Journalists 64

Step 7: Sorting the Data

Sort by Views Sort the DataFrame by views in descending order to find the
most viewed articles.

df_sorted = df.sort_values(by="views", ascending=False)

df_sorted

@ Check Your Knowledge:
Test your understanding of the concepts covered in this
project:

What does the .head() function do in Pandas?
a) Displays the last few rows of a DataFrame.
b) Displays the first few rows of a DataFrame.
c) Deletes the first few rows of a DataFrame.
d) None of the above.

Answer: b) Displays the first few rows of a DataFrame.

How do you add a new column to a DataFrame?
a) df.add_column('new_column”, values)

b) df["new_column"] = values

c) df.insert("new_column”, values)

d) df.create_column("new_column”, values)

Answer: b) df["new_column"] = values
What does the .describe() function provide?
a) A list of column names.

b) Summary statistics for numeric columns.
c) A list of unique values in each column.

Data Skills with Python for Journalists 65

d) A filtered DataFrame.
Answer: b) Summary stafistics for numeric columns.

How do you filter rows where the "views" column is greater than 1000?
a) df[df["views"] > 1000]

b) df filter("views" > 1000)

c) df.select("views" > 1000)

d) df[df.views > 1000]

Answer: a) df[df["views"] > 1000]

What does the .sort_values() function do?

a) Deletes rows based on a condition.

b) Sorts the DataFrame by one or more columns.
¢) Adds a new column fto the DataFrame.

d) Filters rows based on a condition.

Answer: b) Sorts the DataFrame by one or more columns.

<, 1.12 Additional Tips

1. Code Readability: Use comments to make your code easy to
understand and revisit.

2. Markdown for Context: Use Markdown cells in Colab to add
structure and explanations, guiding readers through your analysis.

3. Clear Variable Names: Choose descriptive variable names that make
your code self-explanatory.

4. Incremental Testing: Break tasks intfo smaller steps and test
frequently to catch errors early.

Data Skills with Python for Journalists 66

s 1.13 Chapter Summary

In this chapter, we covered:

e Google Colab: A beginner-friendly, cloud-based coding platform for
writing and running Python code without setup.

e Python Basics: Key concepts like data types, lists, dictionaries, and
loops.

e Essential Libraries: Pandas, Matplotlib, Seaborn, BeautifulSoup, and
Requests for data manipulation, visualization, and web scraping.

e Building and Analyzing a DataFrame: Applying your skills to a
real-world scenario with article data.g.

These skills will help you start exploring data and creating powerful visual
narratives! Practice these exercises to solidify your understanding and start
building your data journalism toolkif.

Data Skills with Python for Journalists 67

"Data will talk to you if you're willing to listen
carefully." - Jim Bergeson

This book shows you how 1o 'inferview’ a/afajusf like you would a

human source, un/oc/eing stories You never H)ougH Possib/e. N

Ar B! Paperback: S25 0
The Code Behind the Story: Data

. . . Edition: Large Print, December 28,
Skills with Python for Journalists... g

2024

Add to Cart J

Ships from and sold by Amazon.com.

See more buying options

	Data Skills with Python for Journalists
	A Practical Guide: Real-World Examples and Case Studies
	What You’ll Learn in This Book
	To Rasha and Yusuf, my heart and my joy—thank you for your endless love and support. This book is for you.
	
	
	
	
	
	
	
	
	
	

	Data Skills with Python for Journalists
	
	Chapter 1: Intro to Python and Google Colab – A Byte of Python
	
	
	
	🔍 1.1 Introduction to Python
	🐍 1.2 What is Python?
	Why Choose Python?
	Advantages and Disadvantages of Python in Data Journalism
	How to Install Python on Your Computer (Locally)
	💻 1.3 Setting Up Your Workspace on Google Colab
	1.3.1 Accessing Google Colab
	💡 Tip: You’ll need a Google account to access Google Colab. This allows you to save your work directly to Google Drive, making it easy to access and share your projects from any device.

	1.3.2 Exploring the Colab Interface
	➔​Main Tabs and Their Features
	➔​Cells: The Building Blocks of Colab
	1.3.3 Useful Shortcuts in Colab

	1.4.1 The Beginning: Running Your First Python Script
	Creating phone_validator.py

	1.4.2 Data Types and Variables
	1.4.3 Whitespaces and Indentation
	➔​Single-Line Comments
	➔​Multi-Line Comments

	By adding comments to your code, you’ll make it more readable and maintainable. It’s like leaving a trail of breadcrumbs for yourself and others to follow.
	1.4.5 Lists, Dictionaries, and DataFrames
	➔​Lists
	Creating a List
	You create a list by putting items inside square brackets [] and separating them with commas.
	Example:
	headlines = ["Climate Change Report", "Election Results"]
	Adding to a List

	➔​Dictionaries
	Creating a Dictionary
	
	article dictionary, where each key (e.g., "title", "author", "views") maps to a corresponding value (e.g., "Climate Change Report", "Jane Doe", 1500).
	Adding to a Dictionary
	Indexing in a Dictionary

	➔​DataFrames
	Structure of DataFrame
	Basic Operations on DataFrames
	Adding Column
	
	
	Adding Row
	Accessing Data by Column or Row
	Column Access: Access a column by name, such as df["Title"], which would give:

	Accessing Multiple Rows and Columns: access multiple rows and columns at once using slicing or lists.
	# Access the first two rows
	print(df.iloc[0:2])
	Accessing Multiple Columns:
	# Access the "Title" and "Views" columns
	print(df[["Title", "Views"]])
	Summary
	1.4.6 Loops and Conditionals
	Key Takeaways:
	🧮 1.5 Mathematical Operations

	⚖️ 1.6 Comparison Operators
	🧩 1.7 Logical Operators
	📋 1.8 Common Commands and Functions

	🧪 1.9 Hands-On Exercises:
	Exercise 1: Creating a DataFrame:
	
	Steps to Solve:

	Exercise 2: Adding a New Column
	Exercise 3: Adding a New Row
	Steps to Solve:

	Exercise 4: Accessing a Specific Value:
	
	
	Steps to Solve:

	Exercise 5: Adding a Calculated Column
	Steps to Solve:

	Exercise 6: Filtering Data
	Steps to Solve:

	Bonus Challenge: Combining Everything
	Steps to Solve:

	📊 1.10 Essential Libraries
	Python libraries are crucial in data journalism, simplifying tasks like data collection, manipulation, analysis, and visualization. Here’s an organized list of libraries by role, detailing their use, installation command, and import command.
	1.10.1 Data Collection and Web Scraping
	1.10.2 Data Manipulation and Analysis
	
	
	1.10.3 Data Visualization
	💡 Tip: Checking if a Library is Installed

	📰 1.11 Project: Building and Analyzing a DataFrame of Articles
	Step 1: Set Up Your Google Colab Environment
	Step 2: Import the Pandas Library
	Step 3: Create a DataFrame
	Output:
	Step 4: Basic DataFrame Operations
	Step 5: Adding and Modifying Columns
	Step 6: Filtering Data
	
	Step 7: Sorting the Data

	
	🔍 1.12 Additional Tips
	📌 1.13 Chapter Summary
	

