
Progressive Web Applications

Tamas Piros, Full Stack Training Ltd, All rights reserved, 2019	 �

Progressive Enhancements
Let’s keep on talking about progressive enhancements in relation to our app that we

are building. Notice that there’s a button for each article with a ‘read later’ label.

Imagine a situation where the user is on a train, commuting to work, but there’s a part

of the journey when there’s no network connectivity - maybe the train goes through a

tunnel. In this case, it’d be great if we could save articles for offline reading. What’s

great about our application structure so far is that we can add the progressive

enhancements to app.js in a very easy fashion because all other logic has been moved

out from this file.

"Read Later"
Let's implement the 'read later' functionality for our application.

From a technical perspective, allowing articles to be read later means that we want to

add the article’s content to the cache proactively - this will give users a nice

experience for our site - they get to choose which articles they wish to read when

offline.

The question is, of course, how would this work? Well, it turns out that the cache

interface is not only available in the context of the service worker, but it's also

available in any other JavaScript programme, which means that we can

programmatically add items to it, just like how we have done it from the service

worker itself. And the beauty of this? The service worker doesn't care where the data

comes from in the cache - it only cares about the fact whether it's there or not.

Let's take a look at how to implement this. For each button we’d need to add two

things: a new attribute, identifying the article - which we can easily do by specifying

the ID of the article, and we also need a click handler for the “read later” button itself.

The data-cache attribute will have a value that’s the full REST API URL for the article

itself.
Sample Page � of �1 4

Progressive Web Applications

Tamas Piros, Full Stack Training Ltd, All rights reserved, 2019	 �

Note that we could have used any other data- attribute - I like data-cache because it

indicates that we want to store data in the cache.

Since the read later buttons have a class reflecting their functionality, we can very

easily add an event listener for each of the buttons by executing a loop. In that loop,

we can open the same cache that the service worker uses to store API data. Once it’s

open, we can make a call to the RESTful API, and put the request along with the

response to the cache. One thing to note here is that it’s not enough to take the string

value from the data-cache attribute, we need also to wrap it in a new Request() call

because that should be the key that we store in the cache. Failing to do this would

yield incorrect behaviour as well as unmatched values when doing a lookup based on

the request. Why is this? Think about it, when the browser is making an actual request

it does it in the form of new Request() and if we do a lookup in the cache a ‘string of the

request’ is not going to be the same as new Request().

Finally also notice a little trick - window.location.reload(). Why is there a need to

reload the window? It’ll become clear after the next section. For now, the read later

functionality is in place - feel free to test it.

Sample Page � of �2 4

Progressive Web Applications

Tamas Piros, Full Stack Training Ltd, All rights reserved, 2019	 �

Visual Cues
We are at a rather good state when it comes to our application; however, we can do a

lot better. Let’s keep on this track of “progressive enhancements”. It would be nice to

have some visual enhancements, indicating to users which articles can be read offline.

This is going to be a small change but from a UX perspective a rather important one.

From a user experience perspective, at the moment there’s no way to tell which

article can be read offline so we could end up in a situation where a user may click on

the read more button and not get any data. It’d be great if we’d provide our users with

a visual cue indicating which articles they can access when offline - this includes

articles that were visited already as well as articles that were chosen by them to be

read later.

To implement the desired change, we can rely on the browser's offline/online state,

which can easily be accessed via navigator.onLine and the two states that it can have,

of course, are 'online' and 'offline. Furthermore, we can add an event listener to the

window object to act when the online/offline state changes, and pass in a callback.

The callbacks can check if any of the articles are in the cache and add opacity to the

ones that are not present - almost hiding them from the user.

We can see that there's a missing link here - and that is - how do we know what's in

the cache and what's not? We can add some helpers to our article cards via a custom

data attribute - let's call this data-cache. This is going to work in the same way as we

saw earlier with the read later button.

For adding/removing the opacity all we need to do is to open up the cache that stores

our API data, iterate through the items in it and match those with the data-cache

attribute values added to the cards.

Sample Page � of �3 4

Progressive Web Applications

Tamas Piros, Full Stack Training Ltd, All rights reserved, 2019	 �

Now, try to comment out the window.location.reload() line out and see how the app

behaves. Essentially, if we don’t force a reload, and we bring the application offline,

the visual cues are not going to be active. That’s because our logic lives in JavaScript

and it already has been executed. We could place the check for the uncached cards

inside the online/offline event listeners - that could be a viable alternative as well.

At this point, we have a great Progressive Web App. However, PWAs have a lot more

that we can discuss. In fact, the next thing is going to be another app-like feature,

installation.

Sample Page � of �4 4

	Progressive Enhancements
	"Read Later"
	Visual Cues

