Push Notifications
HandBook

Guia de implementacion paso a
paso para 10S y Android

2nd
Edition

Actualizado

para Swift, Yair Carreno
Java y Kotlin.



Manual de Push Notifications para iOS y Android

Yair Carreno
Este libro esta a la venta en http://leanpub.com/push-notifications-ios-android-spanish

Esta version se public6 en 2021-10-13

)

Leanpub
Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de publicacion.
Lean Publishing es el acto de publicar un libro en progreso usando herramientas sencillas y muchas

iteraciones para obtener retroalimentacién del lector hasta conseguir el libro adecuado.

© 2021 Yair Carreno


http://leanpub.com/push-notifications-ios-android-spanish
http://leanpub.com/
http://leanpub.com/manifesto

Indice general

Prefacio . . . . . . . . e 1
Acercadellibro . . . . . . L 1
Acercadel codigo fuente. . . . . . ... 1
Desarrollo del contenido . . . . . . . . . . 2
Glosario . . . . . . e 3
Audiencia . . . . .. 3
Consultas y/ocontacto . . . . . . . . ... e 3
Versiones de IDEs y tecnologiasusadas . . . . ... ... ... L oo oL 4
Changelog . . . . . . . 4
Futurasediciones . . . . . . . . . ... 4

Generalidades. . . . . . . .. . L 5
Introduccidn. . . . . . ... 5
Tiposde mensajes . . . . . . . . .. 6
Estados de la aplicacion . . . . . . . . . L 14
Tipos de notificaciones . . . . . . . . . . . L 17

Patrones de implementacién de Push Notifications . . ... .. ....... ... .. ....... .. 18



Prefacio

Acerca del libro

Estimado lector. Es grato comunicarme contigo y emprender esta aventura por el mundo de las Push
Notifications.

Quizas muchos estén de acuerdo conmigo al considerar push notifications como un mecanismo cool para
entregar mensajes al usuario. Considero que es una de las capacidades mas versatiles que tienen las
aplicaciones moéviles. Pero seamos honestos, a veces durante el proceso de implementaciéon de un feature
que incluye esta capacidad se puede complicar mas de lo debido, ya sea porque la notificacién no se muestra,
o0 que de repente dejaron de mostrarse, o que reportan un bug muy extrafio y dificil de detectar.

Pensando en ello, tengo una buena noticia para ustedes amigos lectores. Al finalizar este libro estaran de
acuerdo conmigo cuando afirmo que las Push Notifications no solo son un excelente mecanismo de llegarle
al usuario, sino que ademas no es tan dificil después de todo entender como funcionan y se implementan.

En muchas ocasiones, la solucion o las respuestas estan a la vista en la documentacion oficial, pero nos
perdemos a la hora de unir todas las piezas.

Después de muchas sesiones de trabajo con este topico en las aplicaciones méviles, decidi compartir mis
conocimientos a través este trabajo en donde se relacionan los dos sistemas operativos mas importantes
en aplicaciones moéviles, iOS y Android. Después de todo ;Qué aplicacion mévil hoy en dia no usa Push
Notifications en alguna de sus funcionalidades? Seguramente habra un porcentaje considerable que ain no
use estas capacidades, pero no cabe duda de que es cuestiéon de tiempo para que requieran hacerlo al notar
las multiples ventajas que éstas incorporan a una aplicacion.

Con base a informacién recopilada desde Firebase Cloud Messaging, Apple, Blogs, eBooks e implementaciones
en proyectos productivos, he organizado cada contenido para que de forma progresiva el lector vaya
adquiriendo los conceptos fundamentales para posteriormente presentar el desarrollo e implementacién de
cada uno de dichos conceptos.

Si logro que el lector incluya este manual dentro de sus documentos de referencia, sentiria que he cumplido
con mi labor con respecto a este tema.

También, animo al lector a que constantemente esté verificando las actualizaciones y mejoras en este campo
que al igual que los otros campos constantemente evolucionan.

Espero amigo lector que sea de su agrado este trabajo y no siendo mas, “Let’s start!”.

Acerca del cédigo fuente

Para desarrollar el contenido de este libro, he creado multiples repositorios piblicos con el codigo fuente para
iOS y Android. En la primera edicién del libro, el proyecto iOS fué implementado con Swift y el proyecto



Prefacio 2

Android tiene la implementacion en Java. Para esta segunda edicién del libro, se agrega la implementacién
del proyecto para Android usando Kotlin.

En el capitulo Implementacion de Push Notifications se detalla las estrategias implementadas y el lector podra
encontrar los siguientes repositorios el cddigo fuente de las APPs:

« Push Notifications Handbook iOS*.
« Push Notifications Handbook Android-JavaZ.
« Push Notifications Handbook Android-Kotlin®.

Desarrollo del contenido

Se ha dividido el contenido en tres bloques principales de temas. El primer bloque es de conceptos, el segundo
bloque es dedicado a configuraciones y el tercer bloque es usado para mostrar las implementaciones en las
APPs.

El primer bloque de conceptos contiene el capitulo de Generalidades en donde se presenta la informacién
bésica para entender en su totalidad los mecanismos de envio y recepcién de push notifications. Conceptos
tales como los tipos de mensajes, el estado de la aplicacion al momento de recibir el mensaje, los tipos de
manejo que se le pueden dar a una notificacion, patrones de disefios y estrategias, entre otros, son presentados
en este capitulo de generalidades.

De este bloque también hace parte el capitulo Implementacion de Push Notifications. Este capitulo presenta
los pasos necesarios para implementar los patrones de disefios que se presentan en el capitulo de generalidades.
Se describe cada una de las estrategias con sus pros y sus contras para que el lector en su buen criterio escoja
el que considere mas adecuado para sus soluciones.

Este bloque es la base para desarrollar los temas de los siguientes dos bloques.

El segundo bloque es dedicado a configuraciones, es decir, las actividades que el lector debera realizar con
respecto a herramientas y consolas para permitir el envio de mensajes de forma exitosa.

El primer capitulo de este bloque es Configuraciéon del proyecto en Firebase en donde se proporcionan las
instrucciones para crear un proyecto en Firebase para los casos de distribucién de mensajes con FCM.

Posteriormente se presenta el capitulo Configuraciéon de APP iOS en Apple Developer Portal. Alli se describe
la informacion requerida y diligenciada para dar soporte de push notifications a los clientes iOS.

Y este bloque finaliza con el capitulo Integraciéon de APP a Firebase que no es mas que integrar las APPs de
iOS y Android a las plataformas de distribucion de mensajes de Firebase.

El tercer bloque lo conforman los capitulos de netamente implementacion. Con base a los conceptos basicos
y teniendo las configuraciones finalizadas, se procede a mostrar el codigo fuente en las aplicaciones moéviles
para recibir y administrar los mensajes provenientes de las plataformas de distribucion de mensajes FCM o
APNs. Esto se muestra en el capitulo Configuracion de APP para recibir Push Notifications.

'https://github.com/yaircarreno/Push-Notifications-Handbook-iOS
*https://github.com/yaircarreno/Push-Notifications-Handbook- Android
*https://github.com/yaircarreno/Push-Notifications-Handbook- Android-Kotlin


https://github.com/yaircarreno/Push-Notifications-Handbook-iOS
https://github.com/yaircarreno/Push-Notifications-Handbook-Android
https://github.com/yaircarreno/Push-Notifications-Handbook-Android-Kotlin
https://github.com/yaircarreno/Push-Notifications-Handbook-iOS
https://github.com/yaircarreno/Push-Notifications-Handbook-Android
https://github.com/yaircarreno/Push-Notifications-Handbook-Android-Kotlin

Prefacio 3

Moviéndonos para el lado del backend, en el capitulo Creacién del servidor de Push Notifications se presenta
la implementacion de microservicios responsables de realizar el envio de los mensajes a través de FCM o
APN:Ss. Estos servicios se construyen con un disefio Serverless y a través de Cloud Services en GCP.

Cerrando el bloque, se presenta el capitulo Herramientas de Testing para Push Notifications clave a la hora de
verificar la correcta implementacion del sistema push notifications en APPs y detectar posibles fallas, malas
configuraciones o posibles bugs en el manejo de los mensajes.

Adicional a estos tres bloques, he querido dejarle también al lector un capitulo extra de recomendaciones,
tips y técnicas que podrian ser de utilidad y complemento al contenido. Este capitulo es llamado Bono extra.

Glosario

Durante el desarrollo de los temas en el libro, el lector podra encontrar algunos términos los cuales son
descritos a continuacién para dar mayor claridad.

FCM: Firebase Cloud Messaging, servicio de Firebase para la distribucion de mensajes a clientes méviles y
web.

APNS: Apple Push Notifications Service, servicio de Apple para la distribuciéon de mensajes a clientes iOS.

Notificaciones locales: Notificaciones generadas desde un ambito de frontend, es decir desde la misma
aplicacion cliente.

Notificaciones remotas: Notificaciones generadas desde un ambito de backend, es decir desde un servidor
remoto.

Audiencia

Este libro lo recomiendo para todo actor que participa en procesos de disefio, implementacién y validacién
de componentes de software para clientes méviles en sistemas operativos i0OS y/o Android. Si bien Push
Notifications es solo uno de los topicos en el mundo de desarrollo de soluciones moviles, es importante conocer
a detalle estos mecanismo para usarlos en implementaciones in-house, optimizaciones o mejoras en procesos
de fidelizacion de usuarios, entre otros usos y aplicaciones basadas en este tipo de mensajes.

Consultas y/o contacto

Este trabajo pretender guiar al lector en la buisqueda de buenas practicas de disefio en soluciones que
involucran push notifications. Ha sido desarrollado desde mi punto de vista y teniendo en cuenta las
recomendaciones de fuentes expertas citadas en la bibliografia.

Muy seguramente el lector podria encontrar alternativas a las técnicas expuestas en este libro, que pueden
variar un poco a las aqui consignadas, y esa, es precisamente la idea del presente trabajo.

Si el lector encuentra en el libro algiin aspecto que merezca ser revisado son bienvenidos los comentarios y
la retroalimentacion que se dé al respecto. Para ello y cualquier duda o inquietud se encuentra disponible los
siguientes canales:



Prefacio 4

+ Email: yaircarreno@gmail.com
« Twitter: @yaircarreno*
+ Blog: yaircarreno.com’

Idioma de textos en las imagenes

Por estandar, los textos y la descripcion de las imagenes presentadas a lo largo del presente libro contienen
textos en inglés.

Idioma en Code Snippets

Por estandar, los ejemplos de coédigo que acomparian el presente libro se encuentran en inglés. También
algunos textos principales se encuentran en inglés para mantener consistencia con la documentacion oficial.

Versiones de IDEs y tecnologias usadas

Android Environment

+ IDE: Android Studio Arctic Fox 2020.3.1

« Deployment SDK: API 30 - Android 11.

« Minimum SDK: API 21 - Android 5.0 (Lollipop)
« Languaje: Java and Kotlin

Interface: Activities

iOS Environment

IDE: Xcode 12.5

+ i0S Deployment Target: 14.5
« Language: Swift 5

Interface: Storyboard

Change log

Para mantener al lector informado sobre las actualizaciones y cambios en el presente libro, se proporciona el
capitulo Changelog.

Futuras ediciones

Teniendo en cuenta el advenimiento de las nuevas tecnologias con Ul declarativas, se proyecta una préxima
edicién que incluya los proyectos con SwitfUI, Jetpack Compose y Flutter. Asi que, estén atentos amigos
lectores.

“https://twitter.com/yaircarreno
*https://www.yaircarreno.com/


https://twitter.com/yaircarreno
https://www.yaircarreno.com/
https://twitter.com/yaircarreno
https://www.yaircarreno.com/

Generalidades

Introduccion

Una de las capacidades en las aplicaciones méviles que mas me gusta es la de permitir enviarle al usuario un
mensaje sin necesidad que la aplicacién se encuentre ejecutindose en primer plano. Ya sea para propositos
de alerta, de caracter informativo, para publicidad de ofertas, de marketing o para simplemente llamar la
atencion del usuario con respecto a un mensaje que se quiere comunicar.

Push Notifications son mensajes en tiempo real, esto le agrega un valor de inmediatez clave para ciertas
funcionalidades en una aplicacion.

o Notificaciones remotas Vs Notificaciones locales

Son notificaciones remotas aquellos mensajes que son enviados desde un servidor externo, es decir
en un contexto externo a la aplicacion. Son notificaciones locales aquellos mensajes que se generan
al interior de la aplicacién y que son administrados por la API de sistema de eventos del sistema
operativo del dispositivo.

Antes de entrar en el detalle de la implementaciéon de Push Notifications tanto en clientes iOS como
Android, se presenta en las siguientes secciones aquellos conceptos que considero son claves para entender el
funcionamiento completo desde que se envia una notificacion hasta que se recibe por parte de la aplicaciéon
para ser presentada al usuario o administrada por la aplicacion.

Tener estos conceptos claros es importante tanto para la fase de disefio como para la fase de implementacion,
conceptos tales como el estado de la aplicacion en el momento del arribo de la notificacion, si la notificacién
es silenciosa o es de tipo alerta, si el servidor de notificaciones envia el mensaje como notifications, como
data, como ambas. Estas consideraciones son relevantes a la hora de implementar Push Notificationsy evitar
posibles errores dificiles de detectar.

o -
Remote Apply logic
o ———— f= - ;
natification in App
Notification or Data Foreground, Alert or Background
Message? Background or Notification?

Closed state?

Figure 1.1 Flow receiving notification



© 0 N O U BB W N

s
N O, O

-
w

Generalidades 6

Tipos de mensajes

El mensaje de notificacién que recibe la aplicacién movil puede provenir a través de dos plataformas, FCM
(Firebase Cloud Messaging) o de APNS (Apple Push Notification Service). Una de las diferencias entre uno u
otro caso es el mensaje JSON entregado por estas plataformas.

De acuerdo a la estrategia seleccionada, la APP podria recibir mensajes enviados desde el servidor de
notificaciones a través de FCM, APNS o ambos. Estos patrones y estrategias para envio de notificaciones
es analizado en la seccién de patrones que se encuentra mas adelante.

Es importante conocer la estructura del mensaje enviado por el servidor de notificaciones a través de FCM
o APNS, ya que dependiendo del tipo de mensaje que se reciba y el estado de aplicacién, se determinara
el comportamiento de la notificaciéon. Estas conclusiones seran demostradas mas adelante en las secciones
Conclusiones de las pruebas sobre notificaciones en iOS y Conclusiones de las pruebas sobre notificaciones
en Android.

Analicemos a continuacion el mensaje entregado por cada una de estas plataformas:

Mensaje desde FCM

En Firebase Cloud Messaging el mensaje puede contener inicamente el objeto Notification, unicamente el
objeto Data o puede contener ambos asi como se muestra en el siguiente codigo:

Example message FCM

{
"message": {
"token": "bk3RNwTe3HO: CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
"notification":{
"title":"Argentina vs. Brasil",
"body":"Great match!"

3,
"data" : {

"Nick" : "Mario",

"Room" : "ArgentinaVSBrasil"
}

A los objetos notification y data también se les suele conocer como notification payload y data payload
respectivamente. Es importante que el lector tenga en mente lo siguiente:

« Se envia el objeto notification cuando se quiere que FCM administre de forma automatica la notificacién
en nombre de la aplicacién.

+ Se envia el objeto data cuando se quiere que la aplicacion administre y tome el control sobre la
notificacion.

Estas reglas las resume FCM de la siguiente forma:



> O s W N

Generalidades 7

Use scenario How to send
Matification  FCM automatically displays the message to end-user 1. In a trusted environment such as Cloud Functions or
message devices on behalf of the client app. Notification messages your app server, use the Admin SDK or the FCM Server
have a predefined set of user-visible keys and an optional Protocols: Set the notification key. May have
data payload of custom key-value pairs. optional data payload. Always collapsible.

See some examples of display notifications and send
request payloads.

3

. Use the Notifications composer: Enter the Message
Text, Title, etc., and send. Add optional data payload by
providing Custom data.

Data Client app is responsible for processing data messages. In a trusted environment such as Cloud Functions or your
message Data messages have only custom key-value pairs with no app server, use the Admin SDK or the FCM Server
reserved key names (see below). Protocols: Set the data key only.

Table 1.1 General rules in FCM: Image taken from Firebase Documentation
El mensaje enviado por FCM contiene campos que son comunes y pueden ser interpretados por igual en iOS,

Android o Web. Estos campos son precisamente los de los objetos notification y data.

« message.notification.title
+ message.notification.body
» message.data

Esto quiere decir que por ejemplo el siguiente mensaje enviado desde un servidor con Node seria interpretado
de la misma manera tanto en iOS, Android o Web:

Example message in Node sending to FCM

const message = {
notification: {
title: 'Hi notification',

body: 'Testing my push notification.'

Es posible también enviar informacién en el mensaje que vaya destinado Unicamente a una plataforma
especifica. Por ejemplo, el siguiente mensaje envia informacion para las plataformas Android, iOS y Web
a través de los objetos android, apns, webpush:



Generalidades 8

Example message in Node sending to FCM with specific information

1 const message = {

2 notification: {

3 title: 'Sparky says hello!'

4 },

5 android: {

6 notification: {

7 imageUrl: 'https://foo.bar.pizza-monster.png'
8 }

9 },

10 apns: {

11 payload: {

12 aps: {

13 'mutable-content': 1

14 }

15 }

16 fem_options: {

17 image: 'https://foo.bar.pizza-monster.png'
18 }

19 3,

20 webpush: {

21 headers: {

22 image: 'https://foo.bar.pizza-monster.png'
23 }

24 3,

25 topic: topicName,

26 };

En el ejemplo anterior, el campo title es igual para todas las plataformas, pero la presentacion de la imagen es
particular para cada plataforma. El resultado de la configuracién podria ser similar al mostrado en la siguiente
imagen:

Sparky says hellol

Sparky says hellol

Figure 1.2 Example setting image notification. Image taken from Firebase documentation



O b W N =

(o)}

N

w

o

N

w

Generalidades 9

En la siguiente documentacion de Firebase Cloud Messaging se pueden encontrar mas ejemplos de este tipo
de configuraciones: Build send requests["1].

Adicional a estos dos objetos principales notification y data, el mensaje también podria incluir mas
informacién acerca de la forma en que sera distribuido. Esto se hace a través de los campos excluyentes
token, topic o condition.

En el siguiente ejemplo, se muestra la configuracién de un mensaje de tipo notification que sera distribuido
a multiples dispositivos a través de sus tokens:

Example message in Node sending to FCM by tokens

const message = {
notification: {
title: 'Sparky says hello!’
},
tokens: ['ABCDFE...', 'OPQRSTUV...']
3

’

En el siguiente ejemplo, se muestra la configuracion de un mensaje de tipo notification que sera distribuido
a un dispositivo especifico a través de su token:

Example message in Node sending to FCM by only one token

const message = {
notification: {
title: 'Sparky says hello!'
},
token: 'ABCDFE...",

b

En el siguiente ejemplo, se muestra la configuracién de un mensaje de tipo notification que sera distribuido
a subscriptores a través de un topic:

Example message in Node sending to FCM by topic

const message = {
notification: {
title: 'Sparky says hello!'
},
topic: 'all-team',

I

El servidor de notificaciones usa Firebase Admin SDK y el vi HTTP protocol["2] para la implementacion
y envio de Push Notifications. Este servidor puede ser disefiado con microservicios escritos en Node, Java,
Phyton, C# o Go. En la seccién Creacion del servidor de Push Notifications se entregara mayor detalle con
codigos de ejemplo sobre estas implementaciones.



N

w

© N o0 a

w N =

IS

© 00 I O O

Generalidades 10

Interpretaciéon del mensaje de FCM en Android

Mencionaba anteriormente que es importante conocer el tipo de mensaje que se envia desde el servidor
de notificaciones a través de FCM. Esto es debido a que dependiendo de los tipos de objetos enviados en el
mensaje, es decir notification, data o ambos, se determinara qué tipo de comportamiento tendra la notificacién
remota teniendo en cuenta también el estado de la aplicacion. Los estados de la aplicacion es el tema tratado
en la siguiente seccion.

En Android, se cumplen las siguientes condiciones:

Caso de uso 1: Si la notificacién remota requiere ser presentada inicamente cuando la aplicacion se encuentra
en estado Foreground, se recomienda usar un mensaje como el siguiente:

Example message FCM for Foreground State Android

{
"message": {
"token": "bk3RNwTe3HO: CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
"notification":{
"title":"Argentina vs. Brasil",
"body":"Great match!"
}
}

En este caso solamente se envia el objeto notification y la notificacion sera administrada de forma automatica
por FCM mostrando el title y el body con un componente Ul estandar de notificacion.

Sin embargo, este caso es poco comun en las aplicaciones, ya que generalmente el objetivo es presentar la
notificacion independientemente de si la aplicacion se encuentra en Foreground, Background o Closed. Esto
nos lleva al segundo caso mostrado a continuacién.

Caso de uso 2: Si la notificacién remota requiere ser administrada y procesar informacién enviada en el
mensaje cuando la aplicacién se encuentre en los estados Foreground, Background o Closed, se recomienda
usar un mensaje como:

Example message FCM for Foreground, Background or Closed State Android

{
"message": {
"token": "bk3RNwTe3HO: CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
"data" : {
"title":"Argentina vs. Brasil",
"body":"Great match!"
}
}
}

En este caso solamente se incluye el objeto data. No puede ser incluido el notification, ya que de lo contrario
el mensaje solo seria administrado para un estado en Foreground.

Enresumen y teniendo en cuenta la documentacion de FCM, las siguientes son las condiciones que se cumplen
para Android:



Generalidades 11

App state Notification Data Both
= d « Doesn't show a notification. » Doesn't show a notification. » Doesn't show a notification.
oregroun « onMessageReceived: called. » onMessageReceived: called. « onMessageReceived: called.
* Show not[‘flcatlon._ ) « Doesn't show a notification. « Show notmcatlon.l .
Background « onCreate: called if the user clicks « onMessaqgeReceived: called < onCreate: called if the user clicks
on the message. 9 ' ' on the message.
- onCreate: caled fhe user dicks * DOSStshowanotfcaton. T SNSRI L
Closed ‘ » onMessageReceived: called. ontreate. cafled It the user clicks
on the message. on the message.

Table 1.2 FCM rules for Android

Estas conclusiones y casos, seran verificados a través de un conjunto de pruebas sobre push notifications en
la seccion de implementacion.

0 ¢Cuando se ejecuta onMessageReceived?

De la tabla anterior 1.2, se puede deducir que en Android la operacién onMessageReceived sera
ejecutada cuando la aplicacion se encuentra en Background siy solo si el mensaje recibido es de tipo
Data. Esto es importante tenerlo en cuenta para las implementaciones en Android. En las secciones
posteriores se hablara méas del tema.

Interpretaciéon del mensaje de FCM en iOS

En el caso de iOS, todos los mensajes entregados por FCM se hacen a través de APNS. Esta es una de las
razones por las cuales a pesar de usar FCM también se debe configurar el envio de la notificacién en APNS.

¢Es posible usar inicamente FCM para distribuir mensajes a clientes iOS
sin usar APNS?

No. La distribucion de mensajes a clientes iOS requerira siempre involucrar la integracion de APNS.

En la seccion anterior de Android se hacia énfasis en el concepto de tipos de mensajes (notification y/o data)
y como dependiendo de estos tipos de mensajes se podria influir en el comportamiento de la notificacion
cuando es recibida en la APP.

En cambio en iOS tiene mayor relevancia el concepto de tipo de notificacion, esto es, Alert push notification
y Background push notifications. Estos conceptos seran tema en una préxima secciéon llamada Tipos de
notificaciones.



0w N O O & W N =

11
12
13
14
15
16
17
18
19
20
21
22

0 N O O & W N -

11
12
13
14
15
16
17
18
19

Generalidades 12

Sin embargo, en iOS estos conceptos se interpretan de forma similar. Un mensaje tipo notification o
notification + data sera interpretado como una Alert push notification y un mensaje tipo data sera
interpretado como una Background push notifications. Esto sera demostrado mas adelante.

Por lo pronto, se mostraran los ejemplos de estos dos tipos de mensajes en FCM:

Example message in Node sending to FCM for Alert notification

const registrationToken = 'bk3RNwTe3HO:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...";

const message = {
notification: {
title: 'Urgent action needed!’',

body: 'Urgent action is needed to prevent your account from being disabled!

},

data: {
keyl: "some_value",
key2: "another_value",
key3: "one_more"

3,

token: registrationToken

I

admin.messaging().send(message)
.then((response) => {

console.log('Successfully sent message:', response);
b
.catch((error) => {

console.log('Error sending message:', error);
3

Example message in Node sending to FCM for Background notification

const registrationToken = 'bk3RNwTe3HO:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...";

const message = {
notification: {
title: 'Urgent action needed!’,

body: 'Urgent action is needed to prevent your account from being disabled!'’

b

data: {
keyl: "some_value",
key2: "another_value",
key3: "one_more"

}

I

const options = {
priority: 'high',
contentAvailable: true

¥



20
21
22
23
24

26

N

w

o N O a o

10
11

Generalidades 13

admin.messaging().sendToDevice(registrationToken, message, options)
.then((response) => {

console.log('Successfully sent message:', response);
b
.catch((error) => {

console.log('Error sending message:', error);
1)

Limitaciones de los mensajes FCM

« Para los mensajes de tipo notification se deben usar los valores llave-valor predefinidos en el estandar.
El cambio de estos nombres podrian generar errores.

« Para los mensajes de tipo data, los valores llave-valor pueden ser personalizados y deben ser tenidos en
cuenta a la hora de procesar la notificacién en la aplicacion cliente.

« El mensaje de tipo notification puede contener de forma opcional un data payload. No confundir este
payload con el otro tipo de mensaje que hemos llamado data.

« Méaximo es permitido un tamario de 4KB por mensaje, ya sea que se envie solo el notification, data o
ambos.

» Para testing y envio de mensajes a través de la consola Firebase, es permitido hasta 1024 caracteres.

Mensaje desde APNS

Si la plataforma escogida para la distribucién de mensajes a los usuarios iOS ha sido APNS, entonces la APP
debera prepararse para recibir mensajes con los siguientes tipos de estructuras[”3]:

Este es un mensaje de tipo Alert Push Notifications:

Example message APNS for Alert notification

{
"aps" : {
"alert" : {
"title" : "Game Request",
"subtitle" : "Five Card Draw",
"body" : "Bob wants to play poker"
3,
"category" : "GAME_INVITATION"
3,
"gameID" : "12345678"
}

Este es un mensaje de tipo Background Push Notifications también conocidos como mensajes silenciosos:



N

w

= O O

-~

<~ O O b W N

N

w

© N o0 g w

Generalidades

Example message APNS for Background notification

14

{
napsn . {
"content-available" : 1
}
"acmel" : "bar",

"acme2" : 42

Este es un mensaje de tipo Sound notification:

Example message APNS for playing sound notification

{

"aps" : {

"badge" : 9,

"sound" : "bingbong.aiff"
},
"messageID" : "ABCDEFGHIJ"

Este es un mensaje de tipo With Localized Content:

Example message APNS for notification with localized content

{
"aps" : {
"alert" : {
"loc-key" : "GAME_PLAY_REQUEST_FORMAT",
"loc-args" : [ "Shelly", "Rick"]
}
}
}

Estados de la aplicaciéon

Como se mencion6 en secciones anteriores, dentro de las estrategias usadas por la APP para la administracién
de las push notifications es clave conocer el estado en el cual se encuentra la aplicaciéon cuando el mensaje es

recibido. Dichos estados son descritos a continuacion.

Foreground State

Se dice que una aplicacion se encuentra en estado Foreground cuando al menos una de sus pantallas o servicios

se encuentran visible al usuario, es decir se encuentra en ejecucion en primer plano.



Generalidades 15

Background State

Se dice que la aplicacion se encuentra en estado Background cuando ninguna de sus vistas se encuentra visible
al usuario, es decir cuando la aplicacion ejecuta todos sus servicios en segundo plano.

Este estado tiene ciertas restricciones para operar. Por ejemplo tener acceso limitado a la memoria o estar
condicionado al nivel de bateria del dispositivo. También por politicas de privacidad y transparencia al usuario
algunas operaciones son restringidas en el estado background como por ejemplo acceder a la localizacion.

Se recomienda evitar usar estos estados para ejecutar tareas extensas y prolongadas, en su lugar puede
ser usado otras alternativas como procesos con jobs que trabajen en segundo plano y no interfieran en la
interaccién con el usuario.

Closed State

Si la aplicacién no se encuentra en ejecucion en primer plano ni tampoco en ejecucién en segundo plano, se
dice entonces que es una aplicacion cerrada con todos sus procesos apagados.

Determinar el estado de la aplicacién

Una de las funciones que cumplen las plataformas de distribucién de mensaje (FCM o APNS), es determinar
el estado de la APP cuando hace la entrega del mensaje y de acuerdo a ello decide el comportamiento de la
notificacion entregada. Sin embargo, el lector podria agregar validaciones adicionales sobre el estado de la
aplicacion cuando se recibe el mensaje. Esto con el objetivo de hacer cumplir un flujo particular o un caso de
uso especifico.

A continuacion se describe la forma programatica con la cual se podria verificar el estado de la aplicacion
tanto en iOS como en Android.

EniOS

Para determinar los estados foreground y background de la APP en iOS, se puede emplear la siguiente funcién
en Swift:

Checking App status in iOS

func isForeground() -> Bool {
return UIApplication.shared.applicationState == .active

Importante que la clase delegada para la implementacion de esta verificacion cuente con la dependenccia:

Dependency included

import UIKit

En Android

Para Android, usaremos la recomendacion de Google[ " 4] de emplear la clase ProcessLifecycleOwner["5] para
determinar los estados foreground y background de la APP asi:



W N -

© O W N O O b W N =~

-~

Generalidades 16

Checking App status in Android

private boolean inForeground() ({
return ProcesslLifecycleOwner.get().getlLifecycle().getCurrentState()
.isAtlLeast(Lifecycle.State.STARTED);

Es necesario instalar las siguientes dependencias[”6] en la aplicacion:

Dependencies included

def lifecycle_version = "2.3.1"

// Lifecycles only (without ViewModel or LiveData)

implementation "androidx.lifecycle:lifecycle-runtime:$1ifecycle_version"

// alternately - if using Java8, use the following instead of lifecycle-compiler
implementation "androidx.lifecycle:lifecycle-common-java8:$lifecycle_version"

// optional - ProcesslLifecycleOwner provides a lifecycle for the whole application process

implementation "androidx.lifecycle:lifecycle-process:$lifecycle_version"

¢Qué hay acerca del estado closed/kill?

En el ambito de la aplicacion tendra sentido determinar si el estado es foreground o background. Para los
casos en los que la aplicacién se encuentre cerrada totalmente el manejo de los mensajes sera administrados
por el sistema operativo asi:

Para el caso de Android, ver la tabla anterior Table 1.2 FCM rules for Android. Y para el caso de iOS ver la
siguiente tabla:



Generalidades 17

App state Alert push Background push
» Show notification. * Doesn't show a notification
Foreground « willPresent: called. « didReceiveRemoteNotification: called.

« didReceive: called if the user
clicks on the message

» Show notification. * Doesn't show a notification
Background 3 dl_dRecelve: called if the user * didReceiveRemoteNotification: called.
clicks on the message
« Show notification. * Doesn't show a notification.
« didFinishLaunchingWithOptions, e« didFinishLaunchingWithOptions,
Closed didReceive: called if the user clicks didReceiveRemoteNotification: called
on the message if the user clicks on the message

Table 1.3 APNs rules for iOS

En el capitulo Implementando en iOS se mostrara el conjunto de verificaciones que concluyen los datos
presentados en la tabla anterior.

Tipos de notificaciones

i

Alert Sound Badge Silent

Figure 1.3 Notifications type: Image taken from Apple Documentation

Alert Push Notifications

Alert Push Notifications son mensajes visibles tanto al usuario como a la aplicacion. Permiten que el usuario
interactde con la notificacion y ejecute determinadas acciones segun lo defina la experiencia de usuario. Este
tipo de notificaciones pueden tener un disefio Ul estandar o personalizado.



Generalidades 18

Son notificaciones que pueden ser ejecutadas cuando la aplicacién se encuentra en estado Foreground,
Background o Closed.

Background Push Notifications

También son conocidas como notificaciones silenciosas. Son mensajes visibles unicamente a la aplicacion. El
usuario no es notificado sobre estos mensajes por cual son notificaciones silenciosas que solo son conocidas
por la aplicacion en un segundo plano.

Este tipo de notificaciones pueden ser usadas para activar la ejecucién de tareas en segundo plano que no
requieran ser informadas al usuario, como por ejemplo la actualizacion de un componente, la consulta en
caché para optimizacion, entre otros casos de usos.

Al igual que Alert Push Notifications, son notificaciones que pueden ser ejecutadas cuando la aplicacion se
encuentra en estado Foreground, Background o Closed, sin embargo existen una serie de restricciones que
podrian interrumpir o evitar su normal funcionamiento como por ejemplo un nivel de bateria bajo o una
configuracion por parte del usuario que impida procesos en background. Estas limitantes deben ser tenidas
en cuenta al momento de disefiar funcionalidades con este tipo de notificaciones.

Si bien el concepto de alert push notifications y background push notifications es documentado para iOS,
es un concepto que se puede encontrar también en Android y ser aplicado de forma similar. En el capitulo
Configuracion de APP para recibir Push Notifications se presentara el detalle de implementacion de este tipo
de notificaciones tanto en iOS como en Android.

Patrones de implementacion de Push Notifications

Existen multiples estrategias y patrones que se pueden emplear para la implementacion de un sistema de push
notifications. En este capitulo se presentan los patrones méas comunes, los cuales podrian tener variaciones
dependiendo de las necesidades de la solucion.

Después de analizar estos patrones, se presenta el detalle de implementacion de dichos patrones expuestos en
este capitulo, estos son: Https triggers with FCM and APNS approach, Https triggers with APNS approach (only
iOS) y Https triggers with FCM approach (only Android). La implementacioén de dichas estrategias pueden
ser tomadas como referencia para la implementacién de los otros aprovechamientos expuestos.



Generalidades 19

HTTPS Triggers with FCM and APNS Approach

D

Apple Push
Notification
= Seryice
- \
1
88 =
Y
= l---
Users €------ L -
https Firebase Cloud
Messaging
Android

& —= - _ﬁ?lfp —

. Server Database
Admin Console API Gateway

Figure 1.4 HTTPS Triggers with FCM and APNS Approach

Este patron utiliza la plataforma FCM (Firebase Cloud Messaging) para la distribucién de los mensajes hacia
los clientes iOS, Android y Web.

Adicionalmente FCM se comunica con APNS (Apple Push Notification Service) para garantizar la entrega de
las notificaciones a los clientes iOS de forma segura y autorizada por Apple.

El servidor de notificaciones Server, provee a través de Microservicios y APl Gateway la integracién para
que los clientes registren sus dispositivos para recibir notificaciones, actualizar el token de uno o varios
dispositivos, generar solicitudes de envio de notificaciones, configuracién de las notificaciones y proveer
otras funcionalidades que la solucion requiera a nivel de Push Notifications a través por ejemplo, de una
consola.

El servidor también accedera al mecanismo de persistencia Database que almacenara los tokens de los
dispositivos registrados para ser notificados con los mensajes.

Database también podria almacenar configuraciones particulares para la notificaciéon y requeridas por
Server.



Generalidades 20

HTTPS Triggers with Independent FCM and APNS Approach

i Apple Push
: Notification
— : Service
4 ______ 1
D ™
.
Users “e------ L -
https Firebase Cloud
Messaging
Android

& —= - %:E)—> -

. Server Database
Admin  Console AP| Gateway

Figure 1.5 HTTPS Triggers with Independent FCM and APNS Approach

Este patron utiliza la plataforma FCM para distribuir los mensajes a los clientes Android y utiliza la plataforma
APNS para distribuir los mensajes a los clientes iOS. Se disefia la distribucién de Push Notifications usando
de forma independiente ambas plataformas a diferencia del patron anteriormente expuesto.

En este patron los componentes API Gateway, Server y Database cumplen las mismas funciones descritas en
el patréon anterior, con la diferencia que en esta estrategia Database almacenara tanto los tokens generados
por FCM como los tokens generados por APNS.



21

Generalidades

HTTPS Triggers with APNS Approach

& ) Apple Push
Users I0S Notification
Service
https _{\>—> —
- 1‘_ e
_ = J’ Server Database
Admin  Console API| Gateway

Figure 1.6 HTTPS Triggers with APNS Approach

Este patrén es oportuno cuando se requiere proveer de notificaciones inicamente a los usuarios iOS. En este
caso unicamente es usado APNS como plataforma para gestionar y distribuir los mensajes.

0 Para recordar
Recordemos que también a través de FCM se puede proveer de notificaciones a los clientes iOS. Sin
embargo si no se tiene dentro de los planes a corto y largo plazo atender a usuarios Android un
aprovechamiento mas acertado es emplear APNS.



Generalidades 22

HTTPS Triggers with FCM Approach

B [t

_ Firebase Cloud
Users  Android Messaging

https q&_\'b—b

C—= sl/
Admin  Console API Gateway

Server Database

Figure 1.7 HTTPS Triggers with FCM Approach

Este patron es oportuno cuando se requiere proveer de notificaciones inicamente a los usuarios Android. En
este caso unicamente es usado FCM como plataforma para gestionar y distribuir los mensajes.



Generalidades 23

Event-Driven Approach

T

Apple Push
Notification
— Service
- —— - - -
J— o
‘T Firebase Cloud
iOS i Messaging
A [l
-t
O ———0DOD
. Cloud Service Microservice
Users  Android Trigger Serverless
A ="
C_==)
Admin Web Database
Service

Figure 1.8 Event-Driven Approach

Este patron es un disefio con aprovechamiento Serverless en donde las acciones de ejecucién no solo provienen
desde http triggers, sino ademas de triggers originados desde las bases de datos, funciones serverless (Cloud
Functions or Lambdas), o procesos batch programados y automatizados.

En este patron es usado Database Service para almacenar los tokens y las configuraciones del sistema
de notificaciones requeridas. Estos servicios podrian ser bases de datos tales como Firestore, DynamoDB,
Realtime Database, RDS, Cloud SQL, entre otros.

Como Microservice Serverless podrian emplearse servicios disponibles con FaaS tales como Cloud Functions
0 Lambdas o contenedores serverless tales como Cloud Run o Fargate.



	Tabla de contenido
	Prefacio
	Acerca del libro
	Acerca del código fuente
	Desarrollo del contenido
	Glosario
	Audiencia
	Consultas y/o contacto
	Versiones de IDEs y tecnologías usadas
	Change log
	Futuras ediciones

	Generalidades
	Introducción
	Tipos de mensajes
	Estados de la aplicación
	Tipos de notificaciones
	Patrones de implementación de Push Notifications


