

[image: Manual de Push Notifications para iOS y Android]

 Manual de Push Notifications para iOS y Android

 Yair Carreno

 Este libro está a la venta en http://leanpub.com/push-notifications-ios-android-spanish

 Esta versión se publicó en 13/10/2021

 [image: publisher's logo]

 * * * * *

 Éste es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de publicación. Lean Publishing es el acto de publicar un libro en progreso usando herramientas sencillas y muchas iteraciones para obtener retroalimentación del lector hasta conseguir el libro adecuado.

 * * * * *

© 2021 Yair Carreno

 Tabla de contenido

 	
 Prefacio

 	
 Acerca del libro

 	
 Acerca del código fuente

 	
 Desarrollo del contenido

 	
 Glosario

 	
 Audiencia

 	
 Consultas y/o contacto

 	
 Versiones de IDEs y tecnologías usadas

 	
 Change log

 	
 Futuras ediciones

 	
 Generalidades

 	
 Introducción

 	
 Tipos de mensajes

 	
 Estados de la aplicación

 	
 Tipos de notificaciones

 	
 Patrones de implementación de Push Notifications

 Guide

 	
 Begin Reading

Prefacio

Acerca del libro

Estimado lector. Es grato comunicarme contigo y emprender esta aventura por el mundo de las Push Notifications.

Quizás muchos estén de acuerdo conmigo al considerar push notifications como un mecanismo cool para entregar mensajes al usuario. Considero que es una de las capacidades más versátiles que tienen las aplicaciones móviles. Pero seamos honestos, a veces durante el proceso de implementación de un feature que incluye esta capacidad se puede complicar más de lo debido, ya sea porque la notificación no se muestra, o que de repente dejaron de mostrarse, o que reportan un bug muy extraño y difícil de detectar.

Pensando en ello, tengo una buena noticia para ustedes amigos lectores. Al finalizar este libro estarán de acuerdo conmigo cuando afirmo que las Push Notifications no solo son un excelente mecanismo de llegarle al usuario, sino que además no es tan difícil después de todo entender cómo funcionan y se implementan.

En muchas ocasiones, la solución o las respuestas están a la vista en la documentación oficial, pero nos perdemos a la hora de unir todas las piezas.

Después de muchas sesiones de trabajo con este tópico en las aplicaciones móviles, decidí compartir mis conocimientos a través este trabajo en donde se relacionan los dos sistemas operativos más importantes en aplicaciones móviles, iOS y Android. Después de todo ¿Qué aplicación móvil hoy en día no usa Push Notifications en alguna de sus funcionalidades? Seguramente habrá un porcentaje considerable que aún no use estas capacidades, pero no cabe duda de que es cuestión de tiempo para que requieran hacerlo al notar las múltiples ventajas que éstas incorporan a una aplicación.

Con base a información recopilada desde Firebase Cloud Messaging, Apple, Blogs, eBooks e implementaciones en proyectos productivos, he organizado cada contenido para que de forma progresiva el lector vaya adquiriendo los conceptos fundamentales para posteriormente presentar el desarrollo e implementación de cada uno de dichos conceptos.

Si logro que el lector incluya este manual dentro de sus documentos de referencia, sentiría que he cumplido con mi labor con respecto a este tema.

También, animo al lector a que constantemente esté verificando las actualizaciones y mejoras en este campo que al igual que los otros campos constantemente evolucionan.

Espero amigo lector que sea de su agrado este trabajo y no siendo más, “Let’s start!”.

Acerca del código fuente

Para desarrollar el contenido de este libro, he creado múltiples repositorios públicos con el código fuente para iOS y Android.
En la primera edición del libro, el proyecto iOS fué implementado con Swift y el proyecto Android tiene la implementación en Java.
Para esta segunda edición del libro, se agrega la implementación del proyecto para Android usando Kotlin.

En el capítulo Implementación de Push Notifications se detalla las estrategias implementadas y el lector podrá encontrar los siguientes repositorios el código fuente de las APPs:

 	
Push Notifications Handbook iOS.

 	
Push Notifications Handbook Android-Java.

 	
Push Notifications Handbook Android-Kotlin.

Desarrollo del contenido

Se ha dividido el contenido en tres bloques principales de temas. El primer bloque es de conceptos, el segundo bloque es dedicado a configuraciones y el tercer bloque es usado para mostrar las implementaciones en las APPs.

El primer bloque de conceptos contiene el capítulo de Generalidades en donde se presenta la información básica para entender en su totalidad los mecanismos de envío y recepción de push notifications. Conceptos tales como los tipos de mensajes, el estado de la aplicación al momento de recibir el mensaje, los tipos de manejo que se le pueden dar a una notificación, patrones de diseños y estrategias, entre otros, son presentados en este capítulo de generalidades.

De este bloque también hace parte el capítulo Implementación de Push Notifications. Este capítulo presenta los pasos necesarios para implementar los patrones de diseños que se presentan en el capítulo de generalidades. Se describe cada una de las estrategias con sus pros y sus contras para que el lector en su buen criterio escoja el que considere más adecuado para sus soluciones.

Este bloque es la base para desarrollar los temas de los siguientes dos bloques.

El segundo bloque es dedicado a configuraciones, es decir, las actividades que el lector deberá realizar con respecto a herramientas y consolas para permitir el envío de mensajes de forma exitosa.

El primer capítulo de este bloque es Configuración del proyecto en Firebase en donde se proporcionan las instrucciones para crear un proyecto en Firebase para los casos de distribución de mensajes con FCM.

Posteriormente se presenta el capítulo Configuración de APP iOS en Apple Developer Portal. Allí se describe la información requerida y diligenciada para dar soporte de push notifications a los clientes iOS.

Y este bloque finaliza con el capítulo Integración de APP a Firebase que no es más que integrar las APPs de iOS y Android a las plataformas de distribución de mensajes de Firebase.

El tercer bloque lo conforman los capítulos de netamente implementación. Con base a los conceptos básicos y teniendo las configuraciones finalizadas, se procede a mostrar el código fuente en las aplicaciones móviles para recibir y administrar los mensajes provenientes de las plataformas de distribución de mensajes FCM o APNs. Esto se muestra en el capítulo Configuración de APP para recibir Push Notifications.

Moviéndonos para el lado del backend, en el capítulo Creación del servidor de Push Notifications se presenta la implementación de microservicios responsables de realizar el envío de los mensajes a través de FCM o APNs. Estos servicios se construyen con un diseño Serverless y a través de Cloud Services en GCP.

Cerrando el bloque, se presenta el capítulo Herramientas de Testing para Push Notifications clave a la hora de verificar la correcta implementación del sistema push notifications en APPs y detectar posibles fallas, malas configuraciones o posibles bugs en el manejo de los mensajes.

Adicional a estos tres bloques, he querido dejarle también al lector un capítulo extra de recomendaciones, tips y técnicas que podrían ser de utilidad y complemento al contenido. Este capítulo es llamado Bono extra.

Glosario

Durante el desarrollo de los temas en el libro, el lector podrá encontrar algunos términos los cuales son descritos a continuación para dar mayor claridad.

FCM: Firebase Cloud Messaging, servicio de Firebase para la distribución de mensajes a clientes móviles y web.

APNS: Apple Push Notifications Service, servicio de Apple para la distribución de mensajes a clientes iOS.

Notificaciones locales: Notificaciones generadas desde un ámbito de frontend, es decir desde la misma aplicación cliente.

Notificaciones remotas: Notificaciones generadas desde un ámbito de backend, es decir desde un servidor remoto.

Audiencia

Este libro lo recomiendo para todo actor que participa en procesos de diseño, implementación y validación de componentes de software para clientes móviles en sistemas operativos iOS y/o Android. Si bien Push Notifications es solo uno de los tópicos en el mundo de desarrollo de soluciones móviles, es importante conocer a detalle estos mecanismo para usarlos en implementaciones in-house, optimizaciones o mejoras en procesos de fidelización de usuarios, entre otros usos y aplicaciones basadas en este tipo de mensajes.

Consultas y/o contacto

Este trabajo pretender guiar al lector en la búsqueda de buenas prácticas de diseño en soluciones que involucran push notifications. Ha sido desarrollado desde mi punto de vista y teniendo en cuenta las recomendaciones de fuentes expertas citadas en la bibliografía.

Muy seguramente el lector podría encontrar alternativas a las técnicas expuestas en este libro, que pueden variar un poco a las aquí consignadas, y esa, es precisamente la idea del presente trabajo.

Si el lector encuentra en el libro algún aspecto que merezca ser revisado son bienvenidos los comentarios y la retroalimentación que se dé al respecto. Para ello y cualquier duda o inquietud se encuentra disponible los siguientes canales:

 	Email: yaircarreno@gmail.com

 	Twitter: @yaircarreno

 	Blog: yaircarreno.com

Idioma de textos en las imágenes

Por estándar, los textos y la descripción de las imágenes presentadas a lo largo del presente libro contienen textos en inglés.

Idioma en Code Snippets

Por estándar, los ejemplos de código que acompañan el presente libro se encuentran en inglés. También algunos textos principales se encuentran en inglés para mantener consistencia con la documentación oficial.

Versiones de IDEs y tecnologías usadas

Android Environment

 	
IDE: Android Studio Arctic Fox 2020.3.1

 	
Deployment SDK: API 30 - Android 11.

 	
Minimum SDK: API 21 - Android 5.0 (Lollipop)

 	
Languaje: Java and Kotlin

 	
Interface: Activities

iOS Environment

 	
IDE: Xcode 12.5

 	
iOS Deployment Target: 14.5

 	
Language: Swift 5

 	
Interface: Storyboard

Change log

Para mantener al lector informado sobre las actualizaciones y cambios en el presente libro, se proporciona el capítulo Changelog.

Futuras ediciones

Teniendo en cuenta el advenimiento de las nuevas tecnologías con UI declarativas, se proyecta una próxima edición que incluya los proyectos con SwitfUI, Jetpack Compose y Flutter. Así que, estén atentos amigos lectores.

Generalidades

Introducción

Una de las capacidades en las aplicaciones móviles que más me gusta es la de permitir enviarle al usuario un mensaje sin necesidad que la aplicación se encuentre ejecutándose en primer plano. Ya sea para propósitos de alerta, de carácter informativo, para publicidad de ofertas, de marketing o para simplemente llamar la atención del usuario con respecto a un mensaje que se quiere comunicar.

Push Notifications son mensajes en tiempo real, esto le agrega un valor de inmediatez clave para ciertas funcionalidades en una aplicación.

 Notificaciones remotas Vs Notificaciones locales

 Son notificaciones remotas aquellos mensajes que son enviados desde un servidor externo, es decir en un contexto externo a la aplicación. Son notificaciones locales aquellos mensajes que se generan al interior de la aplicación y que son administrados por la API de sistema de eventos del sistema operativo del dispositivo.

Antes de entrar en el detalle de la implementación de Push Notifications tanto en clientes iOS como Android, se presenta en las siguientes secciones aquellos conceptos que considero son claves para entender el funcionamiento completo desde que se envía una notificación hasta que se recibe por parte de la aplicación para ser presentada al usuario o administrada por la aplicación.

Tener estos conceptos claros es importante tanto para la fase de diseño como para la fase de implementación, conceptos tales como el estado de la aplicación en el momento del arribo de la notificación, si la notificación es silenciosa o es de tipo alerta, si el servidor de notificaciones envía el mensaje como notifications, como data, como ambas. Estas consideraciones son relevantes a la hora de implementar Push Notifications y evitar posibles errores difíciles de detectar.

 [image: Figure 1.1 Flow receiving notification]
 Figure 1.1 Flow receiving notification

Tipos de mensajes

El mensaje de notificación que recibe la aplicación móvil puede provenir a través de dos plataformas, FCM (Firebase Cloud Messaging) o de APNS (Apple Push Notification Service). Una de las diferencias entre uno u otro caso es el mensaje JSON entregado por estas plataformas.

De acuerdo a la estrategia seleccionada, la APP podría recibir mensajes enviados desde el servidor de notificaciones a través de FCM, APNS o ambos. Estos patrones y estrategias para envío de notificaciones es analizado en la sección de patrones que se encuentra más adelante.

Es importante conocer la estructura del mensaje enviado por el servidor de notificaciones a través de FCM o APNS, ya que dependiendo del tipo de mensaje que se reciba y el estado de aplicación, se determinará el comportamiento de la notificación. Estas conclusiones serán demostradas más adelante en las secciones Conclusiones de las pruebas sobre notificaciones en iOS y Conclusiones de las pruebas sobre notificaciones en Android.

Analicemos a continuación el mensaje entregado por cada una de estas plataformas:

Mensaje desde FCM

En Firebase Cloud Messaging el mensaje puede contener únicamente el objeto Notification, únicamente el objeto Data o puede contener ambos así como se muestra en el siguiente código:

 Example message FCM
 1 {
 2 "message":{
 3 "token":"bk3RNwTe3H0:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
 4 "notification":{
 5 "title":"Argentina vs. Brasil",
 6 "body":"Great match!"
 7 },
 8 "data" : {
 9 "Nick" : "Mario",
10 "Room" : "ArgentinaVSBrasil"
11 }
12 }
13 }

A los objetos notification y data también se les suele conocer como notification payload y data payload respectivamente. Es importante que el lector tenga en mente lo siguiente:

 	Se envía el objeto notification cuando se quiere que FCM administre de forma automática la notificación en nombre de la aplicación.

 	Se envía el objeto data cuando se quiere que la aplicación administre y tome el control sobre la notificación.

Estas reglas las resume FCM de la siguiente forma:

 [image: Table 1.1 General rules in FCM: Image taken from Firebase Documentation]
 Table 1.1 General rules in FCM: Image taken from Firebase Documentation

El mensaje enviado por FCM contiene campos que son comunes y pueden ser interpretados por igual en iOS, Android o Web. Estos campos son precisamente los de los objetos notification y data.

 	message.notification.title

 	message.notification.body

 	message.data

Esto quiere decir que por ejemplo el siguiente mensaje enviado desde un servidor con Node sería interpretado de la misma manera tanto en iOS, Android o Web:

 Example message in Node sending to FCM
1 const message = {
2 notification: {
3 title: 'Hi notification',
4 body: 'Testing my push notification.'
5 }
6 };

Es posible también enviar información en el mensaje que vaya destinado únicamente a una plataforma específica. Por ejemplo, el siguiente mensaje envía información para las plataformas Android, iOS y Web a través de los objetos android, apns, webpush:

 Example message in Node sending to FCM with specific information
 1 const message = {
 2 notification: {
 3 title: 'Sparky says hello!'
 4 },
 5 android: {
 6 notification: {
 7 imageUrl: 'https://foo.bar.pizza-monster.png'
 8 }
 9 },
10 apns: {
11 payload: {
12 aps: {
13 'mutable-content': 1
14 }
15 },
16 fcm_options: {
17 image: 'https://foo.bar.pizza-monster.png'
18 }
19 },
20 webpush: {
21 headers: {
22 image: 'https://foo.bar.pizza-monster.png'
23 }
24 },
25 topic: topicName,
26 };

En el ejemplo anterior, el campo title es igual para todas las plataformas, pero la presentación de la imagen es particular para cada plataforma. El resultado de la configuración podría ser similar al mostrado en la siguiente imagen:

 [image: Figure 1.2 Example setting image notification. Image taken from Firebase documentation]
 Figure 1.2 Example setting image notification. Image taken from Firebase documentation

En la siguiente documentación de Firebase Cloud Messaging se pueden encontrar más ejemplos de este tipo de configuraciones: Build send requests[^1].

Adicional a estos dos objetos principales notification y data, el mensaje también podría incluir más información acerca de la forma en que será distribuido. Esto se hace a través de los campos excluyentes token, topic o condition.

En el siguiente ejemplo, se muestra la configuración de un mensaje de tipo notification que será distribuido a múltiples dispositivos a través de sus tokens:

 Example message in Node sending to FCM by tokens
1 const message = {
2 notification: {
3 title: 'Sparky says hello!'
4 },
5 tokens: ['ABCDFE...', 'OPQRSTUV...'],
6 };

En el siguiente ejemplo, se muestra la configuración de un mensaje de tipo notification que será distribuido a un dispositivo específico a través de su token:

 Example message in Node sending to FCM by only one token
1 const message = {
2 notification: {
3 title: 'Sparky says hello!'
4 },
5 token: 'ABCDFE...',
6 };

En el siguiente ejemplo, se muestra la configuración de un mensaje de tipo notification que será distribuido a subscriptores a través de un topic:

 Example message in Node sending to FCM by topic
1 const message = {
2 notification: {
3 title: 'Sparky says hello!'
4 },
5 topic: 'all-team',
6 };

El servidor de notificaciones usa Firebase Admin SDK y el v1 HTTP protocol[^2] para la implementación y envío de Push Notifications. Este servidor puede ser diseñado con microservicios escritos en Node, Java, Phyton, C# o Go. En la sección Creación del servidor de Push Notifications se entregará mayor detalle con códigos de ejemplo sobre estas implementaciones.

Interpretación del mensaje de FCM en Android

Mencionaba anteriormente que es importante conocer el tipo de mensaje que se envía desde el servidor de notificaciones a través de FCM. Esto es debido a que dependiendo de los tipos de objetos enviados en el mensaje, es decir notification, data o ambos, se determinará qué tipo de comportamiento tendrá la notificación remota teniendo en cuenta también el estado de la aplicación. Los estados de la aplicación es el tema tratado en la siguiente sección.

En Android, se cumplen las siguientes condiciones:

Caso de uso 1: Si la notificación remota requiere ser presentada únicamente cuando la aplicación se encuentra en estado Foreground, se recomienda usar un mensaje como el siguiente:

 Example message FCM for Foreground State Android
1 {
2 "message":{
3 "token":"bk3RNwTe3H0:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
4 "notification":{
5 "title":"Argentina vs. Brasil",
6 "body":"Great match!"
7 }
8 }

En este caso solamente se envía el objeto notification y la notificación será administrada de forma automática por FCM mostrando el title y el body con un componente UI estándar de notificación.

Sin embargo, este caso es poco común en las aplicaciones, ya que generalmente el objetivo es presentar la notificación independientemente de si la aplicación se encuentra en Foreground, Background o Closed. Esto nos lleva al segundo caso mostrado a continuación.

Caso de uso 2: Si la notificación remota requiere ser administrada y procesar información enviada en el mensaje cuando la aplicación se encuentre en los estados Foreground, Background o Closed, se recomienda usar un mensaje como:

 Example message FCM for Foreground, Background or Closed State Android
1 {
2 "message":{
3 "token":"bk3RNwTe3H0:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...",
4 "data" : {
5 "title":"Argentina vs. Brasil",
6 "body":"Great match!"
7 }
8 }
9 }

En este caso solamente se incluye el objeto data. No puede ser incluido el notification, ya que de lo contrario el mensaje solo sería administrado para un estado en Foreground.

En resumen y teniendo en cuenta la documentación de FCM, las siguientes son las condiciones que se cumplen para Android:

 [image: Table 1.2 FCM rules for Android]
 Table 1.2 FCM rules for Android

Estas conclusiones y casos, serán verificados a través de un conjunto de pruebas sobre push notifications en la sección de implementación.

 ¿Cuándo se ejecuta onMessageReceived?

 De la tabla anterior 1.2, se puede deducir que en Android la operación onMessageReceived será ejecutada cuando la aplicación se encuentra en Background si y solo si el mensaje recibido es de tipo Data. Esto es importante tenerlo en cuenta para las implementaciones en Android. En las secciones posteriores se hablará más del tema.

Interpretación del mensaje de FCM en iOS

En el caso de iOS, todos los mensajes entregados por FCM se hacen a través de APNS. Esta es una de las razones por las cuales a pesar de usar FCM también se debe configurar el envío de la notificación en APNS.

 ¿Es posible usar únicamente FCM para distribuir mensajes a clientes iOS sin usar APNS?

 No. La distribución de mensajes a clientes iOS requerirá siempre involucrar la integración de APNS.

En la sección anterior de Android se hacía énfasis en el concepto de tipos de mensajes (notification y/o data) y cómo dependiendo de estos tipos de mensajes se podría influir en el comportamiento de la notificación cuando es recibida en la APP.

En cambio en iOS tiene mayor relevancia el concepto de tipo de notificación, esto es, Alert push notification y Background push notifications. Estos conceptos serán tema en una próxima sección llamada Tipos de notificaciones.

Sin embargo, en iOS estos conceptos se interpretan de forma similar. Un mensaje tipo notification o notification + data será interpretado como una Alert push notification y un mensaje tipo data será interpretado como una Background push notifications. Esto será demostrado más adelante.

Por lo pronto, se mostrarán los ejemplos de estos dos tipos de mensajes en FCM:

 Example message in Node sending to FCM for Alert notification
 1 const registrationToken = 'bk3RNwTe3H0:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...';
 2
 3 const message = {
 4 notification: {
 5 title: 'Urgent action needed!',
 6 body: 'Urgent action is needed to prevent your account from being disabled!'
 7 },
 8 data: {
 9 key1: "some_value",
10 key2: "another_value",
11 key3: "one_more"
12 },
13 token: registrationToken
14 };
15
16 admin.messaging().send(message)
17 .then((response) => {
18 console.log('Successfully sent message:', response);
19 })
20 .catch((error) => {
21 console.log('Error sending message:', error);
22 });

 Example message in Node sending to FCM for Background notification
 1 const registrationToken = 'bk3RNwTe3H0:CI2k_HHwgIpoDKCIZvvDMExUdFQ3P1...';
 2
 3 const message = {
 4 notification: {
 5 title: 'Urgent action needed!',
 6 body: 'Urgent action is needed to prevent your account from being disabled!'
 7 },
 8 data: {
 9 key1: "some_value",
10 key2: "another_value",
11 key3: "one_more"
12 }
13 };
14
15 const options = {
16 priority: 'high',
17 contentAvailable: true
18 };
19
20 admin.messaging().sendToDevice(registrationToken, message, options)
21 .then((response) => {
22 console.log('Successfully sent message:', response);
23 })
24 .catch((error) => {
25 console.log('Error sending message:', error);
26 });

Limitaciones de los mensajes FCM

 	Para los mensajes de tipo notification se deben usar los valores llave-valor predefinidos en el estándar. El cambio de estos nombres podrían generar errores.

 	Para los mensajes de tipo data, los valores llave-valor pueden ser personalizados y deben ser tenidos en cuenta a la hora de procesar la notificación en la aplicación cliente.

 	El mensaje de tipo notification puede contener de forma opcional un data payload. No confundir este payload con el otro tipo de mensaje que hemos llamado data.

 	Máximo es permitido un tamaño de 4KB por mensaje, ya sea que se envíe solo el notification, data o ambos.

 	Para testing y envío de mensajes a través de la consola Firebase, es permitido hasta 1024 caracteres.

Mensaje desde APNS

Si la plataforma escogida para la distribución de mensajes a los usuarios iOS ha sido APNS, entonces la APP deberá prepararse para recibir mensajes con los siguientes tipos de estructuras[^3]:

Este es un mensaje de tipo Alert Push Notifications:

 Example message APNS for Alert notification
 1 {
 2 "aps" : {
 3 "alert" : {
 4 "title" : "Game Request",
 5 "subtitle" : "Five Card Draw",
 6 "body" : "Bob wants to play poker"
 7 },
 8 "category" : "GAME_INVITATION"
 9 },
10 "gameID" : "12345678"
11 }

Este es un mensaje de tipo Background Push Notifications también conocidos como mensajes silenciosos:

 Example message APNS for Background notification
1 {
2 "aps" : {
3 "content-available" : 1
4 },
5 "acme1" : "bar",
6 "acme2" : 42
7 }

Este es un mensaje de tipo Sound notification:

 Example message APNS for playing sound notification
1 {
2 "aps" : {
3 "badge" : 9,
4 "sound" : "bingbong.aiff"
5 },
6 "messageID" : "ABCDEFGHIJ"
7 }

Este es un mensaje de tipo With Localized Content:

 Example message APNS for notification with localized content
1 {
2 "aps" : {
3 "alert" : {
4 "loc-key" : "GAME_PLAY_REQUEST_FORMAT",
5 "loc-args" : ["Shelly", "Rick"]
6 }
7 }
8 }

Estados de la aplicación

Como se mencionó en secciones anteriores, dentro de las estrategias usadas por la APP para la administración de las push notifications es clave conocer el estado en el cual se encuentra la aplicación cuando el mensaje es recibido. Dichos estados son descritos a continuación.

Foreground State

Se dice que una aplicación se encuentra en estado Foreground cuando al menos una de sus pantallas o servicios se encuentran visible al usuario, es decir se encuentra en ejecución en primer plano.

Background State

Se dice que la aplicación se encuentra en estado Background cuando ninguna de sus vistas se encuentra visible al usuario, es decir cuando la aplicación ejecuta todos sus servicios en segundo plano.

Este estado tiene ciertas restricciones para operar. Por ejemplo tener acceso limitado a la memoria o estar condicionado al nivel de batería del dispositivo. También por políticas de privacidad y transparencia al usuario algunas operaciones son restringidas en el estado background como por ejemplo acceder a la localización.

Se recomienda evitar usar estos estados para ejecutar tareas extensas y prolongadas, en su lugar puede ser usado otras alternativas como procesos con jobs que trabajen en segundo plano y no interfieran en la interacción con el usuario.

Closed State

Si la aplicación no se encuentra en ejecución en primer plano ni tampoco en ejecución en segundo plano, se dice entonces que es una aplicación cerrada con todos sus procesos apagados.

Determinar el estado de la aplicación

Una de las funciones que cumplen las plataformas de distribución de mensaje (FCM o APNS), es determinar el estado de la APP cuando hace la entrega del mensaje y de acuerdo a ello decide el comportamiento de la notificación entregada. Sin embargo, el lector podría agregar validaciones adicionales sobre el estado de la aplicación cuando se recibe el mensaje. Esto con el objetivo de hacer cumplir un flujo particular o un caso de uso específico.

A continuación se describe la forma programática con la cual se podría verificar el estado de la aplicación tanto en iOS como en Android.

En iOS

Para determinar los estados foreground y background de la APP en iOS, se puede emplear la siguiente función en Swift:

 Checking App status in iOS
1 func isForeground() -> Bool {
2 return UIApplication.shared.applicationState == .active
3 }

Importante que la clase delegada para la implementación de esta verificación cuente con la dependenccia:

 Dependency included
1 import UIKit

En Android

Para Android, usaremos la recomendación de Google[^4] de emplear la clase ProcessLifecycleOwner[^5] para determinar los estados foreground y background de la APP así:

 Checking App status in Android
1 private boolean inForeground() {
2 return ProcessLifecycleOwner.get().getLifecycle().getCurrentState()
3 .isAtLeast(Lifecycle.State.STARTED);
4 }

Es necesario instalar las siguientes dependencias[^6] en la aplicación:

 Dependencies included
 1 def lifecycle_version = "2.3.1"
 2
 3 // Lifecycles only (without ViewModel or LiveData)
 4 implementation "androidx.lifecycle:lifecycle-runtime:$lifecycle_version"
 5
 6 // alternately - if using Java8, use the following instead of lifecycle-compiler
 7 implementation "androidx.lifecycle:lifecycle-common-java8:$lifecycle_version"
 8
 9 // optional - ProcessLifecycleOwner provides a lifecycle for the whole application process
10 implementation "androidx.lifecycle:lifecycle-process:$lifecycle_version"

¿Qué hay acerca del estado closed/kill?

En el ámbito de la aplicación tendrá sentido determinar si el estado es foreground o background. Para los casos en los que la aplicación se encuentre cerrada totalmente el manejo de los mensajes será administrados por el sistema operativo así:

Para el caso de Android, ver la tabla anterior Table 1.2 FCM rules for Android. Y para el caso de iOS ver la siguiente tabla:

 [image: Table 1.3 APNs rules for iOS]
 Table 1.3 APNs rules for iOS

En el capítulo Implementando en iOS se mostrará el conjunto de verificaciones que concluyen los datos presentados en la tabla anterior.

Tipos de notificaciones

 [image: Figure 1.3 Notifications type: Image taken from Apple Documentation]
 Figure 1.3 Notifications type: Image taken from Apple Documentation

Alert Push Notifications

Alert Push Notifications son mensajes visibles tanto al usuario como a la aplicación. Permiten que el usuario interactúe con la notificación y ejecute determinadas acciones según lo defina la experiencia de usuario. Este tipo de notificaciones pueden tener un diseño UI estándar o personalizado.

Son notificaciones que pueden ser ejecutadas cuando la aplicación se encuentra en estado Foreground, Background o Closed.

Background Push Notifications

También son conocidas como notificaciones silenciosas. Son mensajes visibles únicamente a la aplicación. El usuario no es notificado sobre estos mensajes por cuál son notificaciones silenciosas que solo son conocidas por la aplicación en un segundo plano.

Este tipo de notificaciones pueden ser usadas para activar la ejecución de tareas en segundo plano que no requieran ser informadas al usuario, como por ejemplo la actualización de un componente, la consulta en caché para optimización, entre otros casos de usos.

Al igual que Alert Push Notifications, son notificaciones que pueden ser ejecutadas cuando la aplicación se encuentra en estado Foreground, Background o Closed, sin embargo existen una serie de restricciones que podrían interrumpir o evitar su normal funcionamiento como por ejemplo un nivel de batería bajo o una configuración por parte del usuario que impida procesos en background. Estas limitantes deben ser tenidas en cuenta al momento de diseñar funcionalidades con este tipo de notificaciones.

Si bien el concepto de alert push notifications y background push notifications es documentado para iOS, es un concepto que se puede encontrar también en Android y ser aplicado de forma similar. En el capítulo Configuración de APP para recibir Push Notifications se presentará el detalle de implementación de este tipo de notificaciones tanto en iOS como en Android.

Patrones de implementación de Push Notifications

Existen múltiples estrategias y patrones que se pueden emplear para la implementación de un sistema de push notifications. En este capítulo se presentan los patrones más comunes, los cuales podrían tener variaciones dependiendo de las necesidades de la solución.

Después de analizar estos patrones, se presenta el detalle de implementación de dichos patrones expuestos en este capítulo, estos son: Https triggers with FCM and APNS approach, Https triggers with APNS approach (only iOS) y Https triggers with FCM approach (only Android). La implementación de dichas estrategias pueden ser tomadas como referencia para la implementación de los otros aprovechamientos expuestos.

HTTPS Triggers with FCM and APNS Approach

 [image: Figure 1.4 HTTPS Triggers with FCM and APNS Approach]
 Figure 1.4 HTTPS Triggers with FCM and APNS Approach

Este patrón utiliza la plataforma FCM (Firebase Cloud Messaging) para la distribución de los mensajes hacia los clientes iOS, Android y Web.

Adicionalmente FCM se comunica con APNS (Apple Push Notification Service) para garantizar la entrega de las notificaciones a los clientes iOS de forma segura y autorizada por Apple.

El servidor de notificaciones Server, provee a través de Microservicios y API Gateway la integración para que los clientes registren sus dispositivos para recibir notificaciones, actualizar el token de uno o varios dispositivos, generar solicitudes de envío de notificaciones, configuración de las notificaciones y proveer otras funcionalidades que la solución requiera a nivel de Push Notifications a través por ejemplo, de una consola.

El servidor también accederá al mecanismo de persistencia Database que almacenará los tokens de los dispositivos registrados para ser notificados con los mensajes.

Database también podría almacenar configuraciones particulares para la notificación y requeridas por Server.

HTTPS Triggers with Independent FCM and APNS Approach

 [image: Figure 1.5 HTTPS Triggers with Independent FCM and APNS Approach]
 Figure 1.5 HTTPS Triggers with Independent FCM and APNS Approach

Este patrón utiliza la plataforma FCM para distribuir los mensajes a los clientes Android y utiliza la plataforma APNS para distribuir los mensajes a los clientes iOS. Se diseña la distribución de Push Notifications usando de forma independiente ambas plataformas a diferencia del patrón anteriormente expuesto.

En este patrón los componentes API Gateway, Server y Database cumplen las mismas funciones descritas en el patrón anterior, con la diferencia que en esta estrategia Database almacenará tanto los tokens generados por FCM como los tokens generados por APNS.

HTTPS Triggers with APNS Approach

 [image: Figure 1.6 HTTPS Triggers with APNS Approach]
 Figure 1.6 HTTPS Triggers with APNS Approach

Este patrón es oportuno cuando se requiere proveer de notificaciones únicamente a los usuarios iOS. En este caso únicamente es usado APNS como plataforma para gestionar y distribuir los mensajes.

 Para recordar

 Recordemos que también a través de FCM se puede proveer de notificaciones a los clientes iOS. Sin embargo si no se tiene dentro de los planes a corto y largo plazo atender a usuarios Android un aprovechamiento más acertado es emplear APNS.

HTTPS Triggers with FCM Approach

 [image: Figure 1.7 HTTPS Triggers with FCM Approach]
 Figure 1.7 HTTPS Triggers with FCM Approach

Este patrón es oportuno cuando se requiere proveer de notificaciones únicamente a los usuarios Android. En este caso únicamente es usado FCM como plataforma para gestionar y distribuir los mensajes.

Event-Driven Approach

 [image: Figure 1.8 Event-Driven Approach]
 Figure 1.8 Event-Driven Approach

Este patrón es un diseño con aprovechamiento Serverless en donde las acciones de ejecución no solo provienen desde http triggers, sino además de triggers originados desde las bases de datos, funciones serverless (Cloud Functions or Lambdas), o procesos batch programados y automatizados.

En este patrón es usado Database Service para almacenar los tokens y las configuraciones del sistema de notificaciones requeridas. Estos servicios podrían ser bases de datos tales como Firestore, DynamoDB, Realtime Database, RDS, Cloud SQL, entre otros.

Como Microservice Serverless podrían emplearse servicios disponibles con FaaS tales como Cloud Functions o Lambdas o contenedores serverless tales como Cloud Run o Fargate.

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_key.png

OEBPS/images/strategy-push-2.png
Apple Push
Notification
Service

B% i0S
S -

Firebase Cloud
Messaging

<

) Server Database
Admin Console AP| Gateway

OEBPS/images/strategy-push-3.png
Admin

Console

—>>
https 6_\')4—> <

API Gateway

T

) Apple Push
iI0S Notification
Service

d

Server

Database

OEBPS/images/strategy-push-4.png
E{o‘\i

Users Android

Admin

Console

%{'934—'4

API Gateway

(2

Firebase Cloud
Messaging

d

Server

Database

OEBPS/images/notification_android_rules.png
App state Notification Data Both
= d - Doesn't show a notification. » Doesn't show a notification. » Doesn't show a notification.
oregroun * onMessageReceived: called. « onMessageReceived: called. « onMessageReceived: called.
: cS;:Ochver:t)gﬂggﬂgg ifthe user clicks | D0es't show a notification. : ShocW nct)tl-ﬂcaﬁog ifth lick
Background = "L message. + onMessageReceived: called. 8: thrga:rélscs:zgi I the user clicks
- oncreate: called f the user cicks | Doesntshowanotfcaion. 1 SRR L
Closed ‘ » onMessageReceived: called. onCreate: called if the user clicks

on the message.

on the message.

OEBPS/images/relation-state-type-message.png
App state Alert push Background push
* Show notification. * Doesn't show a natification
Foreground « willPresent: called. + didReceiveRemoteNotification: called.
« didReceive: called if the user
clicks on the message
« Show natification. * Doesn't show a notification
Background * didReceive: called if the user « didReceiveRemoteNotification: called.
clicks on the message
« Show notification. « Doesn't show a notification.
« didFinishLaunchingWithOptions, ¢ didFinishLaunchingWithOptions,
Closed didReceive: called if the user clicks didReceiveRemoteNotification: called

on the message

if the user clicks on the message

OEBPS/images/type-of-notifications.png
i

Alert Sound Badge silent

OEBPS/images/strategy-push-1.png
oD

Apple Push

Notification

Seryice

Firebase Cloud

Messaging

Admin

Console

——>
¢
‘l' Server Database

API Gateway

OEBPS/images/state-application.png
Remote
notification

Notification or Data Foreground, Alert or Background
Message? Background or Notification?
Closed state?

OEBPS/images/notification_data_rules.png
Notification
message

Data
message

Use scenario

FCM automatically displays the message to enc-user
devices on behalf of the client app. Notification messages
have a predefined set of user-visible keys and an optional
data payload of custom key-value pairs.

Client app is responsible for processing data messages.
Data messages have only custom key-value pairs with no
reserved key names (see below).

How to send

1.1n a trusted environment such as Cloud Functions or
your app server, use the Admin SDK of the FCM Server
Protocols: Set the notification key. May have
optional data payload. Always collapsible

See some examples of display notifications and send
request payloads.

2. Use the Notifications composer: Enter the Message
Text, Title, etc., and send. Add optional data payload by
providing Custom data

In a trusted environment such as Cloud Functions or your
app server, use the Admin SDK o the FCM Server
Protocols: Set the data key only.

OEBPS/images/notification_across_all_platforms.png
Sparky says hello!

Sparky says hello!

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
Push Notifications
HandBook

2nd
Edition

Actualizado
para Swift,
Java y Kotlin.

OEBPS/images/strategy-push-5.png
é/’of\i

T

Users

})\ L+

Apple Push
Notification
— Service
4.
f— ™,
< :') Firebase Cloud
i0S i Messaging
o= 4__:
<
T T,
Android Cloud Service Microservice
Trigger Serverless
Web Database

Service

