

PureScript mediante ejemplos
Programación funcional para la Web

Phil Freeman y Jorge Acereda

Este libro está a la venta en http://leanpub.com/purescriptmedianteejemplos

Esta versión se publicó en 2017-09-28

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicación. Lean Publishing es el acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector hasta conseguir tener el libro
adecuado.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

http://leanpub.com/purescriptmedianteejemplos
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Índice general

Introducción . 1
JavaScript funcional . 1
Tipos e inferencia de tipos . 2
Programación web políglota . 3
Prerrequisitos . 4
Sobre ti . 4
Cómo leer este libro . 4
Consiguiendo ayuda . 5
Acerca del autor . 6
Acerca de la traducción . 6
Agradecimientos . 7

Introducción
JavaScript funcional

Hace ya algún tiempo que han empezado a aparecer las técnicas de programación funcional en
Javascript:

• Bibliotecas como UnderscoreJS1 permiten al desarrollador aprovechar funciones probadas
como map, filter y reduce para crear programas más grandes a partir de programas más
pequeños mediante composición:

1 var sumOfPrimes =

2 _.chain(_.range(1000))

3 .filter(isPrime)

4 .reduce(function(x, y) {

5 return x + y;

6 })

7 .value();

• La programación asíncrona en NodeJS se apoya firmemente en las funciones como valores de
primera clase para definir retrollamadas (callbacks).

1 require('fs').readFile(sourceFile, function (error, data) {

2 if (!error) {

3 require('fs').writeFile(destFile, data, function (error) {

4 if (!error) {

5 console.log("File copied");

6 }

7 });

8 }

9 });

• Bibliotecas como React2 y virtual-dom3 modelan las vistas como funciones puras sobre el
estado de la aplicación.

1http://underscorejs.org
2http://facebook.github.io/react/
3https://github.com/Matt-Esch/virtual-dom

http://underscorejs.org/
http://facebook.github.io/react/
https://github.com/Matt-Esch/virtual-dom
http://underscorejs.org/
http://facebook.github.io/react/
https://github.com/Matt-Esch/virtual-dom

Introducción 2

Las funciones permiten una forma simple de abstracción que puede resultar en grandes ganancias en
productividad. Sin embargo, la programación funcional en JavaScript tiene sus propias desventajas.
JavaScript es verboso, no tipado, y carece de formas potentes de abstracción. El JavaScript no
restringido hace también el razonamiento ecuacional muy difícil.

PureScript es un lenguaje de programación cuyo objetivo es abarcar estos problemas. Proporciona
sintaxis ligera, que nos permite escribir código muy expresivo que sigue siendo claro y legible.
Usa un rico sistema de tipos para soportar abstracciones potentes. También genera código rápido
e inteligible, cosa importante cuando hay que interoperar con JavaScript u otros lenguajes que
compilan a JavaScript. Total, espero convencerte de que PureScript consigue un equilibrio muy
práctico entre el poder teórico de la programación funcional pura y el estilo de programación rápida
y flexible de JavaScript.

Tipos e inferencia de tipos

El debate sobre los lenguajes de tipado estático contra los de tipado dinámico está bien documentado.
PuseScript es un lenguaje de tipado estático, lo que significa que el compilador puede dar a un
programa correcto un tipo que indica su comportamiento. A la inversa, los programas a los que
no se les puede dar un tipo son programas incorrectos, y serán rechazados por el compilador. En
PureScript, al contrario que en los lenguajes de tipado dinámico, los tipos existen únicamente en
tiempo de compilación, y no tienen representación en tiempo de ejecución.

Es importante notar que, de varias maneras, los tipos en Purescript no son como los tipos que
has visto en otros lenguajes como Java o C#. Aunque sirven el mismo propósito a un nivel alto,
los tipos en PureScript están inspirados por lenguajes como ML y Haskell. Los tipos de PureScript
son expresivos, permitiendo al desarrollador hacer afirmaciones sólidas sobre sus programas. Más
importante, el sistema de tipos de PureScript soporta inferencia de tipos requiriendo muchas
menos anotaciones de tipo explícitas que otros lenguajes, convirtiendo el sistema de tipos en una
herramienta en lugar de en un estorbo. Un simple ejemplo, el siguiente código define un número,
pero no hay mención del tipo Number en ningún sitio del código:

1 iAmANumber =

2 let square x = x * x

3 in square 42.0

Un ejemplo más elaboradomuestra que la corrección de los tipos puede ser confirmada sin anotación
de tipos, incluso cuando existen tipos que son desconocidos para el compilador:

1 iterate f 0 x = x

2 iterate f n x = iterate f (n - 1) (f x)

Introducción 3

Aquí, el tipo de x es desconocido, pero el compilador sigue pudiendo verificar que iterate obedece
las reglas del sistema de tipos, sin importar qué tipo pueda tener x.

En este libro, intentaré convencerte (o reafirmar tu creencia) de que los tipos estáticos no sólo
son medios para ganar confianza en la corrección de tus programas, sino que también ayudan al
desarrollo por derecho propio. Refactorizar una base de código extensa en JavaScript puede ser difícil
para cualquier cosa que no sean las abstracciones más simples, pero un sistema de tipos expresivo
junto a un comprobador de tipos puede incluso convertir la refactorización en una experiencia
divertida e interactiva.

Además, la red de seguridad proporcionada por un sistema de tipos permite formas de abstracción
más avanzadas. De hecho, PureScript proporciona una poderosa forma de abstracción que es
fundamentalmente guiada por tipos: las clases de tipos (type classes) populares en el lenguaje de
programación funcional Haskell.

Programación web políglota

La programación funcional tiene sus historias de éxito, aplicaciones donde ha sido particularmente
exitosa: análisis de datos, análisis sintáctico, implementación de compiladores, programación
genérica o paralelismo por nombrar unas cuantas.

Sería posible practicar desarrollo de aplicaciones de extremo a extremo en un lenguaje funcional
como PureScript. PureScript proporciona la habilidad de importar código JavaScript existente,
proporcionando tipos para sus valores y funciones, y usar entonces esas funciones en código
PureScript normal. Veremos este enfoque más tarde en el libro.

Sin embargo, una de las fortalezas de PureScript es su interoperabilidad con otros lenguajes que
compilan a JavaScript. Otro enfoque sería usar PureScript como un subconjunto del desarrollo de tu
aplicación y usar otro(s) lenguajes para escribir el resto del código JavaScript.

Aquí hay algunos ejemplos:

• Lógica central escrita en PureScript, con la interfaz de usuario escrita en JavaScript.
• Aplicación escrita en JavaScript u otro lenguaje que compile a JavaScript, con pruebas escritas
en PureScript.

• PureScript usado para automatizar las pruebas de interfaz de usuario para una aplicación ya
existente.

En este libro, nos vamos a enfocar en resolver pequeños problemas con PureScript. Las soluciones
se podrían integrar en una aplicación más grande, pero también veremos como llamar a código
PureScript desde JavaScript y viceversa.

Introducción 4

Prerrequisitos

Los requerimientos de software para este libro son mínimos: El primer capítulo te guiará para
preparar un entorno de desarrollo desde cero, y las herramientas que vamos a usar están disponibles
en los repositorios estándar de la mayoría de sistemas operativos modernos.

El compilador de PureScript se puede descargar como una distribución binaria o se puede construir
a partir de los fuentes en cualquier sistema que tenga una instalación reciente del compilador de
Haskell GHC, el siguiente capítulo dará los pasos.

El código de esta versión es compatible con las versiones 0.11.* del compilador de PureScript.

Sobre ti

Voy a asumir que estas familiarizado con JavaScript. Cualquier familiaridad previa con herramientas
comunes del ecosistema JavaScript como NPM y Gulp serán beneficiosas si deseas adaptar la
configuración estándar para tus necesidades, pero dicho conocimiento no es necesario.

No se necesita ningún conocimiento previo de programación funcional, pero ciertamente no hace
daño. Las ideas nuevas estarán acompañadas de ejemplos prácticos, de manera que seas capaz de
formar una intuición para los conceptos de programación funcional que usaremos.

Los lectores que estén familiarizados con el lenguaje de programación Haskell reconocerán un
montón de las ideas y sintaxis presentadas en este libro, ya que PureScript está fuertemente
influenciado por Haskell. Sin embargo, dichos lectores deben entender que hay unas cuantas
diferencias importantes entre PureScript y Haskell. No siempre va a ser apropiado intentar aplicar
ideas de un lenguaje en el otro, aunque muchos de los conceptos presentados aquí tendrán una
interpretación en Haskell.

Cómo leer este libro

Los capítulos de este libro son bastante autocontenidos. Sin embargo, un principiante con poca
experiencia en programación funcional debería estudiar los capítulos en orden. Los primeros
capítulos sientan las bases requeridas para entender el material que aparece más tarde en el libro.
Un lector que se sienta cómodo con las ideas de la programación funcional (especialmente uno
con experiencia en un lenguaje fuértemente tipado como ML o Haskell) probablemente será capaz
de adquirir una comprensión general del código en los capítulos posteriores del libro sin leer los
capítulos iniciales.

Cada capítulo se va a enfocar en un único ejemplo práctico, proporcionando la motivación para
cualquier idea nueva introducida. El código de cada capítulo está disponible en este repositorio
GitHub4. Algunos capítulos incluirán fragmentos de código tomados del código fuente del capítulo,

4https://github.com/paf31/purescript-book

https://github.com/paf31/purescript-book
https://github.com/paf31/purescript-book
https://github.com/paf31/purescript-book

Introducción 5

pero para adquirir un entendimiento completo debes leer el código del repositorio junto al material
del libro. Las secciones más largas contendrán fragmentos más cortos que puedes ejecutar en el
modo interactivo (PSCi) para ayudarte a entender.

Los ejemplos de código aparecerán en una fuente monoespaciada, como sigue:

1 module Example where

2

3 import Control.Monad.Eff.Console (log)

4

5 main = log "Hello, World!"

Los comandos que deben escribirse en la línea de comandos estarán precedidos por un símbolo de
dólar:

1 $ pulp build

Normalmente, estos comandos estarán orientados a usuarios de Unix, de manera que los usuarios
de Windows tendrán que hacer pequeños cambios como modificar el separador de ficheros o
reemplazar los comandos empotrados de shell con sus equivalentes de Windows.

Los comandos que se deben escribir en el indicador de comandos demodo interactivo de PSCi estarán
precedidos por un signo ‘mayor que’.

1 > 1 + 2

2 3

Cada capítulo contendrá ejercicios etiquetados con su nivel de dificultad. Es muy recomendable que
intentes hacer los ejercicios de cada capítulo para entender el material completamente.

Este libro pretende proporcionar una introducción al lenguaje PureScript para principiantes, pero
no es la clase de libro que proporciona una lista de soluciones ‘plantilla’ para problemas. Para los
principiantes, este libro debe ser un reto divertido, y lograrás sacarle el mayor partido si lees el
material, intentas hacer los ejercicios y, lo más importante, intentas escribir algún código por tu
cuenta.

Consiguiendo ayuda

Si te atascas en algún punto, hay un número de recursos disponibles online para aprender PureScript:

• El canal IRC de PureScript es un sitio estupendo para hablar sobre los problemas que puedas
estar teniendo. Entra con tu cliente IRC en irc.freenode.net y conéctate al canal #purescript.

Introducción 6

• El sitio web de PureScript5 contiene enlaces a varios recursos de aprendizaje, incluyendo
ejemplos de código, videos y otros recursos para principiantes.

• El repositorio de documentación de PureScript6 contiene artículos y ejemplos de una amplia
variedad de tópicos, escritos por desarrolladores y usuarios de PureScript.

• Try PureScript!7 es un sitio web que permite a los usuarios compilar código PureScript en el
navegador web y contiene varios ejemplos de código simples.

• Pursuit8 es una base de datos donde puedes buscar tipos y funciones de PureScript.

Si prefieres aprender leyendo ejemplos, las organizaciones de Github purescript, purescript-node
y purescript-contrib contienen un montón de ejemplos de código PureScript.

Acerca del autor

Soy el desarrollador original del compilador de PureScript. Vivo en Los Angeles, California, y empecé
a programar a una edad temprana en BASIC sobre un ordenador personal de 8 bits, el Amstrad
CPC. Desde entonces he trabajado profesionalmente en una variedad de lenguajes de programación
(incluyendo Java, Scala, C#, F#, Haskell y PureScript).

No muy tarde en mi carrera profesional, empecé a apreciar la programación funcional y sus
conexiones con las matemáticas, y disfrutaba aprendiendo conceptos de programación funcional
usando el lenguaje de programación Haskell.

Empecé a trabajar en el compilador de PureScript como respuesta a mi experiencia con JavaScript.
Me encontré usando técnicas de programación funcional que había adquirido en lenguajes como
Haskell, pero quería un entorno más escrupuloso en el que aplicarlas. Las soluciones del momento
incluían varios intentos de compilar Haskell a JavaScript conservando su semántica (Fay, Haste,
GHCJS), pero estaba interesado en ver si tendría éxito afrontando el problema desde el otro lado -
intentando mantener la semántica de JavaScript, disfrutando la sintaxis y el sistema de tipos de un
lenguaje como Haskell.

Mantengo un blog9, y se me puede encontrar en Twitter10.

Acerca de la traducción

Este libro es una traducción de PureScript By Example11 de Phil Freeman12

5http://purescript.org
6https://github.com/purescript/documentation
7http://try.purescript.org
8http://pursuit.purescript.org
9http://blog.functorial.com
10http://twitter.com/paf31
11https://leanpub.com/purescript
12https://leanpub.com/u/paf31

http://purescript.org/
https://github.com/purescript/documentation
http://try.purescript.org/
http://pursuit.purescript.org/
http://blog.functorial.com/
http://twitter.com/paf31
https://leanpub.com/purescript
https://leanpub.com/u/paf31
http://purescript.org/
https://github.com/purescript/documentation
http://try.purescript.org/
http://pursuit.purescript.org/
http://blog.functorial.com/
http://twitter.com/paf31
https://leanpub.com/purescript
https://leanpub.com/u/paf31

Introducción 7

Dado que muchos de los términos usados en el libro son de uso común en su forma original inglesa
y sus correspondientes traducciones (buenas o malas) no lo son tanto, he incluido en el texto (donde
he considerado útil) el término original en itálica y entre paréntesis. La traducción al castellano está
en este repositorio GitHub13.

Agradecimientos

Me gustaría dar las gracias a los muchos contribuyentes que ayudaron a que PureScript alcanzara
su estado actual. Sin el enorme esfuerzo colectivo que se ha hecho en el compilador, herramientas,
bibliotecas, documentación y pruebas, el proyecto habría fracasado sin duda.

El logo de PureScript que aparece en la portada de este libro fue creado por Gareth Hughes, y es
utilizado bajo los términos de la licencia Creative Commons Attribution 4.014.

Finalmente, me gustaría dar las gracias a todos los que me han aportado comentarios y correcciones
sobre el contenido de este libro.

13https://github.com/jacereda/purescript-book/tree/spanish
14https://creativecommons.org/licenses/by/4.0/

https://github.com/jacereda/purescript-book/tree/spanish
https://creativecommons.org/licenses/by/4.0/
https://github.com/jacereda/purescript-book/tree/spanish
https://creativecommons.org/licenses/by/4.0/

	Tabla de contenidos
	Introducción
	JavaScript funcional
	Tipos e inferencia de tipos
	Programación web políglota
	Prerrequisitos
	Sobre ti
	Cómo leer este libro
	Consiguiendo ayuda
	Acerca del autor
	Acerca de la traducción
	Agradecimientos

