<=

PureScript
mediante ejemplos

Por Phil Freeman
Traducido por Jorge Acereda

PureScript mediante ejemplos
Programacion funcional para la Web

Phil Freeman y Jorge Acereda
Este libro esté a la venta en http://leanpub.com/purescriptmedianteejemplos

Esta version se publicé en 2017-09-28

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicacion. Lean Publishing es el acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector hasta conseguir tener el libro
adecuado.

(@0l

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

http://leanpub.com/purescriptmedianteejemplos
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Indice general

Introduccién

JavaScript funcional
Tipos e inferenciade tipos
Programacion web poliglota. Lo L

Prerrequisitos .
Sobreti

Como leer este libro
Consiguiendoayuda

Acerca del autor

Acercadelatraduccidn

Agradecimientos

B o N~ NS, B N N N O

Introduccion

JavaScript funcional

Hace ya algin tiempo que han empezado a aparecer las técnicas de programacion funcional en
Javascript:

=N O O b W N =~

© 00 9 O Ol b W N =~

« Bibliotecas como Underscore]S' permiten al desarrollador aprovechar funciones probadas

como map, filter y reduce para crear programas mas grandes a partir de programas mas
pequefios mediante composicion:

var sumOfPrimes =
.chain(.range(1000))
.filter(isPrime)
.reduce(function(x, y) {
return x + vy;

D)

.value();

+ La programacion asincrona en NodeJS se apoya firmemente en las funciones como valores de

primera clase para definir retrollamadas (callbacks).

require('fs').readFile(sourceFile, function (error, data) {
if (lerror) {
require('fs').writeFile(destFile, data, function (error) {
if (lerror) {
console.log("File copied");
}
});
}
1)

« Bibliotecas como React® y virtual-dom® modelan las vistas como funciones puras sobre el

estado de la aplicacion.

Uhitp://underscorejs.org
2http://facebook.github.io/react/
3h‘[tps:/ /github.com/Matt-Esch/virtual-dom

http://underscorejs.org/
http://facebook.github.io/react/
https://github.com/Matt-Esch/virtual-dom
http://underscorejs.org/
http://facebook.github.io/react/
https://github.com/Matt-Esch/virtual-dom

Introduccién 2

Las funciones permiten una forma simple de abstraccion que puede resultar en grandes ganancias en
productividad. Sin embargo, la programacion funcional en JavaScript tiene sus propias desventajas.
JavaScript es verboso, no tipado, y carece de formas potentes de abstraccion. El JavaScript no
restringido hace también el razonamiento ecuacional muy dificil.

PureScript es un lenguaje de programacion cuyo objetivo es abarcar estos problemas. Proporciona
sintaxis ligera, que nos permite escribir codigo muy expresivo que sigue siendo claro y legible.
Usa un rico sistema de tipos para soportar abstracciones potentes. También genera codigo rapido
e inteligible, cosa importante cuando hay que interoperar con JavaScript u otros lenguajes que
compilan a JavaScript. Total, espero convencerte de que PureScript consigue un equilibrio muy
practico entre el poder tedrico de la programacion funcional pura y el estilo de programacion rapida
y flexible de JavaScript.

Tipos e inferencia de tipos

El debate sobre los lenguajes de tipado estatico contra los de tipado dindmico esta bien documentado.
PuseScript es un lenguaje de tipado estatico, lo que significa que el compilador puede dar a un
programa correcto un tipo que indica su comportamiento. A la inversa, los programas a los que
no se les puede dar un tipo son programas incorrectos, y seran rechazados por el compilador. En
PureScript, al contrario que en los lenguajes de tipado dinamico, los tipos existen Gnicamente en
tiempo de compilacion, y no tienen representacion en tiempo de ejecucion.

Es importante notar que, de varias maneras, los tipos en Purescript no son como los tipos que
has visto en otros lenguajes como Java o C#. Aunque sirven el mismo propésito a un nivel alto,
los tipos en PureScript estan inspirados por lenguajes como ML y Haskell. Los tipos de PureScript
son expresivos, permitiendo al desarrollador hacer afirmaciones sélidas sobre sus programas. Méas
importante, el sistema de tipos de PureScript soporta inferencia de tipos requiriendo muchas
menos anotaciones de tipo explicitas que otros lenguajes, convirtiendo el sistema de tipos en una
herramienta en lugar de en un estorbo. Un simple ejemplo, el siguiente cédigo define un nimero,
pero no hay mencién del tipo Number en ningun sitio del cédigo:

iAmANumber =
let square x = x * x

in square 42.0

Un ejemplo mas elaborado muestra que la correccién de los tipos puede ser confirmada sin anotacion
de tipos, incluso cuando existen tipos que son desconocidos para el compilador:

iterate f 0 x X

iterate f (n - 1) (f x)

iterate f n x

Introduccién 3

Aqui, el tipo de x es desconocido, pero el compilador sigue pudiendo verificar que iterate obedece
las reglas del sistema de tipos, sin importar qué tipo pueda tener x.

En este libro, intentaré convencerte (o reafirmar tu creencia) de que los tipos estaticos no sélo
son medios para ganar confianza en la correccion de tus programas, sino que también ayudan al
desarrollo por derecho propio. Refactorizar una base de codigo extensa en JavaScript puede ser dificil
para cualquier cosa que no sean las abstracciones mas simples, pero un sistema de tipos expresivo
junto a un comprobador de tipos puede incluso convertir la refactorizacion en una experiencia
divertida e interactiva.

Ademas, la red de seguridad proporcionada por un sistema de tipos permite formas de abstraccion
mas avanzadas. De hecho, PureScript proporciona una poderosa forma de abstracciéon que es
fundamentalmente guiada por tipos: las clases de tipos (type classes) populares en el lenguaje de
programacion funcional Haskell.

Programacion web poliglota

La programacion funcional tiene sus historias de éxito, aplicaciones donde ha sido particularmente
exitosa: analisis de datos, analisis sintactico, implementacion de compiladores, programacioén
genérica o paralelismo por nombrar unas cuantas.

Seria posible practicar desarrollo de aplicaciones de extremo a extremo en un lenguaje funcional
como PureScript. PureScript proporciona la habilidad de importar coédigo JavaScript existente,
proporcionando tipos para sus valores y funciones, y usar entonces esas funciones en codigo
PureScript normal. Veremos este enfoque mas tarde en el libro.

Sin embargo, una de las fortalezas de PureScript es su interoperabilidad con otros lenguajes que
compilan a JavaScript. Otro enfoque seria usar PureScript como un subconjunto del desarrollo de tu
aplicacion y usar otro(s) lenguajes para escribir el resto del codigo JavaScript.

Aqui hay algunos ejemplos:

« Logica central escrita en PureScript, con la interfaz de usuario escrita en JavaScript.

« Aplicacion escrita en JavaScript u otro lenguaje que compile a JavaScript, con pruebas escritas
en PureScript.

« PureScript usado para automatizar las pruebas de interfaz de usuario para una aplicacién ya
existente.

En este libro, nos vamos a enfocar en resolver pequenios problemas con PureScript. Las soluciones
se podrian integrar en una aplicaciéon mas grande, pero también veremos como llamar a cddigo
PureScript desde JavaScript y viceversa.

Introduccién 4

Prerrequisitos

Los requerimientos de software para este libro son minimos: El primer capitulo te guiara para
preparar un entorno de desarrollo desde cero, y las herramientas que vamos a usar estan disponibles
en los repositorios estandar de la mayoria de sistemas operativos modernos.

El compilador de PureScript se puede descargar como una distribucion binaria o se puede construir
a partir de los fuentes en cualquier sistema que tenga una instalacion reciente del compilador de
Haskell GHC, el siguiente capitulo dara los pasos.

El cédigo de esta version es compatible con las versiones @.11 . * del compilador de PureScript.

Sobre ti

Voy a asumir que estas familiarizado con JavaScript. Cualquier familiaridad previa con herramientas
comunes del ecosistema JavaScript como NPM y Gulp seran beneficiosas si deseas adaptar la
configuracion estandar para tus necesidades, pero dicho conocimiento no es necesario.

No se necesita ningun conocimiento previo de programacién funcional, pero ciertamente no hace
dafio. Las ideas nuevas estaran acompanadas de ejemplos practicos, de manera que seas capaz de
formar una intuicién para los conceptos de programacion funcional que usaremos.

Los lectores que estén familiarizados con el lenguaje de programaciéon Haskell reconoceran un
monton de las ideas y sintaxis presentadas en este libro, ya que PureScript estd fuertemente
influenciado por Haskell. Sin embargo, dichos lectores deben entender que hay unas cuantas
diferencias importantes entre PureScript y Haskell. No siempre va a ser apropiado intentar aplicar
ideas de un lenguaje en el otro, aunque muchos de los conceptos presentados aqui tendran una
interpretacion en Haskell.

Como leer este libro

Los capitulos de este libro son bastante autocontenidos. Sin embargo, un principiante con poca
experiencia en programacion funcional deberia estudiar los capitulos en orden. Los primeros
capitulos sientan las bases requeridas para entender el material que aparece mas tarde en el libro.
Un lector que se sienta comodo con las ideas de la programacion funcional (especialmente uno
con experiencia en un lenguaje fuértemente tipado como ML o Haskell) probablemente sera capaz
de adquirir una comprension general del cédigo en los capitulos posteriores del libro sin leer los
capitulos iniciales.

Cada capitulo se va a enfocar en un unico ejemplo practico, proporcionando la motivacion para
cualquier idea nueva introducida. El codigo de cada capitulo esta disponible en este repositorio
GitHub*. Algunos capitulos incluirdn fragmentos de cddigo tomados del codigo fuente del capitulo,

4https:/ /github.com/paf31/purescript-book

https://github.com/paf31/purescript-book
https://github.com/paf31/purescript-book
https://github.com/paf31/purescript-book

O b W N =

Introduccién 5

pero para adquirir un entendimiento completo debes leer el codigo del repositorio junto al material
del libro. Las secciones mas largas contendran fragmentos mas cortos que puedes ejecutar en el
modo interactivo (PSCi) para ayudarte a entender.

Los ejemplos de c6digo apareceran en una fuente monoespaciada, como sigue:

module Example where
import Control.Monad.Eff.Console (log)

main = log "Hello, World!"

Los comandos que deben escribirse en la linea de comandos estaran precedidos por un simbolo de
dolar:

$ pulp build

Normalmente, estos comandos estaran orientados a usuarios de Unix, de manera que los usuarios
de Windows tendran que hacer pequefios cambios como modificar el separador de ficheros o
reemplazar los comandos empotrados de shell con sus equivalentes de Windows.

Los comandos que se deben escribir en el indicador de comandos de modo interactivo de PSCi estaran
precedidos por un signo ‘mayor que’.

>1 + 2
3

Cada capitulo contendra ejercicios etiquetados con su nivel de dificultad. Es muy recomendable que
intentes hacer los ejercicios de cada capitulo para entender el material completamente.

Este libro pretende proporcionar una introduccion al lenguaje PureScript para principiantes, pero
no es la clase de libro que proporciona una lista de soluciones ‘plantilla’ para problemas. Para los
principiantes, este libro debe ser un reto divertido, y lograras sacarle el mayor partido si lees el
material, intentas hacer los ejercicios y, lo mas importante, intentas escribir algun cédigo por tu
cuenta.

Consiguiendo ayuda

Si te atascas en algiin punto, hay un nimero de recursos disponibles online para aprender PureScript:

« El canal IRC de PureScript es un sitio estupendo para hablar sobre los problemas que puedas
estar teniendo. Entra con tu cliente IRC en irc.freenode.net y conéctate al canal #purescript.

Introduccién 6

« El sitio web de PureScript® contiene enlaces a varios recursos de aprendizaje, incluyendo
ejemplos de codigo, videos y otros recursos para principiantes.

« El repositorio de documentacién de PureScript® contiene articulos y ejemplos de una amplia
variedad de topicos, escritos por desarrolladores y usuarios de PureScript.

« Try PureScript!” es un sitio web que permite a los usuarios compilar cédigo PureScript en el
navegador web y contiene varios ejemplos de codigo simples.

« Pursuit® es una base de datos donde puedes buscar tipos y funciones de PureScript.

Si prefieres aprender leyendo ejemplos, las organizaciones de Github purescript, purescript-node
y purescript-contrib contienen un montén de ejemplos de cddigo PureScript.

Acerca del autor

Soy el desarrollador original del compilador de PureScript. Vivo en Los Angeles, California, y empecé
a programar a una edad temprana en BASIC sobre un ordenador personal de 8 bits, el Amstrad
CPC. Desde entonces he trabajado profesionalmente en una variedad de lenguajes de programacion
(incluyendo Java, Scala, C#, F#, Haskell y PureScript).

No muy tarde en mi carrera profesional, empecé a apreciar la programacién funcional y sus
conexiones con las matematicas, y disfrutaba aprendiendo conceptos de programacioén funcional
usando el lenguaje de programacion Haskell.

Empecé a trabajar en el compilador de PureScript como respuesta a mi experiencia con JavaScript.
Me encontré usando técnicas de programacién funcional que habia adquirido en lenguajes como
Haskell, pero queria un entorno mas escrupuloso en el que aplicarlas. Las soluciones del momento
incluian varios intentos de compilar Haskell a JavaScript conservando su semantica (Fay, Haste,
GHC]JS), pero estaba interesado en ver si tendria éxito afrontando el problema desde el otro lado -
intentando mantener la semantica de JavaScript, disfrutando la sintaxis y el sistema de tipos de un
lenguaje como Haskell.

Mantengo un blog’, y se me puede encontrar en Twitter'’.

Acerca de la traduccion

Este libro es una traduccion de PureScript By Example'' de Phil Freeman'

5h‘[tp://purescriptorg

6https:/ /github.com/purescript/documentation
7http:/ /try.purescript.org

8http:/ /pursuit.purescript.org
®http://blog.functorial.com

10http:/ /twitter.com/paf31

! 1https:/ /leanpub.com/purescript
12https://leanpub.com/u/paf31

http://purescript.org/
https://github.com/purescript/documentation
http://try.purescript.org/
http://pursuit.purescript.org/
http://blog.functorial.com/
http://twitter.com/paf31
https://leanpub.com/purescript
https://leanpub.com/u/paf31
http://purescript.org/
https://github.com/purescript/documentation
http://try.purescript.org/
http://pursuit.purescript.org/
http://blog.functorial.com/
http://twitter.com/paf31
https://leanpub.com/purescript
https://leanpub.com/u/paf31

Introduccién 7

Dado que muchos de los términos usados en el libro son de uso comun en su forma original inglesa
y sus correspondientes traducciones (buenas o malas) no lo son tanto, he incluido en el texto (donde
he considerado util) el término original en italica y entre paréntesis. La traduccién al castellano esta
en este repositorio GitHub".

Agradecimientos

Me gustaria dar las gracias a los muchos contribuyentes que ayudaron a que PureScript alcanzara
su estado actual. Sin el enorme esfuerzo colectivo que se ha hecho en el compilador, herramientas,
bibliotecas, documentacioén y pruebas, el proyecto habria fracasado sin duda.

El logo de PureScript que aparece en la portada de este libro fue creado por Gareth Hughes, y es
utilizado bajo los términos de la licencia Creative Commons Attribution 4.0™.

Finalmente, me gustaria dar las gracias a todos los que me han aportado comentarios y correcciones
sobre el contenido de este libro.

13h‘[tps://github.com/jacereda/purescript—book/tree/spanish
14https:/ /creativecommons.org/licenses/by/4.0/

https://github.com/jacereda/purescript-book/tree/spanish
https://creativecommons.org/licenses/by/4.0/
https://github.com/jacereda/purescript-book/tree/spanish
https://creativecommons.org/licenses/by/4.0/

	Tabla de contenidos
	Introducción
	JavaScript funcional
	Tipos e inferencia de tipos
	Programación web políglota
	Prerrequisitos
	Sobre ti
	Cómo leer este libro
	Consiguiendo ayuda
	Acerca del autor
	Acerca de la traducción
	Agradecimientos

