PROPERTY-BASED

TESTING

IN A SCREENCAST EDITOR 4

|







SAMPLE CHAPTER

August 2019



Preface

This is a short book on using property-based testing (PBT) within Komposition, a
screencast editor. It’s based on the articles published on wickstrom.tech', converted
to book form.

PBT is a productive and delightful middle ground between the conventional testing
techniques often used in industry and formal methods that are more commonly found
in academia. While PBT doesn’t offer the rigor of formal verification techniques, it’s
approachable and effective in real-world projects, making it a compelling choice.

I think that PBT should be leveraged more widely in industry. Just a few years ago,
I didn’t even know it existed. When I got into Haskell programming, I eventually
learned about QuickCheck, a PBT framework. Most examples of using PBT are focused
on teaching the essentials. When I wanted to leverage PBT in testing my screencast
editor, the introductory examples didn’t help. I got stuck, asking questions like “how
do you test a GUI application using PBT?”

After a while of struggle, I learned how to leverage PBT in my project. This is why I
wrote the articles on my website — to share my experiences, and hopefully to convince
you and others that PBT can be useful in your projects. Not only on ideal pure func-
tions, like list reversals or sorting algorithms, but in the code you write in your daily
work.

Prerequisites

This is not a tutorial on PBT, but rather a collection of motivating examples. There
are references in this book to other resources that explain the basics of PBT more
thoroughly. If you are not familiar with PBT, be sure to check them out.

The code examples in this book are written in Haskell, using the Hedgehog testing
framework. This is a consequence of Komposition using Haskell and Hedgehog. You
are not expected to know much Haskell to follow along with this book. A basic under-
standing of functional programming should be enough.

How to Read This Book

The structure of this book is simple:

'https://wickstrom.tech
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« First, it introduces the system under test (SUT): Komposition.

« Next, it goes into PBT and discusses challenges in testing properties of complex
applications.

+ The main part of the book is compromised of case studies. Each case study covers
increasingly complex components and how they are tested. These include my
personal reflections, what bugs the tests have found, and what still remains to
be improved.

« Finally, the summary wraps up by motivating PBT, based on my experience.

You don’t have to read this book in any particular order, but section ?? and ?? describe
concepts that are useful to know about when reading the remainder of the book. Other
than that, feel free to skip or jump around.

Notational & Typographical Conventions

This book uses a set of typographical conventions in body text and in code listings:

o Italic text is used for emphasis and for new terms
« Constant Width text is used for references to code elements, program listings,
shell commands, and program output
« In Haskell program listings:
- keywords (e.g. data) are bold
— types, constructors, and modules (e.g. Text) are italic

— circled numbers ((1), (2), ...) are annotations, not actual Haskell source code,
used to mark sections of interest that are explained in prose

Abbreviations

PBT Property-based testing
SUT System under test

TDD Test-driven development
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« Open Sans Condensed* (licensed under the Apache License Version 2.0%)
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ick were all used in writing this book.

Errata & Feedback

If you enjoy this book, please tell your friends, and share it in a social media channel.
Spreading the word means more people learn about wonders of PBT.

If you find any typos, factual errors, or problems with the source code, please visit the
Leanpub feedback page’ and write a few words about it.

%http://libertine-fonts.org/

Shttp://libertine-fonts.org/libre/#more-89

*https://en.wikipedia.org/wiki/Open_Sans

Shttp://www.apache.org/licenses/LICENSE-2.0

Shttps://typeof.net/losevka/
"https://raw.githubusercontent.com/be5invis/Iosevka/master/LICENSE.md
8https://www.pexels.com/photo/photograph-of-a-yellow-and-purple-mixed-substance-1270954/
https://leanpub.com/property-based-testing-in-a-screencast-editor/feedback
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1 Case Study: Video Scene Classification

In sec. ??, we learned about timeline flattening. This case study covers the video clas-
sifier, how it was tested before, and the bugs that were found with property tests.

1.1 Classifying Scenes in Imported Video

Komposition can automatically classify scenes when importing video files. This is a
central productivity feature in the application, effectively cutting recorded screencast
material automatically, letting the user focus on arranging the scenes of their screen-
cast. Scenes are segments that are considered moving, as opposed to still segments:

« A still segment is a sequence of at least S seconds of near-equal frames
« A moving segment is a sequence of non-equal frames, or a sequence of near-
equal frames with a duration less than S

S is a preconfigured minimum still segment duration in Komposition. In the future it
might be configurable from the user interface, but for now it’s hard-coded.

Equality of two frames f; and f, is defined as a function E(f;, f5), described infor-
mally as:

« comparing corresponding pixel color values of f; and f,, with a small epsilon
for tolerance of color variation, and

+ deciding two frames equal when at least 99% of corresponding pixel pairs are
considered equal.

In addition to the rules stated above, there are two edge cases:

1. The first segment is always a considered a moving segment (even if it’s just a
single frame)
2. The last segment may be a still segment with a duration less than S

The second edge case is not a desirable feature, but rather a shortcoming due to the
classifier not doing any type of backtracking. This could be changed in the future.



1 Case Study: Video Scene Classification
1.2 Manually Testing the Classifier

The first version of the video classifier had no property tests. Instead, I wrote what I
thought was a decent classifier algorithm, mostly messing around with various pixel
buffer representations and parallel processing to achieve acceptable performance.

The only type of testing I had available, except for general use of the application, was
a color-tinting utility. This was a separate program using the same classifier algorithm.
It took as input a video file, and produced as output a video file where each frame was
tinted green or red, for moving and still frames, respectively.

In fig. 1.1 you see the color-tinted output video based on a recent version of the clas-
sifier. It classifies still (fig. 1.1a) and moving (fig. 1.1b) segments rather accurately.
Before I wrote property tests and fixed the bugs that I found, it did not look so pretty,
flipping back and forth at seemingly random places.

At first, debugging the classifier with the color-tinting tool way seemed like a cre-
ative and powerful technique. But the feedback loop was long, having to record video,
process it using the slow color-tinting program, and perform ocular inspection. In
hindsight, I can conclude that PBT is far more effective for testing the classifier.

1.3 Video Classification Properties

Figuring out how to write property tests for video classification wasn’t obvious to me.
It’s not uncommon in example-based testing that tests end up mirroring the structure
of the SUT. The same can happen in PBT. With some complex systems it’s very hard
to describe the correctness as a relation between any valid input and the system’s
observed output. The video classifier is one such case. How do we decide if an output
classification is correct for a specific input, without reimplementing the classification
itself in the tests?

The other way around is easy, though! If we have a classification, we can convert
that into video frames. Thus, the solution to the testing problem is to not generate
the input, but instead generate the expected output. Hillel Wayne calls this technique
“oracle generators” in Finding Property Tests'.

The classifier property tests generate high-level representations of the expected classi-
fication output, which are lists of values describing the type and duration of segments.
fig. 1.2 illustrates how a generated sequence of classified segments might look.

Thttps://www hillelwayne.com/post/contract-examples/
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1.3 Video Classification Properties

(a) Before any text is written, the frames remain un-
changed, and the segment is classified as still

(b) When the characters are entered, enough pixels
change between frames, and the segment is clas-
sified as moving

Figure 1.1: Video classification shown with color tinting on a terminal session record-
ing

Moving (4s) Still (3s) Moving (8s)

Figure 1.2: A generated sequence of expected classified segments



1 Case Study: Video Scene Classification

Next, the list of output segments is converted into a sequence of actual frames. Frames
are two-dimensional arrays of RGB pixel values. The conversion is simple:

« Moving segments are converted to a sequence of alternating frames, flipping
between all gray and all white pixels
« Still frames are converted to a sequence of frames containing all black pixels

The example sequence in fig. 1.2, when converted to pixel frames with a frame rate of
10 FPS, can be visualized like in fig. 1.3, where each thin rectangle represents a frame.

Figure 1.3: Pixel frames derived from a sequence of expected classified output segments

By generating high-level output and converting it to pixel frames, we have input to
feed the classifier with, and we know what output it should produce. Writing effec-
tive property tests then comes down to writing generators that produce valid output,
according to the specification of the classifier. In this chapter we’ll study two such
property tests.

1.4 Testing Still Segment Minimum Length

As stated in sec. ??, classified still segments must have a duration greater than or equal
to .S, where S is the minimum still segment duration used as a parameter for the clas-
sifier. The first property, shown in Ist. 1.1, asserts that this invariant holds for all
classification output.

This chunk of test code is pretty busy, and it’s using a few helper functions that I'm
not going to bore you with. At a high level, this test:

 Generates a minimum still segment duration (@) based on a minimum frame
count (let’s call it n) in the range [2,20] at a frame rate of 10. The classifier
currently requires that n > 2, hence the lower bound. The upper bound of 20
frames is an arbitrary number that I've chosen.

+ Generates valid output segments using the custom generator genSegments (©),
where

- moving segments have a frame count in [1, 2n], and
— still segments have a frame count in [n, 2n].



1.4 Testing Still Segment Minimum Length

Listing 1.1 A property checking that still segments are at least of the minimum length

hprop_classifies_still_segments_of_min_length = property $ do
minStillSegmentFrames <- forAll $ @
Gen.int (Range.linear 2 (2 * frameRate))
let minStillSegmentTime = frameCountDuration minStillSegmentFrames

segments <- forAll $ @
genSegments (Range.linear 1 10)
(Range.linear 1
(minStillSegmentFrames * 2))
(Range.linear minStillSegmentFrames
(minStillSegmentFrames * 2))
resolution

let pixelFrames = testSegmentsToPixelFrames segments ©

let counted =
classifyMovement minStillSegmentTime (Pipes.each pixelFrames) @
& Pipes.tolist
& countSegments

countTestSegmentFrames segments === totalClassifiedFrames counted ©

case initMay counted of @
Just rest ->
traverse_ (assertStilllengthAtLeast minStillSegmentTime) rest @
Nothing -> success
where resolution = 10 :. 10
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« Converts the generated output segments to actual pixel frames (@). This is done
using a helper function that returns a list of alternating gray and white frames,
or all black frames, as described in sec. ??.

« Counts the number of consecutive frames within each segment (@), producing
a list like [Moving 18, Still 5, Moving 12, Still 30].

« Performs a sanity check (@) that the number of frames in the generated expected
output is equal to the number of frames in the classified output. The classifier
must not lose or duplicate frames.

« Drops the last classified segment (@), which according to the specification can
have a frame count less than n, and asserts that all other still segments have a
frame count greater than or equal to n (@).

Running 10000 tests, they all pass. Looks like it’s working.

1.5 Sidetrack: Why generate the output?

Now, you might wonder why we generate output segments first, and then convert to
pixel frames. Why not generate random pixel frames to begin with? The property test
in Ist. 1.1 only checks that the still segments are long enough, anyway.

The benefit of generating valid output becomes clearer in the next property test, where
we use it as the expected output of the classifier. Converting the output to a sequence
of pixel frames is easy, and we don’t have to state any complex relation between the
input and output in the property. When using oracle generators, the assertions can
often be plain equality checks on generated and actual output.

But there’s benefit in using the same oracle generator for the minimum still segment
length property, even if it’s more subtle. By generating valid output and converting
to pixel frames, we can generate inputs that cover the edge cases of the system under
test. Using property test statistics and coverage checks, we could inspect coverage, and
even fail test runs where the generators don’t hit enough of the cases we’re interested
in. John Hughes’ talk Building on developers’ intuitions® goes into depth on this topic.
When these tests were written, Hedgehog did not support coverage checking. As of
version 1.0°, classification and coverage checks are supported.

Had we generated random sequences of pixel frames, it’d be likely the majority of
generated examples would be moving segments. We could tweak the generator to get
closer to either moving or still frames, within some distribution, but wouldn’t that just

Zhttps://www.youtube.com/watch?v=NcJOiQIlzIXQ
3https://hackage haskell.org/package/hedgehog-1.0
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1.6 Testing Moving Segment Time Spans

be a variation of generating valid scenes? It would be worse, in fact. We wouldn’t
then be reusing existing generators, and we wouldn’t have a high-level representation
to convert from and compare with in assertions.

1.6 Testing Moving Segment Time Spans

The second property, shown in Ist. 1.2, asserts that the classified moving segments
start and end at the same timestamps as the moving segments in the generated output.
Compared to the previous property, the relation between generated output and actual
classified output is stronger.

The arrangement is the same as in the previous property test (in Ist. 1.1). This property
test differs by:

« Converting the generated output segments into a list of time spans (@). Each
time span marks the start and end of an expected moving segment. Furthermore,
it needs the full duration of the input (®) when running the classifier.

+ Classifying the movement of each frame (@), i.e. deciding if it’s part of a moving
or still segment.

+ Running the second classifier function called classifyMovingScenes, based on the
full duration and the frames with classified movement data, resulting in a list of
time spans (@).

« Comparing the expected and actual classified list of time spans (©).

While this property test looks somewhat complicated with its setup and various con-
versions, the core idea is simple. But is it effective?

1.6.1 Bugs! Bugs everywhere!

Preparing for a talk on PBT, I added the moving segment time spans property a week or
so before the event. At this time, I had used Komposition to edit multiple screencasts.
Surely, all significant bugs were caught already. Adding property tests should only
confirm the level of quality the application already had. Right?

That was not the case. First, I discovered that my existing tests were fundamentally
incorrect to begin with. They were not reflecting the specification I had in mind, the
one described in sec. ??. Moreover, I found that the generators had errors. At first,
I used Hedgehog to generate the pixels used for the classifier input. Moving frames
were based on a majority of randomly colored pixels and a small percentage of equally
colored pixels. Still frames were based on a random single color.
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Listing 1.2 A property checking the start and end times of classified segments

hprop_classifies_same_scenes_as_input = property $ do
minStillSegmentFrames <- forAll $ Gen.int (Range.linear 2 (2 * frameRate))
let minStillSegmentTime = frameCountDuration minStillSegmentFrames

segments <- forAll $ genSegments (Range.linear 1 10)
(Range.linear 1
(minStillSegmentFrames * 2))
(Range.linear minStillSegmentFrames
(minStillSegmentFrames * 2))
resolution

let pixelFrames = testSegmentsToPixelFrames segments

let durations = map segmentWithDuration segments @
expectedSegments = movingSceneTimeSpans durations
fullDuration = foldMap unwrapSegment durations @

let classifiedFrames = ©
Pipes.each pixelFrames
& classifyMovement minStillSegmentTime
& Pipes.tolist

let classified = @
(Pipes.each classifiedFrames
& classifyMovingScenes fullDuration)
>-> Pipes.drain
& Pipes.runEffect
& runldentity
expectedSegments === classified ©

where resolution = 10 :. 10




1.6 Testing Moving Segment Time Spans

The problem I had not anticipated was that the colors used in moving frames were not
guaranteed to be distinct from the color used in still frames. In small-sized examples,
where color values were picked close to 0, I got black frames at the beginning and end of
moving segments, and black frames for still segments, resulting in different classified
output than expected. Hedgehog shrinking the failing examples’ colors towards 0,
which is again black, highlighted this problem even more.

I made my generators much simpler, using the alternating white/gray frames approach
described in sec. ??, and went on to running my new shiny tests. fig. 1.4 shows the re-
sults I got. Where does 0s—0.6s come from? The classified time span should’ve been
0s—1s, as the generated output has a single moving scene of 10 frames (1 second at 10
FPS). I started digging, using the annotate function in Hedgehog to inspect the gener-
ated and intermediate values in failing examples.

— test/Komposition/Import/Video/FFmpegTest.hs =—
208 | hprop_classifies_same_scenes_as_input = withTests 108 . property $ do
209 -- Generate test segments
210 segments <- forAll $ genSegments (Range.linear (frameRate * 1) (frameRate * 5)) resolution
| [ Scene 10 ]
211 -- Convert test segments to timespanned ones, and actual pixel frames
212 let segmentsWithTimespans = segments
213 & map segmentWithDuration
214 & segmentTimeSpans
215 pixelFrames = testSegmentsToPixelFrames segments
216 fullDuration = foldMap
217 (duration0f AdjustedDuration . unurapSegment)
218 segmentsWithTimespans
219 -- Run classifier on pixel frames
220 classified <-
221 (Pipes.each pixelFrames
222 & classifyMovement 2.0
223 & classifyMovingScenes fullDuration)
224 >-> Pipes.drain
225 & Pipes.runEffect
226 -- Check classified timespan equivalence
227 unwrapScenes segmentsWithTimespans === classified
Failed (- lhs =/= + rhs)
[
- TimeSpan { spanStart = Duration @ s , spanEnd = Duration 1 s }
+ TimeSpan { spanStart = Duration @ s , spanEnd = Duration 0.6 s }
228
229 where resolution = 20 :. 20

Figure 1.4: A property test failing due to unexpected classified segments

I couldn’t find anything incorrect in the generated data, so I shifted focus to the im-
plementation code. The end timestamp 0.6s was consistently showing up in failing
examples. Looking at the code, I found a curious hard-coded value 0.5 being bound
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and used locally in classifyMovement. The function is essentially a fold over a stream of
frames, where the accumulator holds vectors of previously seen and not-yet-classified
frames.

Stripping down and simplifying the old code to highlight one of the bugs, it looked
something like the code in Ist. 1.3. In the InStillState branch it uses the value
minEqualTimeForStill, instead of always using the minStillSegmentTime argument
(@). This is likely a residue from a refactoring, where I meant to make the value a
parameter instead of having it hard-coded in the definition.

Listing 1.3 A simplified version of the old frame classifier function

classifyMovement minStillSegmentTime =
case ... of
InStillState{..} —>
if someDiff > minEqualTimeForStill @
then ...
else ...
InMovingState{..} ->
if someOtherDiff >= minStillSegmentTime
then ...
else ...
where
minEqualTimeForStill = 0.5

Sparing you the gory implementation details, I'll outline two more problems that I
found:

« In addition to using the hard-coded value, it incorrectly classified frames based
on that value. Frames that should’ve been classified as “moving” ended up “still”.
That’s why I didn’t get 0s-1s in the output.

« Why didn’t I see 0s-0.5s, given the hard-coded value 0.5? Because there was
also an off-by-one bug, in which one frame was classified incorrectly together
with the accumulated moving frames.

The classifyMovement function is 30 lines of Haskell code juggling some state, and I
managed to mess it up in three separate ways at the same time. With these tests in
place I quickly found the bugs and fixed them. I ran thousands of tests, all passing.
Finally, I ran the application, imported a previously recorded video, and edited a short
screencast. The classified moving segments were notably better than before.

10



1.7 Summary

1.7 Summary

A simple streaming fold can hide bugs that are hard to detect with manual testing. The
consistent result of 0.6, together with the hard-coded value 0.5 and a frame rate of
10 FPS, pointed clearly towards an off-by-one bug. This is a great showcase of how
powerful shrinking in PBT is, consistently presenting minimal examples that point
towards specific problems.

Could these errors have been caught without PBT? I think so, but what effort would
it require? Manual testing and introspection did not work for me. Code review might
have revealed the incorrect definition of minEqualTimeForStill, but perhaps not the
off-by-one and incorrect state handling bugs. There are of course many other QA
techniques, and I won’t evaluate all. But given the low effort that PBT requires in
this setting, the amount of problems it finds, and the accuracy it provides when trou-
bleshooting, I think it’s a great choice.

11
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