> !V%E&Q\E-

with C and C++

By Devendra Naga

Contents

Programming in C and C++4 3
Introduction)
Audience 6

C programming 7
Basic Hello World program 8
Basic Data typeso o 10
sizeof operator 12
Format Specifier 13
const keyword L Lo 15

type definitiono 16
typecasting L 17
operators L. 18
Scope and Lifetime of the variables 22
Control statements oo 28
Loops . .« . 39
Goto statement 44
Arrays . ..o e 46
Macros. e 54
Functions L 61
Function returning local data 65
Variadic functions L oL o 72
Function like macros 77
inline functions 77
Strings 79
String manipulation operationso 80
Pointers L 97
Pass by value and Pass by reference in functions 98
Dynamic Memory Allocation 106
Double pointers L 118
Recap about variables and scope, 124
Function Pointers oo oL 125
Structures 129
Bitfields. 141
Structure padding and packing 145
Enumeration 147
Unions oL e 150
Appendix A oL 152
Significance of header files 153
Header description L 154
Compilation of C program 155
GCC compilation options oo 156
Valgrind L 157
Command line arguments (arge, argv) 158

File I/Oo 161

Operating with the binary files 169

I/O operations 172
Useful macros 178
Useful helper functions 179
C++4 programming 180
Introduction 181
cout,cerrand cin oL Lol L L 182
New operators in CH++ 184
New keywords in CH++ oL 192
Typecasting Lo Lo 195
Classes o v 197
Constructors and Destructors 200
NAMESPACES .+« « v v v o v e e e e e e e e e e e e e e e 203
Overloading e 205
Operator Overloading 206
Function Overloading 224
Exception Handling 225
noexcept Lo o 227
Standard library 230
stdupair . .. oL 231
std:initializer list 232
stdebitseto Lo 233

File streams Lo o 234
Arrays 235
Strings 236
Vectors L 238
Lists o 246
QUEUES o o 251

Sets .. 253
Dequeue L 254
Maps . . . o o e 255
shared_ ptr, unique_ptr 256
Filesystemso 260
Threads 261
Mutexes L 264
Conditional Variables 268
stdiunique_locko Lo oo 269
std::timed lock L 270
Creating a Vector of Threads 272
Derived Classes o oo 273
Abstract Classes 275
Templates 277
Template overloading oL 282
Appendix B 284

Loops

Loop statements are another programming construct that allow executing some-
thing for a certain number of times.

1. While loop

The while loop allows to loop over a certain condition until it fails. An example
of the while is as follows.

while (condition) {
// statements
}

Example.22 While condition
An example use of while loop is as follows.

#include <stdio.h>

int main()

{
int i = 0;
while (i < 10) {
printf("i %d\n", i);
i ++;
}
return O;
}

Example.23 While loop example

Sometimes it doesn’t have to be a condition, a variable should be enough.
The following statements are valid in this regard.

bool is_set = true;

while (is_set) { } // walid

int i = 1;

while (i) { } // walid

In the above program the loop repeats until i reaches 10. Upon reaching 10, the
while condition fails breaking the loop.

The break statement can be used in the while loop as well.

int main()
{

int i = 0;

39

while (1) {
if (i >= 10) {

break;
¥
printf ("%d\n", i);
i ++;
}
return O;

}
Example.24 while loop and break statement

Above program shows the use of while (1). Generally this means that the
condition in the while loop is never false. It is an infinite loop.

Generally infinite loops are not preferable in programming without any condi-
tional checks in the while statement.

The infinite loops generally do nothing but increase in CPU load on the process
the program runs and consumes the CPU cycles unnecessarily. However, some
programs written for the operating systems do need to run infinitely (such as
graphics, display, editors etc). To do this, operating systems employ certain
event based mechanisms supported by the hardware. This ensures that the
program executes only based on certain events.

Sometimes, infinite loops are required but with OS supported waiting mechanism
that does not cause much of a CPU load and provides better resource utilization
between other processes.

40

2. For loop

The for loop is similar to the while loop. The syntax is as follows,

for (initialization; condition; increment / decrement operation)
Below is an example of the use of for loop.

#include <stdio.h>

int main()

{
int i;
for (i = 0; 1 < 10; i ++) {
printf("i %d\n", i);
}
return O;
}

Example.25 For loop

the i = 0 statement in for executes only once. The i < 10 statement exe-
cutes everytime the loop repeats. The 1 ++ statement executes everytime the
statements in the for loop executes.

Another way to do is the following;:

#include <stdio.h>

int main()

{
int i = 0;
for (;i < 10; i ++) {
printf("i %d\n", 1i);
}
return O;
}

Example.26 For iteration

The initializer statement can be left aside.

The above while (1) can be re-written with for as follows.
#include <stdio.h>

int main()

{

41

int i = 0;

for (;;) {
if (i >= 10) {
break;
¥
printf("i %d\n", i);
i ++;
}
return O;

}
Example.27 Infinite for loop

The for(;;) is also an infinite for loop. As mentioned, the infinite loops must
be used with caution.

To stop an infinite loop program, press Ctrl + Ckey combination on the terminal
within Linux.

42

3. do while loop

The do. .while loop is similar to the while. The statement within the do. .while
executes first and the condition is checked for validity. Below is an example.

#include <stdio.h>

int main()

{
int i = 0;
do {
printf ("Hello World\n");
} while (i '= 0);
return 0O;
}

Example.28 do..while loop

Once run, it prints Hello World. This means that the statements execute and
the checks happen later.

The do. .while statement is generally used in cases where the code must be
executed at least once no matter the condition satisfies for the first time.

43

Goto statement

The statement goto is similar to a jump instruction in assembly. The above
loop can be rewritten with goto as follows.

#include <stdio.h>

int main()

{
int 1 = 0;
begin:
if (1 < 10) {
printf("i %d\n", 1i);
i ++;
goto begin;
}
return O;
}

Example.29 goto loop
We do not use goto in most of the programs for the following reasons:

1. Readability reduces with many gotos with in a function or within a C file.
2. Incorrectly written gotos can cause loops in program.

Gotos are not bad when used correctly in a program. For example in usecases
when certain conditions fail during a program initialization, the deinitialization
sequence must do the opposite. In such cases a jump required on the failure
case.

Here’s a pseudo code example,

int init_10)

{

return O;
}
int init_20)
{

return O;
}

void deinit_10)
{

44

}

int init_main()
{

int ret;

ret = init_1(0);
if (ret !=0) {
return -1;

}

ret = init_2();
if (ret !=0) {
goto deinit;

}

deinit:
deinit_10);
return -1;

}
Example.30 goto usecase
More about functions in the functions section.

In areas such as Automotive and Aerospace software application, goto statement
is seldom used. It is treated as a bad practise. So avoiding this is a good step
when writing software for such applications.

45

Arrays

46

1. One Dimensional Arrays

One dimensional array are the base type in arrays.
An array of integers is defined as,

int al[10];

Above statement defines an array a of 10 integers. Each element in the array is
an element of type integer.

Array indexes start from 0. Each item in the array is indexed with regular
numbers ranging from 0 to 9.

Maximum elements in the above array are 10 but the last index of the 10th
element is 9 (since indexing starts at 0), not 10. Accessing the array beyond
its maximum range is also called out of bounds access. Out of bounds accesses
are major security problem as the element is accessing an address beyond the
allocated range.

int al];

is invalid because array without number of elements defined is invalid syntax.
However,

int all = {1, 2, 3, 4};
is still valid and compiler assumes that the array contains 4 elements.
Below program assigns the elements in the array.

#include <stdio.h>

int main()

{
int a[10];
int 1 = 0;

for (i = 0; i < sizeof(a) / sizeof(al0]); i ++) {
ali]l = i;

}

printf ("array elements:\n");

for (i = 0; i < sizeof(a) / sizeof(al0]); i ++) {
printf("\tal[%d] = %d\n", i, alil);

+

printf ("\n");

return O;

}

Example.31 array iteration

47

The size of an array is calculated the same way.

#include <stdio.h>

int main()

{
int al[10];
printf("size of array %lu\n", sizeof(a));
return O;

}

Example.32 sizeof array

With the sizeof, one can also find out the number of elements in the array as
follows.

#include <stdio.h>

int main()

{
int al[10];
printf ("number of elements %d\n", sizeof(a) / sizeof(al[0]));
return O;

}

Example.33 number of elements in an array
Initializing array elements

The below statement generally initializes the array.
int a[10] = {0};

However, this initializes the first element to 0. Since only one element is initialized
then by default all elements are initialized to 0.

So if we have initialized it,
int al[10] = {10};

the first element of the array is initialized to 10 and the rest of the elements are
initialized as 0s. Below is one example:

#include <stdio.h>
int main()

{
int al[10] = {10};

48

int 1i;

for (i = 0; i < sizeof(a) / sizeof(al0]); i ++) {
printf ("al[%d] = %d\n", i, alil);
}

return O;
}
Example.34 Initializing array
This example prints the first element as 10 and rest as 0.

General way sometimes tend to be the use of memset which is discussed in below
sections. But the below example shows how to initialize an array.

int al[10];

memset(a, 0, sizeof(a));

Sets all the elements of the array a to 0.

Another way to set array elements is as follows:
int al10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int 1i;

for (i = 0; i < sizeof(a) / sizeof(al0]); i ++) {
printf ("al[%d] = %d\n", i, alil);
}

Example.35 iterating array

But this means that all array elements must be initialized which is impractical
for a large set of arrays.

copying array elements

Copying one array to another is simple as iterating over each element and copying
one element to another.

Below is one example,
#include <stdio.h>

int main()

{
int a1l = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int a2[10];
int i;

for (i = 0; i < sizeof(al) / sizeof(all0]); i ++) {

49

Below is an example. Download it here.

#include <stdio.h>

int main()

{
char *str_int = "1343";
int intval;
sscanf (str_int, "%d", &intval);
printf ("%d\n", intval);
return O;
}

We are using sscanf to read the input from the buffer into an integer.
Lets consider an invalid string input in below code snippet.
Download it here.

#include <stdio.h>

int main()

{
char *str = "123a";
int intval;
int ret;
ret = sscanf(str, "%d", &intval);
if (ret != 1) {
printf ("incorrect integer\n");
} else {
printf("val %d\n", intval);
}
}

This results in ret being 123. However, results in no error and the integer is
still read.

2. strtol

The standard library function strtol converts a given input string to integer.
It is delcared in stdlib.h.

The function prototype is as follows:
long strtol(const char *in, char **err, int dec_or_hex);

In the above function the err argument describes if the input is incorrect. This
is checked to find out if the returned converted long value is legit.

94

https://github.com/devendranaga/programming-in-C-and-Cpp/blob/main/c/atoi_sscanf.c
https://github.com/devendranaga/programming-in-C-and-Cpp/blob/main/c/atoi_sscanf2.c

e The argument dec_or_hex is basically 10 if the input in is decimal or
e 16 if the input is hexadecimal in the format 0x.

Below is one example:
#include <stdio.h>

#include <stdlib.h>

int main()

{
char *number = "102";
char *err = NULL;
long num_long;
num_long = strtol(number, &err, 10);
if (err && (xerr !'= '\0')) {
printf("failed to parse number\n");
return -1;
}
printf ("num_long %d\n", num_long) ;
return O;
}
3. strtod

Converts string to double.

The function prototype is as follows:

double strtod(const char *ptr, char **end_ptr);
Below is the example:

#include <stdio.h>

#include <stdlib.h>

int main()

{
char *str = "3.3";
char xerr NULL;
double val;

val = strtod(str, &err);
if (err && (err[0] !'= '\0")) {
return -1;

}

printf("val %f\n", val);

95

return O;

}

4. strtoul

Converts string to unsigned long.

Below is the prototype.

unsigned long strtoul (const char *nptr, char **err_ptr, int base) ;
Below is one example:

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

int main()

{
char *str = "4294967295";
uint32_t val;
char *err = NULL;
val = strtoul(str, &err, 10);
if (err && (err[0] !'= '\0")) {

return -1;

}
printf ("val Ju\n", val);
return O;

+

96

Pointers
Pointer is a type that associates with an address.

A variable that is stored in the memory is associated with an address. Pointer
stores the address of a variable or even a pointer.

Pointers can be associated with integer data types, floats, doubles, strings, arrays,
structures and even the functions.

The below statement is a string that is allocated at compile time and the str is
a pointer to the beginning of the string “Hello”.

char *str = "Hello";

A pointer of any type is possible.
int *p;

declares an integer pointer.

A pointer can be assigned NULL stating that it points to no address. This NULL
is different from the null terminating character \0.

The null terminating character can be applied only to the strings. While the
NULL pointer is applied to the pointers.

In Standard library, the definition of the NULL is a macro. Something like the
following:

#define NULL (void *)O
This is more generically, a value 0 type casted to a void pointer.

The NULL pointer is used to inform that the pointer points to nothing. Also
deferencing the NULL pointer results in a abrupt program stop or a segmentation
fault.

The below statement,

int val = 4;
int *v = &val;

declares an integer val and a pointer v holding the address of the variable val.
The & denotes the address when placed before the variable.

Pointers can be printed with %p format specifier.
#include <stdio.h>

int main()

{

int val = 4;
int *v = &val;

97

printf ("%d %p\n", val, v);
}

A size of a pointer can be evaluated as following.

int *v;
int size = sizeof (v);

On a 64-bit machine, the size results in 8 bytes.

Pass by value and Pass by reference in functions
Consider the below example,

void add(int a, int b, int r)

{
r = at+ b;

}

int main()

{
int a = 3;
int b = 3;
int r = 0;
add(a, b, r);
printf("r %d\n", r);

}

Here the function add takes a, b and r as inputs. The add function perform the
addition operation and writes the result in r.

Once the function executes and returns, the value of r is still 0. This is because
the variable r when passed is local to the function add. So the result value of r
in function add is not passed back.

One way to pass back the value is to return it. For example,

int add(int a, int b)
{

return a + b;

}
And then capture the return value in the caller.

This method of passing arguments is generally called as Pass by value. In this
approach, the value of the passed arguments do not change in the caller.

There is another approach to do this by using pointers. Refer to the pointers
section on using pointers.

98

void add(int a, int b, int *r)
{
*r = a + b;

}

This method is called as Pass by Reference. The r variable above is passed as a
pointer. So in the caller we need to pass the address of the variable.

add(a, b, &r);

Here we passed the address of the variable r so the actual address that the add
function is writing is in the original address of r.

This is particularly useful when functions want to change some information
about the variables that they take as inputs instead of returning.

The void pointer

The void pointer is a generic pointer that can be assigned as an address to any
structure, pointer or a variable. Below is one example:

int al[10];
void *p;
p = &al0];

The void pointer cannot be dereferenced because dereferencing involve deducing
the type it points, since its void the compiler wouldn’t know which type it has to
decode. So a typecast is required or in some cases assignment back to its type.

To typecast back to the type generally, the typecast need to be used.
void *p;

int *a;

a = (int *)p;

printf ("val %d\n", *a);

The above code can be rewritten as,

void *p;

int a = 10;

p = &a;

printf("val %d\n", *(int *)p);

Here the void pointer p is typecasted to integer pointer using the int * and
then dereferenced using the * operator.

Typecasting can be used for the structure pointer as well.

99

struct S {
int p;
};

struct S s = {
.p = 3,
};

void *p = &s;

struct S *r =
The above code snippet can be rewritten as follows,

#include <stdio.h>

struct S {
int p;

};

struct S s = {
.p = 3,

};

int main()

{
void *p = &s;
printf("%d\n", ((struct S *)p)->p);
return O;

}

(struct S *)p; // typecast back to struct S

The below implementation of program results in compiler error because of the

de-reference of void pointer.
#include <stdio.h>
int main()
{
int p = 3;
void *a;
a = &p;

printf ("%d\n", *a); // compiler error..

return O;

100

de-referencing void *

}
Another way to do is the following,.

#include <stdio.h>

int main()

{
int p = 3;
void *a;
a = &p;
printf ("%d\n", *x(int *)a); // typecasting implictly and then de-referencing the pointer
return 0O;
}

Pointers and Arrays

A Pointer to an array can be simply assigned as follows.
int al10];

int *p;

p=a;

orp = &al0].

The pointer p assigned as the pointer to the first element of the array. In C, the
void pointer can point to anything or any pointer type can be assigned to the
void pointer. No explicit typecast is required.

Typecast is required in few places such as typecasting between different pointer
types. For example consider the following program,

“c #include <stdio.h>

struct S { int p; };

struct Ss ={ .p =3, };

int main() { void p = s; int pl = &s;
printf("%d\n", ((struct S *)p)->p);

return O;

}

The above program has the following statement,

101

({(C
int *pl = &s;

Which results in the following warning:

deref_structs.c:14:15: warning: initialization of ‘int *’ from incompatible pointer type

14 | int *pl = &s;
| -

This needs to be explicitly typecasted if the objective is to really typecast from
one type to another. In general this is simply not the case. The right approach
to this is as follows,

int *pl = (int *)&s;

Below is one example use of pointers with arrays,

#include <stdio.h>

int main()

{
int a[10];
int *p;
int i;

for (i = 0; i < sizeof(a) / sizeof(al0]; i ++) {
alil = i;

P = a;

for (i = 0; i < sizeof(a) / sizeof(al0]); i ++) {
printf("alld] = %d\n", i, p[il);

printf ("\n");

return O;

}

Below is another example of accessing array elements with a pointer. The
elements of array are updated with the pointer.

#include <stdio.h>

int main()

{
int al[10];
int 1i;
int *p;

102

<

st

for (i = 0; i < sizeof(a) / sizeof(al0]); i ++) {
p = &alil;
*p = i;

}

for (i = 0; i < sizeof(a) / sizeof(al0]); i ++) {
printf("%d\n", alil);
}

return O;

}

When passing an array to a function, the caller takes it as a pointer input. This
is called as array decaying into a pointer. When such thing happens, calling
sizeof on the pointer gives you 4 or 8 bytes that is the size of the pointer on
the architecture. In general it is wise to pass the number of elements of the array
as argument to the function call.

For example,

int f(int *a, int a_len)

{
}
int main()
{
int al[10];
fla, 10);
}

Pointer Arithmetic

Arithmetic operations are allowed on pointers, but they generally are dangerous
if not done correct. The danger is that a non-allocated / non-reserved address
being accessed during an arithmetic operation results in either unknown code
execution (resulting to using this portion of code for viruses or exploits) or if
lucky leads to a program crash.

#include <stdio.h>

int main()

{
char *p = "hello";
while (xp != '\0') {
printf(”'%c'”, *p),
p t+;
3

103

printf ("\n");
return O;
}

The above code checks for the \0 character and iterates through each character
in the string p. The operator ++ allows us to move to the next character.

When a ++ is performed on a character pointer, since the type the pointer is
pointing to, is char the next address is the next byte.

The programs written in the strings can be rewritten with pointers. Below is
an example of strlen function rewritten using pointer arithmetic.

#include <stdio.h>

int string len(const char *str)

{
int len = O;
if (!str) {
return -1;
}
while (kstr != '\0') {
len ++;
str ++;
}
return len;
}
int main()
{
char *str = "this is string";
printf("len %d\n", string_len(str));
return O;
}

When the same pointer points to an integer, the next address will be the next 4
bytes. Below is an example,

#include <stdio.h>
int main()

{
int al10] = {1, 2, 3, 4, 5, 6};

104

Recap about variables and scope
auto type

The type auto does not signify anything in C. This type is very significant
however in C++.

volatile type

The keyword volatile is used in places where there is a real address being used.
It is attached generally to integers.

volatile uint32_t *addr = 0xA0000000;

Lets look at an example where a register in the memory needs to be checked
continuously until it reaches a certain value.

while ((*addr & 0x80) == 1) {

}
The addr is not set by the software but by the hardware.

Without the use of the volatile keyword, the compiler would simply return
without executing anything in the inner loop.

124

Function Pointers

Pointers to functions are similar to pointer to the variables. Functions also have
addresses.

int (*fptr) (void);

Defines a function pointer, that accepts no arguments and returns an integer.
int (xfptr) (char *fmt, ...);

Defines a variable argument function.

Function pointers in software are useful to write abstractions.

Consider the following case,

1. An Ethernet phy product A provides capability for transmit, receive
functionality for internet working.

2. Another Ethernet phy product B provides same capabilities for internet
working.

So to the user it does not matter which hardware is being used downside. All he
care about is the internet.

An Operating system programmer must have to implement something that must
abstract the two interfaces to provide a uniform interface to the user. This
generally is where function pointers come in.

Lets convert that above feature into software.

struct ethernet_driver {
int (*transmit) (uint8_t #*packet, int packet_size);
int (*receive) (uint8_t *packet);
};
The structure ethernet_driver provides an interface to the upside user and

the downward phy device.

enum eth_driver_ list {
A,
B,

};

struct ethernet_driver x*e;
enum eth_driver_list list[2] = { A, B };
e = probe_for(&list, 2);

Here, the function probe_for looks for hardware registers which hardware is
inserted, whether its A or B. If its A, it would return the ethernet_driver
pointer of the driver A, otherwise it returns B.

125

in A _eth Driver.c:

int a_transmit(uint8_t *packet, int packet_size);
int a_receive(uint8_t *packet);

static const struct ethernet _driver A_driver = {
.transmit = a_transmit,
.receive = a_receive,

};
struct ethernet_driver *get_A_functionality()
{
return &A_driver;
}

in B eth Driver.c:

int b_transmit(uint8_t *packet, int packet_size);
int b_receive(uint8_t *packet);

static const struct ethernet_driver B_driver = {
.transmit = b_transmit,
.receive = b_receive,

};

struct ethernet_driver *get_B_functionality()
{
return &B_driver;

}

in probe.c:

#define A_REG 0x000A0000
#define B_REG 0x000B0O00O

struct ethernet_driver *probe_for(enum eth_driver_list *list, int len)
{

int 1i;

for (i = 0; i < len; i ++) {
if (list[i] == A) {
if (match_reg(A_REG)) {
return get_A_functionality();
}
} else if (1ist[i] == B) {

126

if (match_reg(B_REG)) {
return get_B_functionality();

}

return NULL;
}

The functionality of the caller for probe_for remain the same even if a new
driver gets added, it will have a new driver file implementing the new driver and
the probe_for function update to call the driver.

The most important observation here is that the caller can directly perform
a call to eth->transmit and eth->receive without knowing the underlying
driver functionality.

This is called abstraction. This feature is very well defined within the language
in C++4 as Abstract classes. We will describe this in more details.

127

Array of function pointers

The array of function pointers have the below syntax.

int (xfptr[4]) (void); // defines array of 4 function pointers

To be much simpler, one can typedef the function pointer and define the arrays.

typedef int (xfptr) (void); // defines a function pointer

fptr £[4]; // defines 4 function pointers
Below is an example of array of function pointers,
#include <stdio.h>
int £O
{

static int count = 0;

printf ("F called %d\n", count);

return ++ count;

}

typedef int (xfptr_f) (void);

int main()

{
fptr_f fptrl4];
int 1i;
for (i = 0; i < 4; i ++) {
fptrli] = f;
}
for (i = 0; i < 4; i ++) {
fptr[il O;
}
return O;
}

128

Structures

Data structure is a group of variables of different types. The struct word is
used as an identifier to the compiler to make it recognize the structure.

An example of data structure looks as follows.

struct shelf {
char book_name[10];
int n_papers;

};

Above structure defines a shelf that contains a list of books and papers, one is a
string and another is an integer.

Defining the structure variable is similar to defining the base type.
struct shelf s;

here s is of type structure shelf.

Accessing the elements in the structure is via the . operator.
#include <stdio.h>

#include <string.h>

struct shelf {
char book_name[10];
int n_papers;

3
int main()
{
struct shelf s;
strcpy(s.book_name, "Witcher");
s.n_papers = 2000;
printf ("book_name: Y%s papers: %d\n", s.book_name, s.n_papers);
return O;
}

A structure can be inside another structure as well.

struct book {
char book_name[10];
char book_author[10];
};

struct shelf {

129

struct book book;
int n_papers;

}
We can apply the typedefs to structures as well. such as,

typedef struct book {

} boc')l'{;t; // define book typedef

typedef struct book book_t; // define typedef in a new line
typedef struct { // define typedef without naming

} book_t;

Now book_t can be used to define structure variables. Generally _t prefix is
used to differentiate the typedefs. But its only a choice of programmer and not
defined by the C standard.

One can also use macros for better sounding names.
#define Book_Info struct book
But doing this generally avoided although its possible.

Macros though can be used this way, their whole purpose is for naming constants
or writing small function like macros.

The elements are accessed as follows.

struct shelf s;

void set_book(struct book *b, char *book_name, char *book_author)
{

strcpy (b->book_name, book_name) ;

strcpy (b->book_author, book_author) ;

void set_shelf (char *book_name, char *book_author, int n_papers)
{

S.n_papers = n_papers;

set_book(&s.b, book_name, book_author) ;

}

The variable b of the type struct book is passed as a pointer to the set_book.
The function set_book sets the book name and book author.

An array of structures is possible too.

struct book {
char book_name[10];
char book_author[10];

130

};

struct shelf {
struct book books[10];
int n_papers;

}
Pointers in Structures
Structures can contain pointers as well.

struct book {
char *book_name;
char *book_author;

+
These are allocated just the way pointers are allocated.

book->book_name = calloc(1l, 40);
book->book_author = calloc(1, 20);

There can be cases when there are structures in a structure which contain pointers
to another structures or variables. In such cases freeing all the structures becomes
a real problem. Doing it in the same order of allocation guarantees no crashes
but leaks memory. To do the right way, one must free in the reverse order of
allocation.

Below example shown provides such a method.

struct S1 {

int v;
};
struct S2 {
struct S1 si;
};

struct S2 s2;
s2.s1.v = 3;

printf("v: %d\n", s2.s1.v);
Structure Initialization

Structures initialization can be done in many ways. One way of initialization is
as follows.

struct A {
int val;

131

double val_d;
};
struct A a =9{ .val = 3, .val_d = 3.1 };
Is one way to initialize the structure.
Below is an example,

#include <stdio.h>

struct A {
int val;
double val_d;
};
int main()
{
struct A a =9 .val = 3, .val_.d = 3.1 7};
fprintf (stderr, "val: %d\n", a.val);
fprintf (stderr, "val_d: %f\n", a.val_d);
return O;
}
To initialize an array of structures, one can use the following approach.
struct A {
int val;
double val_d;
Fall = A
{
.val = 3,
.val_d = 3.1,
},
{
.val = 4,
.val_d = 3.2,
},
{
.val = 5,
.val_d = 3.3,
}
};

When initializing an array statically the array subscript is not required.

In general, if the array never changes during the program lifetime, then the

132

variable can be set const.

const struct A al[l = { ... };
Array of structures

Arrays of structures is possible as well.

struct A {
int val;
double val_d;
};

struct A al[10]; // array of structures of type “A°.

They can be iterated just like arrays.

struct A {
int val;
double val_d;
}s
void set(struct A *a, int size)
{
int i;
for (i = 0; 1 < size; i ++) {
ali] .val = i;
alil.val_d =i + 0.1 * i;
}
}

Allocating structures

Structures are allocated in the same way as any variable.

struct S {
int a;
int b;
}s;

struct S *s;

s = calloc(l, sizeof(struct S));
the access to the member variables can then be done using the -> operator.

s->a = 3;
s->b = s—>a;

The freeing is same as well. A call to free(s) would free up the allocated
memory.

133

Function pointers in structures

The below structure declares two function pointers get and set which are
accessible from the structure variable.

struct S {
int (*get) O;
void (*set) (int);
};

struct S s;
s.set(3); // set the wariable

int var = s.get(); // get the wariable

But in general the pointers s.get and s.set contain garbage pointers. So
accessing them generally results in a segmentation fault or in bad situation
results in abnormal program execution.

One way to assign the addresses is the following;:
int a;

int my_get() { return a; }

void my_set(int A) { a = A; 7

struct S s;

memset (&s, 0, sizeof (struct S));

s.get = my_get;
s.set my_set;

Now accessing the function pointers s.get and s.set will indirectly call my_get
and my_set functions.

While we can have function pointers in structures, but we cannot have functions
in structure. This is not allowed in C. However, C++ allow this grouping of
data and operations.

The below structure is incorrect and results in error.
#include <stdio.h>
struct S {

int f(void);
};

int main()
{
}

134

6. nullptr

C++411 onwards the standard defines nullptr that can be assigned to any type
of pointer. When assigned, the compiler implicitly takes care of assigning the
null pointer. The nullptr does not point to 0 or (void *)O0.

For example the following statements are still valid in C++.

int *p = 0; // old use of 0 for null
int *p = NULL; // NULL pointer use in C

In general it is extremely difficult to really find the type of the variable when its
using auto type deduction.

auto res = get_data();
if (res == 0) { // assuming O here is a null pointer

}

However, the type understood could be a NULL if the get_data is actually
returning a NULL pointer.

if (res == nullptr) { // always guaranteed the res is a null pointer
}
Data struture pointers can be assigned to nullptr as well.
struct S {
int a;
3
S *s1 = NULL; // still walid

S *s2 = nullptr; // valid

In some of the standard types such as shared_ptr, unique_ptr assigning 0 could
result in ambiguous result. The shared_ptr and unique_ptr are part of the
standard template library. They will be discussed further in their corresponding
sections.

std: :shared_ptr<S> s1 = 0; // may work
std: :shared_ptr<S> s2 = nullptr;

7. Functions with default arguments
C++ allows functions with default arguments. For example,

int £(int a, int b = 10)
{

return a + b;

}

190

In the above function f, the caller does not have to pass the second argument so
the call £(10) is valid.

Or if explicitly wanting to pass the value, then the second argument can be
passed. For example f (3, 3) is valid and the argument b takes value 3.

#include <iostream>

int £(int a, int b = 10)

{
return a + b;

}

int main()

{
int r = £(10);
std::cout << "r: " << r << std::endl;
r = £(3, 3);
std::cout << "r: " << r << std::endl;
return O;

}

191

New keywords in C++4

192

constexpr

193

explicit

auto The auto keyword provides an automatic type deduction when used.
An example,
auto i = 10;

says its an integer but compiler automatically understands this when the value
assigned to it is an int.

auto i = 10; // an int
auto p = 10.1; // a double
auto t = "c++"; // a const string

We use auto at times when writing a complex type becomes very hard. We will
see in the below sections on more about auto. Remember that not all auto type
deductions are as we expect.

When variables of type auto are used, then the initialization must be followed.
This generally instructs the compiler to derive the type based on the initialized
value.

194

Typecasting

195

static__cast
dynamic__cast

reinterpret__cast

196

Classes

Classes in C++ are similar to the structures in C. The Class is enclosure for
data and operations on the data.

A class would generally look like this.

class <name> {
public:
<variable_type > variable;
<return_type> function_prototype(parameters..);

protected:
<variable_type > variable;
<return_type> function_prototype(parameters..);

private:
<variable_type > variable;
<return_type> function_prototype(parameters..);

};

The below example provides a simple class definition.

class S {
public:
SO {a=0;7%
~80 {2
void set(int a) { a_ = a; }

void get() { return a_; }

private:
int a_;

};

The functions SO) and ~S() are constructor and destructor respectively. The
constructor gets called when the class object is instantiated. The destructor is
called when the class object goes out of scope. Lifecycle of the class object is
similar to that of the C variable.

The functions set and get within S are called public member functions. The
variable a_ is a private member variable. In general the private members are
prefixed or postfixed with something that differentiates between a local variable
and a class member. Without it, it gets really hard to understand the variable’s
lifetime.

The sizeof on classes would give the size of the variables (excluding member
functions).

#include <iostream>

197

class S {
public:
int get() { return a; }

private:
int a;
int p;
double r;
};
int main()
{
std::cout << "size: " << sizeof(S) << std::endl;
return O;
}

Public members can be accessed by the users of the class while private members
are not accessible.

The below declares the class object of S.

S s;

The member functions set and get are accessible as,
S s;

s.set(3);

int val = s.get();

Accessing a_ directly as below results in a compiler error that the variable is
part of the private section of the class.

S s;

int val = s.a_; // results in compiler error
The variable a_ can only be accessible via the get method.

If the public keyword is not mentioned then the scope is by default private.

class S {
SO {a=0; 1%}
~50O {1}
void set(int a) { a_ = a; }

void get() { return a_; }

int a_;

198

The above code shows class members are all by default, private. Class with all
members private is legal and compiles until it is instantiated by creating an
object of the class.

199

Constructors and Destructors
The constructor is called when an object of it is created. For example,

class S {
public:
SO {a=3;1
~s0 { %

int get() { return a; }

private:
int a;
}s;
int main()
{
S s;
}

The declaration S s calls the constructor S(). Constructors and Destructors
will have the same name as the class. The destructor has ~ prefix attached to it.
The destructor gets called soon after the object loses its scope.

Below is an example,

#include <iostream>

class P {
public:
PO

{

std::cout << "default constructor" << std::endl;
a = 3;

¥

~P(O)

{

std::cout << "destructor called" << std::endl;
¥
int get() { return a; }
private:
int a;
}s;
int main()

{

200

switch (1) {
case Languages: :Telugu:
return 1 = Languages::Tamil;
break;
case Languages::Tamil:
return 1 = Languages: :English;
break;
case Languages::Hindi:
return 1 = Languages::Telugu;

break;
default:
return 1 = Languages::Telugu;
break;
}
}
int main()
{
Languages 11 = Languages::Telugu;
Languages 12 = Languages: :Tamil;
if (11 ==12) {
std::cout << "Languages are same" << std::endl;
} else {
std::cout << "Languages aren't same" << std::endl;
3
if (11 <12) {
std::cout << "11 is less than 12" << std::endl;
}
if (Languages::Hindi < 100) {
std::cout << "hindi less than 100" << std::endl;
b
std::cout << 11 << std::endl;
++11;
std::cout << 11 << std::endl;
std::cout << std::is_enum_v<Languages> << std::endl;
return O;
b

223

Function Overloading

Function overloading allows to have more than one signature to a function. Below
is one example,

int F(int a);
int F(int a, int b);

The function F here is overloaded and have the two signatures. The compiler
finds out which variant of F to be called based on the definition.

#include <iostream>

int F(int a) { return a; }
int F(int a, int b) { return a + b; }

int main()

{
std::cout << "F(3): " << F(3) << std::endl;
std::cout << "F(3, 3): " << F(3, 3) << std::endl;
return 0O;

}

In general the arguments to the functions are allowed to be overloaded. However,
the return type of functions are not allowed to be overloaded, For example,

#include <iostream>

int F(int a) { return a; }
void F(int a) { 7}

int main()

{
F(3);
}

Results in a compiler error.

cpp/overload_f.cc:4:6: error: ambiguating new declaration of ‘void F(int)’
4 | void F(int a) { }
| -
cpp/overload_f.cc:3:5: note: old declaration ‘int F(int)’
3 | int F(int a) { return a; }
| -
Function overloading is really useful when a function wants to do different jobs
keeping the name same but different signature.

224

Exception Handling
#include <iostream>
struct S {

S(int r) {
if (r == 0) {

throw std::runtime_error("r is 0");

}

int a;

};

int main()
{
try {
S r1(0);
} catch (std::runtime_error

std::cout << "exception:

}
S r2(3);

return 0O;

}

#include <iostream>
#include <exception>

&r) {
" << r.what() << std::endl;

class S : public std::out_of_range {

public:

S(const char *err) : std::out_of_range(err) { }

~50 { }
int a;

void set(int v) {
if (v > 10) {
throw *this;
}
a = v,

}

virtual const char *what() const noexcept {

return "a value out

of range";

225

};
int main()
{
S I'l("”);
try {
rl.set(11);
} catch (S &r) {
std::cout << r.what() << std::endl;
}
return O;
}

226

noexcept
The noexcept is an operator and also a specifier.
noexcept specifier

The noexcept specifier informs the compiler that the particular function /
constructor / destructor does not produce an exception. It also governs some
underlying rules when it comes to inherited classes.

A noexcept specifier can be attached to the end of the function as:

int f(void) noexcept; // says function does not throw an exception
int g(void); // may throw an exception

A function declared with noexcept specifier but throws, results in the library
calling std: :terminate. This makes the exception uncatchable.

An overloaded function can have a different exception specification. For example,
below example is valid.

int f(void) noexcept;
int f(std::string arg);

Below program covers almost all the noexcept cases:

#include <iostream>

void f() noexcept { std::cout << "f called" << std::endl; }
void f(std::string arg) { std::cout << "f called with arg: " << arg << std::endl; }

void g() noexcept { throw std::runtime_error("an exception g()"); }
void p() { throw std::runtime_error("an exception p()"); }

int main()

{
£0O;
f("test");

try {
pO;
} catch (std::exception &e) {
std::cout << "caught the exception from function p(): " << e.what() << std::endl;

}

try {
g
} catch (...) {
std::cout << "caught the exception from function g()\n";

227

}

If a base class contains any of member functions with noexcept specifier then
the derived class must also contain the noexcept specification. Without it, this
results in compiler error.

#include <iostream>

class F {
public:
virtual void f() noexcept = 0;

};

class G : public F {
public:
void f() { std::cout << "in f()" << std::emndl; }

};

int main()

{
class G g;
gt

}

Results in compiler error,

cpp/noexcept_inh.cc:10:22: error: looser exception specification on overriding virtual funct
10 | void £() { std::cout << "in f()" << std::endl; }
| -
cpp/noexcept_inh.cc:5:30: note: overridden function is ‘virtual void F::f() noexcept’
5 | virtual void f() noexcept = 0;
| -
However, a derived class can specify noexcept specifier although the base class
do not have it.

For example the below program compiles.
#include <iostream>
class F {

public:

virtual void f() = 0;
};

class G : public F {
public:

228

void f() noexcept { std::cout << "in f()" << std::endl; }

};

int main()

{
class G g;
g.£O;

}

229

Standard library

Standard library or STL in short is a group of helper function that ease up
programming. Nowadays, they are more focussed towards helping programmers
write OS independent software using C++.

230

std::pair

std: :pair defines a pair of values. The usecases are when returning more than
one variable from a function or passing to a function as key-value pair.

std: :pair can be used to construct a pair or std: :make_pair can be used as
well.

auto p = std::pair<std::string, int>("test", 1); // constructs std::pair type in p
auto p = std::make_pair<std::string, int>("test", 1); // makes o pair of type std::pair

Below is one example of the usecase for std: :pair:

#include <iostream>

void f(std::pair<const std::string, int> p)

{
std::cout << "first: " << p.first << " second: " << p.second << std::endl;
}
int main()
{
f(std: :make_pair("test", 1));
f(std::make_pair<std::string, int>("test", 2));
f(std::pair("test", 1));
}
std: :pair also exposes operators ==, !=, < and >. One can use certain operations

for comparison. Here’s one example: Download it here

#include <iostream>

int main()

{
auto r = std::pair<std::string, int>("test", 1);
auto rl1 = std::pair<std::string, int>("test", 1);
std::cout << "r == rl: " << (r == r1) << std::endl;
return O;

}

std::pair can be implemented with templates. See usecases section for the
implementation of std: :pair.

231

https://github.com/devendranaga/programming-in-C-and-Cpp/blob/main/cpp/pair_op.cc

std::initializer_ list

232

std::bitset

233

std: :thread t2(thread_2);
std::cout << "waiting for threads" << std::endl;

t1.join();
t2.join();

std::cout << "stop" << std::endl;
¥

When compiling and running this program results in non-sequential outputs.
For example.

in thread_1

waiting for threads
in thread_2

stop

But the expectation is that the main function messages will appear before the
thread function calls.

Threads can be detached with .detach method. However, at some point the
main thread has to wait. Without it the program does not execute or the threads
will not run.

#include <iostream>
#include <thread>

void t1()

{
printf("in ti\n");

}

int main()

{
std::thread t(t1);
t.detach();
printf("in main thread\n");
while (1) {

std::this_thread::wait_for(std::chrono::milliseconds(100));

}

}

In general, when threads are created by the operating system, the execution
totally depends on the scheduler.

263

Mutexes

Mutex is a synchronization primitive which sequences out the shared data
accesses.

For example if more than one user (reader / writer) of the shared data is accessed
the read or write results may not be as expected. A write may have happened
in the middle and did not completely finish due to the reader accessing it. The
same could happen while reader accessing the shared data the writer may have
overwritten it, resulting in the incorrect read result.

Mutex provides basic lock and unlock primitives. A lock primitive locks the
section of the code that performs operation (read/write) on the data. An unlock
primitive unlocks the section of the code that was locked before using lock
primitive. Below is one example,

std: :mutex m;
m.lock();

// perform data modification / access data
m.unlock();

Mutexes are defined in C++11 standard library. They are similar to the
pthread_mutex types in the POSIX.

std: :mutex class defines the mutex. It has the following member functions.

S.No Member function name Description

1 lock locks the mutex

2 unlock unlocks the mutex

3 try_lock tries to lock the mutex,

returns if the mutex is
not available

4 native_handle returns the underlying
implementation defined
handle

A lock call would wait indefinitely until the other thread performs a unlock on
the thread object. A second lock call would result in thread waiting on lock
itself again. This is called deadlock.

Below is one example,

#include <iostream>
#include <thread>
#include <mutex>

std::mutex m;

264

void thread_function()

{
printf("in thread\n");
printf ("aquiring lock\n");
m.lock();
printf("try acquiring lock again\n");
m.lock();
printf ("acquired double lock\n");
}
int main()
{
std: :thread t(thread_function) ;
t.join();
return O;
}

The above program acquires the lock at the first m.lock () statement and tries
to acquire the second lock and waits on it indefinitely until someone unlocks.

A try_lock approach to the locking would generally resolve the problem. But
in general a double lock acquisition is not preferred in any situations.

A try_lock would fail if a lock has been already acquired. So the code can
safely return instead of getting into deadlock.

Below is one example,

#include <iostream>
#include <thread>
#include <mutex>

std::mutex m;

void thread_function()
{
printf ("try acquiring the lock\n");

m.lock();
printf("took the lock.. trying again to acquire the lock\n");

if (m.try_lock()) {
printf("acquired lock again..\n");
m.unlock();

} else {

265

printf("failed to acquire the second lock\n");

std::thread t(thread_function);

}
}
int main()
{
t.join();
return O;
}

Below is another example of two threads contending to use the count variable
with mutex used to serialize the access.

#include <iostream>

#include <thread>
#include <mutex>

std: :mutex lock;
static int count;

void thread_1()
{
while (1) {

std::cout << "in
std: :this_thread:
lock.lock();

std::cout << "in

count ++;

std::cout << "in
std::cout << "in
lock.unlock();

3

void thread_2()
{
while (1) {

std::cout << "in
std: :this_thread:
lock.lock();

std: :cout
count ++;
std: :cout
std: :cout

thread_1: waiting for lock" << std::endl;
:sleep_for(std::chrono: :seconds(1));

thread_1: acquired" << std::endl;

thread_1: val " << count << std::endl;
thread_1: released" << std::endl;

thread_2: waiting for lock" << std::endl;
:sleep_for(std: :chrono: :seconds(1));

thread_2: acquired" << std::endl;

thread_2: val " << count << std::endl;
thread_2: released" << std::endl;

266

lock.unlock() ;

}

}

int main()

{
std::thread t1(thread_1);
std: :thread t2(thread_2);
t1.join();
t2.join();

}

267

Conditional Variables

In C++ conditional variable is similar to the pthread_cond types.

The std:

:condition_variable is defined in C++11 standard. Below is an

example of using condition variable.

#include
#include
#include
#include
#include

std: :mut
std: :con
std: :que

void t1(
{
whil

}

}

int main

{
std:
int
t.de
whil
}

}

<iostream>

<queue>

<thread>

<mutex>
<condition_variable>

ex mut;
dition_variable cond;
ue<int> ints;

)

e (1) {
std::unique_lock 1(mut);
cond.wait(1l);

if (ints.size() != 0) {
printf ("deque %d\n", ints.front());
ints.pop(Q);

}

O

:thread t(t1);

i=1;

tach();

e (1) {

std: :this_thread: :sleep_for(std::chrono::milliseconds(100));
std: :unique_lock 1(mut);

ints.push(i);

cond.notify_one();

i ++;

In most cases a single producer and single consumer does not require a condition
variable. In general calling mutex.lock() would keep the calling thread in sleep.

However if more than one thread is waiting on the data (more consumers), a

268

condition variable is required.

Calling cond.wait () on a mutex effectively lets the thread wait on the condition.
Calling cond.notify_one() in the producer thread will effectively signal the
thread waiting on cond.wait (), thus waking it up effectively.

In a simple world, the producer generates the data, takes the mutex lock, inserts
the data into the queue. It then notifies the thread using cond.notify_one().
The consumer waits on the cond.wait() on the mutex. The cond.wait()
returns soon as cond.notify_one() or cond.notify_all() is called on the
same condition variable.

The thread checks if the number of entries in the queue are non zero and uses
the print statement to print the first entry in the queue. The thread then calls
queue.pop() to pop the item from the front of the queue.

cond.wait () accepts the mutex of type std: :unique_lock.

std::unique__lock

The std: :unique_lock provides a way to always perform the unlock no matter
what. The unique_lock is scope driven. If the lock goes out of scope (it can be
within a braces { and } or within the function. The destructor of unique_lock
calls .unlock method. Thus it guarantees that the mutex is always unlocked.

Here is one example of it:

#include <iostream>
#include <thread>
#include <mutex>

std: :mutex count_lock;
int count = 0;
void thread_function()

{
while (1) {
std: :this_thread: :sleep_for(std::chrono::milliseconds(100));
std: :unique_lock 1(count_lock);
count ++;
printf ("count in thread %d\n", count);
}
}

int main()
{
std: :thread t1(thread_function) ;

while (1) {
std: :this_thread: :sleep_for(std::chrono::milliseconds(100));

269

std: :unique_lock 1(count_lock);
count ++;
printf ("count in main thread %d\n", count);

std::timed_ lock

std: :timed_lock is used in cases where the thread must not wait for the lock
to be acquired and need to do other job periodically or so. In such cases
std::timed_lock helps.

The member functions of std::timed_lock have same members as the
std: :mutex with addition of try_lock_for member function which accepts
timeout argument of type std: :chrono.

Below is one example,
The code waits every one second and tries again to acquires a lock for 3 times.

#include <iostream>
#include <thread>
#include <mutex>
#include <chrono>

std: :timed_mutex t_m;
int val = O;
void thread_function()

{
using namespace std::literals::chrono_literals;
int retry = 0;
while (retry <= 3) {
if (t_m.try_lock_for(is)) {
printf("val %d\n", val);
std: :this_thread: :sleep_for(ls);
t_m.unlock();
break;
} else {
printf("failed to acquire lock\n");
retry ++;
¥
}
}

int main()

{

270

using namespace std::literals::chrono_literals;

t_m.lock();

std: :thread t1(thread_function) ;
std: :this_thread: :sleep_for(2s);
val ++;

t_m.unlock();

t1l.join();

271

Creating a Vector of Threads

A vector of thread objects can be created in a loop then added to the std: :vector
object.

Pushing the thread object into the vector does not really add the object as the
thread’s destructor is called upon. Instead of creating a thread object a shared
pointer of the thread object is created. Below is one example,

#include
#include
#include
#include

<iostream>
<vector>
<thread>
<memory>

void thread_func(int a)

{

}

printf("in thread %d\n", a);

int main()

{

std:

int

for

for

:vector<std::shared_ptr<std::thread>> threads;
ij;

(1 =0; 1 <10; i ++) {
std: :shared_ptr<std::thread> thread;

thread = std::make_shared<std::thread>(thread_func, i);
threads.push_back(thread) ;

(auto thread : threads) {
thread->join() ;

return O;

272

Derived Classes

C++ allows a class to inherit one or more other classes. This is called inheritance.
struct B {

};

struct D : public B {

+;

Here the class D inherits the class B. The public member functions in B are
inherited in D. This means they are callable in D without class object. They
can also be overrriden if needed.

For example,

struct B {
BO {a_=3; 1}
~BO {7
int get() { return a_; }
private:
int a_;

};

struct D : public B {
DO {a_=6; 7
~-DO { }
int get() { return a_; }
int get_b() { return B::get(); } // access B::get() directly

private:
int a_;

};

we access the member of D the following way:

D d;

std::cout << "d.get_b(): " << d.get_b() << std::endl;
D d;

std::cout << "d.get():: " << d.get() << std::endl;

This results in accessing a_ within D.

Following is another way of accessing B: :get ().

273

#include <iostream>

Jk*

* Defines a cache line item

*/

template <typename T>
struct lru_cache_items {

T val;

bool is_avail;
uint32_t seq_no;

};

ok

* Template of the lru_cache.

*/

template <typename T, int n>
class lru_cache {

public:

explicit lru_cache()

{

}

index_ = O;
seq_no_ = 0;

for (auto i = 0; i < n; i ++) {

items_[i] .is_avail = false;
items_[i].seq_no = 0;

}

~lru_cache() { }

lru_cache &push(T &val)

{

/* Add to the cache for the first n items */
if (index_ < n) {
seq_no_ ++;

items_[index_].val = val;
items_[index_].is_avail = true;
items_[index_] .seq_no = seq_no_;

index_ ++;
} else {
VAL
* Try evicting an ttem 1f the item is old.
*
* 4f the particular cache line's sequence number is oldest,

290

evict it and u;

*/

/* Find least recently used. */
int 1i;

int index = -1;

uint32_t least_val = seq_no_;

for (i = 0; 1 < mn; i ++) {
if (items_[i].seq_no < least_val) {
least_val = items_[i].seq_no;
index = i;

if (index !'= -1) {
seq_no_ ++;

items_[index].val = val;
items_[index] .is_avail = true;
items_[index].seq_no = seq_no_;

return *this;

}

void update(T &val, int index)
{

/* Update always involve updating sequence number, a way to tell that

* cache line 1s hot.
*/

seq_no_ ++;
items_[index].val = val;
items_[index] .is_avail = true;
items_[index].seq_no = seq_no_;
int get_index (T &val)

int 1i;
for (i = 0; i < mn; i ++) {

if (items_[i].val == val) {

break;

}

291

the

};

return i == n 7 -1 : i;
}
T &get_val(int index)
{
return items_[index] .val;
}
private:

lru_cache_items<T> items_[n];
uint32_t seq_no_;
uint32_t index_;

int main()

{

int af10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int pl1 = 11;
int p2 = 12;
int ul = 13;
int u2 = 14;
int i;

lru_cache<int, 10> 1ru;

for (i = 0; i < 10; i ++) {
lru.push(alil);
}

lru.update(al0], 0);
lru.update(al1], 1);
lru.push(pl);
lru.push(p2);

for (i = 0; i < 10; i ++) {

std::cout << "val: " << lru.get_val(i) << std

}

292

::endl;

Thread Pool

The thread pool is a group of threads that work on specific jobs that are queued
to them.

The threads are created early in the startup. All the threads could listen on
a single queue or on a multi queue. The main thread assigns the tasks to the
threads and each thread execute these tasks that are queued to them.

So idea of having separate queue for each thread generally makes sense to avoid
any possible starvation when each thread pulls the task from the queue.

Thus we need to define a context for each thread. It may look something like
the below.

struct thread_context {

};

uint32_t id_; // tdentifier for thread
std::shared_ptr<std::thread> t_; // actual thread pointer
std::mutex lock_; // lock for the queue

std::condition_variable cond_; // condition variable for the queue
std: :queue<work_fn> work_list_; // list of function callbacks

int queue_length_; // length of the queue

bool queued_; // signals if work is queued

bool signalled_; // signal to quit the thread

// comnstructor
explicit thread_context(uint32_t id);

// queue the work
void queue(work_fn fn);

// get thread td
uint32_t get_id() { return id_; }

// join the thread
void join() { t_->join(O; }

// get the queue size
int get_queue_size() { return queue_size_; }

// signal the thread

void signal();

// destructor

~thread_context () ;

void worker_thread(); // the thread function

The worker function callback would look as follows,

293

typedef std::function<void(void)> work_fn;
The id_ is a thread identifier.

We took std: :thread as shared_ptr so we can instantiate it later during the
allocation.

The lock_ and cond_ variables are used to sequentialize access to the queue
work_list_.

The queue holds the list of function callbacks that are to be executed.

We use queue_length_ to determine the fairness and optimize the time it takes
for a work callback to execute on a thread.

The variable queued_ is used for synchronization between the main thread and
the worker threads.

The variable signalled_ is used to inform the thread when to quit.

The worker_thread is the worker thread function that executes the queued work
functions.

The constructor thread_context would create the thread as follows.

thread_context: :thread_context (uint32_t id)
{

t_ = std::make_shared<std::thread>(&thread_context: :worker_thread, this);

}

Now, the main thread or the caller library functions would have to store each
thread context.

class thread_pool {
public:
// initialize thread pool with n_threads
explicit thread_pool(int n_threads);
~thread_pool();

// queue work to the thread pool
void queue(work_fn fn);

// run the thread pool wait for them to finish ezecution
void run();

// stignal the threads to stop
void signal();

private:

// store number of threads
int n_threads_;

294

// vector of threads
std::vector<std::shared_ptr<thread_context>> tc_list_;
+
The users of the thread pool can then simply do,

thread_pool t(4);
t.queue (&work_1) ;

t.queue (&work_2) ;

t.run();

The method thread_pool: :run is simply used to wait for all threads to finish.
This call will return if the threads stop executing. So at some point in time such
as program stop, we call thread_pool: :signal to signal the threads to stop.

The job queueing is takes a very generic function that accepts and returns no
parameter.

This is of type std: : function so one can use straight functions or use std: :bind
to create a callback.

For example, to make a private member function of the below class S to be
called, one can make a callback and pass it to the thread_pool: :queue.

struct S {
public:
explicit SO { }
~50O { }

void register_work();

private:
void work()
{
std::cout << "work function" << std::endl;
¥
};
void S::register_work()
{
auto callback = std::bind(&S: :work, this);
thread_pool tp(4);

tp.queue(callback) ;

295

296

Below is the thread pool implementation.

Jk*

* @brief - Thread pool implementation within 200 lines.

O@copyright -

* ¥ % % %

*/
#include <iostre
#include <queue>
#include <vector
#include <functi
#include <thread
#include <mutex>
#include <condit

@author - Devendra Naga (github.com/devendranaga/)

2023-present.

@license - GPLwvw2

am>
>

onal>
>

ion_variable>

typedef std::function<void(void)> work_fn;

class TD {
public:
explicit

{

t

}
~TD O {

void que

{
{

}
uint32_t

void joi

TD(uint32_t id)
id_(id),
queue_size_(0),
queued_(false),
signalled_(false)

std: :make_shared<std: :thread>(&TD: :thread_fn, this);
}

ue (work_fn fn)

std: :unique_lock<std::mutex> 1(lock_);

queued_ = true;

queue_size_ ++;

work_list_.push(fn);
cond_.notify_one();

get_id() { return id_; }

n() { t_->join(); ¥

297

int get_queue_size() { return queue_size_; }

void signal()

{
std: :unique_lock<std::mutex> 1(lock_);
signalled_ = true;
cond_.notify_one() ;
}
private:
uint32_t id_;

int queue_size_;

bool queued_;

bool signalled_;

std: :queue<work_fn> work_list_;
std::shared_ptr<std::thread> t_;
std: :mutex lock_;
std::condition_variable cond_;

void thread_fn()

{
int queue_size = 0;
work_fn fn = nullptr;

while (1) {
{
fn = nullptr;
std: :unique_lock<std::mutex> 1(lock_);

if (queue_size == 0) {
cond_.wait(1l, [this] { return (queued_ == true) ||
(signalled_ == true); });
if (signalled_) {
break;
}
queued_ = false;

}
queue_size = work_list_.size();
if (queue_size > 0) {
fn = work_list_.front();
work_list_.pop(Q);

printf ("remaining items in thread %d %d\n",
id_, queue_size_);

298

}

if (fn) {
fn();
queue_size_ -—;
}
}
¥
};
class TP {
public:
explicit TP(int n_threads) : n_threads_(n_threads)
{
int 1i;
for (i = 0; i < n_threads; i ++) {
std::shared_ptr<TD> td;
td = std::make_shared<TD>(i);
td_list_.push_back(td);
}
¥
void queue(work_fn fn)
{
int lowest = td_list_.begin()->get()->get_queue_size();
std::vector<std::shared_ptr<TD>>::iterator it;
std::vector<std::shared_ptr<TD>>::iterator lowest_it =
td_list_.end();
for (it = td_list_.begin(); it != td_list_.end(); it ++) {
int q_size = it->get()->get_queue_size();
if (q_size <= lowest) {
lowest = qg_size;
lowest_it = it;
}
}
printf("chose lowest id [%d] queue [/d]\n",
lowest_it->get()->get_id(),
lowest_it->get () ->get_queue_size());
if (lowest != -1) {
lowest_it->get () ->queue (fn) ;
}
¥

299

void run()

{
for (auto it : td_list_) {
it.getO->join();
}
}
void signal()
{
for (auto it : td_list_) {
it.get()->signal();
}
+
private:

int n_threads_;
std::vector<std::shared_ptr<TD>> td_list_;
}s;

static int count;
std::mutex lock;

void work_1()

{
fprintf (stderr, "executing infinite loop\n");
while (1) {
std::this_thread: :sleep_for(std::chrono::seconds(1));
{
std: :unique_lock<std::mutex> 1(lock);
fprintf (stderr, "work_1: counter: %d\n", count);
if (count > 1) {
break;
}
}
}
}
void work_2()
{
std: :unique_lock<std::mutex> 1(lock);
fprintf (stderr, "work_2: counter: %d\n", count);
std: :this_thread: :sleep_for(std::chrono::milliseconds(100));
count ++;
}

void work_3()

300

