Programacion

Practicadel

Microcontroladors\o
<
PI1C32 .@9

<2

<
Implementando multit Jestados de maquina

Fabian Romo

[

Programacion practica del microcontrolador
PIC32

Implementando multitareas, estados de maquina e interrupciones
con MPLAB® Xy XC32

Fabian Romo

Reconocimientos

La presente obra posee referencias a diferentes productos y herramientas
y los derechos de autor de los mismos son propiedad de Microchip
Technology.

Todas las imagenes relacionadas con diagramas, herramientas, etc,
relacionados con productos de Microchip Technology tienen el permisos
correspondiente para ser utilizados en este libro.

MPLAB®, XC32® MPLAB® ICD 3 In-Circuit Debugger, PICkit™ 3 In-Circuit
Debugger y MPLAB REAL ICE In-Circuit Emulator son marcas registradas de
Microchip Tecnology Inc.

Reimpreso con permiso del propietario de los derechos de autor, Microchip
Technology Incorporated. Todos los derechos reservados. No se pueden
realizar mds reimpresiones ni reproducciones sin el consentimiento previo
por escrito de Microchip Technology Inc.

Introduccion

El presente libro es una guia de como aprender a programar de manera
practica, firmware para administrar los periféricos del microcontrolador
PIC32.

Este libro es una guia en la cual deseo compartir mis conocimientos respecto
a este dispositivo.

El libro lo iré actualizando, modificando, corrigiendo errores en el mismo y
agregando nuevos proyectos. También deseo que el lector aporte con ideas o
sugerencias acerca del mismo para anadirlas en las siguientes versiones.

éPara quiénes es este libro?

La presente obra estd pensada en aquellas personas que ya han trabajado
con algun tipo de microcontrolador y desean pulir, mejorar o tener una
referencia de sus conocimientos.

¢Qué es lo que deberias conocer antes de leer este libro?

Este libro no es una introducciéon a programacion en lenguaje C. Este libro
asume que usted tiene por lo menos un conocimiento basico en ese lenguaje
de programacion.

También es importante conocer algo de electrénica digital y mucho mejor si
usted ya ha trabajado con algun microcontrolador

é¢Qué herramientas de software se utilizara?

El software que utilizaremos serd el MPLAB® X la cual es gratis y trabaja en
Windows, Linux y OS X, el compilador que utilizaremos es el MPLAB® XC32
compiler el cual nos permitira crear nuestro firmware en lenguaje C. Mas
adelante, si el libro tiene una buena acogida, deseo utilizar periféricos
avanzados para los cuales utilizaré MPLAB® Harmony Integrated Software

Framework que podria decir que es un conjunto de librerias en lenguaje C las
cuales estdn escritas de manera abstracta de manear modular y flexible para
el usuario.

¢Qué herramientas de hardware se utilizara?

En los primeros proyectos se utilizaran los microcontrolador
PIC32MX170F256B y PIC32MX110F016B. Para las personas que desean
utilizar una placa de pruebas denominada ‘protoboard’, la familia de esos
microcontroladores (PIC32MX1XX/2XX PIN28) son ideales ya que vienen en
encapsulado tipo SPDIP.

En futuros proyectos con periféricos avanzados podria recurrir a la utilizacion
de alguna herramienta de desarrollo de Microchip Technology.

La herramienta de depuracion y programacion del MCU utilizada en los
proyectos es el MPLAB® ICD 3.

Modelo de programacion del Firmware

La forma en que esta escrito el firmware sera el modelo de estado funciones
cooperativas lo que permite realizar varios procesos en ‘paralelo’. Lo pongo
entre comillas porque para procesamiento en paralelo deben al menos existir
dos procesadores y el microcontrolador usado posee un solo CPU. Este
modelo de programacién es similar a MPLAB® Harmony Integrated Software
Framework y mas adelante se explicara claramente este proceso.

Acerca del autor

En la universidad cuando empecé a estudiar los microcontroladores, fue algo
que me gustd y me apasioné tanto por esas pequefias maquinas que hasta el
dia de hoy disfruto aprendiendo y disefiando algun tipo de sistema
microcontrolado.

El primer microcontrolador con el cual empecé a jugar fue el PIC16F877®, en
aquella época lo programaba en lenguaje ensamblador. Practicamente el
resto de mi carrera fue realizar varios proyectos de automatizacién en base a
ese dispositivo.

Cuando terminé mis estudios pasé al siguiente nivel con el DSC dsPIC30F®
pero aln mantenia la idea que programar en lenguaje ensamblador era lo
mejor. Con dicho dispositivo construi un osciloscopio de 3 canales de baja
frecuencia y la informacién adquirida se la visualizaba en una aplicacion de
PC. La informacion que adquiria el dsPIC® era enviada por comunicacion USB
al computador. Este proyecto solamente fue un pasatiempo.

Cuando empez6 a llegar diferentes trabajos independientes, un amigo que ya
se dedicaba a este tipo de negocio utilizaba el compilador en lenguaje C de
CCS® con el cual conseguia resultados inmediatos en sus proyectos, asi que
poco a poco la idea de utilizar un lenguaje de alto nivel me empezd a gustary
empecé aprender por cuenta propia la utilizacion del compilador C18°® de
Microchip Technology para su familia de microcontroladores PIC18F®.

Luego trabajé en diferentes empresas en las cuales refiné aun mas mi
experiencia con microcontroladores PIC® de 8 bits y de 32 bits. Cada dia
aprendiendo y mejorando mis conocimientos.

Sugerencias y comentarios

Cualquier sugerencia o comentario las pueden realizar al siguiente correo
electrénico: programacionpracticapic32 @outlook.com

Fabian Romo

Organizacion de cada capitulo

Los primeros capitulos que poseera este libro son los siguientes:

Capitulo 1. Instalacion de las herramientas de software y breve explicacion
de las herramientas de hardware

En este capitulo se indicard los enlaces que permiten descargas las
herramientas de software con las cuales se trabajan en este libro.

Capitulo 2. Una mirada rapida a la arquitectura del microcontrolador PIC32

En esta parte se tratard de una manera breve como esta constituida la
arquitectura del MCU. Cuando empiezas a programar proyectos con
cualquier microcontrolador debes tener claro de una manera global cual es
su arquitectura, pero estd se la comprende mejor a medida que desarrollas
proyectos mas complejos.

Capitulo 3. Primer proyecto

El primer proyecto va ser algo tan simple que es encender un diodo led con
un pulsante, todo mediante el microcontrolador. Este proyecto es didactico y
permitird al lector familiarizarse con las herramientas instaladas en el
capitulo 1y configurar de manera correcta al MCU.

Capitulo 4. Introduccion a las multitareas e interrupciones en un
microcontrolador

Aqui se revisara estos conceptos que nos permiten realizar procesos en
‘paralelo’ (nuevamente entre comillas) con un microcontrolador. Este
capitulo es importante para aquellos lectores que desconocen de este tema
ya que todos los siguientes proyectos se programaran de esa manera.

Capitulo 4. Encendido y apagado de un led de manera periddica.

Aplicando la programacion de multitareas se realizard el encendido y
apagado de un led periédicamente por el microcontrolador.

Capitulo 6. Cambio del modo de encendido ya apagado de un led con un
pulsante mediante la interrupcion externa.

Similar al proyecto del capitulo 4, mediante el pulsante se cambiara la
manera de encender y apagar al led.

Capitulo 7. Envio y recepcion de datos mediante comunicacion RS232

Este proyecto indicara los conceptos bdsicos para enviar y recibir datos desde
una PC mediante la clasica comunicacién RS232.

Capitulo 8. Manejo de un display de 7 segmentos de 3 digitos mediante
multitareas

Al proyecto anterior anadiremos un display para mostrar diferentes nimeros
mediante el pulsante

Capitulo 1

Instalacion de las herramientas de software

1.1 Herramientas de software

La primera herramienta que se utiliza en este libro es el MPLAB® X (a que

se puede descargar del siguiente enlace:

http://www.microchip.com/mplab/mplab-x-ide

Una vez instalado correctamente la aplicacion, su aspecto sera algo similar

al indicado en la Figura 1.1.

X! MPLAB X IDE v3.55
File Edit View Novigste Source Refactor Run Debug Tesm Tools Window Help

8 ol % e Y

Projects x Files | Services @ |[strtPage x

PROJECTS

Open Sample

Create New

Import Legacy Recent Projects
Import Prebuilt

= Use ow

EMBEDDED
CODE SOURCE

LEARN & DISCOVER | MY MPLAB® X IDE | WHAT'S NEW

OIPE

ﬁ\ MICROCHIP

Microchip Login

Aiready Registered?
E-rd Addross

References & Featured Links

» Errata » Technical Articles and White
» Product Selection To... ® Buy Direct from Microchip
» User Guides » Open Source 4 PIC

Figura 1.1. Aspecto de MPLAB®X

La segunda herramienta que instalaremos sera el compilador MPLAB®

XC32 cuyo enlace de descarga es el siguiente:

http://www.microchip.com/mplab/compilers en la pestafia ‘Downloads’

Este compilador tiene tres tipos de licencias, una gratuita, una estandar y

una profesional.

La licencia gratuita tiene la desventaja que no optimiza el cédigo que
escribimos pero es util para aprendizaje y entrenamiento.

La licencia estandar tiene un costo que podriamos llamar medio y reduce
el tamaio del cédigo.

Finalmente si nuestro proyecto necesita mayor espacio de memoria y/o
velocidad de procesamiento, la licencia profesional es ideal a utilizar, pero
su costo de uso es mayor.

También podemos recurrir a una licencia demo de 60 dias con la cual
podemos trabajar en la mejor de las compilaciones (profesional).

Cuando instalamos cualquier compilador XC® nos pide con cudl de esas
licencias vamos a trabajar. Figura 1.2

Setup o & =]

Installation Complete - Licensing Information

If you want to use the FREE MPLAB XC8 C Compiler, Click Next.
If your Compiler is already licensed, Click Next.

Click to purchase a PRO or Standard license

Click here to get a free, 60-day evaluation of PRO

If you have an Activation Key:

Click here to activate your license

Your Host ID is: 000000000000|

[Net> || Cancel

Figura 1.2. Informacion de las licencias para el compilador XC8®, es algo
similar al XC32®

Cuando se necesita una licencia para varios desarrolladores, si el nUmero
de computadoras no es mayor a 3, se puede recurrir a una licencia de tipo
estacion de trabajo o ‘Work Station’.

Si se necesita una licencia para varias computadoras, es mejor utilizar una
licencia en un servidor o ‘Network Client’.

Para mas detalles acerca de estas caracteristicas de los compiladores XC®
por favor refiérase al documento 50002059 de Microchip Technology
denominado Installing and Licensing MPLAB® XC C Compilers que puede
ser descargado del siguiente enlace:

http://www.microchip.com/mplab/compilers

En la pestafa ‘Documentation’, la opcidn ‘Installing and Licensing MPLAB®
XC C Compilers’.

2.2 Herramientas de hardware

En internet usted puede encontrar diferentes clases de ‘programadores’
gue permiten descargar nuestro programa hacia el microcontrolador, pero
lo mejor es utilizar un programador y depurador que no solamente
permite descargar nuestro firmware, sino que nos permite interactuar con
el hardware para depurar el cédigo que hemos desarrollado.

Yo utilizo el “MPLAB® ICD 3 In-Circuit Debugger” Figura 1.3

Una opcidon mas econdmica puede ser el “PICkit™ 3 In-Circuit Debugger”
el cual posee algunas limitantes respecto a la anterior herramientas como
la velocidad de comunicacion con el computador, el nUmero de puntos de
ruptura o ‘breakpoints’ que se puede anadir en el cédigo al momento de
la depuracion, etc. Figura 1.4

También existe una herramienta de mejores caracteristicas que se llama
“MPLAB® REAL ICE In-Circuit Emulator” Figura 1.5

O la ultima versién del ICD, el MPLAB® ICDA4. Figura 1.6.

MPLAB® ICD 3 and Explorer 16 Kit
(Part # DV164037)

Figura 1.3. MPLAB® ICD3 con tarjeta de desarrollo Explorer 16 Kit.

. WFTTTTI,

CCLL LU LT b ; > "Hl“((l(lt‘—
sessssunsn s

2°28 +2610-20

PICkit ™ 3 Debug Express
(Part # DV164131)

Figura 1.4, PICkit™ Debug Express

MPLAB?® ICD 4 In-Circuit Debugger

MICROCHIP
(Part # DV164045) o

Figura 1.6. MPLAB® ICD 4 In-Circuit Debugger

También debo indicar que muchas de las herramientas de desarrollo con
kits de tarjetas demo poseen un circuito programador/depurador
embebido de tal manera que no es necesario comprar alguna de los
dispositivos anteriores, si deseas en base a esas herramientas de
desarrollo construir tu propio hardware deberas recurrir a un dispositivo
externo para descargar el firmware disefiado en el MCU.

Capitulo 2

Una mirada rapida a la arquitectura del microcontrolador PIC32

2.1 Procesador MIPS

El CPU del microcontrolador PIC32 es un procesador RISC de tipo MIPS
(Microprocessor without Interlocked Pipeline Stages) desarrollado por la
empresa MIPS Technologies.

Una caracteristica que he observado de Microchip Technology es que
intenta no ser igual a sus competidores (antes de la adquisicion de Atmel).
La mayoria de fabricantes de microcontroladores de 32 bits apuestan por
el procesador ARM mientras que Microchip Technology se arriesgd a algo
diferente.

Hay mucho debate en foros y blogs acerca de las ventajas y desventajas de
dicha tecnologia, pero lo que realmente mueve el desarrollo de un
producto es el costo de su disefio, su mantenimiento, etc. y en algun lado
lei que las licencias del nucleo MIPS son mas flexibles que el nicleo ARM
gue posee muchas mas restricciones de uso.

En fin, sin importar las razones por las que se tomd esa decision, la ventaja
de utilizar un microcontrolador de 32 bits son las siguientes:

e Desempeiio del MCU
e Manejo de excepciones
e Mejor procesamiento aritmético

e Interrupciones vectorizadas (respecto a microcontroladores de 8 y
16 bits de MCHP)
e Mayor memoria RAM y de programa

Respecto al desempefio es claro que muchas instrucciones que
necesitaban realizarse en varios pasos en un microcontrolador de 8 bits se
las puede realizar en menos y a una velocidad de reloj superior, asi que si
un disefio necesita un mejor desempefio con respecto a velocidad, un
PIC32 puede ser una mejor eleccion.

El manejo de excepciones es algo muy util cuando se realiza alguna
operacion ilégica como apuntar y escribir a una regién que no existe en la
memoria, dividir un nUmero para cero, etc. Nos permite analizar qué fue
lo que causo la excepcion y evitar que el MCU se reinicie.

El procesamiento aritmético me parece que deberia estar dentro de la
categoria ‘Desempeiio del MCU’ ya que al ser de 32 bits pueden realizar
dichas operaciones de manera mas eficiente y rapida.

Las interrupciones vectorizadas era algo que no poseian los
microcontroladores de 8 bits de microchip. Por ejemplo para el PIC18F®
existe un vector de interrupcion de alta prioridad localizado en la direccion
0x08h de la memoria de programa y uno de baja prioridad localizada en la
direccion 0x18h de dicha memoria. Cuando se deseaba que un periférico
genere una interrupcion, esta se asociaba con alguno de esos vectores o
prioridades.

El problema era cuando se utilizaba varios periféricos para generar una
interrupcion en el mismo vector, lo cual implicaba realizar un
discernimiento mediante las banderas de los registros asociados. Si por
ejemplo quien generd la interrupcién fue el ultimo periférico de la lista
donde se estdn realizando dicha comprobacién, esto implica que la
interrupcion tiene una latencia mucho mayor que aquella que se analiza al
principio.

Si la velocidad del sistema que controla el MCU no es tan critica o no es
tan importante, dichas latencias en las interrupciones son desapercibidas.
Actualmente Microchip lanzé al mercado los microcontroladores de 8 bits
denominada PIC18F® “K42” con interrupciones vectorizadas.

Finalmente al ser el PIC32 de 32 bits puede administrar un bus de datos
mayor con lo cual puede direccionar una mayor memoria de programa o
de datos.

En este libro en el inicio vamos a trabajar con el microcontrolador
PIC32MX cuyo procesador MIPS es de tipo M4K. Figura 2.1

NMIFRSS M4K 32-bit Core
* 120 MHz, 1.65 DMIPS/MHz
+ 5 Stage Pipeline, 32-bit ALU
RMIVMII

b
JTAG Shadow Set oTG (2) MAC

2 Ch. DMA 4 Ch. DMA 2 Ch. DMA

Instruction Data

Bus Matrix

Prefetch
Buffer
Cache

512 KB 128 KB Interrupt GPIO

Flash SRAM Controller B (85) VREG

Peripheral Bus

Input Output
Capture Compare/
(5) PWM (5)

Capacitive
Touch

Analog
Comparators
(3)

Figura 2.1. Diagrama del nucleo M4K

2.2 El mapa de memoria

A diferencia de los microcontroladores de 8 bits de MCHP cuyos
procesadores tenian una arquitectura denominada Harvard, es decir la
memoria RAM y de programa estaban separadas, las memorias del
microcontrolador estdn en un mismo mapa de memoria (arquitectura Von
Neumann).

Esta arquitectura elimina la manera que el contador de programa tenia los
para acceder a dichas memorias en los dispositivos de 8 bits y 16 bits.
Aquellos que han trabajado con esos microcontroladores y sobre todo si
han programado en lenguaje ensamblador, habia que tener en cuenta en
gue banco de memoria se encontraba una variable. También la memoria
de programa se dividia en varios bancos. Con un lenguaje de alto nivel no
habia que pensar mucho en ese problema, ya que el compilador realizaba
los pasos adicionales para acceder a las variables o al programa en otras
localidades, lo que implicaba generar mas cddigo de programacion.

También existe la posibilidad de ejecutar cédigo de programa en la
memoria RAM del microcontrolador. En el foro de microchip alguna vez lei
qgue alguien habia almacenado funciones en una memoria flash externa
cuya capacidad era mucho mayor que la memoria de programa. Cada vez
gue se necesitaba realizar algin proceso con una funcién especifica, se
leia la funcién necesaria de la memoria externa y la almacenaba en RAM
para ejecutarla.

Pero también hay algo especial de este microcontrolador y es que el
procesador MIPS posee un médulo de caché de memoria el cual tiene dos
buses de datos de 32 bits, uno para instrucciones y otro para datos lo que
permite al procesador obtener instrucciones y datos simultdneamente con
lo que se podria decir que se comporta como la arquitectura von
Neumann. Al habilitar esta caracteristica el desempefio en el
procesamiento de datos mejora aun mas.

El procesador MIPS posee un moddulo denominado ‘unidad de
administracién de memoria® o MMU que permite operara en dos
diferentes modos, el de usuarioy kernel.

EL modo kernel es utilizado cuando se desea que el procesador ejecute un
sistema operativo, mientras que el modo de usuario permite ejecutar un
firmware de control comun y corriente.

El microcontrolador PIC32 esta orientado a ese tipo de aplicaciones que
no necesitan ser tan complejas por lo que no existe el MMU sino un
traductor de mapeo fijo FMT o fixed mapping translation con un
mecanismo de control mediante un bus denominado bus matrix BMX.

De esa manera el FMT regulariza al CPU para que utilice direcciones de
memoria estdndar de acuerdo al modelo de programacion. Esto es una
ventaja ya que de esa manera el tamafio del CPU es mas pequeiio.

En cambio el bus BMX permite al CPU comunicarse de manera flexible con
las memorias, el DMA, la unidad de depuracion, etc.

En la Figura 2.2 se muestra el mapa de memoria para la familia del
microcontrolador PIC32MX170F256B (imagen de sus hojas de datos). En
dicho mapa se puede ver donde estd la memoria RAM, la memoria de
programa, sus periféricos (SFR), la seccion de memoria flash para boot,
etc.

En realidad la imagen de la Figura 2.2 muestra dos mapas de memoria,
uno virtual y el otro fisico. Utilizar un sistema operativo implica que un
area de memoria RAM es destinada para los datos o variables del usuario
mientras que otra parte es el nucleo o kernel del sistema operativo. El
usuario no debe tener la posibilidad de sobrescribir esta area por voluntad
o por error. Mediante registros especiales, el disefiador del firmware
puede dividir las regiones en las secciones mencionadas. Al realizar estas
divisiones, el FMT convierte las direcciones fisicas en direcciones virtuales,

10

de esa manera el usuario no podra alterar la regién que corresponde al
sistema operativo, ni alterar a los periféricos, etc.

v%, , Physi&dd .
FFFFFFFF FFFFFFF
ga';co'::)coo .)
OxBFCO0RFF Device ™~
Configuration
OxBFCO0BF0 Registers
OxBFCO0BEF
Boot Flash
OxBFC00000
OxB8FE200000
OxBFEFFFFF
SFRs s Reserved
OxBFE00000 % > \
R ssenve d 1
0xBD040000 \
OxBOO3FFFF \
Program Flash(?! \
0xB0000000 \
\
R eserve d \
OxAD004000 \
OxADQO3FFF \
RANIZ \
0xA0000000 _J \ 0xIFCO0C00
\ 0x1FCO0BFF
Reserved \ Device
0x2FC00C00 \ Cenfiguration
OxOFCO0BFF Device RN \ Regsters 0x1FCO08F0
Configuration \ 0x1FCOOBEF
OxgFcoosrp | Regsters \ Boot Flash
OxeFCO0BEF \ 0x1FCD0000
Boot Flash \ B
Ox2FCO0000 \ 0x1F200000
\ Ox1F8FFFFF
Reserved 3 " SFRs
0x20040000 G- < 0x1F200000
Ox2O03FFFF <
Program Flash'® Reserved
0x20000000 0x1D040000
- Ox1DO3FFFF
Ox20004000 Program Flash®
Ox20003FFF 0x10000000
RANZ
020000000 B / 0:x00004000
0x00003FFF
Reserved 2)
0x00000000 \ g 0x00000000
Note 1: Memory areas are not shown 10 scale.

2: Thesizeofthis regon is programmable (see Section 3. “Memory Organization™
(DSB0001115) in the PIC32 Family Reference) and can be changed by initaliza-
ton code provided by end-user development tools (refer 1o the specfic development tool
documentation for information)

Figura 2.2. Mapa de memoria del microcontrolador PIC32MX170F256B.

Entrar en detalles respecto a estos particulares seria necesario si
deseamos utilizar un OS en nuestro dispositivo, pero generalmente no se

utiliza todas estas funciones, el compilador crea el cédigo de tal manera
que se ejecute en modo kernel.

11

Capitulo 3

Primer proyecto
3.1 Breve descripcion del ‘Primer proyecto’

Tal cudl mencioné anteriormente el primer proyecto es algo muy sencillo
como encender un led con un pulsante y el microcontrolador
PIC32MX170F256B es un intermediario en dicha tarea. Figura 3.1

3.3V

10k VPP 3.3V
0.1uF
/ —\L 1 MCLR AVDD 28 |

N |} \
:I 2 AVSS 27 |
0-1uF =7 d 3 RB1526 | B [
:| A . LED 1k
d 5 24| |
3.3v C‘ 6 23 j
iJ\ 7 PGEC2 22 |]

10k I -1 8 VSS PGED2 21 | 100
Veap 20 |

—
[| 10RA3 Vss19 |

— T —]
o

[asv \ 11 18| |
\ 12 17
‘ 13 VDD 16
14 15

PIC32MX170F256B

Figura 3.1. Diagrama esquematico del Primer proyecto.

Este proyecto es didactico ya que permite relacionar al lector con la
herramienta MPLAB® X y el compilador, ya que para encender un led
simplemente habia que conectar en serie al pulsante con el led y una
resistencia.

12

3.2 Analisis del hardware para el primer proyecto.

El microcontrolador utilizard el oscilador interno RC, por el momento no
utilizaremos algun cristal externo. Ademads de la ventaja econdmica de
utilizar el oscilador interno, también se gana algo de espacio fisico en el
circuito PCB. La desventaja es evidente en un sistema altamente preciso,
como comunicaciones de alta velocidad, sistemas que trabajan en
ambientes de altas temperaturas, en esas condiciones posiblemente no es
muy buena idea usarlo.

También es recomendable para un disefio que no sea didactico utilizar los
condensadores de filtro que recomienda el fabricante en sus hojas de
datos. Figura 3.2

Y Tantalumor _ 0.1 pyF
VDD ceramic 10 uF I Ceramic
ESR < 308
T
% 8 &
O > >
MCLR >
Vusgaval!
P|C32 VDD
Vss Vss
— 0.1 uF
VoD Ceramic
0.1 pF 8 & o]
Ceramic <>t 2 § 4
(2)
Connect | 0.1 pF 0.1 uF
------ 7 | Ceramic Ceramic
1 L1(2) |

Figura 3.2 Condensadores de filtro recomendados en los terminales de
polarizacion del microcontrolador

13

Noétese que el terminal denominado Vcap tiene un capacitor cerdmico de
10 uF, este capacitor es necesario debido a que el microcontrolador utiliza
un regulador interno de 1.8V para el CPU, si en dicho terminal el voltaje
medido respecto a Vss no es el mencionado, el microcontrolador no
funcionara correctamente. Esta falla es debido a un dafio en el capacitor o
en la conexidn eléctrica al mismo.

Personalmente yo he usado un capacitor electrolitico el cual no cumple
con un valor bajo ESR, en un microcontrolador PIC32MX795F512H, podria
decir que funcionaba bien a velocidades bajas (20 MHz para los periféricos
y 40 MHz para el CPU) pero intentando alcanzar los 80 MHz que es la
velocidad maxima en ese MCU, el microcontrolador simplemente no
funcionaba.

Asi que lo recomendable es hacer caso a lo que el fabricante indica en sus
hojas de datos, fuera de los rangos recomendados, el fabricante no
garantiza el funcionamiento correcto del mismo.

También en la Figura 3.1 se ve que utilizo el canal niumero 2 para la
programacion y depuracion del hardware (PGEC2 y PGED?2).

3.3 Crear un nuevo proyecto en MPLAB® X

Una vez que abrimos MPLAB® X damos clic en la opcién ‘File’ de la barra
de menu y escogemos la opcidn ‘New Project’. Figura 3.3.

X! MPLAB X IDE

File Edit View Navigate Source Refactor Run Debug Team Tools

] New Project... Ctrl+Mayuis+N
¥9 NewFile... Ctrl+N
== Open Project... Ctrl+Mayis+0

Open Recent Project

Import

Figura 3.3. Creacidon de un nuevo proyecto.

14

Al realizar dicha accién se abrird una ventana para un nuevo proyecto en
la cual hay dos listas verticales, una para categorias ‘Categories’ y otra
para proyectos ‘Projects’. Seleccionamos ‘Microchip Embebded’. Figura
3.4.

X! New Project

Steps Choose Project
1. Choose Project Q_ Filter:
2 ..
Categories: Projects:
S © St et
) Other Embedded (& Existing MPLAB IDE v8 Project
3-03) samples (&3 Prebuilt (Hex, Loadable Image) Project

(& User Makefile Project
&) Library Project

Description:

Creates a new standalone application project. It uses an IDE-generated makefile to build your
project.

Finish Cancel Help

Figura 3.4. Seleccionado el tipo de nuevo proyecto a realizar.

Presionamos el botdon denominado ‘Next > y la siguiente ventana en
presentarse nos permitirda escoger el tipo de dispositivos con el cual
trabajaremos. Posee dos listas desplegables, la primera que es la superior
nos permite reducir la busqueda del dispositivo mediante la familia a la
que pertenece, la segunda nos permite buscar al dispositivo
especificamente. También podemos en esta segunda lista desplegable
simplemente escribir el nombre del MCU a utilizar y una vez seleccionado
damos clic en ‘Next >'. Figura 3.5

Luego de presionar el botdn ‘Next >’ |a siguiente ventana nos preguntara
gue tipo de herramienta de depuracion vamos a utilizar. En mi caso
selecciono al ICD3®, al final del proyecto utilizaremos el simulador para su
demostracion. Figura 3.4.

15

Cuando una herramienta no es util para el dispositivo seleccionado, se
marca en color rojo. Por ejemplo en la Figura 3.4, el PICkit® 2 no es util
para programar el MCU seleccionado o la version de MPLAB® ya no
soporta a dicha herramienta.

Cuando es de color amarillo indica que parcialmente puede trabajar con el
dispositivo, como por ejemplo, no puede depurar o emular a algunos los
periféricos del microcontrolador. Generalmente esto sucede cuando el
dispositivo es nuevo y aun no se han implementado todas las
funcionalidades para su simulacién o depuracion.

Steps Select Device

. Select Header Family: All Families v

NOM&WNH
o
g

s conpir Device: v

< Back Finish Cancel Help

Figura 3.5. Seleccionando al MCU PIC32MX170F256B

Luego de seleccionar ‘Next >’ |la siguiente ventana en aparecer nos pide
ingresar el compilador, yo selecciono XC32 v1.43. Figura 3.5

Nuevamente damos un clic en ‘Next >’ y la ultima venta en aparecer nos
permite seleccionar la ruta del proyecto y el nombre del mismo. Figura
3.6.

16

X! New Project

Steps Select Tool

Hardware Tools
00
@ PICkit2
Q0 PICkit3
QPM3
@0 Real ICE
© Simulator
Microchip Starter Kits
Q-) Other Tools
Q0 Licensed Debugger

g
]

+

<Back Finish Cancel Help

Figura 3.4. Seleccidn de la herramienta para depuracion y programacion

del dispositivo.

IX! New Project

st Select C

1. Choose Project

2. Select Device Compiler Toolchains

3. Select Header =-XC32

4. Select Tool WYX C32 (v1.43) [C:\Program Files (x86) Microchip\xc32\v1.43\pin]

:" Selectl Pl:::gn z‘;:d © XC32 (v1.42) [C:\Program Files (x86)WMicrochip\xc32\v1.42\bin]

7. Select Prou)e'c't Narll;e e “-Q XC32 (v1.40) [C:\Program Files (x86)WMicrochip\xc32\v1.40\bin]
Folder

< Back Finish Cancel Help

Figura 3.5. Seleccionando el compilador.

Presionamos el botén ‘Finish’ y el proyecto tendrd un aspecto
indicado en la Figura 3.7.

similar al

17

X! New Project

Steps Select Project Name and Folder
1. Choose Project
g- ﬁ m Project Name: primerProyecto|
; ﬁ;’;‘ Board Project Location: H:\Proyectos Libro PIC32\Primer Proyecto Browse...
67. mm Name and Project Folder: oyectos Libro PIC32\Primer Proyecto\primerProyecto.X
Folder

Overwrite existing project.
Also delete sources.
[set as main project
[[] use project location as the project folder

MPLAB
X IDE
v Encoding: 150-8859-1

< Back Next > Cancel Help

Figura 3.6. Seleccionando el nombre del proyecto y la ubicacién del
mismo.

File Edit View Navigste Source Refactor Run Debug Team Tools Window Help Q-
PSS ek JT B 0T-R-QUB- EEEE o rovr
Projects x| Files | Services © [sartpage x PO
@ prmerproyecto
) Heade Fies

B MPLAB A8\ Microckip
4l IDE
v LEARN & DISCOVER | MY MPLAB® X IDE | WHAT'S NEW

PROJECTS

Open sample
Create New

Import Legacy Recent Projects Microchip Login

MY MPLAB®

Import Prebuilt

ady Registered? New to Microchip?

Dash... x| SYS])-Ma... | | Output x
73 prmerProyects
9 Project Type: Acpicaton - Configuraton: default
@ Devee

@ PicIznF2sE

o

3 Chedsum: Blank, o code loaded

F Compler Tookhan
T XC32 (v1.43) [C: Program Fies (x86) Mirochoec32v 1
6 Producton Image: Optmazaton:

@ Memory
o

I3 E

o Ok
& Data 65536 (0x10000) bytes
{9 Program 265200 (0x406F0) bytes
4§ Debug Tool
0 03
© Progrom 8P Used: 0 Free: 6 Sserch Busshs
© Data B Used: 0 Free: 2
© Data Capture BP: No Support
O Uniimited 8P (SMW): No Support

& @) Novfeatons

Figura 3.8. Proyecto en blanco y listo.

18

Aquellos lectores que han trabajado con el IDE NetBeans notaran que es
casi exactamente igual a ese software ya que esta construido con dicho
nucleo.

A medida que avancemos en los diferentes proyectos iré explicando las
diferentes partes del software.

Si alguna ventana se cierra y no conocen como volver abrirla pueden
restaurar la presentacion de MPLAB® X en la opcion ‘Windows’ de la barra
de menu y escogemos la opcidn ‘Reset Windows’.

La siguiente accidon que se procedera a realizar serd la creacion el archivo
principal o main del proyecto. Para eso vamos a la ventana de proyectos
(Figura 3.9) y en la carpeta Souce Files damos clic derecho sobre dicha
carpeta.
Projects x Files [=]
-4 primerProyecto
+ @ Header Files

([Important Files
+ ﬁ Linker Files

[Libraries New 2
4@ Loadables New Logical Folder

Add Existing ltem...
Add Existing Items from Folders...
Find...

Paste Ctrl+V

Remove From Project

Rename...

Properties

Figura 3.9

Seleccionamos la opcidn New y escogemos C Main File Figura 3.10

19

Projects x | Files =
=& primerProyecto

+ Header Files

+ ﬁ Important Files

+ Linker Files

(@@ Lbraries New > @ Directory...
5@ Loadable New Logical Folder @ CHeaderFile...
Add Existing Item...) CSourceFile...
Add Existing Items from Folders... 2] CMain File...
Find...) xc32_header.h...
~ 5’_1] xc32_newfile.c...
Cut -
. (3 TextFile.
Copy
Paste Ctrl+V Other...

Remove From Project

Rename...

Properties

Figura 3.10. Creacién de un nuevo archivo principal.

A continuacidon aparece una nueva ventana que nos permite ingresar el
nombre para el archivo principal del proyecto, Figura 3.11. Se puede
poner cualquier nombre, pero yo prefiero llamarlo main (de extension c).

X! New C Main File

Steps Name and Location

1. Choose File Type

File Name: | main|
2. Name and Location

Extension: ¢ v

Set this Extension as Default

Project: primerProyecto

Folder: Browse...

Created File: 'H:\Proyectos Libro PIC32\Primer Proyecto\primerProyecto.X\main.c

< Back Next > Finish Cancel Help

Figura 3.11 Creacidn del archivo principal del proyecto.

Al presionar el botdn ‘Finish’ el proyecto tendra un aspecto similar al
indicado en la Figura 3.12

20

El siguiente paso es compilar el proyecto que nos permitird determinar si
el proyecto se ha creado sin errores, para lo cual damos un clic en el botodn
Clean and Build Main Project en la barra de herramientas. Figura 3.13

Si el proyecto se compila sin problemas, en la ventana de salida de
mensajes Output nos mostrara algunos mensajes similares a los indicados
en la Figura 3.14 informando que el proyecto se ha compilado
correctamente.

En la ventana DashBoard podemos apreciar cuanta memoria de programa
y memoria RAM ocupara el proyecto. Figura 3.15

X! MPLAB X IDE - primerProyecto : default

File Edit View Navigate Source Refactor Run Debug Team Tools Window Help

= Gn Lome . N LB LB LK) ER .
PEED D@ TP R-T-QB
Projects x | Files @ | startPage x|y MPLABX Store x| (1] main.c x
=@ primerProyecto Sorce | Hstory @ B-B-QATFEBER(P S (D0 5| & 62

() Header Files

5[Important Fies 1k

- Linker Fies E

5 (&@) Source Fies o

@) mainc 4
(@ Lbraries 2
> 6
+ Loadables
& 7 fﬁ #includ e
e include

return (EXIT ESS):

13 T int main(int argc, char** argv) {
14

pri yecto - x i =]
22 |8 primerProyecto
78 Project Type: Application - Configuration: default

& | @ Device
= @ PIC32MX170F 2568
f 8 Checksum: Blank, no code loaded
= Compiler Toolchain
© U XC32 (v1.43) [C:\Program Files (x86)WMicrochip

Y’ Production Image: Optimization:
=& Memory

© Usage Symbols disabled. Click to enable Load Sy

(& Data 65536 (0x10000) bytes

(&3 Program 265200 (0x408F0) bytes
=) %4 Debug Tool

© o3
=% Debug Resources

& Program BP Used: 0 Free: 6

[DataBP Used: 0 Free: 2

[Data Capture BP: No Support

O Unlimited BP (S/W): No Support

Figura 3.12. Proyecto con la funcion main.

21

7B 0% %R
? f_c‘ Clear:nind Eulild Main Project l_ﬂ_

Figura 3.13 Limpiar y compilar el proyecto principal

Output x |

D> primerproyecto (Clean, Build, .) #2 x primerProyecto (Clean, Build, ..) x

CLEAN SUCCESSFUL (total time: 463ms)

y
efa:

ng director: tos Libro PIC32/Primer Proyecto/primer]

es (x86)\Microchip\xc32\vl.43\bin\xc32-gec.exe” -g -x ¢ -c -

&

o.X"
....... 32MX170F2568 -MMD -MF build/default/production/main.o.d -o

"C:\Program Files (x26) xc32\v1.43 g e 0F2568 -0 dist/default/, X
"C:\Program Files (x86)\Microchip\xc32\v1.43\bin"\\xc32-binzhex dist/default/, x el

make(2]: Leaving directory 'H:/Proyectos Libro PIC32/Primer Proyecto/primerProyecto.X'

make(1]: Leaving directory 'H:/Proyectos Libro PIC32/Primer Proyecto/primerProyecto.X'

BUILD SUCCESSFUL 1 ss
Loading code from H:/Proyectos Libro PIC32/Primer Proyecto/primerProyecto.X/dist/default, X.prod
Loading completed

< >

Figura 3.14. Ventada de salida del MPLAB® indicando que la compilacion
se ha realizado sin problemas.

primerProyecto - Dashboard x | Navigator | =
78 primerProyecto
98 Project Type: Application - Configuration: default
= Device
¢ PIC32MX170F 2568
- 88l Checksum: OxFBFD 1IF8F
=% Compiler Toolchain
i % XC32 (v1.43) [C:\Program Files (x86) Microchip\xc32\v 1.43\bin]
" Production Image: Optimization:
=) a Memory
- (8 Data 65536 (0x10000) bytes
: { 0% |
Data Used: 0 (0x0) Free: 65536 (0x10000)
&= (& Program 265200 (0x40BF0) bytes
= | 1% '
..[@8 Program Used: 1556 (0x614) Free: 263644 (0x405DC)
(=44 Debug Tool
~€) 103

[=-30% Debug Resources
- Program BP Used: 0 Free: 6

~~E DataBP Used: 0 Free: 2
[Data Capture BP: No Support
~~[0 Unlimited BP (S/W): No Support

O E S H

Figura 3.15. Dashboard indicando algunas caracteristicas del proyecto.

22

La DashBoard también nos indica algunas cosas como cuantos puntos de
ruptura de hardware hay disponibles (Program BP), puntos de ruptura por
software (Data BP), etc. Esas caracteristicas se detallardn a medida que se
vaya desarrollando el proyecto.

El proyecto por defecto arranca con la configuracion de minima
optimizacién del compilador, para cambiar dicha opcién damos un clic en
Propiedades del Proyecto o Project Properties. Figura 3.17 y aparece una
ventana que nos permite ver y modificar las propiedades del proyecto.
Figura 3.18

primerProyecto - Dashboard x Navigator
% '8 primerProyecto

= '8 Project Type: Application - Configuration: default
\ Project Properties

- - PIC32MX 170F 2568
I Checksum: OxFBFD 1F8F
: =] i§ Compiler Toolchain

(?) %’ XC32 (v1.43) [C:\Program Files (x86) Microchip\x

S Dradiirtinn Tmana* Nntimirzatinn:

Figura 3.17. Accediendo a las propiedades del proyecto.

En la ventana de propiedades del proyecto, en la lista denominada
categorias ‘Categories’, en la opcion XC32(global Options) escogemos la
opcidn xc32-gcc. En la lista desplegable denominada Option categories
escogemos optimizacion Optimization. Figura 3.18

Existen cuatro rangos de optimizacion del cédigo, digo cuatro, ya que la
primera opcion es 0y es igual a ninguna optimizacion.

La opcion 1y 2 reducen el cddigo generado, pero la mejor reducciéon del
cddigo es la opcidn 3.

23

TEXTO NO DISPONIBLE EN LA VERSION DEMO

24

Capitulo 4

Introduccion a las multitareas e interrupciones en un microcontrolador

4.1 ¢{Qué es un sistema?

Un sistema es algo complejo de describir pero se puede afirmar que es un
objeto real o conceptual que soluciona algun problema. La descripcion
puede ser mucho mas complicada pero para comprender este capitulo
propongo un ejemplo.

Imaginemos que tenemos una sencilla fuente de voltaje DC variable y
programable como se indica en la Figura 4.1.

Vin
| NNN— — LM177 |

Vout

.

-

Regulador de voltaje

@ Display - 1

Regulador de corriente

Figura 4.1. Diagrama de una fuente de voltaje controlada por un
microcontrolador.

25

Las partes fundamentales de este sistema son:

e Entraday salida de voltaje.

e Control de la resistencia digital (via SPI)

e Un display para mostrar informacién

e Potenciédmetros analdgicos para controlar la corriente y voltajes de
salida

e Medicion de corriente del sistema.

e Medicion del voltaje de salida

e Relé para desconexion rapida de la carga

En esta fuente existen varios procesos que deberd realizar el
microcontrolador, por ejemplo el MCU debera incrementar el valor de la
resistencia digital hasta que el voltaje de salida sea el deseado por el
usuario y obviamente sin descuidar la corriente que circula por el sistema.

Todo sistema que se disena debe funcionar como se espera y la respuesta
debe estar dentro de los tiempos establecidos. El firmware escrito para un
microcontrolador debe ser lo mas legible posible, que pueda ser
facilmente expandible, modificable o corregible. Ademas debe estar
dividido en médulos de tal manera que puedan mas de un programador
encargarse del desarrollo del mismo si es necesario.

Por ejemplo un programador se encargaria de escribir el codigo que
corresponde al control de la resistencia digital para obtener el voltaje de
salida, mientras otro podria realizar el cédigo para mostrar el voltaje de
salida medido en el display.

Estas dos partes de cddigo deberan funcionar de tal manera que no se
interpongan entre ellas o si existe intervencion se a lo minimo posible,
estos objetivos se alcanzan mediante un planificador de tareas
cooperativas (Schuleder) y procesamiento de multitarea apropiativa
(Preemptive Multitasking).

25

4.2 Tarea concurrente

Un proceso concurrente en el ejemplo es modificar el valor de la
resistencia digital hasta alcanzar el voltaje deseado. Supongamos que
dicho proceso es de la manera sencilla sin cosas complicadas como un
control PID.

El proceso de manera sencilla es primero medir el voltaje en el divisor de
tension entre la resistencia comun y la resistencia digital que estan
conectadas a la salida de voltaje. En funcidon de dicho valor medido, se
enviara un valor a la resistencia para incrementar o decrementar dicho
valor via SPI. A continuacién se volvera a medir el voltaje en el divisor
para tomar la decision de nuevamente modifica o0 mantener el valor de la
resistencia digital. Este proceso se repetira hasta que voltaje en el divisor
sea proporcional al deseado. Se puede afirmar que es relativamente
deterministico y puede existir algin tipo de variacién que puede afectar a
este proceso concurrente.

Pero existen otras tareas que el MCU debe realizar, como se menciond
anteriormente hay otra tarea para mostrar el valor del voltaje de salida
medido (que es un valor proporcional al del divisor de tensiéon) en el
display.

Por lo tanto el CPU del microcontrolador debe realizar dos tareas a la vez
(aln no considero las otras) y el tiempo que toma realizar cada una podria
ser mayor que si hiciera una sola tarea, ya que el CPU sdélo puede
completar una tarea concurrente a la vez.

Entonces lo que debe existir es algo que regule el acceso al CPU vy las
tareas se dividiran en pequefias subtareas para que se turnen entre si, en
pocas palabras cada tarea realiza una porcién de lo que debe hacer, para
dar paso a otra tarea que también realice una porcion de su cdodigo. El

25

proceso debe ser de tal manera que ante el usuario pareceria que el MCU
hace varias cosas al mismo tiempo, esto se denomina sincronizacion.

Suponiendo que existe una variacion que afecte el proceso y una tarea
debe tomar otro camino mas largo para cumplir su objetivo, su latencia
aumentard asi como el aumento del volumen de trabajo (Throughput)
del sistema y en el mejor de los casos tomara un mayor tiempo en cumplir
su objetivo, este aumento de tiempo en la latencia se denomina jitter y en
el peor de los casos se producird un bloqueo mutuo (deadlock), en el cual
una parte del sistema o todo permanece sin responder (colgado).

En nuestro ejemplo supongamos que la tarea que varia el voltaje a la
salida de la fuente envia un valor a la resistencia digital para que actualice
su valor, pero esta no responde y el CPU permanece en espera a la
respuesta al comando enviado. El cdédigo escrito debe responder
rapidamente hasta perturbacién critica y tomar una decision.

Para completar el anadlisis del sistema ejemplo, las tareas que tiene serian
las siguientes:

e Medicion de la corriente de entrada y control del relé de
desconexidn del voltaje de salida (Tarea 1)

e Medicion del voltaje de salida y control de la resistencia digital
(Tarea 2)

e Lectura del potencidmetro para calibrar la maxima corriente de
salida del sistema. (Tarea 3)

e Lectura del potencidmetro para calibrar el voltaje deseado a la
salida. (Tarea 4)

e Administracidon del display (Tarea 5)

25

La primera tarea de la lista anterior, denominada medicidn de la corriente
de entrada y control del relé de desconexidn del voltaje de salida tendrd la
prioridad mas alta en el sistema.

Una tarea de alta prioridad puede poner en pausa a una de baja prioridad.
En nuestro ejemplo, si la Tarea 2 va cambiando el valor de la resistencia
digital y el voltaje de salida va aumentando cada vez mds y mas. La Tarea 1
mide la corriente del sistema y si determina que la corriente alcanzo el
maximo de corriente establecido, pone en pausa a la Tarea 2 para que no
siga aumentando el voltaje. Si dicha corriente sigue aumentando a pesar
de estar en pausa la Tarea 2, activara al relé de salida para proteger al
sistema.

La asignacion de prioridades a las tareas y el control de las mismas
mediante un planificador también se conoce como algoritmo de exclusion
mutua (Mutex implementation)

En resumen una tarea concurrente tiene las siguientes propiedades:

Actores, que son las tareas, hilos, procesos, etc.
Recursos compartidos, que son el CPU, la memoria, los registros, etc.
Reglas de acceso son la sincronizacion, prioridades, etc.

Resultados deterministicos, tareas finalizadas, resultados correctos o
esperados.

25

4.3 Posible problema con las tareas concurrentes.

4.3.1 Condicion de Secuencia

La Condicidn de Secuencia es un problema tipico cuando dos o mas tareas
acceden a un recurso compartido y la salida o estado de un proceso es
dependiente de una secuencia de eventos que se ejecutan en orden
arbitrario. Lo mejor es explicar con un ejemplo para comprender
claramente que significan todos esos términos.

Supongamos que un vendedor ofrece productos desde una pagina web vy a
través de la misma, los vende.

Supongamos también que tiene un producto X del cual sdlo dispone 5
unidades y en la pagina web en un mismo instante hay dos compradores,
comprador A y comprador B, ambos que estan viendo dicha la pagina
interesados en el producto X. También asumamos que el vendedor no
podrd tener mas productos X dentro de las proximas semanas.

Los dos compradores ven que hay en existencias 5 unidades, el comprador
A decide adquirir 4 unidades y el comprador B adquiere 2 unidades,
ambos al mismo tiempo. Los dos compradores asumen que hay 5
unidades, pero el software que realiza la transaccidn, suponiendo que no
esta correctamente escrito, va a tener un balance de menos una unidad.
Conjeturando que la primera transaccién la hizo el comprador A, va estar
tranquilo porque sus 4 productos han sido despachados, mientras el
comprador B a pesar que comprd 2 unidades, sélo podran enviarle 1
unidad. Mientras quien administra el sistema va a observar un balance
negativo en su stock de productos o un error en el sistema. Ademas de
esto habra un problema ya que tendra que devolver parte de lo pagado al
usuario ademas de explicarle que sélo se pudo enviar una unidad a pesar
gue en la pagina web se indicaba que habia 5 unidades.

25

Un ejemplo clasico de condicion de secuencia es el problema con
temporizadores de mayor numero de bits que el CPU en un MCU, por
ejemplo en un microcontrolador de 16 bits podria existir un temporizador
de 32 bits, eso implica que se utilizan dos variables de 16 bits para
representar a la variable completa, supongamos que el temporizador
tiene el valor de OXxO000FFFF. Figura 4.2.

IMAGEN NO DISPONIBLE EN LA VERSION DEMO

Figura 4.2. Variable de 32 bits representada en dos variables de 16 bits.

Supongamos que el temporizador se incrementa a razén de cada ciclo de
maquina y cuyo valor ha alcanzado el valor mencionado anteriormente.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

Si se hubiese empezado leyendo el resultado bajo, no se soluciona el
error, se obtendria el valor de OxO001FFFF, cuando en realidad el valor
deseado es OxOOOOFFFF o a lo mucho un error de una unidad, es decir
0x00010000.

25

TEXTO NO DISPONIBLE EN LA VERSION DEMO

Si por alguna razén no se debe detener al temporizador para no generar
errores en la medicidon de tiempo, existe una solucion mas compleja que
implica mas cédigo para realizarla.

Esta solucidon consiste en almacenar primero la parte alta y luego la baja
del temporizador en otras dos variables, luego verificar que la parte alta
del temporizador no haya cambiado respeto a la variable que tiene su
valor anterior. Si existiera algin cambio repetiria nuevamente el ciclo de
lectura, este método se llama de revision redundante. Figura 4.3.

IMAGEN NO DISPONIBLE EN LA VERSION DEMO

Figura 4.3. Manera de obtener el valor del temporizador sin detenerlo
para evitar la condicidon de secuencia.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.3.2 Métodos de sincronizacion

En el problema anterior respecto al temporizador, se indicd que detenerlo
es una solucién al problema, y puede considerarse como una forma de
Exclusién Mutua abreviada como mutex.

25

TEXTO NO DISPONIBLE EN LA VERSION DEMO

25

4.3.3 Exclusion Mutua

TEXTO NO DISPONIBLE EN LA VERSION DEMO

25

4.3.4 Semaforos

Los Semaforos son variables o un tipo de dato abstracto el cual es usado
para controlar el acceso mediante multiples procesos a un recurso comun
en un sistema concurrente. Estas variables pueden ser banderas o
variables condicionales.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.3.5 Inanicion

La Inanicion o Starvation es cuando un proceso se le rechaza siempre el
acceso a un recurso compartido. Sin este recurso, la tarea a ejecutar no
puede ser nunca finalizada.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.3.6 Punto Muerto

Un Punto Muerto o Deadlock es cuando una tarea no puede liberar el
blogueo de un proceso o dos o mads tareas compiten para alcanzar un
proceso y se bloquean entre si mutuamente.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.3.7 Escalabilidad

La escalabilidad también significa que el sistema se adapta o reacciona
ante un imprevisto sin perder la calidad.

25

La Escalabilidad Horizontal o Scale Out/In es cuando las tareas poseen un
conjunto amplio de reglas ya que existe gran cantidad de recursos
disponibles como memoria como una computadora con su sistema
operativo. Las tareas pueden tener muchas definiciones y conceptos sin
afectar al rendimiento del sistema.

La Escalabilidad Vertical o Scale Up/Down es cuando la tarea es refinada
y bien definida para un propdsito estricto para sélo una aplicacion, la cual
es muy especializada y realiza un trabajo cerrado o Unico. Es util en
sistemas con pocos recursos como lo son los microcontroladores.

4.4 Recursos que dispone un microcontrolador

4.4.1 Interrupciones

TEXTO NO DISPONIBLE EN LA VERSION DEMO

i Interrupcion de alta prioridad

v Interrupcion de baja
Interrupcién de S
i prioridad reanura su
baja prioridad
proceso
Codigo

Principal |

Nivel de prioridad

Codigo
Principal reanuda
su proceso

f x —

Finaliza el proceso de la
interrupcion de alta prioridad

Se produce una interrupcion de
baja prioridad

Se produce una interrupcién de Finaliza el proceso de la
alta prioridad interrupcién de baja prioridad

Figura 4.7. Una interrupcidn que sea de alta prioridad respecto a otra
puede interrumpirla

25

TEXTO NO DISPONIBLE EN LA VERSION DEMO

La interrupcion 7 por defecto utiliza el Conjunto de Registros Sombra o
Shadow Register Set (SRS) para almacenar y recuperar el contexto.
Utilizar dichos registros implica que la interrupcion 7 tiene una latencia
muy baja respecto a las otras. El resto de interrupciones recurren al
Interruptor de Software de Contexto o Software Context Switch para
salvar los registros importantes del CPU. Para cambiar la asignacion de los
SRS a una prioridad se recurre a la palabra de configuracion DEVCFG3.
Figura 4.8

IMAGEN NO DISPONIBLE EN LA VERSION DEMO

Figura 4.8. Asignacién de los registros sombra a la interrupcion de
prioridad 7

Se debe indicar que la familia de microcontroladores que se utiliza para
los primeros proyectos no posee SRS. (PIC32MX1XX/2XX).

TEXTO NO DISPONIBLE EN LA VERSION DEMO

IMAGEN NO DISPONIBLE EN LA VERSION DEMO

Figura 4.9. Fuentes de interrupcion de la familia del microcontrolador
PIC32MX1XX/2XX

25

Los posibles problemas que pueden suceder con las interrupciones si no
se manejan correctamente son la condicion de secuencia, latencia
excesiva, variacion de la latencia (jitter), bloqueo de interrupciones, etc.

En nuestro sistema ejemplo podemos mejorar su eficiencia utilizando una
interrupcidon para el conversor ADC. En la Figura 4.10 se indica un
pseudocddigo del sistema analizado hasta el momento.

IMAGEN NO DISPONIBLE EN LA VERSION DEMO

Figura 4.10. Pseudocddigo del sistema analizado.

Suponiendo que el contador de programa ha finalizado la tarea 1 y existe
una sobre corriente en el sistema, se debera esperar hasta que las tareas
desde la numero 2 hasta la 5 finalicen, luego hay que esperar a que la
tarea 0 adquiera los valores del conversor ADC y finalmente la tarea 1
procesara la informacion. (Obviamente este sistema es sdlo un ejemplo,
también debera existir otros sistemas de auxilio y no sélo depender que el
MCU sea el responsable de proteger al sistema).

TEXTO NO DISPONIBLE EN LA VERSION DEMO

IMAGEN NO DISPONIBLE EN LA VERSION DEMO

Figura 4.11. Pseudocdédigo para la rutina de interrupcion del conversor
ADC en el sistema analizado.

25

TEXTO NO DISPONIBLE EN LA VERSION DEMO

Nivel de prioridad

Interrupcion Interrupcion Interrupcion
ADC (voltaje) || ADC(corriente) |
Tarea 2 i Tarea 2 Tarea3 |—litter—Pp Tarea 4 Tarea 5
A -
»
T ? ? Tiempo
. ., Se produce una interrupcion Se produce una interrupcion
Se produce una interrupcion del ADC del ADC
del ADC
Finaliza ISR Finaliza ISR Finaliza ISR

Figura 4.13. La ISR introduce jitter en el cddigo principal que esta en la
funcién main.

Para disminuir el aumento de la latencia (jitter) cada tarea debe realizar
una parte pequefia de si misma (mas adelante se explica caramente a que
se refiere), los procesos dentro de ISR deben ser lo mas cortos posibles,
dentro de las ISR se debe evitar esperar a algun proceso, no manipular
variables globales entre el cédigo principal y la ISR ya que pueden ser
alterada en la interrupcion y al retornar al cédigo principal no es el valor
gue se estaba procesando (Condicién de Secuencia)

4.4.2 Paralelismo

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.5 Planificador de tareas cooperativas

25

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.5.1 Procesos del Planificador de Tareas.

Como se indico anteriormente hay dos tipos de procesamiento,
cooperativo y de tarea apropiativa o procesamiento preventivo. La mezcla
de los dos se denomina procesamiento hibrido.

4.5.1.1 Procesamiento Cooperativo.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.5.1.2 Procesamiento de Tarea Apropiativa

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.5.1.3 Procesamiento Hibrido

En un microcontrolador se logra combinar los dos métodos de
procesamiento, procesamiento cooperativo en el cddigo principal vy
procesamiento de tarea apropiativa mediante las interrupciones de los
periféricos que posee el MCU.

4.6 Conceptos de un RTOS

TEXTO NO DISPONIBLE EN LA VERSION DEMO

25

4.6 Tipos de Planificadores

4.6.1 Planificador de Tareas Secuencial

Es la forma mds comun de escribir varias tareas en el hilo principal del
MCU. Como su nombre lo indica, secuencial implica que se ejecuta una
tarea para pasar a otra, y luego a otra, hasta concluir con todas y volver
nuevamente a la tarea inicial, todo esto dentro de un lazo infinito. Figura
4.15

IMAGEN NO DISPONIBLE EN LA VERSION DEMO

Figura 4.15. Planificador de Tareas Secuencial

Esta forma de planificador es simple y permite seguir o analizarlo de
manera lineal. Tiene la desventaja que una Tarea puede consumir mucho
tiempo para realizar su proceso lo que se traduce en una disminucion del
rendimiento del sistema, generalmente esto sucede porque no se utiliza
otras técnicas para mejorar su rendimiento. Ademas la latencia puede
variar enormemente en esta clase de programacion.

4.6.2 Planificador de Tareas Round Robin (RR)

TEXTO NO DISPONIBLE EN LA VERSION DEMO

25

Tarea 0 en espera Tarea 2 en espera | Tarea 0 en espera

Tarea 0 ; Tarea 1 Tarea 2 Tarea 0 Tarea 2 Tarea 0 Tareal | TareaO
»

T T T T T A A ”
Tiempo
S S S
u

600 ms

Tarea 1 finalizé su

Figura 4.16. Tareas administradas por un planificador Round Robin

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.6.3 Planificador de Tareas de Prioridad Basica.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.6.4 Planificador de Tareas de Prioridad Avanzada.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

25

4.6.5 Planificador de Tareas en Estados

Este método se utiliza cuando las tareas a realizarse son muy largas de
ejecutar. Las tareas son divididas en etapas o estados.

Es lo que se ha mencionado previamente al indicar que el CPU realiza
pequeias porciones de una tarea y ante los ojos del usuario parece que el
CPU realiza varios procesos a la vez. Este es el método que se utilizara en
los proyectos de este libro.

La Figura 4.17 muestra una imagen conceptual de este método de
programacion.

v

Tarea 1 N Tarea 1 Tarea 1 ‘

‘ ‘ Tarea 2, estado 0 ‘ ‘ Tarea 2, estado 0 ‘ Tarea 2, estado 0 ‘ ‘

\ 4
Tarea 2, estado 1 | ‘ Tarea 2, estado 1 ‘ ‘ ‘ ‘ Tarea 2, estado 1

\ 4

‘ ‘ Tarea 2, estado 2 ‘ Tarea 2, estado 2 ‘

\ 4 v 4*;

Tarea 3 Tarea 3 Tarea 3 ’

Tarea 2, estado 2

Figura 4.17. La Tarea 2 ha sido dividida en 3 estados.

Las tareas que son divididas en porciones son mas faciles de analizar,
administrar y corregir. Evita que una tarea se apodere del control total del
CPU. También el volumen de trabajo se reduce enormemente y mediante
este método se crea estados de maquina para tareas que requieren un
retardo en un proceso especifico.

25

Los inconvenientes de utilizar estd técnica es que el rendimiento de una
tarea se aumenta al dividirla en varias partes, se requiere una variable
dedicada por cada tarea para almacenar el estado.

4.6.6 Planificador de Tareas Programado (Scheduled)

TEXTO NO DISPONIBLE EN LA VERSION DEMO

—» | Temporizador | |«

0 |«
*‘
Sl
100 ms Tarea 1 |
NO |« I

Sl
1000 ms Tarea 2 I

Figura 4.18. Tareas ejecutadas por un planificador programado.

TEXTO NO DISPONIBLE EN LA VERSION DEMO

4.6.6 Planificador de Tareas en Fila

TEXTO NO DISPONIBLE EN LA VERSION DEMO

25

Capitulo 5

Encendido y apagado de un led de manera periodica

5.1 Estructura de los proyectos que se realizaran en este libro.

Como se menciond en el Capitulo 4, el método para escribir todos los
proyectos en este libro sera utilizando un planificador de tareas por
estados.

Cada tarea a la vez se podra subdividir en estados como se indica en la
Figura 4.17 del Capitulo 4.

Las tareas de ahora en adelante se las denominara aplicaciones y tendran
de sufijo la palabra App. Cada tarea estara involucrada en el control de un
periférico. Para lo cual luego del sufijo App seguira el nombre de periférico
asociado:

App[Nombre del Periférico])

En la Figura 5.1 se muestra que el cédigo principal maneja tres
aplicaciones, ApplLed para controlar el encendido y apagado de un led,
AppUartl que maneja todo lo relacionado con el Uartl del MCU y AppLCD
gue debe contener todo lo relacionado para el control de un mddulo de
visualizacion.

Fvoid main (void) {
while (1) {
AppLed() ;

AppUarctli() -
AppLCD() :

Figura 5.1. Lazo principal administrando tres aplicaciones o tareas.

108

Antes de ejecutarse el lazo principal o superlazo, se debe configurar
correctamente a los periféricos y al CPU. El cédigo antes de ingresar al lazo
principal es similar al de la Figura 5.2.

w o

N NN NN NN NNNNDN e

] Y U0 Wb

N o W PO

] O

w0 o

[Flvoid main (wvoid) {

/** Configuraciones de terminales del
ConfigurarIOs()

ConfigurarPPS() ;

/** Configuracidn de periféricos **/
ConfigurarPerifericoO():
ConfigurarPerifericol():

ConfigurarPeriferico2():
ConfigurarPerifericoN()

11lClallzcal AD1L1CaAaClOIICS

In1c1allzarApp0()
InicializarAppl():
InicializarApp2():

InicializarAppN():

/** Inicializar temporizador del Sistema **/

InicializarTemporizadorSistema() ;

napliliitar i1nterrupciones

dabllltarlnterrquLOQes()

=] while (1) {
App0() ;
Appl():
App2() ;
AppN() ;

F }

4

Figura 5.2. Estructura de la funcidon main para la mayoria de los proyectos

presentados en este libro.

En la Figura 5.2 se puede apreciar varias sub-funciones en main,
ConfigurarlOs configurara los terminales del MCU como entradas y salidas
segun sea lo necesario, asi como la activacidon de otros parametros como
resistencias de pull-up, pull-down, salidas de drenador abiertos, etc.

109

La funcion ConfigurarPPS asignard los terminales de entrada y salida de un
periférico a los correspondientes terminales externos del MCU.

Las funciones ConfigurarPeriferico estableceran los valores correctos para
el funcionamiento de un periférico, por ejemplo para un médulo UART se
asignara la velocidad de comunicacién, si la comunicacion es de 8 o0 9 bits,
el nidmero de bits de parada, etc. Configurar un periférico no
necesariamente es activarlo, generalmente la mayoria de periféricos
poseen un bit en un registro que al ponerlo en 1, activan al periférico para
gue empiece a funcionar. El programador debera ser intuitivo para
determinar si dentro de estas funciones se activara al periférico o si es
necesario que sea mas adelante.

Las funciones HabilitarApp generalmente son utilizadas para poner el valor
inicial de la variable de estado de cada app, también aqui muchas veces se
puede inicializar algun otro tipo de variables que necesitan las tareas.

InicializarTemporizadorSistema activa a un temporizador que es util para
generar bases de tiempo definidas, mdas adelante y con los ejemplos se
entendera mucho mejor.

La funcién HabilitarInterrupciones como su nombre lo indica habilita las
interrupciones de los periféricos (si se las ha configurado anteriormente)
para que interrumpan al CPU para atender un evento.

5.2 Temporizador de un Sistema con Microcontrolador.

Como se indicd anteriormente se necesita un temporizador que nos
permita generar bases de tiempo definidas.

110

Para el objetivo de los dos proyectos de este capitulo, se necesita una

base de tiempo para encender y apagar el led del circuito de la Figura 3.1
del Capitulo 3.

El primer proyecto encendera y apagara al LED del terminal RB15 a razén
de 500 ms. Figura 5.3

N

N\

3.3V

Voltaje en RB15

V

Periodos de tiempo de 500 ms

Figura 5.3. Voltaje de onda cuadrada de 500 ms de duracidn en el terminal
RB15 del microcontrolador.

Las bases de tiempo se las generara con la ayuda de un temporizador, la
utilizacion de ese temporizador debe ser de tal manera que pueda usar
cualquier otra tarea o app. La Figura 5.4 muestra un diagrama de flujo de
la manera incorrecta de como suelen utilizar un temporizador para
generar retardos o delays.

AppLed

\ 4

Inicializar
Temporizador

Conmutar el valor i /F;N\\
del terminal del LED \ /
N

Figura 5.4. Manera incorrecta de utilizar un temporizador para generar
retardos

111

En el codigo de la Figura 5.4 se ve claramente que el CPU permanece en
un lazo de 500 ms en el cual pueden suceder varios eventos o realizar una
tarea util (al menos que encender y apagar un led sea el Unico objetivo del
MCU).

En la Figura 5.5 se muestra el diagrama de flujo de una manera correcta
de utilizar un temporizador a generar un retardo.

main ApplLed

\ 4

¢Estado =
Inicial?

Inicializar
Temporizador

—'—iif_i\[éIorTemporizador—Va riable > 500 m

Conmutar el valor
del terminal del LED

oy v

Estado = Inicial
Variable = ValorTemporizador

i
<
\ 4
Estado++ Variable = ValorTemporizador
AppLed
//7 ;\\
[FIN |« <
NS

Figura 5.5. Temporizador utilizado para generar retardos de tal manera
gue su proceso no se apropie completamente del CPU.

En el diagrama de flujo de la Figura 5.5 en la funcién main se puede
apreciar que el temporizador se inicia y permanece siempre activado
contando ciclos de maquina. También el estado de la AppLed es puesto en
un valor inicial (generalmente el valor inicial del estado de una app es
cero).

Luego dentro del lazo principal se ejecuta la funcidn ApplLed. Dentro de
dicha funcion se verifica el estado de la app que tiene un valor inicial y se

112

utiliza Variable para capturar el valor que el temporizador tenga en ese
momento, a continuacidon se incrementa para que la app siempre realice
la siguiente accion.

Se calcula la diferencia del valor del temporizador y el valor obtenido en el
estado inicial, si dicha diferencia produce un valor que corresponda a un
poco mas del tiempo deseado, se procede a realizar la acciéon de conmutar
el estado del led y nuevamente se almacena en Variable el valor del
temporizador para nuevamente ejecutar un retardo.

Aqui debo explicar cdmo funciona la diferencia de los dos valores.
Supongamos que el temporizador es de 16 bits y con el valor de 0x3E80
produce 500 ms. Es decir que si el temporizador empieza desde un valor
de 0x0000, al alcanzar 0x3E80 han transcurrido 500 ms. Suponiendo que
en la app en el estado inicial, Variable por coincidencia captura el valor del
temporizador con un valor igual a 0, en la siguiente etapa de la tarea
realiza la diferencia y la condicidn mayor que:

(ValorTemporizador — Variable) > 0x3E80

Cuando el temporizador haya alcanzado un valor de 0x3E81 o superior la
condicidon es verdadera y se produce la acciéon necesaria (conmutar el
valor del terminal del led).

Pero el valor capturado para realizar la diferencia es poco probable que
sea igual a cero y aun es mas curioso analizar la diferencia cuando el valor
del temporizador es menor que Variable.

Por ejemplo supongamos que el valor capturado en Variable es OxFFFO
gue es un valor muy proximo al desborde o reinicio del temporizador
¢Qué sucede cuando el temporizador es cero o menor de 0x3E80?

113

Supongamos que el temporizador es 0x0000, entonces la diferencia seria:

0x0000 — OxFFFO

El resultado de dicha diferencia seria 0x0010 si seleccionamos trabajar
con variables sin signo, la diferencia entre variables sin signo (unsigned)
siempre nos da el valor absoluto.

Supongamos que el temporizador alcanza un valor de 0x3E71, entonces la
diferencia seria:

Ox3E71 — OxFFFO

El resultado seria Ox3E81 que cumple con la condicién para conmutar el
terminal que estd asignado el led.

Por lo tanto no importa qué valor se capture del temporizador, lo
importante es que la diferencia sea la correcta.

La condicién es mayor que, debido a que el tiempo o retardo necesario no
es exacto debido a que el mismo hecho de que el CPU realiza los calculos
agrega un error (la diferencia, la condicién, etc.). Ademas suponiendo que
existieran otras tareas a parte de ApplLed también influyen en el valor
calculado.

Recuerde que las tareas trabajando en modo de cooperacion son utiles si
son de prioridad media, baja o tareas que necesitan permanecer en pausa
o reposo. Por lo tanto si el tiempo que el led permanece encendido (o
apagado) puede ser un poco mayor a 500 ms, entonces dicho error no
afecta al sistema y el retardo puede ser un poco mas grande del deseado.

Si realmente se necesita precision en la generacidn de retardos, se deberia
recurrir a interrupciones y eso se vera en los capitulos correspondientes a
ese tema.

114

También se debera calcular cual es el valor minimo que puede generar el
temporizador, generalmente lo minimo puede ser 1 ms y lo maximo se
puede alcanzar cualquier valor con variables auxiliares.

5.3 Estructura de todos los proyectos en MPLAB X

Todos los proyectos que se muestran en este libro tendrdn una
distribuciéon de sus archivos de tal manera que estén ordenados. Por
supuesto que el usuario puede escoger la mejor manera que crea
conveniente para crear dicha distribucion.

La distribucién mencionada esta en el panel de archivos (File Pane), en la
pestafia proyectos. Figura 5.6.

Projects x Files Services [=]
{54 primerProyecto
() Header Files
+ @ Important Files
&3] Linker Files
=} EE] Source Files
[[1_] main.c
(& Libraries
(& Loadables

Figura 5.6. Panel de archivos de MPLAB® X

Dentro de la carpeta Source Files de la pestafia Projects del panel de
archivos estan todos los archivos de extensién .c que se utilicen o se
necesiten.

Cada app tendra su propio archivo .c que a la vez estaran dentro de una
carpeta légica. Esto también se realizara para los periféricos que también
tienen sus propios archivos .c y su carpeta contenedora. La Figura 5.7

115

muestra un ejemplo de cémo los archivos .c del proyecto estan
organizados en el panel de archivos.

=} E] Source Files
= Eﬂ] Apps
9 Appled.c
9 AppUart1.c
m main.c
= &E] Perifericos
E‘l_‘] Interrupciones.c

ﬂt] I0s.c

3 Temporizador4_5.c
9 UART1.c

Figura 5.7. Ejemplo de distribucidn de los archivos .c en los proyectos de
este libro.

De igual manera los archivos cabecera o .h estaran distribuidos de la
misma manera. Figura 5.8.

-(gf) Header Files
3 Apps
@9 ApplLed.h
@9 AppUart1.h
3 DefinidonesGlobales.h

Figura 5.8. Distribucion de los archivos .h

Mas adelante se explicara cdmo crear las carpetas légicas y colocar sus
archivos correspondientes.

5.4 Creacion del proyecto de encendido y apagado de un led de manera
periodica.

Similar al primer proyecto que se realizd en el capitulo 3, creamos un
proyecto cuyo nombre sera LedParpadeo, Figura 5.9.

116

Cuando el proyecto esté listo, creamos el archivo main, ponemos los
mismos bits de configuracion del primer proyecto y compilamos para
verificar que el proyecto esté correctamente creado (yo utilizaré
compilacion tipo s). Figura 5.10

X! New Project X

|
Steps Select Project Name and Folder

Select Device Project Name: LedParpadeo|

Project Location: H:\Proyectos Libro PIC32\LedParpadeo Browse...

NO U b wN e
oy
g

Select Project Name and Project Folder: 1:\Proyectos Libro PIC32\LedParpadeo\LedParpadeo.X

Overwrite existing project.
Also delete sources.
[Set as main project
[[] Use project location as the project folder

1\/(- Encoding: 150-8859-1 >

<Back Next > Cancel Help

Figura 5.9. Creacién del segundo proyecto de este libro.

X! MPLAB X IDE - LedParpadeo : default - =] X
File Edit View Navigate Source Refactor Production Debug Team Tools Window Help Q> Search (Ctri+])
8 3 9 @ ' -
7 o @l @ | e JE- B D-R-RQUB-HE XIJTIILEEET W howior
Projects x Files Services 2 |[Emanc x an|c]E)]
= LedPai i@ © " m
O omatee souce | vy (R B-B1-[ARSBE(P ST [AU|0 8@ ®
@@ Important Fles 2e # config WINDIS = OFF ~u
o e 2 contig FWDTEN = O
@ mseeris %0 config FWDTWINSZ = WINSZ_25
@) manc s
@ (@@ braries =
o & tovties 5 contig JTAGEN = OFF
s config ICESEL = 1C5_EGx2
s contig BWE = EWE2S6K
36 config BWP = ON
37 config CP = ON
¢
LedParpadeo - Dashboard x | main() - Navigator o]

9 [73 Ledparpadeo

Py Project Type: Applcation - Configuration: default
= @ PICIMX170F 2568 S3
= 5 Chedsum: 0x0000 s |
= Compler Tookhain
o G XC32 (v1.43) [C:\Program Fies (x86)Microchip\xc32)
%’ Production Image: Optimization: gec Os v

& Memory < >
& (@ Data 6553 (0x10000) bytes
% =

Build,) x

: g
= (@ Program 265200 (Ox406F0) bytes Makefile-defaulc.mk disc/defauls » A
% izectory 'H:/Proyectos Libro PIC3Z/LedParpadec/LedParpades.X’

(x86) \Microchip\: 43\bin\xc32-gec.exe” -g -x € - -Eprocessor=32MX170F2568 -Os -YD -MF build/def:

Program Used: 1520 (OXSFO) Free: 263680 (0x4q

“
J§ OupTol (x26) axe” 7072568 -o dist/default/production/Ledi
9 03 x26) \w1.43\biam\ Zhex ds x e

05 Debug Resources ng directory 'H:/Proyectos Libro PIC32/LedPapadec/LedPazpades.X’

directory 'H:/Proyectes Libro PIC32/LedParpadec/LedParpadec.X’

[Data Capture BP: No Support
O Unimited BP (S/W): No Support

jectos Libro PIC32. x/di. x B

Loading completed

< >
< >

& () Notifications Q Search Results Configuration Bits 411 s

&

Figura 5.10 Segundo proyecto listo.

117

5.5 Creando la funcion 10s

En la funcién main se escribe la funcién ConfigurarlOs como se indica en la
Figura 5.11.

49 int main(void) {

ESS) ;

Figura 5.11 Funcidon ConfigurarlOs dentro de main

Debido a que aun no existe dicha funcién, MPLAB® X nos indica con una
linea roja subrayada que existe un problema con dicha frase.

El siguiente paso es crear el archivo que contiene dicha funcidn,
ConfigurarlOs es parte de la configuracién de los terminales del MCU, las
funciones relacionadas con los terminales las escribo en un archivo
denominado I0s.c.

Los terminales los considero como periféricos, por lo que se crea una
carpeta légica con el nombre Periféricos en el panel de archivos del
proyecto. Para lo cual se da clic derecho sobre la carpeta Source Files y se
selecciona New Logical Folder, Figura 5.12

#}-([§f) Linker Files
- & T

2] main
[Libraries New Logical Folder

New >

Figura 5.12. Creando una nueva carpeta légica dentro de Source Files

Cuando se da clic sobre New Logical Folder, una nueva carpeta ldgica
aparece con nombre New Folder 1, Figura 5.13

118

#-([if) Header Files
+ ﬁ Important Files
+ . Linker Files
2@ Source Files

#-([Libraries
4@ Loadables

Figura 5.13. Nueva carpeta légica creada dentro de Source Files.

A continuacién procedemos a cambiar el nombre de la carpeta nueva a
Perifericos, para lo cual damos clic derecho sobre la nueva carpeta y
escogemos Rename... Figura 5.14.

E Source Files

Eﬂj main.c
@ Libraries New >
i@ Loadables New Logical Folder

Add Existing ltem...
Add Existing ltems from Folders...
Find...

Cut
Copy
Paste Ctrl+V

Remove From Project

Rename...

Properties

Figura 5.14. Renombrar a la carpeta logica.

Al dar clic en Rename... aparece una ventana que nos permite cambiar el
nombre de la carpeta ldgica, la cambiamos a Perifericos (funciona con
tilde, pero para evitar un posible error no se deberia utilizar caracteres
especiales). Figura 5.15

119

x Rename

New Name: NI

o]/ oo

Figura 5.15 Ventana que permite cambiar el nombre de la nueva carpeta
l6gica creada.

Una vez cambiado el nombre de la carpeta, se da clic derecho sobre la
misma y seleccionamos New, Source File Figura 5.16.

-|gZ) Source Files

; @_‘] main.c
W=Yoeriericac. |
#-[§§ Libraries New > @ Directory...
#-[@@ Loadables New Logical Folder & CMain File...
Add Existing ltem... @ CHeader File...
Add Existing Items from Folders... %] CSourceFile...
Find... @ xc32_header.h...
E‘] xc32_newfile.c...
Cut
D Text File...
Copy
Paste Ctrl+V Other...

Figura 5.16. Manera de agregar un archivo a una carpeta ldgica.

Dando clic sobre C Source File aparece una nueva ventana que nos
permite ingresar el nombre del nuevo archivo .c, el cual se llamara 10s.
Figura 5.17.

Damos clic en el botédn Finish de la Figura 5.17 y el proyecto ahora tiene
un nuevo archivo denominado |0s.c. Figura 5.18.

120

X! New C Source File

Steps Name and Location
1. Choose File Type File Name: |IOs
2. Name and Location
Extension: ¢ v

Set this Extension as Default

Project: LedParpadeo

Folder:

Created File: H:\Proyectos Libro PIC32\LedParpadeo\LedParpadeo.X\IOs.c

< Back Next > Cancel Help

Figura 5.17. Ventana que permite crear un nuevo archivo de tipo c.

Projects x| Files | Services | 2 || startPage x| E|main.c x| 10s.c x|

EX-) LedParpadeo
[+ @ Header Files
= E Important Files

-] Makefile
E] Linker Files
= E] Source Files
; E] main.c
=-(gf) Perifericos
3 10s.c
[+ ﬁ Libraries
0} ﬁ' Loadables

Figura 5.18

‘Souce History I.A,‘J'L;“'|la%
1|

2

. Proyecto con nuevo archivo .c denominado IOs.

En el archivo 10s.c creamos la funcion ConfigurarlOs como se muestra en

la Figura 5.19.

121

StartPage x| & main.c x ﬁ'f]lOs.c x

Source | History |[[[~ Bl ~| Q& &5
1

2 void ConfigurarIOs (void) {
|

-
5

Figura 5.19. Funcidn ConfigurarlOs dentro en el archivo |0s.

En este punto guardamos y compilamos al proyecto para conocer si todo
esta bien. Aqui veremos que el error que se indicaba anteriormente ha
desaparecido.

Ahora dentro de la funcién ConfigurarlOs procedemos a escribir lo
necesario para la correcta configuracion de los terminales del MCU que es
exactamente lo mismo del primer proyecto. Si copiamos y pegamos dichas
configuraciones, veremos que MPLAB® X nos muestra varios errores.
Figura 5.20.

StartPage x| [F]main.c x QﬂjIOs.c x

Source History [@ [E v v Q % 5’ Dx:] {::i 1?’ {b DD

I
&
C

([
[
M.
£a

[Z] void ConfigurarIOs (void) {
0;

|
O O O o
NeoNe e N

NPUBbits.CNPUB1S =
CNPDBbits.CNPDB1S5 =
ODCBbits.ODCB1S = 0;

o uonon
~
O O W
Seove e

~PEPPP PR e N -

[

Figura 5.20. Configuraciones para los terminales del MCU dentro de la
funcion ConfigurarlOs, se ve claramente que existe un problema.

122

Los errores indicados son porque para el archivo no se agregado la
cabecera de los registros subrayados en rojo. La solucién es incluir el
archivo cabecera xc.h. Figura 5.21.

StartPage x| *]main.c x |*]I0s.c x

Source = History | [[~ .

yo!
s
&
il
&
N
(']U
&
&
C

C
[
M.
#a

[] void ConfigurarIOs (void) {
CFGCONbits.JT U
ANSELBbits.
TRISBbits.
CNPUBbits.
CNPDBbits.
ODCBbits.ODCB1S

W W oUW N
~

0O 0O 000

Ne e Ne Se e

0 0O 0O

(el el =
N B o
=)

o
-

1]

&

"
ct
0]
=
w
[
wm
X
(

]

b

CNPUAbits.
CNPDAbits.C \3 =
ODCAbits.ODCA3 = 0;

(=Y
w

-
e

-
w
r

Figura 5.21. Con la inclusion del archivo xc.h los registros del MCU son
reconocidos en el archivo .c.

Nuevamente, cada vez que se realice un cambio es recomendable
compilar el proyecto para determinar si hay algun error.

Antes de continuar, recuerde que es recomendable declarar los prototipos
de las funciones de todos los archivos .c para evitar los problemas de
compilacion que muchas veces el compilador desconoce a las funciones.
Figura 5.22

El siguiente paso seria crear la funcion ConfigurarPPS (que también estara
dentro de 10s.c) y ConfigurarPerifericoO, 1, ... N, pero al momento el Unico
periférico que se utiliza son los terminales del MCU, asi que cuando sea
necesario se crearan dichas funciones.

123

42
43
44
45
46 void ConfigurarlIOs (void):;

47 int main(void)’

48

49 int main(void) {

50 ConfigurarIOs():

51 return (EXIT_SUCCESS):
52

1 #include

2

3 void ConfigurarIOs (void)
4

5/ [£] void ConfigurarIOs (void){
6 CFGCONbits ;
7 ANSELBbits

8 TRISBbits.

9 CNPUBbits.

10 CNPDBbits.

11 ODCBbits.O

12

13 TRISAbits. =

14 CNPUADbits. =

15 CNPDAbits. =

16 ODCAbits.ODCA3 = 0

17, - 1}

Figura 5.22. Todos los archivos .c deben poseer los prototipos de las
funciones que utilicen para que el compilador las reconozca
correctamente.

Lo siguiente es inicializar la app denominada AppLed para lo cual creamos
la carpeta légica denominada Apps y dentro de ella creamos el archivo
Appled.c. Figura 5.23.

“-[g) Source Files
- Apps
fflj Appled.c
ﬁ“:] main.c
=g Perifericos

ffl_j I0s.c

Figura 5.23. Carpeta logica Apps conteniendo al archivo Appled.c

Dentro del archivo ApplLed creamos la funciéon IniciarAppLed y la
escribimos en la funcidn main. Figura 5.24.

124

46 void ConfigurarlOs (void);

47 void InicializarAppled(void):
48 int main (void):;

49

50 int main(void) {

51 ConfigurarIOs():

52 InicializarAppLed():

53 return (EXIT SUCCESS):

54 }

1

2 void InicializarAppled(void)
3

< void InicializarAppled(void) {
 f

6 }

-

Figura 5.24. Funcidn InicializarAppLed en archivo ApplLed.cy utilizada en la
funcién main.

El siguiente paso es crear los estados de la app como enumeradores y sus
variables las cuales serdn una estructura de datos. Esto se declarara en un
archivo cabecera .h que corresponde con el nombre del archivo AppLed.c.

En la carpeta légica denominada Header Files creamos una subcarpeta
l6gica denominada Apps y dando clic derecho sobre ella seleccionamos
New, C Header File. Figura 5.26.

<-4 LedParpadeo
=} E] Header Files

@ o
=@ Importz New > @ Directory...
-] Mak New Logical Folder & CSourceFile...
@) Linkerfl Adq Existing Item... & C Main File..
5@ Source . :
L @ Ao Add Existing Items from Folders... 3] CHeaderFile...

-~ p o

Figura 5.26. Agregando un archivo cabecera en Apps de la carpeta Header
Files.

125

Aparece una ventana que nos permite ingresar el nombre del archivo el
cual serd ApplLed y presionamos el botdn Finish. Figura 5.27

X! New C Header File

Steps Name and Location

1. Choose File Type File Name: |ApplLed
2. Name and Location

Extension: |h v

Project: LedParpadeo

Folder: Browse...

Created File: |H:\Proyectos Libro PIC32\LedParpadeo\LedParpadeo.X\AppLed.h

< Back Next Cancel

Figura 5.27. Creando un nuevo archivo cabecera.

El nuevo archivo tendra un aspecto similar al de la Figura 5.28, las
definiciones que se crean por defecto se las puede borrar, yo prefiero
mantenerlas y escribir cualquier cddigo nuevo debajo de las mismas.

El siguiente paso sera escribir los estados de la app como enumeradores,
para este proyecto se puede decir que el estado tendrd dos valores, un
inicial 'y otro de conmutacion y los defino como:

APP_LED_INICIO
APP_LED_CONMUTAR

En ‘Inicio’ se obtendra el valor del temporizador del sistema, mientras que
en el estado conmutar se analizara si se ha cumplido el tiempo establecido
para conmutar el estado del led.

126

Start Page x_@_“]main.c x_'E']IOs.c x @Appted.c x‘E‘]AppLed.h x|
Source History ‘@v v‘@%&%;‘ﬁ?{bcbygg

i

[c] #ifndef APPLED H

ifdef _ cplusplus

——ald Ll L

W 0 - 0 0 = W N

{1}
J
"
}

h
»)
1}
h

T
N = O
{1}
J

"

+

h

),

]

h

ifdef _ cplusplus

= =
e W
I
+
D
J
b)
)
h

+«CLAAL L

=
wn

e
W -3 o
I
"
m
5]
)
}
Hh

Figura 5.28 Archivo cabecera Appled.h creado para el segundo proyecto.

Entonces en el archivo ApplLed.h escribimos los dos estados de la app
como se indica en la Figura 5.29.

18 typedef enum

19 {

20 APP_LED INICIO = 0x00,
21 APP LED CONMUTAR

22 }APP LED ESTADOS:;

Figura 5.29 Estados de la AppLed, nétese que el estado inicial es igual a
cero.

A continuacion creamos en este mismo archivo la variable que posee el
estado de la app que sera de tipo char sin signo. Figura 5.30.

127

18 typedef enum {

19 APP LED INICIO = 0x00,
20 APP_LED CONMUTAR

21 }APP_LED ESTADOS;

22

23 typedef struct {

24 T unsigned char estado;
25 } APP_LED DATOS;

Figura 5.30. Variable estado para AppLed.

Ahora se debe declarar una variable similar a la estructura de datos del
archivo cabecera para Appled.c, para lo cual debemos incluir el archivo
cabecera como se indica en la Figura 5.31.

StartPage x ﬁ‘l_‘]main.c x EE]IOs.c x Rﬁ]AppLed.c x

Source History [E: = e ‘6‘ % 5] Dl:l ?:::; 1}

ERsleERble

void InicializarAppled(void)

S o N s LW N

X

T

T

L

['
- N
3

(

V]

'O

'O

bt

m

2

~

9

8 T void InicializarAppled (void) {
10

Figura 5.31. Creando una variable tipo APP_LED DATOS para ser utilizada
en el archivo Appled.c

Finalmente dentro de la funcidn InicializarAppLed inicializamos la variable
estado de app_led. Figura 5.32.

Recuerde compilar el proyecto para determinar posibles errores. Es
necesario inicializar las variables a un valor definido ya que el compilador
no lo hace automaticamente y la memoria RAM del MCU para el usuario
generalmente esta llena con cualquier valor al energizarse el sistema.

128

StartPage x |]main.c x|]I0s.c x|] AppLedc x

Source History ([[RS8~ QS i

1

2 #include

3

< I » app_led;

5

6 void InicializarAppled(void)

-

g void InicializarAppled (void) {

9 [f app_led.estado = APP_LED INICIO;
10

Figura 5.32. Inicializando la variable estado de app_led dentro de Ia
funcion InicializarAppLed.

5.6 Creando la funcion ApplLed

Ahora ya estamos preparados para crear la funcién que analiza los estados
de la app. Esta funcidon también estara dentro de ApplLed y se llamara de
igual manera. Mediante una sentencia switch se analizara cada estado de
la tarea. Figura 5.33.

Esta funcidn se ejecutard constantemente dentro del lazo principal en
main como se indica en la Figura 5.34 y también luego de dicha funcion
escribimos la sentencia para limpiar al perro guardian.

El siguiente paso seria escribir la funcién InicializarTemporizadorSistema
que por el momento sdlo se escribird un prototipo ya que mas adelante se
analizara lo necesario para configurar correctamente al temporizador que
necesitamos. Por el momento debo indicar que el temporizador que
utilizaremos es la unién del temporizador y del temporizador 5 ya que
entre los dos forman uno de 32 bits.

En la carpeta ldégica Perifericos creamos un archivo de nombre
Temporizadord 5.c. Figura 5.35.

129

StartPage x| (F)main.c x| {10s.c x|{¥ Appled.c x| Appledh x|

1

2 #include "ApplLed.h"

3

4 APP_LED DATOS app_led;

5

6 void InicializarAppled(void):

7 void Appled(void);

8

9 [£] void InicializarAppled (void) {
10 app_led.estado = APP_LED INICIO:;
11| = 1}

12

13 [£] void ApplLed (void) {

14 switch (app_led.estado){

15 case APP_LED INICIO:{
16

17 break:;

18 }

19 case APP_LED CONMUTAR: {
20

21 break;

22 }

23 default: break; si este caso sucede implica un error
24 }

25 -}

Figura 5.33.Funcion AppLled lista para realizar su procesamiento de datos.

43 #include <stdio.h>

44 #include <stdlib.h>

45

46 void ConfigurarIOs (void):;

47 void InicializarAppled(void):
48 void Appled(void);

42 T $include <xc.h>

49 int main (void):;

50

51 [E] int main(void) {

52 ConfigurarIOs():

53 InicializarAppLed():
54 while (1) {

55 AppLed():

56 WDTCONbits.WDICLR = 1; reinicia al WDT
57 }

58 return (EXIT SUCCESS):
S9| - }

Figura 5.34.Funcion ApplLed siendo ejecutada dentro del laso principal en
la funcion main

130

= [CE] Perifericos
B 10s.c
9 Temporizador4_S.c
Figura 5.35. Archivo Temporizadord_5.c que contendra las funciones que
corresponden al temporizador del sistema.

En el archivo Temporizadord 5.c escribimos la funcidn
InicializarTemporizadorSistema, Figura 5.36.

StartPage x EﬂTemporizadoM_S.c x

Sowrce | Hstoy @ @B-H QBT BE|FP LD
1
2 void InicializarTemporizadorSistema (void) {
3
N

Figura 5.36. Funcidn InicializarTemporizadorSistema que sera util para
configurar al temporizador correctamente.

Esta funcién sera invocada en la funcién main antes del lazo principal.
Figura 5.36.

La siguiente funcién seria aquella que corresponde a la configuracion de
las interrupciones, pero como en este ejemplo no se las utiliza, se la
escribira y explicara en el primer ejemplo donde se la utilice.

5.7 Configurando al Temporizador del Sistema

La velocidad del reloj para los periféricos es igual a la del CPU que es
48MHz debido a que la configuracién del oscilador que es la misma del
primer proyecto.

131

42
43
44
45
46
47
48
49
S0
S1
52
53
54
S5
56
57

£
<

59
60
61

void
void
void
void
int

int

ERie (]
ERPLe

4+ UdcCc

ConfigurarlIOs (void) ;
InicializarAppled(void);
InicializarTemporizadorSistema (void)
Appled (void) ;
main (void):;

main(void) {

ConfigurarIOs():
InicializarAppLed():
InicializarTemporizadorSistema():
while (1) {

AppLed():
WDTCONbits.WDICLR = 1;
return (EXIT SUCCESS):;

Figura 5.36. Funcidn IniciarTemporizadorSistema invocada en la funcion
main antes de ejecutar el lazo principal.

Suponiendo que se utiliza un temporizador de 16 bits y que el
temporizador se incrementa por cada ciclo del oscilador, es decir sin
escalamientos, el valor maximo de tiempo que puede generar es:

Tiempo Maximo =

65536

Ziiﬁiiig = 1.365 ms

1.365 ms es un valor muy bajo ya que lo ideal seria que con algunos ciclos
produzca 1 ms y con muchos mas se alcance los 500 ms que es nuestro

objetivo.

Se podria recurrir a variables auxiliares para llamar varias veces a dicho
tiempo y alcanzar el valor deseado pero eso implicaria que nuestro cédigo
es algo engorroso y teniendo aun recursos, debemos ser mas eficientes y
practicos con el sistema que se esta desarrollando.

132

La siguiente opcidn es utilizar el escalamiento, por ejemplo digamos que
ocupamos su maximo valor que es 256, por lo que el tiempo maximo que
se generaria seria:

Tiempo Maximo = 25648MHZ 349 ms

349 ms es un valor mucho mas alto, pero aun asi no es la forma correcta,
ya que el error para alcanzar el valor de 500ms seria muy alto, el valor mas
proximo seria el doble, es decir 698 ms, y lo correcto es que con pocos
ciclos y no con el maximo se deben alcanzar los 500 ms.

También el tiempo minimo que puede generarse seria:

Tiempo Minimo = 256 ———— = 5.333us

48MHz

5.333 ps no es un valor Gtil para el proyecto que se esta disefiando.

Ahora recurramos a un temporizador de 32 bits, de igual manera sin
escalamientos el tiempo maximo seria:
4294967 296

Tiempo Maximo = 18M Iz =89.47 s

89.47 segundos es demasiado para lo que necesitamos, pero para
determinar si es util o no, hay que calcular con qué valor se puede
alcanzar los 500 ms:

Valor = Tiempo Deseado - Fperifsricos

Valor = 500ms X 48MHz = 24000000 =0x16E3600

133

Es decir con 24 000 000 se consigue 500 ms, lo cual estd bien ya que si el
valor maximo del temporizador (4 294 967 296) es el 100%, 24 000 000 es
el 0.56 %.

El tiempo minimo con el temporizador de 32 bits seria:

= 20.83 ns

Tiempo Minimo = 18MHZ

Y para producir 1 ms seria:

Valor = 1ms X 48MHz = 48000 =0xBB80

En conclusidon, un temporizador de 32 bits me permite alcanzar tiempos
definidos mdas exactos sin recurrir a variables auxiliares (al menos que
desee generar retardos superiores a 89.47 s)

El microcontrolador posee dos temporizadores de 32 bits, entre los
temporizadores 2 y 3 conforman uno y el segundo entre los
temporizadores 4y 5.

A pesar que los registros TMRx o TMRy (donde ‘x’ representa a los
temporizadores 2 6 5 y donde ‘y’ representa a los temporizadores 3 6 5)
son de 32 bits para cada temporizador, sélo su parte baja contiene un
valor util, es decir de 16 bits y por esa razén entre dos conforman uno de
32 bits.

Para este ejemplo yo utilizaré la pareja formada por los temporizadores 4
y 5. Notese que el registro para configurar dichos temporizadores es
T4CON, Figura 5.37.

134

REGISTER 13-1: TXCON: TYPE B TIMER CONTROL REGISTER

Bit Bit Bit Bit Bit Bit Bit Bit Bit
Range 31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/19/1 | 24/16/8/0
[Vr) U0 U0 VX)) U0 U0 V) U0
31:24
uo uo 1) U0 u-o U0 u-0 uo
23:16
) RIW-0 U0 RW-0 U0 u-o u-0 u-0 uo
b ON(3) — SipL@ — — — - —
70 RIW-0 RIW-0 RW-0 RIW-0 RW-0 U0 RIW-0 u-0
’ TGATE®) TCKPS<2:0>() 1322 - TCS®) -
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0" = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as ‘0’

bit 15

bit 14
bit 13

bit 12-8
bit 7

bit 6-4

bit 3

bit 2
bit 1

bit 0

Note 1:

ON: Timer On bit(13)

1 = Module is enabled

0 = Module is disabled
Unimplemented: Read as ‘0’

SIDL: Stop in Idle Mode bit®

1 = Discontinue module operation when the device enters Idle mode
0 = Continue module operation when the device enters Idle mode
Unimplemented: Read as ‘0’

TGATE: Timer Gated Time Accumulation Enable bit(®)

When TCS = 1:

This bit is ignored and is read as ‘0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

TCKPS<2:0>: Timer Input Clock Prescale Select bits®

111 = 1:256 prescale value

110 = 1:64 prescale value

101 = 1:32 prescale value

100 = 1:16 prescale value

011 = 1:8 prescale value

010 = 1:4 prescale value

001 = 1:2 prescale value

000 = 1:1 prescale value

T32: 32-Bit Timer Mode Select bit'“!

1 = Odd numbered and even numbered timers form a 32-bit timer
0 = Odd numbered and even numbered timers form a separate 16-bit timer
Unimplemented: Read as ‘0’

TCS: Timer Clock Source Select bit®
1 = External clock from TxCK pin
0 = Internal peripheral clock

Unimplemented: Read as ‘0’

When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.

This bit is available only on even numbered timers (Timer2 and Timer4).

While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3, and TimerS5). All
timer functions are set through the even numbered timers.

While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer
in Idle mode.

Figura 5.37. Registro TXCON que permite configurar a los temporizadores

2,45y 6

135

La nota 1 indicada en la Figura 5.37 advierte que no se debe escribir en un
registro un valor tal que apague a un mddulo cuando la frecuencia del
oscilador para los periféricos tenga un valor de divisidn igual a 1 (que es
nuestro caso), pero como se va activar a dicho moddulo, no existe
problema.

Analizando lo indicado en la Figura 5.37, el bit15 debera estar en 1 légico,
el bit 13 puede estar en cualquier valor ya que el proyecto no entrara a
modo de bajo consumo IDLE, el bit 7 puede contener cualquier valor
segun la nota 3, entre los bits 6 y 4 el valor debe ser de 0, es decir sin
ningun escalamiento, el bit 1 debe estar en cero ya que los pulsos que
incrementaran el valor del temporizador seran los del reloj para los
periféricos. Por lo tanto el valor que contendra T4CON sera:

0x8008

Entonces en la funcidon InicializarTemporizadorSistema se procede a
asignar dicho valor a T4CON. Figura 5.38.

StartPage x | (3] Temporizador4_5.c x| & main.c x |3]10s.c x

Source History | [l B AR EG| PR
1

-] void InicializarTemporizadorSistema (void) {
N = 0x8008;

(- R B S U N)

Figura 5.38. Asignado el valor correcto al registro TACON, ndtese que se
necesita incluir xc.h para que el compilador reconozca a dicho registro.

5.7 Recuperando el valor instantaneo del Temporizador del Sistema

La siguiente funcion que se necesita implementar es aquella que obtiene
el valor instantdneo del temporizador que ha sido asignado para el

136

sistema, en este caso el valor de TMR4 y TMR5 deben crear una variable
de 32 bits y retornarlos cuando la funcién sea invocada.

Notese que con las partes bajas de TMR4 y TMR5 (que son de 16 bits) se
formara una variable de 32 bits. Esto puede generar una condicion de
carrera como se menciond en el Capitulo 4 y la Figura 4.3 indica cdmo
solucionar ese posible problema sin detener al temporizador.

La funcion que retorna dicho valor se denominara
obtenerValorTemporizador y su valor a retornar sera de 32 bits sin signo,
es decir unsigned int Figura 5.39.

StartPage x | (| Temporizadord_5.c x| main.c x|{*]10s.c x @

Source History | [IG9 v QBT ER LD

& @

[-] void InicializarTemporizadorSistema (void) {
T4CON = 0x8008;

[] unsigned int retornarValorTemporizador (void) {

W 0 - o 0 &= W N -

(=
o
r

Figura 5.39. Funcién retornarValorTemporizador en el archivo
Temporizadord 5.c

Lo primero que se hace es capturar los valores de TMR5 (parte alta) y
TMRA4 parte baja en variables auxiliares. Figura 5.40.

Luego, para evitar la condicién de carrera, se debe verificar que la parte
alta no haya cambiado, si es asi, se debe capturar los valores
anteriormente mencionados. Figura 5.41

137

g8 [E] unsigned int retornarValorTemporizador (void) {

9 unsigned int PartedAlta;

10 unsigned int ParteBaja;
11 do
12 {
13 ParteAlta =
14 ParteBaja =
15 }

@ -

Figura 5.40. Capturando el valor de TMR5 y TMR4 en variables auxiliares.

g [E] unsigned int retornarValorTemporizador (void) {

9 unsigned int Partellta;

10 unsigned int ParteBaja;

11 do

12 {

13 ParteAlta = TMRS;

14 ParteBaja = TMR4;

15 }while (ParteAlta != TMRS):;
16/ =~ }

Figura 5.41. En la condicion while se evita una posible condicién de
secuencia.

Finalmente entre los valores capturados se crea una variable de 32 bits y
se retorna el valor. Figura 5.42.

g8 [unsigned int retornarValorTemporizador (void) {

9 unsigned int ParteAlta;

10 unsigned int ParteBaja;

11 do

12 {

13 ParteAlta =

14 ParteBaja = !

15 }while (Partellta != TMRS):;

16 return ((PartelAlta << 16) | ParteBaja):
17| - }

Figura 5.42. Finalmente se retorna el valor instantaneo del temporizador.

138

5.8 Encendiendo y apagando al LED cada 500 ms.

Ahora que esta lista la funcién que permite obtener el valor instantaneo
del temporizador, debemos utilizarla en la funcion ApplLed.

Primero se debe crear una variable que contenga el valor instantaneo del
temporizador, para lo cual en ApplLed.h creamos la variable de 32 bits.
Figura 5.43.

23 typedef struct {

24 unsigned char estado;

25 unsigned int valorInstantaneoIMR;
26 APP LED DATOS

Figura 5.43. La variable valorinstantaneoTMR capturara el valor del
temporizador del sistema.

Luego, en el primer caso dela funcién ApplLed (APP_LED_INICIO) se
capturard el valor instantaneo del temporizador y el estado de la app se
cambia a APP_LED CONMUTAR. Figura 5.44.

En el estado APP_LED_CONMUTAR de la funcidon ApplLed se verifica que la
diferencia entre el valor capturado y el valor instantdaneo sea mayor que
500 ms, si es asi procedemos a conmutar el estado del LED y nuevamente
capturamos un nuevo valor del temporizador para la proxima vez. Figura
5.45.

Finalmente compilamos el proyecto y ‘descargamos’ el firmware hacia el
hardware para comprobar la funcionalidad del mismo. Figura 5.46

139

#include "AppLed.h"
APP LED DATOS app_led;

void InicializarAppled(void):
void Appled(void)

W W 0 W N

T void InicializarAppled (void) {

10 app_led.estado = APP_LED INICIO;

11 }

12

13 [void Appled (void) {

14 switch (app_led.estado) {

15 case APP_LED INICIO:{

16 app_led.valorInstantaneoTMR = retornarValorTemporizador():
17 app_led.estado = APP_LED CONMUTAR;

18 break;

19 }

20 case APP_LED CONMUTAR:{

21

22 break;

23 }

24 default: break; si este caso sucede implica un errc
25 }

26| - }

Figura 5.44. En el estado APP_LED_INICIO se captura el valor del
temporizador del sistema.

1
2 B
3
4
S LATBbits.LATB1S
6 0x16E3600
1
g app_led;
9
10 void InicializarAppled(void);
11 void Appled (void):
12

void InicializarAppled (void) {
app_led.estado = APP_LED INICIO;

o e
L B N)
—

}

16

17 [£ void Appled(void) {

18 switch (app_led.estado) {

19 case APP_LED INICIO:{

20 app_led.valorInstantaneoIMR = retornarValorTemporizador():

21 app_led.estado = APP_LED CONMUTAR;

22 break:;

23 }

24 case APP_LED CONMUTAR:{

25 if ((retornarValorTemporizador() - app_led.valorInstantaneoIMR)> 500ms){
26 LED ~= 1;

27 app_led.valorInstantaneoIMR = retornarValorTemporizador():
28 }

29 break:;

30 }

31 default: break:; si este caso sucede implica un error

32 }

33| -}

Figura 5.45. En el estado APP_LED _CONMUTAR cada 500 ms
aproximadamente se cambia el estado del led.

140

Output x |
[0 ProjectloadingWaming x ICD3 x LedParpadeo (Build, Load, ...) x
make -f nbproject/Makefile-default.mk SUBPROJECTS= .build-conf
make(l]: Entering directory 'H:/Proyectos Libro PIC32/LedParpadec/LedParpadeo.X'
make -f nbproject/Makefile-default.mk dist/default/production/LedParpadec.X.production.hex
make (2] : Entering directory 'H:/Proyectos Libro PIC32/LedParpadeo/LedParpadeoc.X’
make([2]: 'dist/default/production/LedParpadec.X.production.hex' is up to date.
make([2]: Leaving directory 'H:/Proyectos Libro PIC32/LedParpadec/LedParpadec.X’
make(l]: Leaving directory 'H:/Proyectos Libro PIC32/LedParpadec/LedParpadeo.X'
BUILD SUCCESSFUL (total time: 538ms)
Loading code from H:/Proyectos Libro PIC32/LedParpadeo/LedParpadec.X/dist/default/production/LedParpadeoc.X.production.hex
Loading completed
Connecting to programmer...
Programming target...
Programming completed
Running target...

Figura 5.46. El firmware se descarg6 al hardware utilizado en el primer
proyecto y funcioné correctamente.

Se puede comprobar que tan exacto es el retardo, para lo cual ponemos
un punto de ruptura en donde el LED es conmutado y empezamos la
depuracidn hasta cuando se lo alcanza. Figura 5.47.

| StartPage va]AppLed.c x|

| Sorce | Histoy |[RR-H-QADFEBR(F L@

10 void InicializarAppled(void)
11 void Appled(void):

2

OD‘WEQ

12

13 [void InicializarAppled (void) {

14 app_led.estado = APP_LED INICIO;
15| - 1}

16

17 [void Appled(void) {

18 switch (app_led.estado){

19 case APP_LED INICIO:{

20

21

22 break:;

23 }

24 case APP_LED CONMUTAR: {

25 if ((retornarValorTemporizador() - app led.valorInstantaneoIMR)> 500ms) {
= LED = 1;

27 app led.valorInstantaneoTMR = retornarValorTemporizador():
28 }

29 break;

30 }

31 default: break;

32 }

33 -1}

Figura 5.47. Punto de ruptura déonde se conmuta al LED.

A continuacion procedemos a desensamblar el cddigo para el archivo
ApplLed.c. Damos clic en Windows / Debugging / Disassembly Figura 5.48.

141

Window Help

Xplained
5 Projects Ctrl+1
([Files Ctrl+2
&l Classes Ctrl+9
@ Favorites Ctrl+3
% Services Ctrl+5
°3 Dashboard
® Navigator Ctrl+7
WQ Action ltems Ctrl+6
E) Tasks Ctrl+Mayis+6
(5 Output Ctrl+4
Editor Ctrl+0
Debugging > Output >
Web 34> Variables Alt+Mayts+1
IDE Tools Q) Watches Alt+Maytis+2
PIC Memory Views s] Call Stack Alt+Mays+3
Simulator H'm Breakpoints Alt+Mayis+5
)) B Sessions Alt+Mayis+6
Configure Window 1.
. ([Sources Alt+Mayis+8
Reset Windows
=] Disassemb
Close Window Ctrl+W ly
) PIC ApplO
Close All Documents Ctrl+Mayis+W
] Trace
Close Other Documents
Stopwatch
Document Groups 3
PC Profiling
Documents... Mayus+F4
Triggers
@ Debugger Console

Figura 5.48. Manera de observar en lenguaje ensamblador un archivo .c

En el cddigo en lenguaje ensamblador ponemos un punto de ruptura justo
antes de realizar el proceso de conmutar al LED. Figura 5.48.

Presionamos F5 para que nuevamente se ejecute la depuracién y se
alcance este segundo punto de ruptura. Figura 5.49, entonces se procede
a analizar el valor de TMr4, TMRS5 y de valorinstantaneoTMR. Figura 5.50.

142

StartPage x | {¥] Appled.c x| k] Disassembly(AppLed) x|

AsmSowce | Hstory |[[@@-B-QA™BHTEBL|(FP LR (Eu(0 3
13 H app_led.valorinstantaneolMK = retornarvalorlemporizador ().
14 0x9D000108: JAL retornarValorTemporizador

15 0x9D00010C: NOP

16 0x9D000110: SW VO, -32748(GP)

17 i app_led.estado = APP_LED CONMUTAR;

18 0x9D000114: ADDIU VO, ZERO, 1

19 : break:

20 0x9D000118: J 0x9D00016C

21 0x9D00011C: SB VO, -32752(GP)

22 ! }

23 ! case APP_LED CONMUTAR: {

24 ! if ((retornarValorTemporizador() - app_led.valorInstantaneoTMR)> _500ms) {
25 0x9D000120: JAL retornarValorTemporizador

26 0x9D000124: NOP

27 0x9D000128: LW V1, -32748(GP)

28 0x9D00012C: SUBU VO, VO, V1

29 0x9D000130: LUI AO, 366

30 0x9D000134: ADDIU AO, AO, 13825

31 0x9D000138: SLTU Vi, VO, AO

32 0x9D00013C: BNE V1, ZERO, 0x9D000170

33 0x9D000140: LW RA, 20(SP)

34 ! LED ~= 1;

>3 0x9D000144: LUI VO, -16504

36 0x9D000148: LW AO, 24880(V0)

37 0x9D00014C: EXT A0, AO, 15, 1

38 0x9D000150: XORI A0, A0, 1

39 0x9D000154: LHU V1, 24880 (V0)

Figura 5.49. Punto de ruptura alcanzado en el cédigo desensamblado de la

funcion ApplLed.

Output | Variables x| CallStack | Breakpoints |

o> | Name Type Address Value

© M ©™R4 SFR | 0xIF800C10 | | 0x02DC6C77
M ©™Rs SFR | OxIF800E10 || 0x000002DC

<Enter new wat

=14 app_led APP_LED_DATOS ' | oxaoo00200 |
@ estado unsigned char .. 0xAD000200 | | SOH; Ox1
& valorInstantar unsigned int ... 0xA0000204 ... 0x016E3651

Figura 5.50. Valores de TMR4, TMR5 y valorinstantaneoTMR luego de

cumplirse la condicidon mayor que.

Entre TMR4 y TMR5 (parte baja y alta respectivamente) forman el
numero:

0x02DC 6C77

143

A pesar que la parte alta de TMR4 tiene un valor diferente de cero, sélo es
util su parte baja de 16 bits.

La diferencia con la variable es:

0x02DC6C77 — Ox16E3651 = Ox16E 3626 = 24 000 038

Y calculando el tiempo es:

Ti _ 24000038 _ 500.00079
lempo = — e = : ms

Lo que implica que el retardo realizado es muy cercano al valor deseado.

5.9. Utilizando el Temporizador Central o Core Timer.

El proyecto actual funciona correctamente y para generar retardos se ha
recurrido a un temporizador el cudl su uUnica funcion o utilidad es de
contador de ciclos de maquina para generar tiempos definidos.

Pero existe un temporizador que realiza esa misma funcionalidad sin
haberlo configurado previamente y que podria afirmarse que es un
desperdicio si no se lo utiliza.

La arquitectura del PIC32 incluye un temporizador central o Core Timer de
32 bits. Este temporizador se implementa en forma de dos registros de
coprocesador: el registro de Conteo y el registro de Comparacion. El
registro de conteo se incrementa cada dos ciclos de reloj del sistema
(SYSCLK).

144

El incremento de Conteo puede ser suspendido opcionalmente durante el
modo depuracion. El registro de Comparacidén se usa para provocar una
interrupcidon de temporizador si se desea. Se genera una interrupcion
cuando ambos registros se igualan.

En el proyecto de este capitulo, la frecuencia con la que este temporizador
funcionaria seria de 24 MHz, el analisis de los valores de tiempo
conseguido estarian dadas por las siguientes ecuaciones:

- Vanimg — 1294967296 _
lempo aximo = 24MHz = . S

Valor = Tiempo Deseado - Fperifsricos/2

Valor = 500ms X 24MHz = 12000000 =0xB71B00

El tiempo minimo seria:

Tiempo Minimo = SAMHz 41.67 ns

El siguiente paso seria adaptar el proyecto a este temporizador para lo
cual la funcidn InicializarTemporizadorSistema no seria necesaria ya que el
temporizador siempre esta activado y funcional, mientras que la funcién
retornarValorTemporizador devolveria el valor de CPO sin realizar los
procesos necesarios para evitar la condicion de secuencia ya que el Core
Timer es un verdadero temporizador de 32 bits. XC32 ofrece una funcién
para retornar el valor de dicho registro pero afiade instrucciones que
harian aumentar el error del momento exacto de captura de tiempo, para
lo cual es mucho mejor solo leer dicho registro. En la Figura 5.51 se puede
ver los cambios que se hacen al proyecto para utilizar el temporizador
central.

145

42
43
44
45

W ~J o U
—

4 void Conf I0s (void) ; i
6 e onfigurarlOs (void) unsigned int retornarValorTemporizador (void) {
47 void InicializarAppled(void): 9 return —_— INT () ;
48 return _CI I T():
10
49 void Appled(void):;

11
12
13

50 int main (void):;
51
52 [int main(void) {

14
53 ConfigurarIOs(): 15
54 InicializarAppLed(): 16
* 17
56 while (1) { 18
57 AppLed():
58 WDTCONbits.WDICLR = 1;
59 }
60 return (EXIT SUCCESS):

S I T A S

. Figura 5.51. Modificando el proyecto para utilizar el Temporizador
Central.

Estas modificaciones se comprobaron en el hardware utilizado y el sistema
funcioné como se esperaba.

El ultimo cambio que se realiza luego de comprobar que el sistema
funciona correctamente con el Core Timer es cambiar el nombre del
archivo .c denominado Temporizador4 5 ya que no tiene nada que ver
con el nuevo temporizador. Para lo cual damos clic derecho sobre el
mismo y escogemos la opcidn Rename... Figura 5.52.

Cambiamos el nombre a Temporizador Central y el proyecto se verd
similar al indicado en la Figura 5.53

Nuevamente, recuerde compilar y también ‘descargar’ el firmware al
hardware para comprobar que el proyecto funciona correctamente y no
se haya generado algun error en la modificacidon del mismo.

146

= E] Source Files

=@ Apps
E] Appled.c
-3 main.c
5] E] Perifericos
3 10s.c
&
& Libraries Open
£} ﬁ Loadables
(& primerProyecto Cut Ctrl+X
@ (if) Header Files Copy Ctrl+C
@[Important Files Paste Ctrl+V

adParpadeo - Dashboard '

[

Exclude file(s) from current configuration
78 LedParpadeo

= ‘21‘ Compiler Toolchain
: (tf XC32(v1.43) [¢ Save As Template...
: “cf Production Ima¢

]
; 3Project Type: Appli¢ Compile File
(=] Device -
1 " @ PICIMX170F] Remove From Project
; - 4| Checksum: 0x(Rename...
)]

= {8 Memory History >
=& Data 65536 (0x

0 Tools >
Data Used:

Properties

—1- 22 Praaram 24570

Figura 5.52. Cambiando el nombre del archivo Temporizador4_5.c

=& = §LedParpadeo
@ Q) Header Files
@@ Important Files
@ @ Linker Files
=] E} Source Files
=@ Apps
& AppLed.c
i E} main.c
= E] Perifericos
E] I0s.c
fﬁ:‘] Temporizador Central.c
- Libraries
@[Loadables

a

Figura 5.53. El archivo Temporizador4_5.c cambié de nombre a
Temporizador Central

Aqui finaliza el segundo proyecto y se describié una manera correcta de
realizar un retardo con un temporizador sin consumir todo el proceso del
CPU y se aprendi6 a realizar una tarea por estados, lo que permite crear
otras para realizar un trabajo cooperativo con un microcontrolador.

147

	Portada
	Hoja 0
	Reconocimientos
	Prefacio
	Capítulo 1
	Capítulo 2
	Capítulo 3
	Capítulo 4
	Capítulo 5

