

Programación práctica del microcontrolador
PIC32

Implementando multitareas, estados de máquina e interrupciones
con MPLAB® X y XC32

Fabián Romo

Reconocimientos

La presente obra posee referencias a diferentes productos y herramientas
y los derechos de autor de los mismos son propiedad de Microchip
Technology.

Todas las imágenes relacionadas con diagramas, herramientas, etc,
relacionados con productos de Microchip Technology tienen el permisos
correspondiente para ser utilizados en este libro.

MPLAB®, XC32®, MPLAB® ICD 3 In-Circuit Debugger, PICkit™ 3 In-Circuit
Debugger y MPLAB REAL ICE In-Circuit Emulator son marcas registradas de
Microchip Tecnology Inc.

Reimpreso con permiso del propietario de los derechos de autor, Microchip
Technology Incorporated. Todos los derechos reservados. No se pueden
realizar más reimpresiones ni reproducciones sin el consentimiento previo
por escrito de Microchip Technology Inc.

I

Introducción

El presente libro es una guía de cómo aprender a programar de manera
práctica, firmware para administrar los periféricos del microcontrolador
PIC32.

Este libro es una guía en la cual deseo compartir mis conocimientos respecto
a este dispositivo.

El libro lo iré actualizando, modificando, corrigiendo errores en el mismo y
agregando nuevos proyectos. También deseo que el lector aporte con ideas o
sugerencias acerca del mismo para añadirlas en las siguientes versiones.

¿Para quiénes es este libro?

La presente obra está pensada en aquellas personas que ya han trabajado
con algún tipo de microcontrolador y desean pulir, mejorar o tener una
referencia de sus conocimientos.

¿Qué es lo que deberías conocer antes de leer este libro?

Este libro no es una introducción a programación en lenguaje C. Este libro
asume que usted tiene por lo menos un conocimiento básico en ese lenguaje
de programación.

También es importante conocer algo de electrónica digital y mucho mejor si
usted ya ha trabajado con algún microcontrolador

¿Qué herramientas de software se utilizará?

El software que utilizaremos será el MPLAB® X la cual es gratis y trabaja en
Windows, Linux y OS X, el compilador que utilizaremos es el MPLAB® XC32
compiler el cual nos permitirá crear nuestro firmware en lenguaje C. Más
adelante, si el libro tiene una buena acogida, deseo utilizar periféricos
avanzados para los cuales utilizaré MPLAB® Harmony Integrated Software

II

Framework que podría decir que es un conjunto de librerías en lenguaje C las
cuales están escritas de manera abstracta de manear modular y flexible para
el usuario.

¿Qué herramientas de hardware se utilizará?

En los primeros proyectos se utilizarán los microcontrolador
PIC32MX170F256B y PIC32MX110F016B. Para las personas que desean
utilizar una placa de pruebas denominada ‘protoboard’, la familia de esos
microcontroladores (PIC32MX1XX/2XX PIN28) son ideales ya que vienen en
encapsulado tipo SPDIP.

En futuros proyectos con periféricos avanzados podría recurrir a la utilización
de alguna herramienta de desarrollo de Microchip Technology.

La herramienta de depuración y programación del MCU utilizada en los
proyectos es el MPLAB® ICD 3.

Modelo de programación del Firmware

La forma en que está escrito el firmware será el modelo de estado funciones
cooperativas lo que permite realizar varios procesos en ‘paralelo’. Lo pongo
entre comillas porque para procesamiento en paralelo deben al menos existir
dos procesadores y el microcontrolador usado posee un solo CPU. Este
modelo de programación es similar a MPLAB® Harmony Integrated Software
Framework y más adelante se explicará claramente este proceso.

Acerca del autor

En la universidad cuando empecé a estudiar los microcontroladores, fue algo
que me gustó y me apasioné tanto por esas pequeñas máquinas que hasta el
día de hoy disfruto aprendiendo y diseñando algún tipo de sistema
microcontrolado.

III

El primer microcontrolador con el cual empecé a jugar fue el PIC16F877®, en
aquella época lo programaba en lenguaje ensamblador. Prácticamente el
resto de mi carrera fue realizar varios proyectos de automatización en base a
ese dispositivo.

Cuando terminé mis estudios pasé al siguiente nivel con el DSC dsPIC30F®
pero aún mantenía la idea que programar en lenguaje ensamblador era lo
mejor. Con dicho dispositivo construí un osciloscopio de 3 canales de baja
frecuencia y la información adquirida se la visualizaba en una aplicación de
PC. La información que adquiría el dsPIC® era enviada por comunicación USB
al computador. Este proyecto solamente fue un pasatiempo.

Cuando empezó a llegar diferentes trabajos independientes, un amigo que ya
se dedicaba a este tipo de negocio utilizaba el compilador en lenguaje C de
CCS® con el cual conseguía resultados inmediatos en sus proyectos, así que
poco a poco la idea de utilizar un lenguaje de alto nivel me empezó a gustar y
empecé aprender por cuenta propia la utilización del compilador C18® de
Microchip Technology para su familia de microcontroladores PIC18F®.

Luego trabajé en diferentes empresas en las cuales refiné aún más mi
experiencia con microcontroladores PIC® de 8 bits y de 32 bits. Cada día
aprendiendo y mejorando mis conocimientos.

Sugerencias y comentarios

Cualquier sugerencia o comentario las pueden realizar al siguiente correo
electrónico: programacionpracticapic32@outlook.com

Fabián Romo

IV

Organización de cada capítulo

Los primeros capítulos que poseerá este libro son los siguientes:

Capítulo 1. Instalación de las herramientas de software y breve explicación
de las herramientas de hardware

En este capítulo se indicará los enlaces que permiten descargas las
herramientas de software con las cuales se trabajan en este libro.

Capítulo 2. Una mirada rápida a la arquitectura del microcontrolador PIC32

En esta parte se tratará de una manera breve como está constituida la
arquitectura del MCU. Cuando empiezas a programar proyectos con
cualquier microcontrolador debes tener claro de una manera global cuál es
su arquitectura, pero está se la comprende mejor a medida que desarrollas
proyectos más complejos.

Capítulo 3. Primer proyecto

El primer proyecto va ser algo tan simple que es encender un diodo led con
un pulsante, todo mediante el microcontrolador. Este proyecto es didáctico y
permitirá al lector familiarizarse con las herramientas instaladas en el
capítulo 1 y configurar de manera correcta al MCU.

Capítulo 4. Introducción a las multitareas e interrupciones en un
microcontrolador

Aquí se revisará estos conceptos que nos permiten realizar procesos en
‘paralelo’ (nuevamente entre comillas) con un microcontrolador. Este
capítulo es importante para aquellos lectores que desconocen de este tema
ya que todos los siguientes proyectos se programarán de esa manera.

V

Capítulo 4. Encendido y apagado de un led de manera periódica.

Aplicando la programación de multitareas se realizará el encendido y
apagado de un led periódicamente por el microcontrolador.

Capítulo 6. Cambio del modo de encendido ya apagado de un led con un
pulsante mediante la interrupción externa.

Similar al proyecto del capítulo 4, mediante el pulsante se cambiará la
manera de encender y apagar al led.

Capítulo 7. Envío y recepción de datos mediante comunicación RS232

Este proyecto indicará los conceptos básicos para enviar y recibir datos desde
una PC mediante la clásica comunicación RS232.

Capítulo 8. Manejo de un display de 7 segmentos de 3 dígitos mediante
multitareas

Al proyecto anterior añadiremos un display para mostrar diferentes números
mediante el pulsante

1

Capítulo 1

Instalación de las herramientas de software

1.1 Herramientas de software

La primera herramienta que se utiliza en este libro es el MPLAB® X (a que
se puede descargar del siguiente enlace:

http://www.microchip.com/mplab/mplab-x-ide

Una vez instalado correctamente la aplicación, su aspecto será algo similar
al indicado en la Figura 1.1.

Figura 1.1. Aspecto de MPLAB®X

La segunda herramienta que instalaremos será el compilador MPLAB®
XC32 cuyo enlace de descarga es el siguiente:

http://www.microchip.com/mplab/compilers en la pestaña ‘Downloads’

Este compilador tiene tres tipos de licencias, una gratuita, una estándar y
una profesional.

2

La licencia gratuita tiene la desventaja que no optimiza el código que
escribimos pero es útil para aprendizaje y entrenamiento.

La licencia estándar tiene un costo que podríamos llamar medio y reduce
el tamaño del código.

Finalmente si nuestro proyecto necesita mayor espacio de memoria y/o
velocidad de procesamiento, la licencia profesional es ideal a utilizar, pero
su costo de uso es mayor.

También podemos recurrir a una licencia demo de 60 días con la cual
podemos trabajar en la mejor de las compilaciones (profesional).

Cuando instalamos cualquier compilador XC® nos pide con cuál de esas
licencias vamos a trabajar. Figura 1.2

Figura 1.2. Información de las licencias para el compilador XC8®, es algo
similar al XC32®

Cuando se necesita una licencia para varios desarrolladores, si el número
de computadoras no es mayor a 3, se puede recurrir a una licencia de tipo
estación de trabajo o ‘Work Station’.

3

Si se necesita una licencia para varias computadoras, es mejor utilizar una
licencia en un servidor o ‘Network Client’.

Para más detalles acerca de estas características de los compiladores XC®
por favor refiérase al documento 50002059 de Microchip Technology
denominado Installing and Licensing MPLAB® XC C Compilers que puede
ser descargado del siguiente enlace:

http://www.microchip.com/mplab/compilers

En la pestaña ‘Documentation’, la opción ‘Installing and Licensing MPLAB®
XC C Compilers’.

2.2 Herramientas de hardware

En internet usted puede encontrar diferentes clases de ‘programadores’
que permiten descargar nuestro programa hacia el microcontrolador, pero
lo mejor es utilizar un programador y depurador que no solamente
permite descargar nuestro firmware, sino que nos permite interactuar con
el hardware para depurar el código que hemos desarrollado.

Yo utilizo el “MPLAB® ICD 3 In-Circuit Debugger” Figura 1.3

Una opción más económica puede ser el “PICkit™ 3 In-Circuit Debugger”
el cuál posee algunas limitantes respecto a la anterior herramientas como
la velocidad de comunicación con el computador, el número de puntos de
ruptura o ‘breakpoints’ que se puede añadir en el código al momento de
la depuración, etc. Figura 1.4

También existe una herramienta de mejores características que se llama
“MPLAB® REAL ICE In-Circuit Emulator” Figura 1.5

O la última versión del ICD, el MPLAB® ICD4. Figura 1.6.

4

Figura 1.3. MPLAB® ICD3 con tarjeta de desarrollo Explorer 16 Kit.

Figura 1.4, PICkit™ Debug Express

5

Figura 1.5 MPLAB® REAL ICE.

Figura 1.6. MPLAB® ICD 4 In-Circuit Debugger

También debo indicar que muchas de las herramientas de desarrollo con
kits de tarjetas demo poseen un circuito programador/depurador
embebido de tal manera que no es necesario comprar alguna de los
dispositivos anteriores, si deseas en base a esas herramientas de
desarrollo construir tu propio hardware deberás recurrir a un dispositivo
externo para descargar el firmware diseñado en el MCU.

6

Capítulo 2

Una mirada rápida a la arquitectura del microcontrolador PIC32

2.1 Procesador MIPS

El CPU del microcontrolador PIC32 es un procesador RISC de tipo MIPS
(Microprocessor without Interlocked Pipeline Stages) desarrollado por la
empresa MIPS Technologies.

Una característica que he observado de Microchip Technology es que
intenta no ser igual a sus competidores (antes de la adquisición de Atmel).
La mayoría de fabricantes de microcontroladores de 32 bits apuestan por
el procesador ARM mientras que Microchip Technology se arriesgó a algo
diferente.

Hay mucho debate en foros y blogs acerca de las ventajas y desventajas de
dicha tecnología, pero lo que realmente mueve el desarrollo de un
producto es el costo de su diseño, su mantenimiento, etc. y en algún lado
leí que las licencias del núcleo MIPS son más flexibles que el núcleo ARM
que posee muchas más restricciones de uso.

En fin, sin importar las razones por las que se tomó esa decisión, la ventaja
de utilizar un microcontrolador de 32 bits son las siguientes:

 Desempeño del MCU
 Manejo de excepciones
 Mejor procesamiento aritmético
 Interrupciones vectorizadas (respecto a microcontroladores de 8 y

16 bits de MCHP)
 Mayor memoria RAM y de programa

7

Respecto al desempeño es claro que muchas instrucciones que
necesitaban realizarse en varios pasos en un microcontrolador de 8 bits se
las puede realizar en menos y a una velocidad de reloj superior, así que si
un diseño necesita un mejor desempeño con respecto a velocidad, un
PIC32 puede ser una mejor elección.

El manejo de excepciones es algo muy útil cuando se realiza alguna
operación ilógica como apuntar y escribir a una región que no existe en la
memoria, dividir un número para cero, etc. Nos permite analizar qué fue
lo que causó la excepción y evitar que el MCU se reinicie.

El procesamiento aritmético me parece que debería estar dentro de la
categoría ‘Desempeño del MCU’ ya que al ser de 32 bits pueden realizar
dichas operaciones de manera más eficiente y rápida.

Las interrupciones vectorizadas era algo que no poseían los
microcontroladores de 8 bits de microchip. Por ejemplo para el PIC18F®
existe un vector de interrupción de alta prioridad localizado en la dirección
0x08h de la memoria de programa y uno de baja prioridad localizada en la
dirección 0x18h de dicha memoria. Cuando se deseaba que un periférico
genere una interrupción, esta se asociaba con alguno de esos vectores o
prioridades.

El problema era cuando se utilizaba varios periféricos para generar una
interrupción en el mismo vector, lo cual implicaba realizar un
discernimiento mediante las banderas de los registros asociados. Si por
ejemplo quien generó la interrupción fue el último periférico de la lista
donde se están realizando dicha comprobación, esto implica que la
interrupción tiene una latencia mucho mayor que aquella que se analiza al
principio.

8

Si la velocidad del sistema que controla el MCU no es tan crítica o no es
tan importante, dichas latencias en las interrupciones son desapercibidas.
Actualmente Microchip lanzó al mercado los microcontroladores de 8 bits
denominada PIC18F® “K42” con interrupciones vectorizadas.

Finalmente al ser el PIC32 de 32 bits puede administrar un bus de datos
mayor con lo cual puede direccionar una mayor memoria de programa o
de datos.

En este libro en el inicio vamos a trabajar con el microcontrolador
PIC32MX cuyo procesador MIPS es de tipo M4K. Figura 2.1

Figura 2.1. Diagrama del núcleo M4K

9

2.2 El mapa de memoria

A diferencia de los microcontroladores de 8 bits de MCHP cuyos
procesadores tenían una arquitectura denominada Harvard, es decir la
memoria RAM y de programa estaban separadas, las memorias del
microcontrolador están en un mismo mapa de memoria (arquitectura Von
Neumann).

Esta arquitectura elimina la manera que el contador de programa tenía los
para acceder a dichas memorias en los dispositivos de 8 bits y 16 bits.
Aquellos que han trabajado con esos microcontroladores y sobre todo si
han programado en lenguaje ensamblador, había que tener en cuenta en
que banco de memoria se encontraba una variable. También la memoria
de programa se dividía en varios bancos. Con un lenguaje de alto nivel no
había que pensar mucho en ese problema, ya que el compilador realizaba
los pasos adicionales para acceder a las variables o al programa en otras
localidades, lo que implicaba generar más código de programación.

También existe la posibilidad de ejecutar código de programa en la
memoria RAM del microcontrolador. En el foro de microchip alguna vez leí
que alguien había almacenado funciones en una memoria flash externa
cuya capacidad era mucho mayor que la memoria de programa. Cada vez
que se necesitaba realizar algún proceso con una función específica, se
leía la función necesaria de la memoria externa y la almacenaba en RAM
para ejecutarla.

Pero también hay algo especial de este microcontrolador y es que el
procesador MIPS posee un módulo de caché de memoria el cual tiene dos
buses de datos de 32 bits, uno para instrucciones y otro para datos lo que
permite al procesador obtener instrucciones y datos simultáneamente con
lo que se podría decir que se comporta como la arquitectura von
Neumann. Al habilitar esta característica el desempeño en el
procesamiento de datos mejora aún más.

10

El procesador MIPS posee un módulo denominado ‘unidad de
administración de memoria’ o MMU que permite operara en dos
diferentes modos, el de usuario y kernel.

EL modo kernel es utilizado cuando se desea que el procesador ejecute un
sistema operativo, mientras que el modo de usuario permite ejecutar un
firmware de control común y corriente.

El microcontrolador PIC32 está orientado a ese tipo de aplicaciones que
no necesitan ser tan complejas por lo que no existe el MMU sino un
traductor de mapeo fijo FMT o fixed mapping translation con un
mecanismo de control mediante un bus denominado bus matrix BMX.

De esa manera el FMT regulariza al CPU para que utilice direcciones de
memoria estándar de acuerdo al modelo de programación. Esto es una
ventaja ya que de esa manera el tamaño del CPU es más pequeño.

En cambio el bus BMX permite al CPU comunicarse de manera flexible con
las memorias, el DMA, la unidad de depuración, etc.

En la Figura 2.2 se muestra el mapa de memoria para la familia del
microcontrolador PIC32MX170F256B (imagen de sus hojas de datos). En
dicho mapa se puede ver dónde está la memoria RAM, la memoria de
programa, sus periféricos (SFR), la sección de memoria flash para boot,
etc.

En realidad la imagen de la Figura 2.2 muestra dos mapas de memoria,
uno virtual y el otro físico. Utilizar un sistema operativo implica que un
área de memoria RAM es destinada para los datos o variables del usuario
mientras que otra parte es el núcleo o kernel del sistema operativo. El
usuario no debe tener la posibilidad de sobrescribir esta área por voluntad
o por error. Mediante registros especiales, el diseñador del firmware
puede dividir las regiones en las secciones mencionadas. Al realizar estas
divisiones, el FMT convierte las direcciones físicas en direcciones virtuales,

11

de esa manera el usuario no podrá alterar la región que corresponde al
sistema operativo, ni alterar a los periféricos, etc.

Figura 2.2. Mapa de memoria del microcontrolador PIC32MX170F256B.

Entrar en detalles respecto a estos particulares sería necesario si
deseamos utilizar un OS en nuestro dispositivo, pero generalmente no se
utiliza todas estas funciones, el compilador crea el código de tal manera
que se ejecute en modo kernel.

12

Capítulo 3

Primer proyecto

3.1 Breve descripción del ‘Primer proyecto’

Tal cuál mencioné anteriormente el primer proyecto es algo muy sencillo
como encender un led con un pulsante y el microcontrolador
PIC32MX170F256B es un intermediario en dicha tarea. Figura 3.1

Figura 3.1. Diagrama esquemático del Primer proyecto.

Este proyecto es didáctico ya que permite relacionar al lector con la
herramienta MPLAB® X y el compilador, ya que para encender un led
simplemente había que conectar en serie al pulsante con el led y una
resistencia.

13

3.2 Análisis del hardware para el primer proyecto.

El microcontrolador utilizará el oscilador interno RC, por el momento no
utilizaremos algún cristal externo. Además de la ventaja económica de
utilizar el oscilador interno, también se gana algo de espacio físico en el
circuito PCB. La desventaja es evidente en un sistema altamente preciso,
como comunicaciones de alta velocidad, sistemas que trabajan en
ambientes de altas temperaturas, en esas condiciones posiblemente no es
muy buena idea usarlo.

También es recomendable para un diseño que no sea didáctico utilizar los
condensadores de filtro que recomienda el fabricante en sus hojas de
datos. Figura 3.2

Figura 3.2 Condensadores de filtro recomendados en los terminales de
polarización del microcontrolador

14

Nótese que el terminal denominado VCAP tiene un capacitor cerámico de
10 uF, este capacitor es necesario debido a que el microcontrolador utiliza
un regulador interno de 1.8V para el CPU, si en dicho terminal el voltaje
medido respecto a VSS no es el mencionado, el microcontrolador no
funcionará correctamente. Esta falla es debido a un daño en el capacitor o
en la conexión eléctrica al mismo.

Personalmente yo he usado un capacitor electrolítico el cual no cumple
con un valor bajo ESR, en un microcontrolador PIC32MX795F512H, podría
decir que funcionaba bien a velocidades bajas (20 MHz para los periféricos
y 40 MHz para el CPU) pero intentando alcanzar los 80 MHz que es la
velocidad máxima en ese MCU, el microcontrolador simplemente no
funcionaba.

Así que lo recomendable es hacer caso a lo que el fabricante indica en sus
hojas de datos, fuera de los rangos recomendados, el fabricante no
garantiza el funcionamiento correcto del mismo.

También en la Figura 3.1 se ve que utilizo el canal número 2 para la
programación y depuración del hardware (PGEC2 y PGED2).

3.3 Crear un nuevo proyecto en MPLAB® X

Una vez que abrimos MPLAB® X damos clic en la opción ‘File’ de la barra
de menú y escogemos la opción ‘New Project’. Figura 3.3.

Figura 3.3. Creación de un nuevo proyecto.

15

Al realizar dicha acción se abrirá una ventana para un nuevo proyecto en
la cual hay dos listas verticales, una para categorías ‘Categories’ y otra
para proyectos ‘Projects’. Seleccionamos ‘Microchip Embebded’. Figura
3.4.

Figura 3.4. Seleccionado el tipo de nuevo proyecto a realizar.

Presionamos el botón denominado ‘Next >’ y la siguiente ventana en
presentarse nos permitirá escoger el tipo de dispositivos con el cual
trabajaremos. Posee dos listas desplegables, la primera que es la superior
nos permite reducir la búsqueda del dispositivo mediante la familia a la
que pertenece, la segunda nos permite buscar al dispositivo
específicamente. También podemos en esta segunda lista desplegable
simplemente escribir el nombre del MCU a utilizar y una vez seleccionado
damos clic en ‘Next >’. Figura 3.5

Luego de presionar el botón ‘Next >’ la siguiente ventana nos preguntará
que tipo de herramienta de depuración vamos a utilizar. En mi caso
selecciono al ICD3®, al final del proyecto utilizaremos el simulador para su
demostración. Figura 3.4.

16

Cuando una herramienta no es útil para el dispositivo seleccionado, se
marca en color rojo. Por ejemplo en la Figura 3.4, el PICkit® 2 no es útil
para programar el MCU seleccionado o la versión de MPLAB® ya no
soporta a dicha herramienta.

Cuando es de color amarillo indica que parcialmente puede trabajar con el
dispositivo, como por ejemplo, no puede depurar o emular a algunos los
periféricos del microcontrolador. Generalmente esto sucede cuando el
dispositivo es nuevo y aún no se han implementado todas las
funcionalidades para su simulación o depuración.

Figura 3.5. Seleccionando al MCU PIC32MX170F256B

Luego de seleccionar ‘Next >’ la siguiente ventana en aparecer nos pide
ingresar el compilador, yo selecciono XC32 v1.43. Figura 3.5

Nuevamente damos un clic en ‘Next >’ y la última venta en aparecer nos
permite seleccionar la ruta del proyecto y el nombre del mismo. Figura
3.6.

17

Figura 3.4. Selección de la herramienta para depuración y programación
del dispositivo.

Figura 3.5. Seleccionando el compilador.

Presionamos el botón ‘Finish’ y el proyecto tendrá un aspecto similar al
indicado en la Figura 3.7.

18

Figura 3.6. Seleccionando el nombre del proyecto y la ubicación del
mismo.

Figura 3.8. Proyecto en blanco y listo.

19

Aquellos lectores que han trabajado con el IDE NetBeans notaran que es
casi exactamente igual a ese software ya que está construido con dicho
núcleo.

A medida que avancemos en los diferentes proyectos iré explicando las
diferentes partes del software.

Si alguna ventana se cierra y no conocen como volver abrirla pueden
restaurar la presentación de MPLAB® X en la opción ‘Windows’ de la barra
de menú y escogemos la opción ‘Reset Windows’.

La siguiente acción que se procederá a realizar será la creación el archivo
principal o main del proyecto. Para eso vamos a la ventana de proyectos
(Figura 3.9) y en la carpeta Souce Files damos clic derecho sobre dicha
carpeta.

Figura 3.9

Seleccionamos la opción New y escogemos C Main File Figura 3.10

20

Figura 3.10. Creación de un nuevo archivo principal.

A continuación aparece una nueva ventana que nos permite ingresar el
nombre para el archivo principal del proyecto, Figura 3.11. Se puede
poner cualquier nombre, pero yo prefiero llamarlo main (de extensión c).

Figura 3.11 Creación del archivo principal del proyecto.

Al presionar el botón ‘Finish’ el proyecto tendrá un aspecto similar al
indicado en la Figura 3.12

21

El siguiente paso es compilar el proyecto que nos permitirá determinar si
el proyecto se ha creado sin errores, para lo cual damos un clic en el botón
Clean and Build Main Project en la barra de herramientas. Figura 3.13

Si el proyecto se compila sin problemas, en la ventana de salida de
mensajes Output nos mostrará algunos mensajes similares a los indicados
en la Figura 3.14 informando que el proyecto se ha compilado
correctamente.

En la ventana DashBoard podemos apreciar cuanta memoria de programa
y memoria RAM ocupará el proyecto. Figura 3.15

Figura 3.12. Proyecto con la función main.

22

Figura 3.13 Limpiar y compilar el proyecto principal

Figura 3.14. Ventada de salida del MPLAB® indicando que la compilación
se ha realizado sin problemas.

Figura 3.15. Dashboard indicando algunas características del proyecto.

23

La DashBoard también nos indica algunas cosas como cuantos puntos de
ruptura de hardware hay disponibles (Program BP), puntos de ruptura por
software (Data BP), etc. Esas características se detallarán a medida que se
vaya desarrollando el proyecto.

El proyecto por defecto arranca con la configuración de mínima
optimización del compilador, para cambiar dicha opción damos un clic en
Propiedades del Proyecto o Project Properties. Figura 3.17 y aparece una
ventana que nos permite ver y modificar las propiedades del proyecto.
Figura 3.18

Figura 3.17. Accediendo a las propiedades del proyecto.

En la ventana de propiedades del proyecto, en la lista denominada
categorías ‘Categories’, en la opción XC32(global Options) escogemos la
opción xc32-gcc. En la lista desplegable denominada Option categories
escogemos optimización Optimization. Figura 3.18

Existen cuatro rangos de optimización del código, digo cuatro, ya que la
primera opción es 0 y es igual a ninguna optimización.

La opción 1 y 2 reducen el código generado, pero la mejor reducción del
código es la opción 3.

24

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

25

Capítulo 4

Introducción a las multitareas e interrupciones en un microcontrolador

4.1 ¿Qué es un sistema?

Un sistema es algo complejo de describir pero se puede afirmar que es un
objeto real o conceptual que soluciona algún problema. La descripción
puede ser mucho más complicada pero para comprender este capítulo
propongo un ejemplo.

Imaginemos que tenemos una sencilla fuente de voltaje DC variable y
programable como se indica en la Figura 4.1.

Figura 4.1. Diagrama de una fuente de voltaje controlada por un
microcontrolador.

25

Las partes fundamentales de este sistema son:

 Entrada y salida de voltaje.
 Control de la resistencia digital (vía SPI)
 Un display para mostrar información
 Potenciómetros analógicos para controlar la corriente y voltajes de

salida
 Medición de corriente del sistema.
 Medición del voltaje de salida
 Relé para desconexión rápida de la carga

En esta fuente existen varios procesos que deberá realizar el
microcontrolador, por ejemplo el MCU deberá incrementar el valor de la
resistencia digital hasta que el voltaje de salida sea el deseado por el
usuario y obviamente sin descuidar la corriente que circula por el sistema.

Todo sistema que se diseña debe funcionar como se espera y la respuesta
debe estar dentro de los tiempos establecidos. El firmware escrito para un
microcontrolador debe ser lo más legible posible, que pueda ser
fácilmente expandible, modificable o corregible. Además debe estar
dividido en módulos de tal manera que puedan más de un programador
encargarse del desarrollo del mismo si es necesario.

Por ejemplo un programador se encargaría de escribir el código que
corresponde al control de la resistencia digital para obtener el voltaje de
salida, mientras otro podría realizar el código para mostrar el voltaje de
salida medido en el display.

Estas dos partes de código deberán funcionar de tal manera que no se
interpongan entre ellas o sí existe intervención se a lo mínimo posible,
estos objetivos se alcanzan mediante un planificador de tareas
cooperativas (Schuleder) y procesamiento de multitarea apropiativa
(Preemptive Multitasking).

25

4.2 Tarea concurrente

Un proceso concurrente en el ejemplo es modificar el valor de la
resistencia digital hasta alcanzar el voltaje deseado. Supongamos que
dicho proceso es de la manera sencilla sin cosas complicadas como un
control PID.

El proceso de manera sencilla es primero medir el voltaje en el divisor de
tensión entre la resistencia común y la resistencia digital que están
conectadas a la salida de voltaje. En función de dicho valor medido, se
enviará un valor a la resistencia para incrementar o decrementar dicho
valor vía SPI. A continuación se volverá a medir el voltaje en el divisor
para tomar la decisión de nuevamente modifica o mantener el valor de la
resistencia digital. Este proceso se repetirá hasta que voltaje en el divisor
sea proporcional al deseado. Se puede afirmar que es relativamente
determinístico y puede existir algún tipo de variación que puede afectar a
este proceso concurrente.

Pero existen otras tareas que el MCU debe realizar, como se mencionó
anteriormente hay otra tarea para mostrar el valor del voltaje de salida
medido (que es un valor proporcional al del divisor de tensión) en el
display.

Por lo tanto el CPU del microcontrolador debe realizar dos tareas a la vez
(aún no considero las otras) y el tiempo que toma realizar cada una podría
ser mayor que si hiciera una sola tarea, ya que el CPU sólo puede
completar una tarea concurrente a la vez.

Entonces lo que debe existir es algo que regule el acceso al CPU y las
tareas se dividirán en pequeñas subtareas para que se turnen entre sí, en
pocas palabras cada tarea realiza una porción de lo que debe hacer, para
dar paso a otra tarea que también realice una porción de su código. El

25

proceso debe ser de tal manera que ante el usuario parecería que el MCU
hace varias cosas al mismo tiempo, esto se denomina sincronización.

Suponiendo que existe una variación que afecte el proceso y una tarea
debe tomar otro camino más largo para cumplir su objetivo, su latencia
aumentará así como el aumento del volumen de trabajo (Throughput)
del sistema y en el mejor de los casos tomará un mayor tiempo en cumplir
su objetivo, este aumento de tiempo en la latencia se denomina jitter y en
el peor de los casos se producirá un bloqueo mutuo (deadlock), en el cual
una parte del sistema o todo permanece sin responder (colgado).

En nuestro ejemplo supongamos que la tarea que varía el voltaje a la
salida de la fuente envía un valor a la resistencia digital para que actualice
su valor, pero esta no responde y el CPU permanece en espera a la
respuesta al comando enviado. El código escrito debe responder
rápidamente hasta perturbación crítica y tomar una decisión.

Para completar el análisis del sistema ejemplo, las tareas que tiene serían
las siguientes:

 Medición de la corriente de entrada y control del relé de
desconexión del voltaje de salida (Tarea 1)

 Medición del voltaje de salida y control de la resistencia digital
(Tarea 2)

 Lectura del potenciómetro para calibrar la máxima corriente de
salida del sistema. (Tarea 3)

 Lectura del potenciómetro para calibrar el voltaje deseado a la
salida. (Tarea 4)

 Administración del display (Tarea 5)

25

La primera tarea de la lista anterior, denominada medición de la corriente
de entrada y control del relé de desconexión del voltaje de salida tendrá la
prioridad más alta en el sistema.

Una tarea de alta prioridad puede poner en pausa a una de baja prioridad.
En nuestro ejemplo, si la Tarea 2 va cambiando el valor de la resistencia
digital y el voltaje de salida va aumentando cada vez más y más. La Tarea 1
mide la corriente del sistema y si determina que la corriente alcanzó el
máximo de corriente establecido, pone en pausa a la Tarea 2 para que no
siga aumentando el voltaje. Si dicha corriente sigue aumentando a pesar
de estar en pausa la Tarea 2, activará al relé de salida para proteger al
sistema.

La asignación de prioridades a las tareas y el control de las mismas
mediante un planificador también se conoce como algoritmo de exclusión
mutua (Mutex implementation)

En resumen una tarea concurrente tiene las siguientes propiedades:

Actores, que son las tareas, hilos, procesos, etc.

Recursos compartidos, que son el CPU, la memoria, los registros, etc.

Reglas de acceso son la sincronización, prioridades, etc.

Resultados determinísticos, tareas finalizadas, resultados correctos o
esperados.

25

4.3 Posible problema con las tareas concurrentes.

4.3.1 Condición de Secuencia

La Condición de Secuencia es un problema típico cuando dos o más tareas
acceden a un recurso compartido y la salida o estado de un proceso es
dependiente de una secuencia de eventos que se ejecutan en orden
arbitrario. Lo mejor es explicar con un ejemplo para comprender
claramente que significan todos esos términos.

Supongamos que un vendedor ofrece productos desde una página web y a
través de la misma, los vende.

Supongamos también que tiene un producto X del cual sólo dispone 5
unidades y en la página web en un mismo instante hay dos compradores,
comprador A y comprador B, ambos que están viendo dicha la página
interesados en el producto X. También asumamos que el vendedor no
podrá tener más productos X dentro de las próximas semanas.

Los dos compradores ven que hay en existencias 5 unidades, el comprador
A decide adquirir 4 unidades y el comprador B adquiere 2 unidades,
ambos al mismo tiempo. Los dos compradores asumen que hay 5
unidades, pero el software que realiza la transacción, suponiendo que no
está correctamente escrito, va a tener un balance de menos una unidad.
Conjeturando que la primera transacción la hizo el comprador A, va estar
tranquilo porque sus 4 productos han sido despachados, mientras el
comprador B a pesar que compró 2 unidades, sólo podrán enviarle 1
unidad. Mientras quien administra el sistema va a observar un balance
negativo en su stock de productos o un error en el sistema. Además de
esto habrá un problema ya que tendrá que devolver parte de lo pagado al
usuario además de explicarle que sólo se pudo enviar una unidad a pesar
que en la página web se indicaba que había 5 unidades.

25

Un ejemplo clásico de condición de secuencia es el problema con
temporizadores de mayor número de bits que el CPU en un MCU, por
ejemplo en un microcontrolador de 16 bits podría existir un temporizador
de 32 bits, eso implica que se utilizan dos variables de 16 bits para
representar a la variable completa, supongamos que el temporizador
tiene el valor de 0x0000FFFF. Figura 4.2.

IMAGEN NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.2. Variable de 32 bits representada en dos variables de 16 bits.

Supongamos que el temporizador se incrementa a razón de cada ciclo de
máquina y cuyo valor ha alcanzado el valor mencionado anteriormente.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

Si se hubiese empezado leyendo el resultado bajo, no se soluciona el
error, se obtendría el valor de 0x0001FFFF, cuando en realidad el valor
deseado es 0x0000FFFF o a lo mucho un error de una unidad, es decir
0x00010000.

25

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

Si por alguna razón no se debe detener al temporizador para no generar
errores en la medición de tiempo, existe una solución más compleja que
implica más código para realizarla.

Esta solución consiste en almacenar primero la parte alta y luego la baja
del temporizador en otras dos variables, luego verificar que la parte alta
del temporizador no haya cambiado respeto a la variable que tiene su
valor anterior. Si existiera algún cambio repetiría nuevamente el ciclo de
lectura, este método se llama de revisión redundante. Figura 4.3.

IMAGEN NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.3. Manera de obtener el valor del temporizador sin detenerlo
para evitar la condición de secuencia.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.3.2 Métodos de sincronización

En el problema anterior respecto al temporizador, se indicó que detenerlo
es una solución al problema, y puede considerarse como una forma de
Exclusión Mutua abreviada como mutex.

25

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

25

4.3.3 Exclusión Mutua

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

25

4.3.4 Semáforos

Los Semáforos son variables o un tipo de dato abstracto el cual es usado
para controlar el acceso mediante múltiples procesos a un recurso común
en un sistema concurrente. Estas variables pueden ser banderas o
variables condicionales.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.3.5 Inanición

La Inanición o Starvation es cuando un proceso se le rechaza siempre el
acceso a un recurso compartido. Sin este recurso, la tarea a ejecutar no
puede ser nunca finalizada.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.3.6 Punto Muerto

Un Punto Muerto o Deadlock es cuando una tarea no puede liberar el
bloqueo de un proceso o dos o más tareas compiten para alcanzar un
proceso y se bloquean entre sí mutuamente.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.3.7 Escalabilidad

La escalabilidad también significa que el sistema se adapta o reacciona
ante un imprevisto sin perder la calidad.

25

La Escalabilidad Horizontal o Scale Out/In es cuando las tareas poseen un
conjunto amplio de reglas ya que existe gran cantidad de recursos
disponibles como memoria como una computadora con su sistema
operativo. Las tareas pueden tener muchas definiciones y conceptos sin
afectar al rendimiento del sistema.

La Escalabilidad Vertical o Scale Up/Down es cuando la tarea es refinada
y bien definida para un propósito estricto para sólo una aplicación, la cual
es muy especializada y realiza un trabajo cerrado o único. Es útil en
sistemas con pocos recursos como lo son los microcontroladores.

4.4 Recursos que dispone un microcontrolador

4.4.1 Interrupciones

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

Código
Principal

Interrupción de
baja prioridad

Interrupción de alta prioridad

Interrupción de
baja prioridad

Interrupción de baja
prioridad reanura su

proceso

Código
Principal reanuda

su proceso

Tiempo

N
iv

el
 d

e
pr

io
rid

ad

Se produce una interrupción de
baja prioridad

Se produce una interrupción de
alta prioridad

Finaliza el proceso de la
interrupción de alta prioridad

Finaliza el proceso de la
interrupción de baja prioridad

Figura 4.7. Una interrupción que sea de alta prioridad respecto a otra
puede interrumpirla

25

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

La interrupción 7 por defecto utiliza el Conjunto de Registros Sombra o
Shadow Register Set (SRS) para almacenar y recuperar el contexto.
Utilizar dichos registros implica que la interrupción 7 tiene una latencia
muy baja respecto a las otras. El resto de interrupciones recurren al
Interruptor de Software de Contexto o Software Context Switch para
salvar los registros importantes del CPU. Para cambiar la asignación de los
SRS a una prioridad se recurre a la palabra de configuración DEVCFG3.
Figura 4.8

IMAGEN NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.8. Asignación de los registros sombra a la interrupción de
prioridad 7

Se debe indicar que la familia de microcontroladores que se utiliza para
los primeros proyectos no posee SRS. (PIC32MX1XX/2XX).

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

IMAGEN NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.9. Fuentes de interrupción de la familia del microcontrolador
PIC32MX1XX/2XX

25

Los posibles problemas que pueden suceder con las interrupciones si no
se manejan correctamente son la condición de secuencia, latencia
excesiva, variación de la latencia (jitter), bloqueo de interrupciones, etc.

En nuestro sistema ejemplo podemos mejorar su eficiencia utilizando una
interrupción para el conversor ADC. En la Figura 4.10 se indica un
pseudocódigo del sistema analizado hasta el momento.

IMAGEN NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.10. Pseudocódigo del sistema analizado.

Suponiendo que el contador de programa ha finalizado la tarea 1 y existe
una sobre corriente en el sistema, se deberá esperar hasta que las tareas
desde la número 2 hasta la 5 finalicen, luego hay que esperar a que la
tarea 0 adquiera los valores del conversor ADC y finalmente la tarea 1
procesará la información. (Obviamente este sistema es sólo un ejemplo,
también deberá existir otros sistemas de auxilio y no sólo depender que el
MCU sea el responsable de proteger al sistema).

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

IMAGEN NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.11. Pseudocódigo para la rutina de interrupción del conversor
ADC en el sistema analizado.

25

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

N
iv

el
 d

e
pr

io
rid

ad

Figura 4.13. La ISR introduce jitter en el código principal que está en la
función main.

Para disminuir el aumento de la latencia (jitter) cada tarea debe realizar
una parte pequeña de sí misma (más adelante se explica caramente a que
se refiere), los procesos dentro de ISR deben ser lo más cortos posibles,
dentro de las ISR se debe evitar esperar a algún proceso, no manipular
variables globales entre el código principal y la ISR ya que pueden ser
alterada en la interrupción y al retornar al código principal no es el valor
que se estaba procesando (Condición de Secuencia)

4.4.2 Paralelismo

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.5 Planificador de tareas cooperativas

25

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.5.1 Procesos del Planificador de Tareas.

Como se indicó anteriormente hay dos tipos de procesamiento,
cooperativo y de tarea apropiativa o procesamiento preventivo. La mezcla
de los dos se denomina procesamiento híbrido.

4.5.1.1 Procesamiento Cooperativo.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.5.1.2 Procesamiento de Tarea Apropiativa

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.5.1.3 Procesamiento Híbrido

En un microcontrolador se logra combinar los dos métodos de
procesamiento, procesamiento cooperativo en el código principal y
procesamiento de tarea apropiativa mediante las interrupciones de los
periféricos que posee el MCU.

4.6 Conceptos de un RTOS

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

25

4.6 Tipos de Planificadores

4.6.1 Planificador de Tareas Secuencial

Es la forma más común de escribir varias tareas en el hilo principal del
MCU. Como su nombre lo indica, secuencial implica que se ejecuta una
tarea para pasar a otra, y luego a otra, hasta concluir con todas y volver
nuevamente a la tarea inicial, todo esto dentro de un lazo infinito. Figura
4.15

IMAGEN NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.15. Planificador de Tareas Secuencial

Esta forma de planificador es simple y permite seguir o analizarlo de
manera lineal. Tiene la desventaja que una Tarea puede consumir mucho
tiempo para realizar su proceso lo que se traduce en una disminución del
rendimiento del sistema, generalmente esto sucede porque no se utiliza
otras técnicas para mejorar su rendimiento. Además la latencia puede
variar enormemente en esta clase de programación.

4.6.2 Planificador de Tareas Round Robin (RR)

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

25

Figura 4.16. Tareas administradas por un planificador Round Robin

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.6.3 Planificador de Tareas de Prioridad Básica.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.6.4 Planificador de Tareas de Prioridad Avanzada.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

25

4.6.5 Planificador de Tareas en Estados

Este método se utiliza cuando las tareas a realizarse son muy largas de
ejecutar. Las tareas son divididas en etapas o estados.

Es lo que se ha mencionado previamente al indicar que el CPU realiza
pequeñas porciones de una tarea y ante los ojos del usuario parece que el
CPU realiza varios procesos a la vez. Este es el método que se utilizará en
los proyectos de este libro.

La Figura 4.17 muestra una imagen conceptual de este método de
programación.

Figura 4.17. La Tarea 2 ha sido dividida en 3 estados.

Las tareas que son divididas en porciones son más fáciles de analizar,
administrar y corregir. Evita que una tarea se apodere del control total del
CPU. También el volumen de trabajo se reduce enormemente y mediante
este método se crea estados de máquina para tareas que requieren un
retardo en un proceso específico.

25

Los inconvenientes de utilizar está técnica es que el rendimiento de una
tarea se aumenta al dividirla en varias partes, se requiere una variable
dedicada por cada tarea para almacenar el estado.

4.6.6 Planificador de Tareas Programado (Scheduled)

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

Figura 4.18. Tareas ejecutadas por un planificador programado.

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

4.6.6 Planificador de Tareas en Fila

TEXTO NO DISPONIBLE EN LA VERSIÓN DEMO

108

Capítulo 5

Encendido y apagado de un led de manera periódica

5.1 Estructura de los proyectos que se realizarán en este libro.

Como se mencionó en el Capítulo 4, el método para escribir todos los
proyectos en este libro será utilizando un planificador de tareas por
estados.

Cada tarea a la vez se podrá subdividir en estados como se indica en la
Figura 4.17 del Capítulo 4.

Las tareas de ahora en adelante se las denominará aplicaciones y tendrán
de sufijo la palabra App. Cada tarea estará involucrada en el control de un
periférico. Para lo cual luego del sufijo App seguirá el nombre de periférico
asociado:

App[Nombre del Periférico]

En la Figura 5.1 se muestra que el código principal maneja tres
aplicaciones, AppLed para controlar el encendido y apagado de un led,
AppUart1 que maneja todo lo relacionado con el Uart1 del MCU y AppLCD
que debe contener todo lo relacionado para el control de un módulo de
visualización.

Figura 5.1. Lazo principal administrando tres aplicaciones o tareas.

109

Antes de ejecutarse el lazo principal o superlazo, se debe configurar
correctamente a los periféricos y al CPU. El código antes de ingresar al lazo
principal es similar al de la Figura 5.2.

Figura 5.2. Estructura de la función main para la mayoría de los proyectos
presentados en este libro.

En la Figura 5.2 se puede apreciar varias sub-funciones en main,
ConfigurarIOs configurará los terminales del MCU como entradas y salidas
según sea lo necesario, así como la activación de otros parámetros como
resistencias de pull-up, pull-down, salidas de drenador abiertos, etc.

110

La función ConfigurarPPS asignará los terminales de entrada y salida de un
periférico a los correspondientes terminales externos del MCU.

Las funciones ConfigurarPeriferico establecerán los valores correctos para
el funcionamiento de un periférico, por ejemplo para un módulo UART se
asignará la velocidad de comunicación, si la comunicación es de 8 o 9 bits,
el número de bits de parada, etc. Configurar un periférico no
necesariamente es activarlo, generalmente la mayoría de periféricos
poseen un bit en un registro que al ponerlo en 1, activan al periférico para
que empiece a funcionar. El programador deberá ser intuitivo para
determinar si dentro de estas funciones se activará al periférico o si es
necesario que sea más adelante.

Las funciones HabilitarApp generalmente son utilizadas para poner el valor
inicial de la variable de estado de cada app, también aquí muchas veces se
puede inicializar algún otro tipo de variables que necesitan las tareas.

InicializarTemporizadorSistema activa a un temporizador que es útil para
generar bases de tiempo definidas, más adelante y con los ejemplos se
entenderá mucho mejor.

La función HabilitarInterrupciones como su nombre lo indica habilita las
interrupciones de los periféricos (si se las ha configurado anteriormente)
para que interrumpan al CPU para atender un evento.

5.2 Temporizador de un Sistema con Microcontrolador.

Como se indicó anteriormente se necesita un temporizador que nos
permita generar bases de tiempo definidas.

111

Para el objetivo de los dos proyectos de este capítulo, se necesita una
base de tiempo para encender y apagar el led del circuito de la Figura 3.1
del Capítulo 3.

El primer proyecto encenderá y apagará al LED del terminal RB15 a razón
de 500 ms. Figura 5.3

Figura 5.3. Voltaje de onda cuadrada de 500 ms de duración en el terminal
RB15 del microcontrolador.

Las bases de tiempo se las generará con la ayuda de un temporizador, la
utilización de ese temporizador debe ser de tal manera que pueda usar
cualquier otra tarea o app. La Figura 5.4 muestra un diagrama de flujo de
la manera incorrecta de como suelen utilizar un temporizador para
generar retardos o delays.

Figura 5.4. Manera incorrecta de utilizar un temporizador para generar
retardos

112

En el código de la Figura 5.4 se ve claramente que el CPU permanece en
un lazo de 500 ms en el cual pueden suceder varios eventos o realizar una
tarea útil (al menos que encender y apagar un led sea el único objetivo del
MCU).

En la Figura 5.5 se muestra el diagrama de flujo de una manera correcta
de utilizar un temporizador a generar un retardo.

Figura 5.5. Temporizador utilizado para generar retardos de tal manera
que su proceso no se apropie completamente del CPU.

En el diagrama de flujo de la Figura 5.5 en la función main se puede
apreciar que el temporizador se inicia y permanece siempre activado
contando ciclos de máquina. También el estado de la AppLed es puesto en
un valor inicial (generalmente el valor inicial del estado de una app es
cero).

Luego dentro del lazo principal se ejecuta la función AppLed. Dentro de
dicha función se verifica el estado de la app que tiene un valor inicial y se

113

utiliza Variable para capturar el valor que el temporizador tenga en ese
momento, a continuación se incrementa para que la app siempre realice
la siguiente acción.

Se calcula la diferencia del valor del temporizador y el valor obtenido en el
estado inicial, si dicha diferencia produce un valor que corresponda a un
poco más del tiempo deseado, se procede a realizar la acción de conmutar
el estado del led y nuevamente se almacena en Variable el valor del
temporizador para nuevamente ejecutar un retardo.

Aquí debo explicar cómo funciona la diferencia de los dos valores.
Supongamos que el temporizador es de 16 bits y con el valor de 0x3E80
produce 500 ms. Es decir que si el temporizador empieza desde un valor
de 0x0000, al alcanzar 0x3E80 han transcurrido 500 ms. Suponiendo que
en la app en el estado inicial, Variable por coincidencia captura el valor del
temporizador con un valor igual a 0, en la siguiente etapa de la tarea
realiza la diferencia y la condición mayor que:

ሺܸ݈ܽݎ݋݀ܽݖ݅ݎ݋݌݉݁ܶݎ݋ − ሻ݈ܾ݁ܽ݅ݎܸܽ > 80ܧ3ݔ0

Cuando el temporizador haya alcanzado un valor de 0x3E81 o superior la
condición es verdadera y se produce la acción necesaria (conmutar el
valor del terminal del led).

Pero el valor capturado para realizar la diferencia es poco probable que
sea igual a cero y aún es más curioso analizar la diferencia cuando el valor
del temporizador es menor que Variable.

Por ejemplo supongamos que el valor capturado en Variable es 0xFFF0
que es un valor muy próximo al desborde o reinicio del temporizador
¿Qué sucede cuando el temporizador es cero o menor de 0x3E80?

114

Supongamos que el temporizador es 0x0000, entonces la diferencia sería:

0x0000 – 0xFFF0

El resultado de dicha diferencia sería 0x0010 si seleccionamos trabajar
con variables sin signo, la diferencia entre variables sin signo (unsigned)
siempre nos da el valor absoluto.

Supongamos que el temporizador alcanza un valor de 0x3E71, entonces la
diferencia sería:

0x3E71 – 0xFFF0

El resultado sería 0x3E81 que cumple con la condición para conmutar el
terminal que está asignado el led.

Por lo tanto no importa qué valor se capture del temporizador, lo
importante es que la diferencia sea la correcta.

La condición es mayor que, debido a que el tiempo o retardo necesario no
es exacto debido a que el mismo hecho de que el CPU realiza los cálculos
agrega un error (la diferencia, la condición, etc.). Además suponiendo que
existieran otras tareas a parte de AppLed también influyen en el valor
calculado.

Recuerde que las tareas trabajando en modo de cooperación son útiles si
son de prioridad media, baja o tareas que necesitan permanecer en pausa
o reposo. Por lo tanto si el tiempo que el led permanece encendido (o
apagado) puede ser un poco mayor a 500 ms, entonces dicho error no
afecta al sistema y el retardo puede ser un poco más grande del deseado.

Si realmente se necesita precisión en la generación de retardos, se debería
recurrir a interrupciones y eso se verá en los capítulos correspondientes a
ese tema.

115

También se deberá calcular cuál es el valor mínimo que puede generar el
temporizador, generalmente lo mínimo puede ser 1 ms y lo máximo se
puede alcanzar cualquier valor con variables auxiliares.

5.3 Estructura de todos los proyectos en MPLAB X

Todos los proyectos que se muestran en este libro tendrán una
distribución de sus archivos de tal manera que estén ordenados. Por
supuesto que el usuario puede escoger la mejor manera que crea
conveniente para crear dicha distribución.

La distribución mencionada está en el panel de archivos (File Pane), en la
pestaña proyectos. Figura 5.6.

Figura 5.6. Panel de archivos de MPLAB® X

Dentro de la carpeta Source Files de la pestaña Projects del panel de
archivos están todos los archivos de extensión .c que se utilicen o se
necesiten.

Cada app tendrá su propio archivo .c que a la vez estarán dentro de una
carpeta lógica. Esto también se realizará para los periféricos que también
tienen sus propios archivos .c y su carpeta contenedora. La Figura 5.7

116

muestra un ejemplo de cómo los archivos .c del proyecto están
organizados en el panel de archivos.

Figura 5.7. Ejemplo de distribución de los archivos .c en los proyectos de
este libro.

De igual manera los archivos cabecera o .h estarán distribuidos de la
misma manera. Figura 5.8.

Figura 5.8. Distribución de los archivos .h

Más adelante se explicará cómo crear las carpetas lógicas y colocar sus
archivos correspondientes.

5.4 Creación del proyecto de encendido y apagado de un led de manera
periódica.

Similar al primer proyecto que se realizó en el capítulo 3, creamos un
proyecto cuyo nombre será LedParpadeo, Figura 5.9.

117

Cuando el proyecto esté listo, creamos el archivo main, ponemos los
mismos bits de configuración del primer proyecto y compilamos para
verificar que el proyecto esté correctamente creado (yo utilizaré
compilación tipo s). Figura 5.10

Figura 5.9. Creación del segundo proyecto de este libro.

Figura 5.10 Segundo proyecto listo.

118

5.5 Creando la función IOs

En la función main se escribe la función ConfigurarIOs como se indica en la
Figura 5.11.

Figura 5.11 Función ConfigurarIOs dentro de main

Debido a que aún no existe dicha función, MPLAB® X nos indica con una
línea roja subrayada que existe un problema con dicha frase.

El siguiente paso es crear el archivo que contiene dicha función,
ConfigurarIOs es parte de la configuración de los terminales del MCU, las
funciones relacionadas con los terminales las escribo en un archivo
denominado IOs.c.

Los terminales los considero como periféricos, por lo que se crea una
carpeta lógica con el nombre Periféricos en el panel de archivos del
proyecto. Para lo cual se da clic derecho sobre la carpeta Source Files y se
selecciona New Logical Folder, Figura 5.12

Figura 5.12. Creando una nueva carpeta lógica dentro de Source Files

Cuando se da clic sobre New Logical Folder, una nueva carpeta lógica
aparece con nombre New Folder 1, Figura 5.13

119

Figura 5.13. Nueva carpeta lógica creada dentro de Source Files.

A continuación procedemos a cambiar el nombre de la carpeta nueva a
Perifericos, para lo cual damos clic derecho sobre la nueva carpeta y
escogemos Rename… Figura 5.14.

Figura 5.14. Renombrar a la carpeta lógica.

Al dar clic en Rename… aparece una ventana que nos permite cambiar el
nombre de la carpeta lógica, la cambiamos a Perifericos (funciona con
tilde, pero para evitar un posible error no se debería utilizar caracteres
especiales). Figura 5.15

120

Figura 5.15 Ventana que permite cambiar el nombre de la nueva carpeta
lógica creada.

Una vez cambiado el nombre de la carpeta, se da clic derecho sobre la
misma y seleccionamos New, Source File Figura 5.16.

Figura 5.16. Manera de agregar un archivo a una carpeta lógica.

Dando clic sobre C Source File aparece una nueva ventana que nos
permite ingresar el nombre del nuevo archivo .c, el cual se llamará IOs.
Figura 5.17.

Damos clic en el botón Finish de la Figura 5.17 y el proyecto ahora tiene
un nuevo archivo denominado IOs.c. Figura 5.18.

121

Figura 5.17. Ventana que permite crear un nuevo archivo de tipo c.

Figura 5.18. Proyecto con nuevo archivo .c denominado IOs.

En el archivo IOs.c creamos la función ConfigurarIOs como se muestra en
la Figura 5.19.

122

Figura 5.19. Función ConfigurarIOs dentro en el archivo IOs.

En este punto guardamos y compilamos al proyecto para conocer si todo
está bien. Aquí veremos que el error que se indicaba anteriormente ha
desaparecido.

Ahora dentro de la función ConfigurarIOs procedemos a escribir lo
necesario para la correcta configuración de los terminales del MCU que es
exactamente lo mismo del primer proyecto. Si copiamos y pegamos dichas
configuraciones, veremos que MPLAB® X nos muestra varios errores.
Figura 5.20.

Figura 5.20. Configuraciones para los terminales del MCU dentro de la
función ConfigurarIOs, se ve claramente que existe un problema.

123

Los errores indicados son porque para el archivo no se agregado la
cabecera de los registros subrayados en rojo. La solución es incluir el
archivo cabecera xc.h. Figura 5.21.

Figura 5.21. Con la inclusión del archivo xc.h los registros del MCU son
reconocidos en el archivo .c.

Nuevamente, cada vez que se realice un cambio es recomendable
compilar el proyecto para determinar si hay algún error.

Antes de continuar, recuerde que es recomendable declarar los prototipos
de las funciones de todos los archivos .c para evitar los problemas de
compilación que muchas veces el compilador desconoce a las funciones.
Figura 5.22

El siguiente paso sería crear la función ConfigurarPPS (que también estará
dentro de IOs.c) y ConfigurarPeriferico0, 1, … N, pero al momento el único
periférico que se utiliza son los terminales del MCU, así que cuando sea
necesario se crearán dichas funciones.

124

Figura 5.22. Todos los archivos .c deben poseer los prototipos de las
funciones que utilicen para que el compilador las reconozca

correctamente.

Lo siguiente es inicializar la app denominada AppLed para lo cual creamos
la carpeta lógica denominada Apps y dentro de ella creamos el archivo
AppLed.c. Figura 5.23.

Figura 5.23. Carpeta lógica Apps conteniendo al archivo AppLed.c

Dentro del archivo AppLed creamos la función IniciarAppLed y la
escribimos en la función main. Figura 5.24.

125

Figura 5.24. Función InicializarAppLed en archivo AppLed.c y utilizada en la
función main.

El siguiente paso es crear los estados de la app como enumeradores y sus
variables las cuales serán una estructura de datos. Esto se declarará en un
archivo cabecera .h que corresponde con el nombre del archivo AppLed.c.

En la carpeta lógica denominada Header Files creamos una subcarpeta
lógica denominada Apps y dando clic derecho sobre ella seleccionamos
New, C Header File. Figura 5.26.

Figura 5.26. Agregando un archivo cabecera en Apps de la carpeta Header
Files.

126

Aparece una ventana que nos permite ingresar el nombre del archivo el
cual será AppLed y presionamos el botón Finish. Figura 5.27

Figura 5.27. Creando un nuevo archivo cabecera.

El nuevo archivo tendrá un aspecto similar al de la Figura 5.28, las
definiciones que se crean por defecto se las puede borrar, yo prefiero
mantenerlas y escribir cualquier código nuevo debajo de las mismas.

El siguiente paso será escribir los estados de la app como enumeradores,
para este proyecto se puede decir que el estado tendrá dos valores, un
inicial y otro de conmutación y los defino como:

APP_LED_INICIO

APP_LED_CONMUTAR

En ‘Inicio’ se obtendrá el valor del temporizador del sistema, mientras que
en el estado conmutar se analizará si se ha cumplido el tiempo establecido
para conmutar el estado del led.

127

Figura 5.28 Archivo cabecera AppLed.h creado para el segundo proyecto.

Entonces en el archivo AppLed.h escribimos los dos estados de la app
como se indica en la Figura 5.29.

Figura 5.29 Estados de la AppLed, nótese que el estado inicial es igual a
cero.

A continuación creamos en este mismo archivo la variable que posee el
estado de la app que será de tipo char sin signo. Figura 5.30.

128

Figura 5.30. Variable estado para AppLed.

Ahora se debe declarar una variable similar a la estructura de datos del
archivo cabecera para AppLed.c, para lo cual debemos incluir el archivo
cabecera como se indica en la Figura 5.31.

Figura 5.31. Creando una variable tipo APP_LED_DATOS para ser utilizada
en el archivo AppLed.c

Finalmente dentro de la función InicializarAppLed inicializamos la variable
estado de app_led. Figura 5.32.

Recuerde compilar el proyecto para determinar posibles errores. Es
necesario inicializar las variables a un valor definido ya que el compilador
no lo hace automáticamente y la memoria RAM del MCU para el usuario
generalmente está llena con cualquier valor al energizarse el sistema.

129

Figura 5.32. Inicializando la variable estado de app_led dentro de la
función InicializarAppLed.

5.6 Creando la función AppLed

Ahora ya estamos preparados para crear la función que analiza los estados
de la app. Esta función también estará dentro de AppLed y se llamará de
igual manera. Mediante una sentencia switch se analizará cada estado de
la tarea. Figura 5.33.

Esta función se ejecutará constantemente dentro del lazo principal en
main como se indica en la Figura 5.34 y también luego de dicha función
escribimos la sentencia para limpiar al perro guardián.

El siguiente paso sería escribir la función InicializarTemporizadorSistema
que por el momento sólo se escribirá un prototipo ya que más adelante se
analizará lo necesario para configurar correctamente al temporizador que
necesitamos. Por el momento debo indicar que el temporizador que
utilizaremos es la unión del temporizador y del temporizador 5 ya que
entre los dos forman uno de 32 bits.

En la carpeta lógica Perifericos creamos un archivo de nombre
Temporizador4_5.c. Figura 5.35.

130

Figura 5.33.Función AppLed lista para realizar su procesamiento de datos.

Figura 5.34.Función AppLed siendo ejecutada dentro del laso principal en
la función main

131

Figura 5.35. Archivo Temporizador4_5.c que contendrá las funciones que
corresponden al temporizador del sistema.

En el archivo Temporizador4_5.c escribimos la función
InicializarTemporizadorSistema, Figura 5.36.

Figura 5.36. Función InicializarTemporizadorSistema que será útil para
configurar al temporizador correctamente.

Esta función será invocada en la función main antes del lazo principal.
Figura 5.36.

La siguiente función sería aquella que corresponde a la configuración de
las interrupciones, pero como en este ejemplo no se las utiliza, se la
escribirá y explicará en el primer ejemplo dónde se la utilice.

 5.7 Configurando al Temporizador del Sistema

La velocidad del reloj para los periféricos es igual a la del CPU que es
48MHz debido a que la configuración del oscilador que es la misma del
primer proyecto.

132

Figura 5.36. Función IniciarTemporizadorSistema invocada en la función
main antes de ejecutar el lazo principal.

Suponiendo que se utiliza un temporizador de 16 bits y que el
temporizador se incrementa por cada ciclo del oscilador, es decir sin
escalamientos, el valor máximo de tiempo que puede generar es:

݋݉݅ݔáܯ ݋݌݉݁݅ܶ =
65536
ݖܪܯ48

= ݏ݉ 1.365

1.365 ms es un valor muy bajo ya que lo ideal sería que con algunos ciclos
produzca 1 ms y con muchos más se alcance los 500 ms que es nuestro
objetivo.

Se podría recurrir a variables auxiliares para llamar varias veces a dicho
tiempo y alcanzar el valor deseado pero eso implicaría que nuestro código
es algo engorroso y teniendo aún recursos, debemos ser más eficientes y
prácticos con el sistema que se está desarrollando.

133

La siguiente opción es utilizar el escalamiento, por ejemplo digamos que
ocupamos su máximo valor que es 256, por lo que el tiempo máximo que
se generaría sería:

݋݉݅ݔáܯ ݋݌݉݁݅ܶ = 256
65536
ݖܪܯ48

= ݏ݉ 349

349 ms es un valor mucho más alto, pero aun así no es la forma correcta,
ya que el error para alcanzar el valor de 500ms sería muy alto, el valor más
próximo sería el doble, es decir 698 ms, y lo correcto es que con pocos
ciclos y no con el máximo se deben alcanzar los 500 ms.

También el tiempo mínimo que puede generarse sería:

݋í݊݅݉ܯ ݋݌݉݁݅ܶ = 256
1

ݖܪܯ48
= 5.333μݏ

5.333 µs no es un valor útil para el proyecto que se está diseñando.

Ahora recurramos a un temporizador de 32 bits, de igual manera sin
escalamientos el tiempo máximo sería:

݋݉݅ݔáܯ ݋݌݉݁݅ܶ =
4 294 967 296

ݖܪܯ48
= ݏ 89.47

89.47 segundos es demasiado para lo que necesitamos, pero para
determinar si es útil o no, hay que calcular con qué valor se puede
alcanzar los 500 ms:

ݎ݋݈ܸܽ = · ݋݀ܽ݁ݏ݁ܦ ݋݌݉݁݅ܶ ௉௘௥௜௙é௥௜௖௢௦ܨ

ݎ݋݈ܸܽ = × ݏ500݉ ݖܪܯ48 = 24000000 =0x16E3600

134

Es decir con 24 000 000 se consigue 500 ms, lo cual está bien ya que si el
valor máximo del temporizador (4 294 967 296) es el 100%, 24 000 000 es
el 0.56 %.

El tiempo mínimo con el temporizador de 32 bits sería:

݋í݊݅݉ܯ ݋݌݉݁݅ܶ =
1

ݖܪܯ48
= ݏ݊ 20.83

Y para producir 1 ms sería:

ݎ݋݈ܸܽ = × ݏ݉ 1 ݖܪܯ48 = 48000 =0xBB80

En conclusión, un temporizador de 32 bits me permite alcanzar tiempos
definidos más exactos sin recurrir a variables auxiliares (al menos que
desee generar retardos superiores a 89.47 s)

El microcontrolador posee dos temporizadores de 32 bits, entre los
temporizadores 2 y 3 conforman uno y el segundo entre los
temporizadores 4 y 5.

A pesar que los registros TMRx o TMRy (donde ‘x’ representa a los
temporizadores 2 ó 5 y donde ‘y’ representa a los temporizadores 3 ó 5)
son de 32 bits para cada temporizador, sólo su parte baja contiene un
valor útil, es decir de 16 bits y por esa razón entre dos conforman uno de
32 bits.

Para este ejemplo yo utilizaré la pareja formada por los temporizadores 4
y 5. Nótese que el registro para configurar dichos temporizadores es
T4CON, Figura 5.37.

135

Figura 5.37. Registro TXCON que permite configurar a los temporizadores
2,4,5 y 6

136

La nota 1 indicada en la Figura 5.37 advierte que no se debe escribir en un
registro un valor tal que apague a un módulo cuando la frecuencia del
oscilador para los periféricos tenga un valor de división igual a 1 (que es
nuestro caso), pero como se va activar a dicho módulo, no existe
problema.

Analizando lo indicado en la Figura 5.37, el bit15 deberá estar en 1 lógico,
el bit 13 puede estar en cualquier valor ya que el proyecto no entrará a
modo de bajo consumo IDLE, el bit 7 puede contener cualquier valor
según la nota 3, entre los bits 6 y 4 el valor debe ser de 0, es decir sin
ningún escalamiento, el bit 1 debe estar en cero ya que los pulsos que
incrementarán el valor del temporizador serán los del reloj para los
periféricos. Por lo tanto el valor que contendrá T4CON será:

0x8008

Entonces en la función InicializarTemporizadorSistema se procede a
asignar dicho valor a T4CON. Figura 5.38.

Figura 5.38. Asignado el valor correcto al registro T4CON, nótese que se
necesita incluir xc.h para que el compilador reconozca a dicho registro.

5.7 Recuperando el valor instantáneo del Temporizador del Sistema

La siguiente función que se necesita implementar es aquella que obtiene
el valor instantáneo del temporizador que ha sido asignado para el

137

sistema, en este caso el valor de TMR4 y TMR5 deben crear una variable
de 32 bits y retornarlos cuando la función sea invocada.

Nótese que con las partes bajas de TMR4 y TMR5 (que son de 16 bits) se
formará una variable de 32 bits. Esto puede generar una condición de
carrera como se mencionó en el Capítulo 4 y la Figura 4.3 indica cómo
solucionar ese posible problema sin detener al temporizador.

La función que retorna dicho valor se denominará
obtenerValorTemporizador y su valor a retornar será de 32 bits sin signo,
es decir unsigned int Figura 5.39.

Figura 5.39. Función retornarValorTemporizador en el archivo
Temporizador4_5.c

Lo primero que se hace es capturar los valores de TMR5 (parte alta) y
TMR4 parte baja en variables auxiliares. Figura 5.40.

Luego, para evitar la condición de carrera, se debe verificar que la parte
alta no haya cambiado, si es así, se debe capturar los valores
anteriormente mencionados. Figura 5.41

138

Figura 5.40. Capturando el valor de TMR5 y TMR4 en variables auxiliares.

Figura 5.41. En la condición while se evita una posible condición de
secuencia.

Finalmente entre los valores capturados se crea una variable de 32 bits y
se retorna el valor. Figura 5.42.

Figura 5.42. Finalmente se retorna el valor instantáneo del temporizador.

139

5.8 Encendiendo y apagando al LED cada 500 ms.

Ahora que está lista la función que permite obtener el valor instantáneo
del temporizador, debemos utilizarla en la función AppLed.

Primero se debe crear una variable que contenga el valor instantáneo del
temporizador, para lo cual en AppLed.h creamos la variable de 32 bits.
Figura 5.43.

Figura 5.43. La variable valorInstantaneoTMR capturará el valor del
temporizador del sistema.

Luego, en el primer caso dela función AppLed (APP_LED_INICIO) se
capturará el valor instantáneo del temporizador y el estado de la app se
cambia a APP_LED_CONMUTAR. Figura 5.44.

En el estado APP_LED_CONMUTAR de la función AppLed se verifica que la
diferencia entre el valor capturado y el valor instantáneo sea mayor que
500 ms, si es así procedemos a conmutar el estado del LED y nuevamente
capturamos un nuevo valor del temporizador para la próxima vez. Figura
5.45.

Finalmente compilamos el proyecto y ‘descargamos’ el firmware hacia el
hardware para comprobar la funcionalidad del mismo. Figura 5.46

140

Figura 5.44. En el estado APP_LED_INICIO se captura el valor del
temporizador del sistema.

Figura 5.45. En el estado APP_LED_CONMUTAR cada 500 ms
aproximadamente se cambia el estado del led.

141

Figura 5.46. El firmware se descargó al hardware utilizado en el primer
proyecto y funcionó correctamente.

Se puede comprobar que tan exacto es el retardo, para lo cual ponemos
un punto de ruptura en donde el LED es conmutado y empezamos la
depuración hasta cuando se lo alcanza. Figura 5.47.

Figura 5.47. Punto de ruptura dónde se conmuta al LED.

A continuación procedemos a desensamblar el código para el archivo
AppLed.c. Damos clic en Windows / Debugging / Disassembly Figura 5.48.

142

Figura 5.48. Manera de observar en lenguaje ensamblador un archivo .c

En el código en lenguaje ensamblador ponemos un punto de ruptura justo
antes de realizar el proceso de conmutar al LED. Figura 5.48.

Presionamos F5 para que nuevamente se ejecute la depuración y se
alcance este segundo punto de ruptura. Figura 5.49, entonces se procede
a analizar el valor de TMr4, TMR5 y de valorInstantaneoTMR. Figura 5.50.

143

Figura 5.49. Punto de ruptura alcanzado en el código desensamblado de la
función AppLed.

Figura 5.50. Valores de TMR4, TMR5 y valorInstantaneoTMR luego de
cumplirse la condición mayor que.

Entre TMR4 y TMR5 (parte baja y alta respectivamente) forman el
número:

0x02DC 6C77

144

A pesar que la parte alta de TMR4 tiene un valor diferente de cero, sólo es
útil su parte baja de 16 bits.

La diferencia con la variable es:

0x02DC6C77 – 0x16E3651 = 0x16E 3626 = 24 000 038

Y calculando el tiempo es:

= ݋݌݉݁݅ܶ
24000038

ݖܪܯ48
= ݏ݉ 500.00079

Lo que implica que el retardo realizado es muy cercano al valor deseado.

5.9. Utilizando el Temporizador Central o Core Timer.

El proyecto actual funciona correctamente y para generar retardos se ha
recurrido a un temporizador el cuál su única función o utilidad es de
contador de ciclos de máquina para generar tiempos definidos.

Pero existe un temporizador que realiza esa misma funcionalidad sin
haberlo configurado previamente y que podría afirmarse que es un
desperdicio si no se lo utiliza.

La arquitectura del PIC32 incluye un temporizador central o Core Timer de
32 bits. Este temporizador se implementa en forma de dos registros de
coprocesador: el registro de Conteo y el registro de Comparación. El
registro de conteo se incrementa cada dos ciclos de reloj del sistema
(SYSCLK).

145

El incremento de Conteo puede ser suspendido opcionalmente durante el
modo depuración. El registro de Comparación se usa para provocar una
interrupción de temporizador si se desea. Se genera una interrupción
cuando ambos registros se igualan.

En el proyecto de este capítulo, la frecuencia con la que este temporizador
funcionaría sería de 24 MHz, el análisis de los valores de tiempo
conseguido estarían dadas por las siguientes ecuaciones:

݋݉݅ݔáܯ ݋݌݉݁݅ܶ =
4 294 967 296

ݖܪܯ24
= ݏ 178.95

ݎ݋݈ܸܽ = · ݋݀ܽ݁ݏ݁ܦ ݋݌݉݁݅ܶ ௉௘௥௜௙é௥௜௖௢௦/ଶܨ

ݎ݋݈ܸܽ = × ݏ500݉ ݖܪܯ24 = 12000000 =0xB71B00

El tiempo mínimo sería:

݋í݊݅݉ܯ ݋݌݉݁݅ܶ =
1

ݖܪܯ24
= ݏ݊ 41.67

El siguiente paso sería adaptar el proyecto a este temporizador para lo
cual la función InicializarTemporizadorSistema no sería necesaria ya que el
temporizador siempre está activado y funcional, mientras que la función
retornarValorTemporizador devolvería el valor de CP0 sin realizar los
procesos necesarios para evitar la condición de secuencia ya que el Core
Timer es un verdadero temporizador de 32 bits. XC32 ofrece una función
para retornar el valor de dicho registro pero añade instrucciones que
harían aumentar el error del momento exacto de captura de tiempo, para
lo cual es mucho mejor solo leer dicho registro. En la Figura 5.51 se puede
ver los cambios que se hacen al proyecto para utilizar el temporizador
central.

146

. Figura 5.51. Modificando el proyecto para utilizar el Temporizador
Central.

Estás modificaciones se comprobaron en el hardware utilizado y el sistema
funcionó como se esperaba.

El último cambio que se realiza luego de comprobar que el sistema
funciona correctamente con el Core Timer es cambiar el nombre del
archivo .c denominado Temporizador4_5 ya que no tiene nada que ver
con el nuevo temporizador. Para lo cual damos clic derecho sobre el
mismo y escogemos la opción Rename… Figura 5.52.

Cambiamos el nombre a Temporizador Central y el proyecto se verá
similar al indicado en la Figura 5.53

Nuevamente, recuerde compilar y también ‘descargar’ el firmware al
hardware para comprobar que el proyecto funciona correctamente y no
se haya generado algún error en la modificación del mismo.

147

Figura 5.52. Cambiando el nombre del archivo Temporizador4_5.c

Figura 5.53. El archivo Temporizador4_5.c cambió de nombre a
Temporizador Central

Aquí finaliza el segundo proyecto y se describió una manera correcta de
realizar un retardo con un temporizador sin consumir todo el proceso del
CPU y se aprendió a realizar una tarea por estados, lo que permite crear
otras para realizar un trabajo cooperativo con un microcontrolador.

	Portada
	Hoja 0
	Reconocimientos
	Prefacio
	Capítulo 1
	Capítulo 2
	Capítulo 3
	Capítulo 4
	Capítulo 5

