Production Go

Build modern, production-
ready systems in Go

W

Herman Schaaf e Shawn Smith

Production Go
Build modern, production-ready web services in Go

Herman Schaaf and Shawn Smith
This book is for sale at http://leanpub.com/productiongo

This version was published on 2022-06-24

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

© 2013 - 2022 Herman Schaaf and Shawn Smith

http://leanpub.com/productiongo
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Introduction i
Strings 1
Appending to Strings 1
Splitting strings 3
Counting and finding substrings o 4
Advanced string functions 6
Ranging overastring L 10
Testing o 11
Why do we need tests? 11
Writing Tests 12
Testing HTTP Handlers 16
Mocking 18
Generating Coverage Reports 22
Writing Examples 26
Benchmarks 30
Asimple benchmark 30
Comparing benchmarks L L 34
Resetting benchmark timers 35
Benchmarking memory allocations 36

Modulo vs Bitwise-and 39

Introduction

Why Go in Production?

If you are reading this book, we assume you are interested in running Go in a production
environment. Maybe you dabble in Go on your side projects, but are wondering how you can use it
at work. Or perhaps you’ve read a company blog post about converting their codebase to Go, which
now has 3 times less code and response times one tenth of what they were before. Your mileage will
vary when it comes to gains in productivity and efficiency, but we have generally found a switch to
Go to be more than worthwhile. Our goal in writing this book is to provide the knowledge to write
a production-ready service in Go. This means not only writing the initial implementation, but also
reliably deploying it, monitoring its performance, and iterating on improvements.

Go is a language that allows for fast iteration, which goes well with continuous deployment.
Although it is a statically typed language, it compiles quickly and can often be used as a replacement
for scripting languages like Python. Many users report that when writing Go, once a program works,
it continues to “just work”. This is due to the relatively simple design of the language, and the focus
on readability rather than clever constructs.

In one project, we replaced existing APIs in PHP with equivalent functionality in Go. We saw
performance improvements, including an order of magnitude reduction in response times, which
led to both higher user retention and a reduction in server costs. We also saw developer happiness
increase, because the safety guarantees in Go meant we could deploy changes regularly and safely.

This book is not meant for beginner programmers. We expect our audience to be knowledgeable of
basic computer science topics and software engineering practices. Over the years, we have helped
ramp up countless engineers who had no prior experience writing Go. Ideally this will be the book
that people recommend to engineers writing Go for the first time, and who want to better understand
the “right way” to write Go.

We hope this book will help guide you on your journey to running Go in production. It will cover
many important aspects of running a production system, including topics not covered by most books
on the language, like profiling the memory usage of a Go program, deploying and monitoring apps
written in Go, and writing tests for web applications.

Feel free to skip around to chapters that seem more relevant to your immediate concerns or interests.
We will do our best to keep the chapters fairly independent of one another in order to make that
possible.

9
10
11

Strings

In Go, string literals are defined using double quotes, similar to other popular programming
languages in the C family:

An example of a string literal

package main

import "fmt"

func ExampleString() {
s := "I am a string - {RIF"
fmt.Println(s)
// Output: I am a string - YR

As the example shows, Go string literals and code may also contain non-English characters, like the

Chinese /R4F .
Appending to Strings

Strings can be appended to with the addition (+) operator:

Appending to a string

package main

import "fmt"

func ExampleAppend() {
greeting := "Hello, my name is "
greeting += "Inigo Montoya"
greeting += "."
fmt.Println(greeting)

// Output: Hello, my name is Inigo Montova.

Y/R1F, pronounced ni hdo, is Hello in Chinese.

ol

I\

9
10

Strings 2

This method of string concatenation is easy to read, and great for simple cases. But while Go does
allow us to concatenate strings with the + (or +=) operator, it is not the most efficient method. It is
best used only when very few strings are being added, and not in a hot code path. For a discussion
on the most efficient way to do string concatenation, see the later chapter on optimization.

In most cases, the built-in fmt.Sprintf? function available in the standard library is a better choice
for building a string. We can rewrite the previous example like this:

Using fmt.Sprintf to build a string

package main

import "fmt"

func ExampleFmtString() {
name := "Inigo Montoya"

)

sentence := fmt.Sprintf("Hello, my name is %s.", name)
fmt.Println(sentence)

// Output: Hello, my name is Inigo Montoya.

The %s sequence is a special placeholder that tells the Sprintf function to insert a string in that
position. There are also other sequences for things that are not strings, like %d for integers, %f for
floating point numbers, or %v to leave it to Go to figure out the type. These sequences allow us to
add numbers and other types to a string without casting, something the + operator would not allow
due to type conflicts. For example:

Using fmt.Printf to combine different types of variables in a string

package main

import "fmt"

func ExampleFmtComplexString () {

name := "Inigo Montoya"

age := 32

weight := 76.598

t := "Hello, my name is %s, age %d, weight %.2fkg"

fmt.Printf (t, name, age, weight)
// Output: Hello, my name is Inigo Montova, age 32, weight 76.60kg

*https://golang.org/pkg/fmt/#Sprintf

https://golang.org/pkg/fmt/#Sprintf
https://golang.org/pkg/fmt/#Sprintf

ol

Strings 3

Note that here we used fmt.Printf to print the new string directly. In previous examples, we used
fmt.Sprintf to first create a string variable, then fmt.Printin to print it to the screen (notice the S in
Sprintf, short for string). In the above example, %d is a placeholder for an integer, %.2f a for a floating
point number that should be rounded to the second decimal, and %s a placeholder for a string, as
before. These codes are analogous to ones in the printf and scanf functions in C, and old-style string
formatting in Python. If you are not familiar with this syntax, have a look at the documentation for
the fmt package’. It is both expressive and efficient, and used liberally in Go code.

What would happen if we tried to append an integer to a string using the plus operator?

Breaking code that tries to append an integer to a string

package main

func main() {

n

s := "I am" + 32 + "years old"

Running this with go run, Go returns an error message during the build phase:

$ go run bad_append.go

command-line—arguments

./bad_append.go:4: cannot convert "I am" to type int

./bad_append.go:4: invalid operation: "I am" + 32 (mismatched types string an\

d int)

As expected, Go’s type system catches our transgression, and complains that it cannot append an
integer to a string. We should rather use fmt.Sprintf for building strings that mix different types.

Next we will have a look at a very useful standard library package that allows us to perform many
common string manipulation tasks: the built-in strings package.

Splitting strings

The strings package is imported by simply adding import "strings”, and provides us with many
string manipulation functions. One of these is a function that split a string by separators, and obtain
a slice of strings:

*https://golang.org/pkg/fmt/

https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/

ol

Strings 4

Splitting a string

package main

import "fmt"

import "strings"

func ExampleSplit() {
1 := strings.Split("a,b,c", ".")
fmt.Printf ("%q", 1)
// Output: ["a" "b" "c"]

The strings.Split function takes a string and a separator as arguments. In this case, we passed in
"a,b,c" and the separator)" and received a string slice containing the separate letters a, b, and c as
strings.

Counting and finding substrings

Using the strings package, we can also count the number of non-overlapping instances of a substring
in a string with the aptly-named strings.Count. The following example uses strings.Count to count
occurrences of both the single letter a, and the substring ana. In both cases we pass in a string*. Notice
that we get only one occurrence of ana, even though one may have expected it to count ana both at
positions 1 and 3. This is because strings.Count returns the count of non-overlapping occurrences.

Count occurrences in a string

package main
import (

"fmt"

"strings"

func ExampleCount() {

s := "banana"
cl := strings.Count(s, "a"
c2 := strings.Count(s, "ana"

fmt.Println(cl, c2)

“Remember, Go does not support function overloading, so a single character should be passed as a string if the function expects a string,
like most functions in the strings standard library.

Strings 5

// Output: 3 1

If we want to know whether a string contains, starts with, or ends with some substring, we can use
the strings.Contains, strings.HasPrefix, and strings.HasSuffix functions, respectively. All of these
functions return a boolean:

Count occurrences in a string

package main

import (
"fmt"

"strings"

func ExampleContains() {

str := "two gophers on honeymoon"

if strings.Contains(str, "moon") {
fmt.Println("Contains moon")

}

if strings.HasPrefix(str, "moon") {
fmt.Println("Starts with moon")

}

if strings.HasSuffix(str, "moon") {
fmt.Println("Ends with moon")

}

// Output: Contains moon

// Ends with moon

For finding the index of a substring in a string, we can use strings.Index. Index returns the index of
the first instance of substr in s, or -1 if substr is not present in s:

ol

Strings 6

Using strings.Index to find substrings in a string

package main

import "fmt"

import "strings"

func Examplelndex() {
an := strings.Index("banana", "an"
am := strings.Index("banana", "am"
fmt.Println(an, am)
// Output: 1 -1

The strings package also contains a corresponding LastIndex function, which returns the index of
the last (ie. right-most) instance of a matching substring, or -1 if it is not found.

The strings package contains many more useful functions. To name a few: ToLower, ToUpper, Trim,
Equals and Join, all performing actions that match their names. For more information on these
and other functions, refer to the strings package docs®. As a final example, let’s see how we might
combine some of the functions in the strings package in a real program, and discover some of its
more surprising functions.

Advanced string functions

The program below repeatedly takes input from the user, and declares whether the typed sentence
is palindromic. For a sentence to be palindromic, we mean that the words should be the same when
read forwards and backwards. We wish to ignore punctuation, and assume the sentence is in English,
so there are spaces between words. Take a look and notice how we use two new functions from the
strings package, FieldsFunc and EqualFold, to keep the code clear and concise.

*https://golang.org/pkg/strings/

https://golang.org/pkg/strings/
https://golang.org/pkg/strings/

B W N

ul

© o0 N O

10

12
13
14

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

36
37
38

Strings

A program that declares whether a sentence reads the same backward and forward, word for word

package main

import (
"bufio”
"fmt"
"og
"strings"

"unicode

// getlnput prompts the user for some text, and then
// reads a line of input from standard input. This line
// of text is then returned.
func getlnput() string {
fmt.Print ("Enter a sentence: ")
scanner := bufio.NewScanner (os.Stdin)
scanner.Scan ()

return scanner.Text ()

func isNotLetter (¢ rune) bool {

return 'unicode.IsLetter(c)

// isPalindromicSentence returns whether or not the given sentence
// is palindromic. To calculate this, it splits the string into words,
// then creates a reversed copy of the word slice. It then checks
// whether the reverse is equal (ignoring case) to the original.
// 1t also ignores any non-alphabetic characters.
func isPalindromicSentence(s string) bool {
// split into words and remove non-alphabetic characters
// in one operation by using FieldsFunc and passing in
// isNotLetter as the function to split on.

w := strings.FieldsFunc(s, isNotLetter)

// iterate over the words from front and back
// simultaneously. If we find a word that is not the same

// as the word at its matching from the back, the sentence

Strings 8

// is not palindromic.

1 := len(w)
for i := 0; 1 < 1/2; i++ {
fw := w[i] // front word

bw := w[1-i-1] // back word
if !strings.EqualFold(fw, bw) {

return false

// all the words matched, so the sentence must be
// palindromic.

return true

func main() {

// Go doesn't have while loops, but we can use for loop
// syntax to read into a new variable, check that it's not
// empty, and read new lines on subsequent iterations.
for 1 := getInput(); 1 !'= ""; 1 = getInput() {

if isPalindromicSentence (1) {

fmt.Printin("... is palindromic!")
} else {

fmt.Println("... is not palindromic.")

Save this code to palindromes.go, and we can then run it with go run palindromes.go.

An example run of the palindrome program

$ go run palindromes.go

Enter a sentence: This is magnificent!
is not palindromic.

Enter a sentence: This is magnificent, is this!
is palindromic!

Enter a sentence:

As expected, when we enter a sentence that reads the same backwards and forwards, ignoring

Strings 9

punctuation and case, we get the output ... is palindromic!. Now, let’s break down what this code
is doing.

The getInput function uses a bufio.Scanner from the bufio package® to read one line from standard
input. scanner.Scan() scans until the end of the line, and scanner.Text () returns a string containing
the input line.

The meat of this program is in the isPalindromicSentence function. This function takes a string as
input, and returns a boolean indicating whether the sentence is palindromic, word-for-word. We also
want to ignore punctuation and case in the comparison. First, on line 34, we use strings.FieldsFunc
to split the string at each Unicode code point for which the isNotLetter function returns true. In
Go, you can pass around functions like any other value. A function’s type signature describes the
types of its arguments and return values. Our isNotLetter function satisfies the function signature
specified by FieldsFunc, which is to take a rune as input, and return a boolean. Runes are a special
character type in the Go language - for now, just think of them as more or less equivalent to a single
character, like char in Java.

In isNotLetter, we return false if the passed in rune is a letter as defined by the Unicode standard,
and true otherwise. We can achieve this in a single line by using unicode.IsLetter, another built-in
function provided by the standard unicode library.

Putting it all together, strings.FieldsFunc(s, isNotLetter) will return a slice of strings, split by
sequences of non-letters. In other words, it will return a slice of words.

Next, on line 40, we iterate over the slice of words. We keep an index i, which we use to create both
fw, the word at index i, and bw, the matching word at index 1 - i - 1. If we can walk all the way
through the slice without finding two words that are not equal, we have a palindromic sentence. And
we can stop halfway through, because then we have already done all the necessary comparisons. The
next table shows how this process works for an example sentence as i increases. As we walk through
the slice, words match, and so we continue walking until we reach the middle. If we were to find a
non-matching pair, we can immediately return false, because the sentence is not palindromic.

The palindromic sentence algorithm by example

“Fall” “leaves” “as” “soon” “as” “leaves” “fall” EqualFold
i=0 fw bw true
i=1 fw bw true
i=2 fw bw true

The equality check of strings is performed on line 44 using strings.EqualFold - this function
compares two strings for equality, ignoring case.

Finally, on line 58, we make use of the semantics of the Go for loop definition. The basic for loop
has three components separated by semicolons:

« the init statement: executed before the first iteration

“https://golang.org/pkg/bufio/

https://golang.org/pkg/bufio/
https://golang.org/pkg/bufio/

9

10
11

Strings 10

« the condition expression: evaluated before every iteration
« the post statement: executed at the end of every iteration

We use these definition to instantiate a variable 1 and read into it from standard input, conditionally
break from the loop if it is empty, and set up reading for each subsequent iteration in the post
statement.

Ranging over a string

When the functions in the strings package don’t suffice, it is also possible to range over each
character in a string:

Iterating over the characters in a string

package main

import "fmt"

func Examplelteration() {
s := "ABC/REF"
for i, r := range s {
fmt.Printf ("%q(%d) ", r, i)
}
// Output: 'A'(0) 'B' (1) 'C'(2) "f&'(3) '#F (6)

You might be wondering about something peculiar about the output above. The printed indexes
start from 0, 1, 2, 3 and then jump to 6. Why is that? This is the topic in the next chapter, Supporting
Unicode.

Testing

A critical part of any production-ready system is a complete test suite. If you have not written tests
before, and wonder why they are important, this introduction is for you. If you already understand
the importance of proper testing, you can skip to the particulars of writing tests in Go, in writing
tests.

Why do we need tests?

A line of reasoning we sometimes hear, is that “my code clearly works, why do I need to write tests
for it?” This is a natural enough question, but make no mistake, a modern production-ready system
absolutely must have automated tests. Let’s use an analogy from the business world to understand
why this is so: double entry bookkeeping.

Double entry is the idea that every financial transaction has equal and opposite effects in at least two
different accounts. For example, if you spend $10 on groceries, your bank account goes down by $10,
and your groceries account goes up by $10. This trick allows you to see, at a glance, simultaneously
how much money is in your bank account, and how much you spent on groceries. It also allows you
to spot mistakes. Suppose a smudge in your books made the $10 entry look like $18. The total balance
of your assets would no longer match your liabilities plus equity - there would be an $8 difference.
We can compare entries in the bank account with entries in the groceries account to discover which
amount is incorrect. Before double-entry bookkeeping, it was much harder to prove mistakes, and
impossible to see different account balances at a glance. The idea revolutionized bookkeeping, and
underpins accounting to this day.

Back to tests. For every piece of functionality we write, we also write a test. The test should prove
that the code works in all reasonable scenarios. Like double-entry bookkeeping, tests are our way to
ensure our system is correct, and remains correct. Your system might work now - you might even
prove it to yourself by trying out some cases manually. But systems, especially production systems,
require changes over time. Requirements change, environments change, bugs emerge, new features
become needed, inefficiencies are discovered. All these things will require changes to be made to
the code. After making these changes, will you still be sure that the system is correct? Will you run
through manual test cases after every change? What if someone else is maintaining the code? Will
they know how to test changes? How much time will it take you to manually perform these test
cases?

Automated tests cost up-front investment, but they uncover bugs early, improve maintainability,
and save time in the long run. Tests are the checks and balances to your production system.

Testing 12

Many books and blog posts have been written about good testing practice. There are even movements
that promote writing tests first’, before writing the code. We don’t think it’s necessary to be quite
that extreme, but if it helps you write good tests, then more power to you. No production system is
complete without a test suite that makes sensible assertions on the code to prove it correct.

Now that we have discussed the importance of testing in general, let’s see how tests are written in
Go. As we'll see, testing was designed with simplicity in mind.

Writing Tests

Test files in Go are located in the same package as the code being tested, and end with the suffix
_test.go. Usually, this means having one _test.go to match each code file in the package. Below is
the layout of a simple package for testing prime numbers.

e prime
— prime.go
— prime_test.go
— sieve.go
— sieve_test.go

This is a very typical Go package layout. Go packages contain all files in the same directory, including
the tests. Now, let’s look at what the test code might look like in prime_test.sgo.

A simple test in prime_test.go that tests a function called IsPrime

package main

import "testing"

// TestlsPrime tests that the IsPrime function
// returns true when the input is prime, and false
// otherwise.
func TestlIsPrime(t *testing.T) {

// check a prime number

got := IsPrime(19)

if got != true {

t.Errorf ("IsPrime (%d) = %t, want %t", 19, got, true)

// check a non-prime number

"https://en.wikipedia.org/wiki/Test-driven_development

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

Testing 13

got = IsPrime(21)
if got != false {
t.Errorf ("IsPrime (%d) = %t, want %t", 21, got, false)

We start by importing the testing package. Then, on line 8, we define a test as a normal Go function
taking a single argument: t *testing.T. All tests must start with the word Test and have a single
argument, a pointer to testing.T. In the function body, we call the function under test, IsPrime. First
we pass in the integer 19, which we expect should return true, because 19 is prime. We check this
assertion with a simple if statement on line 11, if got != true. If the statement evaluates to false,
t.Errorf is called. Errorf formats its arguments in a way analogous to Printf, and records the text
in the error log. We repeat a similar check for the number 21, this time asserting that the IsPrime
function returns true, because 21 is not prime.

We can run the tests in this package using o test. Let’s see what happens:

$ go test
PASS
ok _/Users/productiongo/code/prime 0.018s

It passed! But did it actually run our TestIsPrime function? Let’s check by adding the -v (verbose)
flag to the command:

$ go test -v

=== RUN TestIsPrime

——— PASS: TestlIsPrime (0.00s)

PASS

ok _/Users/productiongo/code/prime 0.019s

Our test is indeed being executed. The -v flag is a useful trick to remember, and we recommend
running tests with it turned on most of the time.

All tests in Go follow essentially the same format as the TestIsPrime. The Go authors made a
conscious decision not to add specific assertion functions, advising instead to use the existing control
flow tools that come with the language. The result is that tests look very similar to normal Go code,
and the learning curve is minimal.

Table-driven tests

Our initial TestIsPrime test is a good start, but it only tests two numbers. The code is also repetitive.
We can do better by using what is called a table-driven test. The idea is to define all the inputs and
expected outputs first, and then loop through each case with a for loop.

Testing 14

A table-driven test in prime_test.go that tests a function called IsPrime

package main

import "testing"

// TestlsPrime tests that the IsPrime function
// returns true when the input is prime, and false
// otherwise.
func TestIsPrimeTD(t *testing.T) {
cases := []struct {
give int
want bool
H
{19, true},
{21, false},
{10007, true},
{1, false},
{0, false},
{-1, false},

for _, ¢ := range cases {
got := IsPrime(c.give)
if got !'= c.want {

t.Errorf ("IsPrime(%d) = %t, want %t", c.give, got, c.want)

In the refactored test, we use a slice of an anomymous struct to define all the inputs we want to test.
We then loop over each test case, and check that the output matches what we want. This is much
cleaner than before, and it only took a few keystrokes to add more test cases into the mix. We now
also check some edge cases: inputs of 0, 1, 10007, and negative inputs. Let’s run the test again and
check that it still passes:

Testing 15

$ go test -v

=== RUN TestIsPrimeTD

——— PASS: TestIsPrimeTD (0.00s)

PASS

ok _/Users/productiongo/code/prime 0.019s

It looks like the IsPrime function works as advertised! To be sure, let’s add a test case that we expect
to fail:

{-1, false},

// 17 is prime, so this test should fail:
{17, false},

We run go test -v again to see the results:

$ go test -v
=== RUN TestIsPrimeTD
——— FAIL: TestIsPrimeTD (0.00s)
prime test.go:25: IsPrime(17) = true, want false
FAIL
exit status 1
FAIL _/Users/productiongo/code/prime 0.628s

This time go test reports that the test failed, and we see the error message we provided to t.Errorf.
Writing error messages

In the tests above, we had the following code:

if got !'= c.want {

t.Errorf ("IsPrime (%d) = %t., want %t", c.give, got, c.want)

The ordering of the if statement is not accidental: by convention, it should be actual != expected, and
the error message uses that order too. This is the recommended way to format test failure messages

Testing 16

in Go ®. In the error message, first state the function called and the parameters it was called with,
then the actual result, and finally, the result that was expected. We saw before that this results in a
message like

prime test.go:25: IsPrime(17) = true, want false

This makes it clear to the reader of the error message what function was called, what happened, and
what should have happened. The onus is on you, the test author, to leave a helpful message for the
person debugging the code in the future. It is a good idea to assume that the person debugging your
failing test is not you, and is not your team. Make both the name of the test and the error message
relevant.

Testing HTTP Handlers

Let’s look at an example of testing that comes up often when developing web applications: testing an
HTTP handler. First, let’s define a comically simple HTTP handler that writes a friendly response:

A very simple HTTP handler

package main

import (
"fmt"
"net/http"
)
// helloHandler writes a friendly "Hello, friend :)" response.

func helloHandler (w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "Hello, friend :)")

func main() {
http.HandleFunc (" /hello", helloHandler)
http.ListenAndServe (":8080", nil)

The httptest package provides us with the tools we need to test this handler as if it were running
in a real web server. The TestHTTPHandler function in the following example illustrates how to use
httptest.NewRecorder () to send a real request to our friendly helloHandler, and read the resulting
response.

*https://github.com/golang/go/wiki/CodeReview Comments#useful-test-failures

B W N

ul

SO O 0 N O

Testing

Testing an HTTP handler

17

package main

import (
"net/http"
"net/http/httptest”
"testing"

)

func TestHTTPHandler (t *testing.T) {
// Create a request to pass to our handler.
req, err := http.NewRequest("GET", "/hello", nil)
if err !'= nil {
t.Fatal(err)

// We create a ResponseRecorder, which satisfies
// the http.ResponseWriter interface, to record
// the response.

r := httptest.NewRecorder ()

handler := http.HandlerFunc (helloHandler)

// Our handler satisfies http.Handler, so we can call
// the ServeHTTP method directly and pass in our

// Request and ResponseRecorder.

handler.ServeHTTP(r, req)

// Check that the status code is what we expect.
if r.Code != http.StatusOK {
t.Errorf ("helloHandler returned status code %v, want %v",
r.Code, http.StatusOK)

// Check that the response body is what we expect.
want := "Hello, friend :)\n"
got := r.Body.String()
if got !'= want {
t.Errorf ("helloHandler returned body %q want %q",
got, want)

Testing 18

In this example we see the t.Fatal method used for the first time. This method is similar to t.Error,
but unlike t.Error, if t.Fatal is called, the test will not execute any further. This is useful when a
condition happens that will cause the rest of the test to be unnecessary. In our case, if our call to
create a request on line 11 were to fail for some reason, the call to t.Fatal ensures that we log the
error and abandon execution immediately. Anagolous to t.Errorf, there is also a t.Fatalf method,
which takes arguments the same way as fmt.Printf.

On line 19 we create a new httptest.Recorder with which to record the response. We also
create handler, which is helloHandler, but now of type http.HandlerFunc. We can do this, because
helloHandler uses the appropriate signature defined by http.HandlerFunc’:

type HandlerFunc func(ResponseWriter, *Request)

http.HandlerFunc is an adapter to allow the use of ordinary functions as HTTP handlers. As the final
step of the setup, we pass the recorder and the request we created earlier in to handler.ServeHTTP (r,
rea). Now we can use the fields provided by httptest.Recorder, like Code and Body, to make assertions
against our HTTP handler, as shown in the final lines of the test function.

Mocking

Imagine you need to test code that uses a third party library. Perhaps this library is a client library
to an external AP, or perhaps it performs database operations. In your unit tests, it is best to assume
that the library does its job, and only test your functions and their interactions. This allows your test
case failures to accurately reflect where the problem is, rather than leave the question of whether
it’s your function, or the library, that’s at fault. There is a place for tests that include third party
libraries, and that place is in integration tests, not unit tests.

Interfaces

How do we go about testing our functions, but not the libraries they use? The answer: interfaces.
Interfaces are an incredibly powerful tool in Go.

In Java, interfaces need to be explicitly implemented. You rely on your third party vendor to provide
an interface that you can use to stub methods for tests. In Go, we don’t need to rely on the third party
author; we can define our own interface. As long as our interface defines a subset of the methods
implemented by the library, the library will automatically implement our interface.

The next example illustrates one particular case where mocking is very useful: testing code that
relies on random number generation.

*https://golang.org/pkg/net/http/#HandlerFunc

https://golang.org/pkg/net/http/#HandlerFunc
https://golang.org/pkg/net/http/#HandlerFunc

B W N

ul

© o0 N O

10

12
13
14

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

36
37
38

Testing

Using an interface to abstract away API calls

19

package eightball

import (
"math/rand"

"time"

// randIntGenerator is an interface that includes Intn, a
// method in the built-in math/rand package. This allows us
// to mock out the math/rand package in the tests.

type randIntGenerator interface {

Intn(int) int

// EightBall simulates a very simple magic 8-ball,
// a magical object that predicts the future by
// answering ves/no questions.

type EightBall struct {

rand randIntGenerator

// NewEightBall returns a new EightBall.
func New() *EightBall {
return &EightBall{

rand: rand.New(rand.NewSource (time.Now() .UnixNano())),

// Answer returns a magic eightball answer
// based on a random result provided by
// randomGenerator. It supports only four
// possible answers.
func (e EightBall) Answer (s string) string {
n := e.rand.Intn(3)
switch n {
case 0:
return "Definitely not"

case 1:

Testing 20

return "Maybe"

case 2:
return "Yes"
default:
return "Absolutely"
}
}

We define a simple eightball package that implements a simple Magic 8-Ball'’. We ask it a yes/no
question, and it will return its prediction of the future. As you might expect, it completely ignores
the question, and just makes use of a random number generator. But random numbers are hard to
test, because they change all the time. One option would be to set the random seed in our code, or in
our tests. This is indeed an option, but it doesn’t allow us to specifically test the different outcomes
without some trial and error. Instead, we create an randIntGenerator interface, which has only one
method, Intn(int) int. This method signature is the same as the Intn'* method implemented by Go’s
built-in math/rand package. Instead of using the math/rand package directly in Answer, we decouple
our code by referencing the Intn method on the EightBall’s rand interface. Since EightBall.rand is
not exported, users of this package will not be aware of this interface at all. To create the struct, they
will need to call the New method, which assigns the built-in struct from math/rand struct to satisfy
our interface. So to package users the code looks the same, but under the hood, we can now mock
out the call to Intn in our tests:

Testing using our interface

package eightball

import (
"testing"

type fixedRandIntGenerator struct {
// the number that should be "randomly" generated

randomNum int
// record the paramater that Intn gets called with

calledWithN int

func (g *fixedRandIntGenerator) Intn(n int) int {
g.calledWithN = n

"%https://en.wikipedia.org/wiki/Magic_8-Ball
https://golang.org/pkg/math/rand/#Rand.Intn

https://en.wikipedia.org/wiki/Magic_8-Ball
https://golang.org/pkg/math/rand/#Rand.Intn
https://en.wikipedia.org/wiki/Magic_8-Ball
https://golang.org/pkg/math/rand/#Rand.Intn

Testing 21

17 return g.randomNum

20 func TestEightBall(t *testing.T) {

21 cases := []struct {

22 randomNum int

23 want string

24 H

25 {0, "Definitely not"},

26 {1, "Maybe"},

27 {2, "Yes"},

28 {3, "Absolutely"},

29 {-1, "Absolutely"}, // default case

30 }

31

32 for _, tt := range cases {

33 g := &fixedRandIntGenerator {randomNum: tt.randomNum}
34 eb := EightBall{

35 rand: g,

36 }

37

38 got := eb.Answer ("Does this really work?")

39 if got != tt.want {

40 t.Errorf ("EightBall.Answer () is %q for num %d, want %q",
41 got, tt.randomNum, tt.want)

12 }

43

44 if g.calledWithN != 3 {

45 t.Errorf ("EightBall.Answer () did not call Intn(3) as expected")
46 }

17 }

48}

Sometimes, when the existing code uses a specific library implementation, it takes refactoring to use
interfaces to mock out impementation details. However, the resulting code is more decoupled. The
tests run faster (e.g. when mocking out external network calls) and are more reliable. Don’t be afraid
to make liberal use of interfaces. This makes for more decoupled code and more focused tests.

Testing 22

GoMock

Another way to generate mocks for tests is GoMock'?. WIP
Generating Coverage Reports

To generate test coverage percentages for your code, run the go test -cover command. Let’s make
a quick example and a test to go with it.

We're going to write a simple username validation function. We want our usernames to only contain
€ &« »

letters, numbers, and the special characters “-“, “_”, and “”. Usernames also cannot be empty, and
they must be less than 30 characters long. Here’s our username validation function:

Username validation function

package validate

import (
"fmt"

”regexp”

// Username validates a username. We only allow
// usernames to contain letters, numbers,
// and special chars " ", "-", and "."
func Username (u string) (bool, error) {
if len(u) == 0 {
return false, fmt.Errorf("username must be > 0 chars")
}
if len(u) > 30 {
return false, fmt.Errorf("username too long (must be < 30 chars)")
}
validChars := regexp.MustCompile(\A[a—zA—Zl—9—_.]+$\)
if !validChars.MatchString(u) {

return false, fmt.Errorf("username contains invalid character")

return true, nil

Now let’s write a test for it:

https://github.com/golang/mock

https://github.com/golang/mock
https://github.com/golang/mock

Testing 23

Test for username validation function

package validate
import "testing"
var usernamelests = []struct {

in string

wantValid bool

H
{"gopher", true},
}
func TestUsername(t *testing.T) {
for _, tt := range usernameTests {
valid, err := Username(tt.in)

if err !'= nil && tt.wantValid {
t.Fatal (err)

if valid !'= tt.wantValid {
t.Errorf ("Username (%q) = %t. want %t", tt.in, valid, tt.wantValid)

As you can see, we're not covering very many cases. Let’s see what exactly our test coverage is for
this function:

$ go test -cover

PASS
coverage: 62.5% of statements
ok github.com/gopher/validate 0.008s

62.5% is a bit too low. This function is simple enough that we can get close to 100% coverage. We’d
like to know exactly what parts of the function are not being covered. This is where the coverage
profile and HTML report come in.

To generate a test coverage profile, we run go test -coverprofile=coverage.out:

Testing 24

$ go test -coverprofile=coverage.out

PASS
coverage: 62.5% of statements
ok github.com/gopher/validate 0.008s

We can now get a breakdown of coverage percentages per function, although we only have one
function so it’s not very interesting:

go tool cover -func=coverage.out
github.com/gopher/validate/validate.go:11: Username 62.5%
total: (statements) 62.5%

What we really want to see is a line-by-line breakdown. We can get this with the HTML report,
which we’ll cover in the next section.

HTML Coverage Reports

We can generate an HTML coverage report using the same coverage.out file from before, by running
the following command:

go tool cover —html=coverage.out

This should open up a browser and show us an HTML page like the following:

github.com/shawnps/validate/validate.go (62.5%) & covered

if len(u) ==

if len(u) > 30

validChars := regexp.MustCompile(’~[a-zA-Z1-9-_.]+$%")
if !validChars.MatchString(u)

return true, nil

Username test coverage

Now we can see exactly where we need to improve our coverage. We need to cover the cases where
the username length is either 0 or > 30, as well as the case where the username contains an invalid
character. Let’s update our test for those cases:

Testing 25

Test for username validation function, 100% coverage

package validate
import "testing"
var usernamelests = []struct {

in string

wantValid bool

H

{"", false},

{"gopher", true},

{"gopher$", false},

{"abcdefghijklmnopqrstuvwxyzabcde", false},
}
func TestUsername(t *testing.T) {

for , tt := range usernameTests {

valid, err := Username(tt.in)

if err !'= nil && tt.wantValid {
t.Fatal(err)

if valid != tt.wantValid {
t.Errorf ("Username (%q) = %t, want %t", tt.in, valid, tt.wantValid)

Now if we re-run go test -coverprofile=coverage.out to get a new coverage profile, and then go
tool cover -html=coverage.out to view the HTML report again, we should see all green:

Testing 26

github.com/shawnps/validate/validate.go (100.0%) % covered

{
if len(u) == 0 {
return false, fmt.Errorf("username must be > @ chars")

}
if len(u) > 30 {
return false, fmt.Errorf("username too long (must be < 30 chars)")

}
validChars := regexp.MustCompile(~[a-zA-Z1-9-_.]+$")
if !validChars.MatchString(u) {

return false, fmt.Errorf("username must only contain letters, numbers, _ and -")
}

return true, nil

Username test coverage 100%

Writing Examples

We can also write example code and the so test tool will run our examples and verify the output.
godoc renders examples underneath the function’s documentation.

Let’s write an example for our username validation function:

Username validation function example test

package validate

import (
"fmt"

" "

log

func ExampleUsername() {
usernames := []struct {
in string
valid bool
H

"o

, false},

"

gopher", true},

gopher$", false},

n

{
{
{u
{

abcdefghi jklmnopqrstuvwxyzabcede", false},

Testing

}
for _, tt := range usernames {
valid, err := Username(tt.in)
if err != nil && tt.valid {
log.Fatal (err)
}
fmt.Printf ("%q: %t\n", tt.in, valid)
}
// Output:
// "": false

// "gopher": true
// "gopher$": false
// "abcdefghijklmnopqrstuvwxyzabcde": false

27

Note the Output: at the bottom. That’s a special construct that tells so test what the standard output

of our example test should be. go test is actually going to validate that output when it runs the tests.

If we run a local godoc server with godoc -http:6060, and navigate to our validate package, we can
also see that godoc renders the example, as expected:

func Username

func Username(u string) (bool, error)

Username validates a username. We only allow usernames to contain letters, numbers, and special chars

" and""

» Example

Godoc example

If we click “Example” we’ll see our example code:

Testing 28

func Username

func Username(u string) (bool, error)

Username validates a username. We only allow usernames to contain letters, numbers, and special chars " ", "-
" and "."

~ Example

Code:

usernames := []struct {
in string
valid bool
H
{"", false},
{"gopher", true},
{"gopher$", false},
{"abcdefghijklmnopgrstuvwxyzabcde", false},

for _, tt := range usernames {
valid, err := Username(tt.in)
if err != nil && tt.valid {
log.Fatal(err)
H

fmt.Printf("%q: %t\n", tt.in, valid)

Output:

" false

"gopher": true

"gopherg": false
"abcdefghijklmnopqrstuvwxyzabcde": false

Godoc example full

Another note about examples is that they have a specific naming convention. We named our example
above ExampleUsername because we wrote an example for the Username function. But what if we want
to write an example for a method on a type? Let’s say we had a type User with a method ValidateName:

A}

w

ul

6

i\

Testing 29

type User struct {

Name string

func (u *User) ValidateName() (bool, error) {

Then our example code would look like this:

func ExampleUser ValidateName() {

where the convention for writing examples for methods on types is ExampleT M().

If we need multiple examples for a single function, we append an underscore and a lowercase letter.
For example with our Validate function, we could have ExampleValidate, ExampleValidate second,
ExampleValidate third, and so on.

In the next chapter, we will discuss one last important use of the Go testing package: benchmarking.

Benchmarks

The Go testing package contains a benchmarking tool for examining the performance of our Go
code. In this chapter, we will use the benchmark utility to progressively improve the performance
of a piece of code. We will then discuss advanced benchmarking techniques to ensure that we are
measuring the right thing.

A simple benchmark

Let’s suppose we have a simple function that computes the n™ Fibonacci number. The sequence F,
of Fibonacci numbers is defined by the recurrence relation, F,, = F,,_; + F,,_», with I, = 0, F} = 1.
That is, every number after the first two is the sum of the two preceding ones:

0,1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

Because the sequence is recursively defined, a function that calculates the n™ Fibonacci number is
often used to illustrate programming language recursion in computer science text books. Below is
such a function that uses the definition to recursively calculate the n™ Fibonacci number.

A function that recursively obtains the n™ Fibonacci number

package fibonacci

// F returns the nth Fibonnaci number.
func F(n int) int {
if n <=0 {
return O
} else if n == 1 {
return 1
}

return F(n-1) + F(n-2)

Let’s make sure it works by writing a quick test, as we saw in the chapter on Testing.

Benchmarks 31

A test for the function that recursively obtains the n™ Fibonacci number

// fibonacci test.go

package fibonacci

import "testing"

func TestF(t *testing.T) {

cases := []struct {
n int
want int

H
{-1, o},
{0, 0},
{1, 1}.
{2, 1},
{3, 2},
{8, 21},

}

for _, tt := range cases {

got := FastF(tt.n)
if got != tt.want {
t.Errorf ("F(%d) = %d, want %d", tt.n, got, tt.want)

Running the test, we see that indeed, our function works as promised:

$ go test -v

=== RUN TestF

——— PASS: TestF (0.00s)

PASS

ok _/home/productiongo/benchmarks/fibonacci 0.001s

Now, this recursive Fibonacci function works, but we can do better. How much better? Before
we rewrite this function, let’s establish a baseline to which we can compare our future efficiency
improvements. Go provides a benchmark tool as part of the testing package. Anagalous to TestX(t
*testing.T), we create benchmarks with BenchmarkX (b *testing.B):

Benchmarks 32

A benchmark for the Fibonacci function

// fibonacci bench test.go

package fibonacci

import "testing"

var numbers = []int{
0, 10, 20, 30,

func BenchmarkF (b *testing.B) {
// run F(n) b.N times
m := len(numbers)
for n := 0; n < b.N; n++ {

F (numbers[n%m])

The BenchmarkF function can be saved in any file ending with _test.go to be included by the testing
package. The only real surprise in the code is the for loop defined on line 13,

for n := 0; n < b.N; n++ {

The benchmark function must run the target code b.N times. During benchmark execution, b.N is
adjusted until the benchmark function lasts long enough to be timed reliably.

To run the benchmark, we need to instruct go test to run benchmarks using the -bench flag.
Similar to the -run command-line argument, -bench also accepts a regular expression to match the
benchmark functions we want to run. To run all the benchmark functions, we provide -bench=.. go
test will first run all the tests (or those matched by -run, if provided), and then run the benchmarks.
The output for our benchmark above looks is as follows:

$ go test —bench=.

goos: linux

goarch: amd64

BenchmarkF-4 1000 1255534 ns/op

PASS

ok _/home/productiongo/benchmarks/fibonacci 1.387s

9
10
11

Benchmarks 33

The output tells us that the benchmarks ran on a Linux x86-64 environment. Furthermore, the testing
package executed our one benchmark, BenchmarkF. It ran the b.N loop 1000 times, and each iteration
(i.e. each call to F) lasted 1,255,534ns (~1.2ms) on average.

1.2ms per call seems a bit slow! Especially considering that the numbers we provided to the Fibonacci
function were quite small. Let’s improve our original function by not using recursion.

An improved Fibonacci function

package fibonacci

// FastF returns the nth Fibonnaci number,
// but does not use recursion.
func FastF(n int) int {
var a, b int = 0, 1
for i := 0; 1 < n; i++ {
a, b =">b, atb
}

return a

This new function FastF, is equivalent to the original, but uses only two variables and no recursion
to calculate the final answer. Neat! Let’s check whether it’s actually any faster. We can do this by
adding a new benchmark function for FastF:

func BenchmarkFastF(b *testing.B) {
// run FastF(n) b.N times

m := len(numbers)

for n := 0; n < b.N; n++ {
FastF (numbers[n%m])

}

Again we run go test -bench=.. This time we will see the output of both benchmarks:

Benchmarks 34

$ go test -bench=.
goos: linux

goarch: amd64

BenchmarkF-4 1000 1245008 ns/op
BenchmarkFastF-4 50000000 20.3 ns/op

PASS

ok _/home/productiongo/benchmarks/fibonacci 2.444s

The output is telling us that F still took around 1245008ns per execution, but FastF took only 20.3ns!
The benchmark proves that our non-recursive FastF is indeed orders of magnitude faster than the
textbook recursive version, at least for the provided inputs.

Comparing benchmarks

The benchemp tool parses the output of two go test -bench runs and compares the results.

To install, run:

go get golang.org/x/tools/cmd/benchcmp

Let’s output the benchmark for the original F function from earlier to a file, using BenchmarkF:
$ go test -bench . > old.txt

The file will look as follows:

goos: darwin

goarch: amd64

BenchmarkF-4 1000 1965113 ns/op
PASS
ok _/Users/productiongo/benchmarks/benchcmp 2.173s

Now instead of implementing FastF, we copy the FastF logic into our original F function:

Benchmarks 35

Fast F implementation

package fibbonaci

// F returns the nth Fibonnaci number.
func F(n int) int {
var a, b int = 0, 1
for 1 := 0; i < n; i++ {
a, b =">b, atb
}

return a

and re-run the benchmark, outputting to a file called new. txt:
$ go test -bench . > new.txt
new. txt should look like this:

goos: darwin

goarch: amd64

BenchmarkF-4 50000000 25.0 ns/op
PASS
ok _/Users/productiongo/benchmarks/benchcmp 1.289s

Now let’s run benchcmp on the results:

benchcmp old.txt new.txt
benchmark old ns/op new ns/op delta
BenchmarkF-4 1965113 25.0 -100.00%

We can see the old performance, new performance, and a delta. In this case, the new version of
F performs so well that it reduced the runtime of the original by 99.9987%. Thus rounded to two
decimals, we get a delta of -100.00%.

Resetting benchmark timers

We can reset the benchmark timer if we don’t want the overall benchmark timing to include the
execution time of our setup code.

A benchmark from the crypto/aes package in the Go source code provides an example of this:

Benchmarks 36

crypto/aes BenchmarkEncrypt

package aes

import "testing"

func BenchmarkEncrypt(b *testing.B) {
tt := encryptTests[0]
c, err := NewCipher (tt.key)
if err = nil {
b.Fatal ("NewCipher:", err)
}
out := make([]byte, len(tt.in))
b.SetBytes (int64 (1en(out)))
b.ResetTimer ()
for 1 := 0; i < b.N; i++ {

c.Encrypt(out, tt.in)

As we can see, there is some setup done in the benchmark, then a call to b.ResetTimer () to reset the
benchmark time and memory allocation counters.

Benchmarking memory allocations

The Go benchmarking tools also allow us to output the number memory allocations by the
benchmark, alongside the time taken by each iteration. We do this by adding the -benchmen flag.
Let’s see what happens if we do this on our Fibonnaci benchmarks from before.

$ go test -bench=. —-benchmem
goos: linux

goarch: amd64

BenchmarkF-4 1000 1241017 ns/op 0 B/op 0\
allocs/op

BenchmarkFastF-4 100000000 20.6 ns/op 0 B/op 0\
allocs/op

PASS

ok _/Users/productiongo/benchmarks/fibonacci 3.453s

Benchmarks 37

We now have two new columns on the right: the number of bytes per operation, and the number
of heap allocations per operation. For our Fibonnaci functions, both of these are zero. Why is this?
Let’s add the -gcflags=-m option to see the details. The output below is truncated to the first 10 lines:

$ go test -bench=. -benchmem -gcflags=-m

_/home/herman/Dropbox/mastergo/manuscript/code/benchmarks/fibonacci
./fibonacci_bench test.go:10:20: BenchmarkF b does not escape
./fibonacci_fast bench test.go:6:24: BenchmarkFastF b does not escape
./fibonacci_test.go:22:5: t.common escapes to heap

./fibonacci test.go:6:15: leaking param: t

./fibonacci_test.go:22:38: tt.n escapes to heap
./fibonacci_test.go:22:38: got escapes to heap

./fibonacci test.go:22:49: tt.want escapes to heap

./fibonacci test.go:10:3: TestF []struct { n int; want int } literal does not\
escape

./fibonacci_test.go:22:12: TestF ... argument does not escape

The Go compiler performs escape analysis™. If an allocation does not escape the function, it can be
stored on the stack. Variables placed on the stack avoid the costs involved with a heap allocation
and the garbage collector. The omission of the fibonacci.go file from the output above implies that
no variables from our F and FastF functions escaped to the heap. Let’s take another look at the FastF
function to see why this is:

func FastF(n int) int {
var a, b int = 0, 1
for i := 0; i <n; i++ {
a, b =b, atb
}

return a

In this function, the a, b, and i variables are declared locally and do not need to be put onto the heap,
because they are not used again when the function exits. Consider what would happen if, instead
of storing only the last two values, we naively stored all values calculated up to n:

Phttps://en.wikipedia.org/wiki/Escape_analysis

https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Escape_analysis

Benchmarks 38

A high-memory implementation of F

package fibonacci

// FastHighMemF returns the nth Fibonacci number, but
// stores the full slice of intermediate
// results, consuming more memory than necessary.

func FastHighMemF(n int) int {

if n <=0 {
return O
}
r := make([]int, n+1)
r[0] =0
r[1] =1
for i := 2; i <= n; i++ {

rli] = r[i-1] + r[i-2]
}

return rln]

Running the same test and benchmark from before on this high-memory version of F, we get:

$ go test -bench=. -benchmem

goos: linux

goarch: amd64

BenchmarkFastHighMemF-4 20000000 72.0 ns/op 132 B/op \
0 allocs/op

PASS

ok _/Users/productiongo/benchmarks/fibonacci mem 1.518s

This time our function used 132 bytes per operation, due to our use of a slice in the function. If
you are wondering why the number is 132 specifically: the exact number of bytes is sensitive to
the numbers we use in the benchmark. The higher the input n, the more memory the function will
allocate. The average of the values used in the benchmark (0, 10, 20, 30) is 15. Because this was
compiled for a 64-bit machine, each int will use 8 bytes (8x8=64 bits). The slice headers also use
some bytes. We still have zero heap allocations per operation, due to all variables being contained
within the function. We will discuss advanced memory profiling and optimization techniques in
Optimization.

14

Benchmarks

Modulo vs Bitwise-and

In our Fibonacci benchmarks so far, we have made use of a list of four integer test cases:

[Jint{
10, 20, 30

var nums =

Os

which we then loop over in the BenchmarkF function:

forn :=0; n

s

< b.N; n++ {

FastF (nums[n%m])

But when it comes down to the nanoseconds, modulo is a relatively slow computation to do on
every iteration. It can actually have an impact on the accuracy of our results! Let’s peek at the Go
assembler code. Go allows us to do this with the go tool compile -S command, which outputs a
pseudo-assembly language called ASM. In the command below, we filter the instructions for the

line we are interested in with grep:

$ go tool compile -S fibonacci.go fibonacci_bench test.go | srep ”fibonacci_b\

ench_test.go:14"
0x0036 00054
0x003a 00058
0x003e 00062
0x003e 00062
0x0043 00067

AX
0x0061
0x0068
0x006f
0x0072
0x0074
0x0077
0x007b
0x007d 00125
0x007f 00127
0x0082 00130
0x0084 00132

00097
00104
00111
00114
00116
00119
00123

(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.

(fibonacci_bench_test.

(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_ test.
(fibonacci_bench test.

(fibonacci_bench test.

g0
g0

g0:
g0:
g0:

g0
g0

go:
g0
go:
:14)
:14)
:14)

g0
g0
g0

g0:
g0:
g0:

:14)
:14)

14)
14)
14)

:14)
:14)

14)
14)
14)

14)
14)
14)

MOVQ
MOVQ
PCDATA
CALL
MOVQ

MOVQ
MOVQ
TESTQ
JEQ 161
MOVQ
CMPQ
JEQ 132
CQO
IDIVQ
JMP 137
NEGQ

(BX) (DX*8), AX

AX,

30

CcX

AX

CX

cX

AX

(SP)

, 30

.F(SB)
..autotmp 5+16(SP),\

.numbers (SB), BX
.numbers+8(SB), SI

, X

, DI
, 5-1

Benchmarks

0x0087
0x0089
0x008c
0x008e
0x009a
0x009a
0x009f
0x00al
0x00al
B)
0x00a6
0x00a8

00135
00137
00140
00142
00154
00154
00159
00161
00161

00166
00168

(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.

(fibonacci_bench test.

(fibonacci_bench_test.

(fibonacci_bench test.

go:
go:
go:
go:
go:
:14)
:14)
:14)
:14)

g0
g0
g0
go

g0:
g0:

14)
14)
14)
14)
14)

14)
14)

XORL
CMPQ
JCS 49
JMP 154
PCDATA
CALL
UNDEF
PCDATA
CALL

UNDEF
NOP

DX, DX
DX, SI

30, $1

runtime.panicindex (SB)

30, $1

runtime.panicdivide (S\

40

The details of this output are not as important as it is to notice how many instructions there are.
Now, let’s rewrite the code to use bitwise-and (&) instead of modulo %:

m := len(nums)-1

for n

:= 0; n < b.N; n++ {

FastF (nums[né&m])

Now, the ASM code becomes:

$ go tool compile -S fibonacci.go fibonacci bench test.go | grep "fibonacci b\

ench_test.go:14"

0x0032
0x0036
0x003a
0x003a
0x003f
0x005e
0x0065
0x006¢
0x0070
0x0073
0x0076
0x0078
0x0084
0x0084

00050
00054
00058
00058
00063
00094
00101
00108
00112
00115
00118
00120
00132
00132

(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench test.
(fibonacci_bench_test.
(fibonacci_bench test.
(fibonacci_bench test.

(fibonacci_bench test.

g0
g0
g0

go:
go:
go:
go:
go:
:14)
:14)
:14)
:14)

g0
g0
g0
g0

g0:
g0

:14)
:14)
:14)

14)
14)
14)
14)
14)

14)
14)

MOVQ
MOVQ
PCDATA
CALL
MOVQ
MOVQ
MOVQ
LEAQ
ANDQ
CMPQ
JCS 45
JMP 132
PCDATA
CALL

(BX) (DI*8), AX
AX, (SP)

$0, $0

"".F(SB)
"".n+16(SP), AX

""" numbers (SB), BX
""" numbers+8(SB), SI
-1(AX), DI

CX, DI

DI, SI

30, 31

runtime.panicindex (SB)

Benchmarks 41

0x0089 00137 (fibonacci bench test.go:14) UNDEF
0x008b 00139 (fibonacci_bench test.go:14) NOP

This is considerably shorter than before. In other words, the Go runtime will need to perform fewer
operations, but the results will be the same. We can use modulo instead of ampersand because we
have exactly four items in our nums slice. In general, n%m == n&(m — 1) if m is a power of two. For
example,

%
%
%

=~ w N~ O

%
%

@]

32
e T
I
o U1 W NN~ O
& & & & & & X
W W W w w w w
I
N o= O w NN o= O

If you are not yet convinced, expand the binary version of the bitwise-and operations to show that
this is true:

0& 3 =00b & 11b = 0O
1 &3 =01b & 11b
2 & 3 =10b & 11b
3 & 3 =11b & 11b

I I
—

To evaluate the impact of changing from modulo to ampersand on the benchmark results, let us
create two benchmarks for FastF, one with modulo and the other with bitwise-and:

S go test -bench=BenchmarkFastF
goos: linux

goarch: amd64

BenchmarkFastFModulo-4 100000000 16.7 ns/op
BenchmarkFastFBitwiseAnd-4 200000000 7.40 ns/op
PASS

ok _/Users/productiongo/benchmarks/bench bitwise and 4.058s

The version using bitwise-and runs twice as fast. Our original benchmark was spending half the
time recalculating modulo operations! This is unlikely to have a big impact on benchmarks of bigger
functions, but when benchmarking small pieces of code, using bitwise-and instead of modulo will
make the benchmark results more accurate.

	Table of Contents
	Introduction
	Strings
	Appending to Strings
	Splitting strings
	Counting and finding substrings
	Advanced string functions
	Ranging over a string

	Testing
	Why do we need tests?
	Writing Tests
	Testing HTTP Handlers
	Mocking
	Generating Coverage Reports
	Writing Examples

	Benchmarks
	A simple benchmark
	Comparing benchmarks
	Resetting benchmark timers
	Benchmarking memory allocations
	Modulo vs Bitwise-and

