PRODUCTION
READY
DATA SCIENCE

FROM PROTOTYPING TO

PRODUCTION WITH PYTHON

KHUYEN TRAN

wfJ) Codecut

© 2025 Khuyen Tran

Table of contents

Preface

Motivation e e e e e e e e e e e e e
Audience e e e
Prerequisites e
What Makes This Book Different
Aboutthe Author,

Copyright

1

Version Control

1.1 What Is Version Control?
1.2 Why Is Version Control Essential?
1.3 UseGitforVersionControl
1.4 Best Practicesin VersionControl
1.5 KeyTakeaways

Dependency Management

2.1 What Is Dependency Management?
2.2 Best Practices for Dependency Management
2.3 Useuvto Manage Dependencies
2.4 KeyTakeaways e

Python Modules and Packages

3.1 What Are Python Modules and Packages?
3.2 Project Organization Best Practices
3.3 Import Best Practices
3.4 KeyTakeaways

Python Variables

4.1 What Are Variables?
4.2 Choose the Right Python Collection
4.3 Best Practices for Python Variables
4.4 KeyTakeaways o v v v i i i it i it e

WWWN R -

_
[©)IRENEENERN | S]]

22

Table of contents

5 Python Functions
5.1 What Are Python Functions?
5.2 Why Are Python Functions Essential?
5.3 Best Practices for Python Functions
5.4 Advanced Function Toolkit
5.5 KeyTakeaways

6 Python Classes
6.1 What Are PythonClasses?
6.2 Best Practices for Python Classes
6.3 AdvancedClassToolkit.
6.4 KeyTakeaways v v i v i v it i i e

7 Unit Testing
7.1 WhatIs Unit Testing?
7.2 Why Is Unit Testing Essential?
7.3 UsePytest for UnitTesting
7.4 Best Practices for Unit Testing
7.5 KeyTakeaways

8 Configuration Management
8.1 What Is Configuration Management?
8.2 Why Is Configuration Management Essential?
8.3 Use Hydra to Manage Configurations
8.4 Best Practices for Configuration Management
8.5 KeyTakeaways

9 Logging and Exception Handling
9.1 WhatIsLogging?
9.2 Why Should You Use Logging Instead of Print?
9.3 Use Loguru for Python Logging
9.4 Best Practices For Exception Handling
9.5 KeyTakeaways

10 Data Validation

10.2 Why Is Data Validation Essential?
10.3 Data Validation Made Easy with Pandera
10.4 Best Practices for Data Validation
10.5 KeyTakeaways i,

11 Data Version Control

11.2 Why Is Data Version Control Essential?
11.3 Use DVC for Data VersionControl

il © 2025 Khuyen Tran

63
63
63

105
105
105
110
116
126

127
127
127
131

137

Table of contents

11.4 KeyTakeaways o i i i i ittt et 191
12 Continuous Integration 193
12.1 What Is Continuous Integration? 193
12.2 Why Is Continuous Integration Important? 193
12.3 Use GitHub Actions for Continuous Integration 195
12.4 Common Data Science Workflows 200
12.5 KeyTakeaways 204
13 Package Your Project 205
13.1 What Is Packaging? 205
13.2 Why Is Packaging Essential? 205
13.3 UseuvforPackaging 206
13.4 Manage Package Versions 209
13.5 Add a DocumentationPage 210
13.6 KeyTakeaways i i i it i i 212
14 Notebooks in Production 213
14.1 Notebook Production Challenges 213
14.2 Best Practices for Jupyter Notebooks 218
14.3 Use marimo for Reproducible Data Science 219
14.4 KeyTakeaways i i it ittt it 223

© 2025 Khuyen Tran

1ii

Table of contents

iv © 2025 Khuyen Tran

Preface

Motivation

Have you ever encountered these situations in your data science projects?

+ Your Jupyter Notebook starts simple but becomes a mess as the project grows

« Debugging takes forever because code is scattered and poorly organized

 Package installations break your environment and waste hours troubleshoot-
ing

« Code is difficult to adapt to new datasets or requirements

+ Code fails to run consistently across different environments

 Changes are hard to track and rollback to previous working versions

« Previously written code is challenging to reuse and extend

« Critical bugs surface late in development

+ Adding new features feels risky due to potential regressions

These challenges arise from the gap between exploratory data analysis and
production-grade software engineering practices. This book aims to bridge this

gap.

The

book covers a wide range of essential topics for building production-ready data

science applications. Here’s an overview of what you’ll learn:

1.

Version Control for Code: Explore version control systems like Git and
learn how to apply version control practices to your code, enabling you to track
changes, collaborate with others, and manage your codebase effectively.

. Dependency Management: Learn how to handle Python package depen-
dencies using tools like pip or poetry, ensuring consistent and reproducible
environments for your projects.

Python Modules and Packages: Master the creation, organization, and
use of Python modules and packages to structure your code efficiently and
promote reusability.

Python Variables, Functions, and Classes: Learn techniques for writ-
ing clean and modular code using variables, functions, and classes, enabling
better code organization and reusability.

Unit Testing: Learn how to write effective unit tests using frameworks like

Preface

10.

11.

12.

pytest, enabling you to catch bugs early, improve code quality, and facilitate
future code changes.

Project Configuration: Learn how to separate configuration parameters
from code logic, allowing for easier customization and deployment across dif-
ferent environments.

Logging and Exception Handling: Learn how to generate informative
log messages that aid debugging, troubleshooting, and monitoring application
behavior.

Data Validation: Discover techniques for validating data types, ranges, for-
mats, and consistency, enabling you to build more reliable and robust data
science pipelines.

Version Control for Data: Learn strategies and tools for versioning your
data, ensuring reproducibility and traceability in your data science projects.
Packaging Projects: Discover how to structure your project for distribu-
tion, create setup files, and publish your package to PyPI, making it easy for
others to install and use your code.

Building a CI Pipeline: Learn how to set up a Continuous Integration (CI)
to automate code testing and documentation generation, ensuring code qual-
ity and facilitating collaborative development.

Jupyter Notebook Best Practices: Master techniques for creating well-
structured, reproducible, and shareable Jupyter notebooks, including cell or-
ganization, markdown usage, and version control integration.

Audience

The primary audience for this book includes:

1.

Data Scientists: Professionals who are skilled in data analysis, machine
learning, and statistical modeling, but may lack experience in software engi-
neering practices necessary for production environments.

Data Analysts: Those who work with data and create analyses but want to
improve the scalability and maintainability of their projects.

Machine Learning Engineers: Professionals who are looking to bridge
the gap between creating models and deploying them in production environ-
ments.

Data Science Students: Advanced students or recent graduates who want
to learn practical skills for transitioning from academic projects to industry-
standard practices.

Research Scientists: Those in academia or research institutions who want
to make their work more reproducible and easier to collaborate on.

Data Science Team Leads: Professionals responsible for improving their
team’s workflow and code quality.

© 2025 Khuyen Tran

Preface

Prerequisites

« Familiarity with fundamental Python concepts, syntax, and data structures.

« Afoundational understanding of basic data science concepts, such as data pro-
cessing and model training.

« Basic knowledge of using the command-line interface for tasks like navigating
directories and running scripts.

« Basic familiarity with popular data science tools like pandas, NumPy, and mat-
plotlib would be beneficial but not mandatory.

What Makes This Book Different

1. Simplified Language: The book materials are presented in a manner that
is easy to understand, making complex concepts more accessible to learners.

2. Visual Support: Clear and visually appealing graphs and examples accom-
pany each concept and topic, enhancing understanding and providing visual
aids for better retention.

3. Practical Examples: The examples provided are directly related to data sci-
ence projects, offering practical applications for the concepts discussed.

About the Author

Khuyen Tran transforms how data scientists learn and work. She has written over
180 articles as a top writer on Towards Data Science, helping data professionals
bridge the gap between prototyping and production.

As founder of CodeCut, she publishes daily Python tips in her newsletter that reach
over 10,000 views per month and has built a community of 110,000 LinkedIn fol-
lowers.

Previously an MLOps Engineer and Senior Data Engineer at Accenture, she built
enterprise data solutions for clients worldwide.

© 2025 Khuyen Tran 3

Preface

4 © 2025 Khuyen Tran

Copyright

Production Ready Data Science: From Prototyping to Production with

Python
Copyright © 2025 Khuyen Tran

All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or
other electronic or mechanical methods, without the prior written permission of
the author, except in the case of brief quotations embodied in critical reviews and
certain other noncommercial uses permitted by copyright law.

First Edition

Published: January 2025

Published by: CodeCut Technologies LLC
Author: Khuyen Tran

Contact: khuyentran@codecut.ai or visit codecut.ai

Disclaimer

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor the publisher shall have any liability to any person or entity with respect
to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this book.

The code examples and techniques presented in this book are for educational pur-
poses. Readers should exercise caution and best practices when implementing these
techniques in production environments.

Trademarks

All trademarks mentioned in this book are the property of their respective owners.

Copyright

6 © 2025 Khuyen Tran

Chapter 1

Version Control

1.1 What Is Version Control?

Version control is a system that tracks changes to files and enables software devel-
opers to collaborate in a safe, organized, and effective way. Version control allows
teams to manage their codebase efficiently, revert changes when needed, and safely
experiment with code changes.

1.2 Why Is Version Control Essential?

Version control is especially important in a data science project for several key rea-
sons.

1.2.1 Track Changes and Revert Easily

Version control provides safety and efficiency by tracking every code change, allow-
ing quick recovery when problems occur, and maintaining a complete project his-

tory.

Consider developing a machine learning model for customer churn prediction with-
out version control. After making significant changes to your model. py file, testing
shows degraded performance. Without an accurate record of changes, you spend
hours manually trying to undo modifications, risking new errors in the process.

Version control solves this by letting you commit changes regularly during devel-
opment. When testing reveals performance drops, you can review commit history,
identify the problematic change, and revert to the previous working state, as shown
in Figure 1.1.

Chapter 1. Version Control

main e
N I
& {\\Q% &OQ &OQ &
N N e e &
N ¢ °
> & E & E
S & S S
\Q\ > \K z{\ ¥
Q ©] S
¢ &
Q&Q @ QO

Figure 1.1: Version control workflow for machine learning model development

1.2.2 Collaborate Effectively

Version control transforms team collaboration by eliminating file conflicts, tracking
contributor changes, and enabling organized project coordination.

Consider a data analysis project with multiple team members where each person
saves work on their local machine or shared drive. Combining everyone’s work cre-
ates conflicting file versions and overwritten changes. You spend hours manually
merging different code versions, trying to reconcile discrepancies and ensure noth-
ing is lost.

Version control provides a shared repository where each team member works on
their own branch without affecting the main codebase. Changes are tracked with
contributor information and timestamps, enabling safe merging back into the main
branch, as illustrated in Figure 1.2.

main e

feature-A

feature-B N

Figure 1.2: Branching and merging workflow in version control

8 © 2025 Khuyen Tran

Chapter 1. Version Control

1.2.3 Reproduce Results Reliably

Version control delivers reliable research reproduction by tracking exact code ver-
sions and removing guesswork about which files generated specific results.

Consider this scenario: you publish a machine learning model, then need to repro-
duce results six months later. Without version control, you find multiple script
copies with slight variations but can’t identify which version created the published
results.

Version control eliminates this uncertainty by letting you tag the exact code version
used for publication. When you need to reproduce results, you simply checkout the
tagged version to recreate the analysis, as shown in Figure 1.3.

* v1.0-model

main e

Figure 1.3: Reproducing analysis using a tagged version of code

1.2.4 Experiment Safely

Version control eliminates the fear of experimentation by providing a safety net for
code changes. Instead of risking production systems with direct modifications, you
can test ideas in isolation, maintain system stability, and recover quickly from failed
experiments.

Consider this scenario: you’re working on a production data workflow that pro-
cesses customer data daily and want to test an optimization. Without version con-
trol, you make changes directly to production code. Your experiment fails, breaking
the system and disrupting daily data flow while you struggle to revert changes under
pressure.

With version control, you create a new branch called feature/new-processing and
freely experiment with your new ideas where changes won'’t affect the main produc-
tion code. After thoroughly testing your experiment, you create a pull request to

© 2025 Khuyen Tran 9

Chapter 1. Version Control

merge your changes into the main branch.

If your changes don’t work, you simply discard the experimental branch without af-
fecting the production code, as shown in Figure 1.4, allowing you to innovate with-
out fear of breaking the existing system.

main @ e
X Q
& S
& &
<& x°
& N
feature/failed-experiment - e
X X
<°Ib(l é&
R &
&0 >
X
N2 <&
S

Figure 1.4: Discarding failed experimental branch

1.2.5 Backup Your Project Securely

Version control protects your work by creating automatic backups and preserving
your project history. You can recover from computer crashes, accidental deletions,
and other disasters without losing progress.

Imagine working on a data science project for weeks, making steady progress on
your code and files. Your computer crashes, and you realize you don’t have a backup
of your project. You've lost all your hard work and must start from scratch. This
becomes a frustrating and time-consuming process that sets your project back sig-
nificantly.

Version control solves this by letting you create a repository for your project and
commit changes regularly. The repository serves as both project history and backup,
keeping your code safe. If your computer crashes or you accidentally delete a file,
you simply restore the project from the repository, as illustrated in Figure 1.5.

1.3 Use Git for Version Control
To implement effective version control and reap its benefits, developers need a ro-

bust tool. This is where Git comes into play. Gitis a free open-source version control
tool that’s ubiquitous and trusted by developers worldwide.

1.3.1 Key Git Concepts

Before diving into Git usage, let’s understand some key terminology:

10 © 2025 Khuyen Tran

Chapter 1. Version Control

Working Directory Remote Repository

Commit changes

»
P>

Changes stored safely

il [Compiter crashes
: file deleted]

Restore project

Working Directory Remote Repository

Figure 1.5: Restoring a project from a remote repository

« Working Directory: This is the directory on your computer where you're
actively working on your project files.

« Local Repository: This is a hidden .git folder in your working directory
that contains the complete history of your project. When you commit changes,
they are stored here.

+ Remote Repository: This is a version of your project hosted on a server
(like GitHub or GitLab). The Remote Repository allows you to back up your
code and collaborate with others. You can push changes to and pull updates
from your repository.

Figure 1.6 illustrates the components of Git version control.

Let’s explore how we can effectively use Git in different scenarios.

1.3.2 Scenario 1: Starting a New Project

When beginning a new data science project, establishing version control from the
start creates a solid foundation for development. This scenario covers the complete
workflow from initializing Git in your project directory to connecting with a remote
repository for backup and collaboration.

1.3.2.1 Overview

This workflow involves three main phases:

+ Creating the local repository

© 2025 Khuyen Tran 11

Chapter 1. Version Control

Your Computer

Working Directory

Contains Contains
Project Files Local Repository
Sync
Remoti Server

Remote Repository

Figure 1.6: Components of Git Version Control

» Making your first commit
« Connecting to a remote repository for backup

1.3.2.2 Step-by-Step Process
Phase 1: Initialize Local Repository
1. Initialize a new Git repository in your working directory:
git init
Phase 2: Create First Commit

2. Stage the changes or new files in your Git repository:

Add all changes and new files
git add .

3. Review the list of changes to be committed:

git status
Changes to be committed:

new file: .gitignore
new file: .pre-commit-config.yaml

12 © 2025 Khuyen Tran

Chapter 1. Version Control

4. Save the staged changes permanently in your local repository’s history along
with a commit message:

git commit -m 'init commit'

Phase 3: Connect to Remote Repository

5. Create a repository on GitHub/GitLab and add the remote connection. If
you're using GitHub as the remote repository, create a new repository on
GitHub and copy its URL. Then, add the URL to your local Git repository
with the name origin:

git remote add origin <repository URL>

6. Push your initial commit to establish the remote backup:

Push to the main branch on the origin repository
git push origin main

Figure 1.7 illustrates this workflow.

Working Directory Local Repository Remote Repository

git init

»
»

Initialize repository

git add & commit

»
»

Stage and save changes

git remote add

A

Link remote repo

git push

A\ 4

Upload changes

Local Repository

Working Directory Remote Repository

Figure 1.7: Initializing a Git repository and uploading the project to a remote repos-
itory

© 2025 Khuyen Tran 13

Chapter 1. Version Control

1.3.3 Scenario 2: Contributing to an Existing Project

When you want to contribute to an existing data science project, whether it’s an
open-source library or your team’s codebase, you need to safely integrate your
changes without disrupting the main project. This scenario covers the complete
workflow from forking and cloning to submitting your contributions through pull
requests.

1.3.3.1 Overview
This workflow involves four main phases:

+ Getting access to the project code

+ Setting up your local development environment
« Making and testing your changes

« Submitting your contributions for review

1.3.3.2 Step-by-Step Process
Phase 1: Get Access to the Project Code

1. Forkthe repository on GitHub if you don’t have write access to the main repos-
itory.
2. Usegit cloneto create alocal copy of the remote repository on your machine.

git clone https://github.com/username/project-name.git

Phase 2: Set Up Your Development Environment

3. Navigate to the project directory:

cd project-name

4. Create and switch to a new branch to safely develop your changes without
affecting the main codebase:

git checkout -b <branch-name>

Phase 3: Implement Your Changes
5. Make your code modifications in the new branch.

6. Stage, commit, and push your changes:

git add .
git commit -m "Descriptive message about your changes"
git push origin <branch-name>

Phase 4: Submit Your Contribution

14 © 2025 Khuyen Tran

Chapter 1. Version Control

7. Create a pull request on GitHub to propose merging your changes. This
enables project maintainers to review your contributions before integrating

them into the main project.
Default Branch

Figure 1.8 illustrates this process.

Feature Branch Remote Feature Branch

T
Make changes

Push changes

A4

Review and merge changes
>

>

Default Branch

Figure 1.8: Pull request workflow

Feature Branch Remote Feature Branch

1.3.4 Scenario 3: Staying Synchronized

When working on a team project or contributing to an active repository, the main
branch often receives updates while you’re developing your features. This scenario
covers how to keep your local work synchronized with remote changes to avoid con-
flicts and maintain a current codebase.

1.3.4.1 Overview
This workflow involves two main phases:

« Securing your current work
« Integrating remote updates

1.3.4.2 Step-by-Step Process
Phase 1: Secure Your Current Work

1. Ensure your local work is saved by staging and committing your local changes.
This prevents losing your progress:

git add .
git commit -m ‘commit-2'

Phase 2: Integrate Remote Updates

2. Pull changes from the remote main branch with git pull, which creates a
merge commit combining your work with the latest updates:

© 2025 Khuyen Tran 15

Chapter 1. Version Control

git pull origin main

Figure 1.9 illustrates this process.

Local Repository

Remote Repository
(feat-2 branch)

(main branch)

git pull origin main

A

Merge changes
I I

Local Repository
(feat-2 granch)

Remote Repository
(main branch)

Figure 1.9: Merging remote changes from the main branch into the local feat-2
branch

1.4 Best Practices in Version Control

1.4.1 Error Recovery and History Management

Have you ever pushed a commit and immediately realized it contained a bug?
When you need to undo changes in a shared repository, choosing the right recovery
method prevents disrupting team workflows and maintains project integrity.

Git provides two main approaches for handling these situations:

« Safe recovery with git revert: Creates new commits that undo changes,
preserving complete history

» History rewriting with git reset: Moves branch pointer to different com-
mits, effectively rewriting history

1.4.1.1 When You Need to Preserve History
Use git revert when:

« Commits have been pushed to shared repositories
« Working in team environments where history preservation is important
» You want to maintain a complete audit trail of changes

To revert a specific commit, first identify the commit hash:

git log

commit Ob9beel72936b45c3007b6bf6fa387ac51bdeb8c
commit-2

16 © 2025 Khuyen Tran

Chapter 1. Version Control

commit 992601c3fb66bfla39cec566bb88a832305d705f
commit-1

Then use git revert with the commit hash:
git revert 992601c3fb66bfla39cec566bb88a832305d705f

Figure 1.10 illustrates the git revert process.

1.4.1.2 When You Need to Remove Commits
Use git reset when:

« Commits exist only in your local repository
+ You need to completely remove commits from history
« Working on private feature branches before sharing

To reset commits, identify the target commit hash with git log, then choose your
reset type:

Soft reset: Keep changes staged
git reset --soft <commit-hash>

Mixed reset: Keep changes unstaged (default)
git reset <commit-hash>

Hard reset: Discard all changes
git reset --hard <commit-hash>

Figure 1.11 illustrates the git reset process.

Commit A Commit B Commit C Revert C

Figure 1.10: Git revert creates new commit to undo changes

"
Commit A Commit B Commit C

- Reset to B~

Figure 1.11: Git reset removes commits from history

Warning

Warning: Unlike git revert, git reset rewrites commit history. Never use
git reset on commits that have been pushed to a shared repository, as this

© 2025 Khuyen Tran 17

Chapter 1. Version Control

can cause problems for other team members.

1.4.2 Managing Uncommitted Work

Have you ever been deep in coding when you suddenly need to pull updates from
the remote repository, but your changes aren’t ready to commit? Properly manag-
ing work-in-progress prevents lost changes and maintains clean development work-
flows.

Git stash provides a solution for temporarily storing uncommitted changes:

« Temporary storage: Save current changes without creating commits
+ Clean workspace: Switch branches or pull updates safely
- Easy restoration: Reapply stashed changes when ready to continue

For example, when you have uncommitted changes but need to pull updates:

git status

On branch feat-2
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: filel.txt
modified: file2.txt

Use git stash to temporarily save your changes:

git stash

Now your working directory is clean:

git status

On branch feat-2
nothing to commit, working tree clean

You can safely pull updates:

git pull origin feat-2

After pulling, reapply your stashed changes:
git stash pop

On branch feat-2

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)
modified: filel.txt

18 © 2025 Khuyen Tran

Chapter 1. Version Control

modified: file2.txt
Dropped refs/stash@{0} (1234abcd5678efgh)

Figure 1.12 illustrates this process.

Working Directory

‘ Local Repository Remote Repository

T
Uncommitted changes‘

git stash

>

| Save changes temporarily |

git pull

A

I Update local branch

git stash pop

<

’ Reapply stashed changes |

‘ Local Repository Remote Repository

Working Directory

Figure 1.12: Stashing and reapplying changes during a pull operation

1.4.3 Ignore Large and Private Files

Have you ever tried to clone a repository only to wait ages for a massive download
to complete? When developers include large datasets or confidential credentials
in their Git repository, it creates bloated repositories that are slow, insecure, and
difficult to share.

Git’s ignore functionality solves this by letting you specify which files to exclude
from version control. This helps:

« Keep repositories small and efficient
« Protect sensitive information
« Reduce unnecessary version tracking of large binary files

Create a .gitignore file in your project’s root directory to specify which files and
directories Git should ignore (shown in Example 11.2).

© 2025 Khuyen Tran 19

Chapter 1. Version Control

Example 1.1 .gitignore

Ignore large data files
.CsvV

.parquet

.feather

.h5

* X X ¥

Ignore model files
.pkl

.joblib

.pt

¥ ¥ ¥ H

Ignore sensitive information
.env

Ignore Jupyter notebook checkpoints
.ipynb_checkpoints/

Ignore virtual environment
venv/
env/

Ignore IDE files
.vscode/

1.4.4 Commit Often and Logically

Have you ever struggled to understand what changed in a massive commit? Large
commits mixing unrelated changes make it difficult to review, understand, and se-
lectively revert specific modifications.

When commit focuses on a specific aspect of the project, it becomes easier to:

« Track changes and their impact

« Review code modifications

« Revert specific changes if needed

« Understand the project’s evolution

« Communicate what each commit does to other team members

Here are some examples of small commits with clear, descriptive messages:

Commit 1: Data preprocessing
git commit -m "Add data cleaning and preprocessing steps"

Commit 2: Feature engineering
git commit -m "Create new features for customer churn prediction"

20 © 2025 Khuyen Tran

Chapter 1. Version Control

Commit 3: Model training
git commit -m "Train initial random forest model"

Commit 4: Model evaluation
git commit -m "Add detailed model evaluation"

Commit 5: Model improvement
git commit -m "Optimize model hyperparameters"

1.4.5 Fetch Before Merge

Have you ever run git pull only to find unexpected merge conflicts or mysterious
code changes in your working directory? Using git pull automatically merges
remote changes without review, causing unexpected conflicts and unintentional
changes.

Instead, use git fetch followed by git merge to examine incoming changes before
merging. You can review new commits, check for conflicts, and decide when and
how to integrate updates into your work.

Here are the steps to fetch and merge remote changes:

1. Fetch the latest changes from the remote repository without modifying your
working directory.

git fetch origin

2. Review the changes:
Check differences between current branch and remote main
git log ..origin/main

e4f5g6h Update data preprocessing script
d7e8f9a Add new feature extraction function

3. Once you're satisfied with the changes, merge them:
git merge origin/main
Updating alb2c3d..e4f5g6h
Fast-forward
preprocessing.py | 15 ++++++ttttt+---

feature extraction.py | 25 ++++++++++ttttt++++++++++
2 files changed, 37 insertions(+), 3 deletions(-)

Figure 1.13 demonstrates this process.

© 2025 Khuyen Tran 21

Chapter 1. Version Control

Working Directory Local Repository Remote Repository

git fetch origin

| Update local copy l

git merge

<

‘ Merge remote changes |

I [

Working Directory Local Repository

Remote Repository

Figure 1.13: Fetching and merging remote changes

1.5 Key Takeaways

Version control is an essential tool for data scientists, enabling efficient collabora-
tion, experimentation, and project management. Here are the key takeaways from
this chapter:

1. Core benetfits of version control:
« Track changes and revert to previous versions when needed
Collaborate effectively with team members
« Reproduce results reliably
 Experiment safely without affecting production code
« Backup your project safely and securely
2. Git fundamentals:
« Working Directory: Where you make changes to files
 Local Repository: Stores complete project history
« Remote Repository: Hosts code for backup and collaboration
« Commits: Snapshots of changes with descriptive messages
» Branches: Isolated environments for feature development
3. Essential Git commands:
« git init: Start a new repository
+ git add & git commit: Save changes
» git push & git pull: Sync with remote repository
« git branch & git checkout: Manage different versions
» git merge: Combine changes from different branches
« git revert & git reset: Undo changes when needed
4. Best practices:
« Use .gitignore to exclude large files and sensitive data
« Make small, focused commits with clear messages
« Fetch before merging to review changes
+ Create feature branches for new development

22 © 2025 Khuyen Tran

Chapter 1. Version Control

» Usegit revert for shared repositories, git reset only locally
» Usegit stash for work-in-progress storage
+ Regularly sync with the remote repository

By following these practices and understanding these concepts, you can effectively
manage your code, collaborate with others, and maintain a clean, organized project
history.

© 2025 Khuyen Tran 23

