

Production Haskell (Deutsche Ausgabe)
Erfolg in der Industrie mit Haskell

Matt Parsons

Dieses Buch wird verkauft unter http://leanpub.com/production-haskell-de

Diese Version wurde veröffentlicht am 2024-08-13

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Möglichkeiten des Publizierens. Lean Publishing bedeutet die
wiederholte Veröffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschließenden Vermarktung des Buches. Lean Publishing
unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

© 2024 Matt Parsons

http://leanpub.com/production-haskell-de
https://leanpub.com/
https://leanpub.com/manifesto

Inhaltsverzeichnis

Einführung . i
Ein Meinungsfreudiger Reiseführer . i
Über den Autor . ii

Prinzipien . iv
Komplexität . iv
Neuheit . vii
Kohäsion . viii
Empathie . xi
Referenzen . xiv

I Haskell-Teams aufbauen 1

1. Haskell verkaufen . 2
1.1 Einschätzung der Aufnahmebereitschaft 2
1.2 Software-Produktivität . 3
1.3 Statistiken zur Produktivität . 3
1.4 Kennen Sie Ihre Konkurrenz . 5

2. Haskell Lernen und Lehren . 7
2.1 Die Philologie von Haskell . 7
2.2 Programmieren ist schwer zu lernen 8
2.3 Lernmaterialien auswählen . 9
2.4 Schreiben Sie viel Code . 9
2.5 Keine Angst vor dem GHC . 10
2.6 Einfach anfangen . 11
2.7 Reale Probleme lösen . 13
2.8 Pair-Programmierung . 14
2.9 Ein Dialog . 14

INHALTSVERZEICHNIS

2.10 Referenzen . 21

3. Haskeller einstellen . 22
3.1 Das zweischneidige Schwert . 22
3.2 Junioren und Senioren . 23
3.3 Einstellung von Senioren . 24
3.4 Juniors einstellen . 28

4. Bewertung von Beratungsfirmen . 31
4.1 Identifizierung des Ziels . 31
4.2 Well-Typed . 32
4.3 FP Complete . 33

5. Invertiere Deine Mocks! . 36
5.1 Effekte Dekomponieren . 37
5.2 Streaming-Zerlegung . 40
5.3 Einfachste Abstraktion . 44
5.4 Zerlegen!!! . 46
5.5 Was, wenn ich muss? . 47

6. Das Problem mit typisierten Fehlern . 50
6.1 Monolithische Fehlertypen sind schlecht 55
6.2 Boilerplate ade! . 56
6.3 Typklassen zur Rettung! . 58
6.4 Die Tugend von ungetypten Fehlern 59

7. Template Haskell ist nicht beängstigend 60
7.1 Ein Anfängertutorial . 60
7.2 Moment mal, das ist nicht Haskell, was mache ich hier 62
7.3 Konstruktion eines AST . 62
7.4 Boilerplate Ade! . 68

Einführung

Ein Meinungsfreudiger Reiseführer

Also, du hast Haskell gelernt. Du hast deinen Freunden etwas über Monaden beige-
bracht, hast einige Einsteiger-Lehrbücher durchgearbeitet und vielleicht mit einigen
Open-Source-Projekten gespielt. Jetzt, wo du einen Vorgeschmack bekommen hast,
willst du mehr: Du möchtest eine Anwendung in Haskell aus Spaß schreiben! Vielleicht
möchtest du Haskell bei der Arbeit einsetzen!

Du setzt dich an deinen Computer und bist ratlos.

Wie schafft es eigentlich jemand, mit dieser Sprache etwas zu erledigen?

Das ist eine häufige Frage.

Haskell hat immer eine Vielzahl an hochwertigen Lernmaterialien für fortgeschrittene
Teile der Sprache genossen, wenn man sich nicht vor akademischen Artikeln scheut.
In den letzten fünf Jahren haben viele Menschen fantastische Ressourcen für Anfänger
geschaffen. Jedoch gibt es nicht viele Ressourcen, um die Sprache in der Produktion
zu nutzen. Die Haskell-Ökosysteme können schwer zu navigieren sein. Es gibt viele
Ressourcen unterschiedlicher Qualität mit unklaren Zielen und Werten. Den richtigen
Rat zu finden, ist fast ebenso herausfordernd wie ihn überhaupt erst zu entdecken.

Haskell ist ein äußerst vielfältiges Umfeld. Es gibt viele regionale Gruppen: das Vereinig-
te Königreich, Skandinavien, das Festland Europas, Russland, die USA, Japan, China und
Indien verfügen alle über florierende Haskell-Ökosysteme mit interessanten Dialekten
und Unterschieden in Sitten und Gebräuchen.

Menschen kommen mit vielen verschiedenen Hintergründen zu Haskell. Einige haben
Haskell erst spät in ihrer Karriere gelernt und hatten vorher eine lange Karriere mit Java,
Scala oder C#. Einige kamen von dynamisch typisierten Sprachen wie LISP oder Ruby
zu Haskell. Einige begannen früh in ihrer Programmierkarriere mit Haskell und nutzen
es als Vergleichsbasis. Manche verwenden Haskell hauptsächlich in der akademischen
Forschung, während andere es hauptsächlich in industriellen Anwendungen nutzen.
Einige sind Hobbyisten und schreiben einfach gerne aus Spaß Haskell!

i

Einführung ii

Dieses Buch richtet sich an Personen, die Haskell in der Industrie schreiben möchten.
Die Kompromisse und Einschränkungen, denen industrielle Programmierer gegenüber-
stehen, unterscheiden sich von denen akademischer oder Hobby-Programmierer. Dieses
Buch behandelt nicht nur technische Aspekte der Haskell-Sprache, sondern auch soziale
und ingenieurtechnische Anliegen, die nicht “wirklich” mit Haskell zu tun haben.

Ein Teil dieses Buches wird objektiv sein. Ich werde dir beibringen, wie man einige
interessante Techniken und Ideen nutzt, um die Entwicklung mit Haskell produktiver
zumachen.Wir werden über Template Haskell, Typ-Level-Programmierung und andere
spannende Themen lernen.

Jedoch ist dieses Buch größtenteils von Natur aus subjektiv. Da Haskell so vielen
Ökosystemen dient, ist es unerlässlich zu erkennen, für welches Ökosystem etwas
gedacht ist. Mehr als nur Rezepte zu geben - “Diese Bibliothek ist produktionsreif! Das
ist ein Spielzeug!” - hoffe ich, meinen Denkprozess zu zeigen und dir zu ermöglichen,
eigene Urteile zu fällen.

Letztendlich ist dies ein Buch über die soziale Realität des Software-Engineerings in
einer Nischensprache.

Nach dem Lesen dieses Buches solltest du dich wohlfühlen:

• Große Softwareprojekte in Haskell zu schreiben
• Konkurrenzfähige Bibliotheken und Techniken zu bewerten
• Material von einer Vielzahl von Haskell-Nutzern produktiv zu lesen

Über den Autor

Ich bin Matt Parsons.

Ich begann im Januar 2014 mit der Informatik 101 an der Universität von Georgia
mit dem Programmieren. Zu der Zeit arbeitete ich in der IT-Abteilung, installierte
Windows und behebt Druckerprobleme. Mein Vorgesetzter mochte mich nicht und
machte deutlich, dass er mich bei jeder Gelegenheit unter den Bus werfen würde. Ich
war verzweifelt auf der Suche nach einer neuen Karriere und hatte eine Menge College-
Credits von einem gescheiterten Versuch eines Biochemie-Studiums. Informatik schien
die beste Option zu sein, um aus diesem Job herauszukommen.

CS101 brachte mir die Grundlagen der Java-Programmierung bei. Keines der lokalen
Startups oder Programmierer nutzten oder mochten Java, also fragte ich, was ich
lernen sollte, um schnell einen Job zu bekommen. JavaScript und Ruby waren die

Einführung iii

Top-Optionen. Ich lernte JavaScript in jenem Sommer mit dem ausgezeichneten Buch
Eloquent JavaScript¹, das Kapitel über funktionale Programmierung und objektorien-
tierte Programmierung hatte. Ich fand das Kapitel über funktionale Programmierung
intuitiver, also merkte ich mir, die funktionalste Sprache zu lernen, die ich finden konnte.
Einige Monate später begann ich mit dem Lernen von Haskell und Ruby on Rails.

Ich kündigte meinen IT-Job im Dezember 2014, um Vollzeitstudent zu werden. Mitte
Januar hatte ich ein Rails-Praktikum bei einem lokalen Startup - so viel zum Vollzeitstu-
dium.

Mein Gehirn nahm Haskell schnell auf. Ich hatte kaum begonnen, imperativ und
objektorientiert zu programmieren, sodass die schwierige Neuheit, neues Fachjargon
und Konzepte zu lernen, erwartet wurde. Die Ruby-Sprache war bemerkenswert emp-
fänglich für die Implementierung von Haskell-Ideen, obwohl die Community nicht
so begeistert war. Die Konzepte, die ich in Haskell lernte, halfen mir, in Ruby leicht
testbaren und zuverlässigen Code zu schreiben.

Im August 2015 begann ich ein Haskell-Praktikum, wo ich Webanwendungen und
schnelle Parser bauen durfte. Ich durfte Haskell in meinem Kurs für Künstliche In-
telligenz verwenden. In meinem letzten Semester am College nutzte ich Haskell in
meiner Bachelorarbeit, um die Verbindung zwischen Kategorientheorie,Modallogik und
verteilten Systemen zu untersuchen.

Ich habe das Glück, diese Möglichkeiten gehabt zu haben, da sie mich für den Erfolg
mit Haskell vorbereitet haben. Mein erster Job nach dem Studium bestand darin, PHP-
Anwendungen in Neuentwicklungen mit Haskell zu konvertieren, und seitdem arbeite
ich Vollzeit mit Haskell. Ich habe in verschiedenen Kontexten gearbeitet: Einem Startup,
das nicht zu 100% von Haskell überzeugt war, einem größeren Unternehmen, das von
Haskell überzeugt war, aber mit sozialen und technischen Schwierigkeiten eines riesigen
Code-Bestands und Entwicklungsteams zu kämpfen hatte, und einem Startup, das von
Haskell überzeugt war und auf Wachstum hinarbeitete. Ich trage auch zu vielen Open-
Source-Projekten bei und bin mit den meisten Ökosystemen vertraut. Alles in allem
habe ich mit Millionen von Zeilen Haskell-Code gearbeitet.

Ich habe gesehen, wie Haskell scheitert. Ich habe gesehen, wie es erfolgreich ist. Ich
möchte Ihnen helfen, mit Haskell erfolgreich zu sein.

¹https://eloquent-javascript.net

https://eloquent-javascript.net/
https://eloquent-javascript.net/

Prinzipien
Dieser Abschnitt dokumentiert die Leitprinzipien für das Buch. Ich habe festgestellt,
dass diese Kernideen wichtig sind, um erfolgreiche Haskell-Projekte zu verwalten.

• Komplexität
• Neuheit
• Kohäsion
• Empathie

Komplexität

Das Management von Komplexität ist die wichtigste und schwierigste Aufgabe bei
Haskell-Projekten.

Das ist so wichtig, dass ich daraus das erste Prinzip mache, und ich sage es sogar
zweimal:

Das Management von Komplexität ist die wichtigste und schwierigste Aufgabe bei
Haskell-Projekten.

Genauso wie es “technische Schulden” gibt, gibt es ein “Komplexitätsbudget.” Sie
verwenden Ihr Komplexitätsbudget, indem Sie ausgefallene Technologien nutzen, und
Sie verwenden Ihr Neuheitsbudget, indem Sie neue oder interessante oder andere Tech-
nologien auswählen. Sie können Ihr Budget erhöhen, indem Sie erfahrene Ingenieure
und Berater einstellen. Im Gegensatz zu technischen Schulden haben diese Budgets
einen realen und direkten Einfluss auf Ihr tatsächliches finanzielles Budget.

Komplexität ist ein Fat Tail

Es ist leicht, die Übel der Komplexität zu beklagen, wenn man nur über Komplexität
spricht. Aber wir nehmen Komplexität nicht für sich allein auf. Codebasen übernehmen
kleine Funktionen, clevere Tricks und Sicherheitsfunktionen langsam. Mit der Zeit
akkumulieren sie sich zu hochkomplexen Systemen, die schwer zu verstehen sind. Das
passiert sogar, wenn jedes zusätzliche Stück Komplexität scheinbar sein eigenes Gewicht
trägt!

iv

Prinzipien v

Wie passiert das?

Eine Codeeinheit steht nicht allein. Sie muss sich auf den Code beziehen, der sie verwen-
det, sowie auf den Code, den sie aufruft. Es sei denn, sie ist sorgfältig versteckt, muss
die durch eine Codeeinheit eingeführte Komplexität von allen Codes, die sie verwenden,
behandelt werden. Wir müssen die Beziehungen zwischen den Codeeinheiten sowie
die Einheiten selbst berücksichtigen. Deshalb fügen sich zwei Stücke Komplexität nicht
einfach zusammen - sie multiplizieren sich! Leider multiplizieren sich die Vorteile der
Komplexität nicht - sie sind normalerweise nur additiv.

Ein System, das schwer zu verstehen ist, ist schwer zu bearbeiten. Schließlich kann
ein System so schwer verständlich werden, dass es zu einer Blackbox wird, mit der
man praktisch nicht arbeiten kann. In diesem Fall ist ein kompletter Neuanfang oft die
angenehmste Option für das Projekt. Das tötet oft das Projekt, wenn nicht sogar das
Unternehmen. Das müssen wir vermeiden.

Komplexität malt uns in eine Ecke. Sicherheitsfunktionen besonders schränken unsere
Optionen ein und reduzieren die Flexibilität des Systems. Schließlich besteht der ganze
Sinn von “Programmsicherheit” darin, ungültige Programme zu verbieten. Wenn sich
die Anforderungen ändern und sich die Vorstellung eines “ungültigen Programms”
ebenfalls ändert, können die Sicherheitsfunktionen hinderlich werden. Komplexität
birgt ein Risiko bei jeder Änderung der Codebasis.

Die Kosten oder die Zeit, die erforderlich sind, um ein komplexes System zu ändern,
vorherzusagen, ist schwierig. Die Varianz dieser Vorhersagen wächst mit der Komplexi-
tät des Systems. Aufgaben, die einfach erscheinen, könnten extrem schwierig werden,
und es wird ebenso problematisch sein, Schätzungen über die verbleibende Zeit zur
Fertigstellung einer Aufgabe abzugeben.

In der Messung betrachten wir Genauigkeit und Präzision als separate Konzepte.
Eine präzise Messung oder Vorhersage ist hochgradig konsistent - für eine gegebene
Wahrheit wird sie eine ähnliche Messung konsistent melden. Eine genaue Messung
oder Vorhersage liegt nahe an der tatsächlichenWahrheit. Wir können uns Vorhersagen
vorstellen, die präzise, aber nicht genau sind, sowie genaue, aber nicht präzise.

Komplexe Systeme verschlechtern sowohl die Präzision als auch die Genauigkeit
von Vorhersagen. Präzision ist das ernstere Problem. Unternehmen verlassen sich auf
Prognosen und Regelmäßigkeit, um Pläne zu machen. Wenn die Vorhersage unpräzise
wird, wird es schwieriger, das Geschäft aufrechtzuerhalten.

Ein hochkomplexes System ist dann eher katastrophalen Ausfällen ausgesetzt als ein
einfaches System. Das gilt selbst dann, wenn das System in jeder anderen Hinsicht
besser ist! Stellen Sie sich zwei Autos vor - eines fährt 100 Meilen pro Gallone, kann mit

Prinzipien vi

200 Meilen pro Stunde fahren und nimmt Kurven wie ein Traum. Das andere ist viel
schlechter: nur 40 Meilen pro Gallone und eine Höchstgeschwindigkeit von 60 Meilen
pro Stunde. Natürlich gibt es einen Haken: Das erste Auto wird relativ oft und zufällig
ausfallen, und es kann bis zu einer Woche dauern, es zu reparieren. Das zweite Auto ist
nicht perfekt, aber es fällt einmal im Jahr zuverlässig aus, und es dauert immer einen
Tag, es zu reparieren.

Wenn Sie ein Auto brauchen, um zur Arbeit zu kommen, und nur ein Auto haben
können, dann wollen Sie das zweite Auto. Sicher, das erste Auto kann schneller fahren
und kostet weniger, aber die wesentliche Qualität, die Sie bei einem Pendlerfahrzeug
brauchen, ist Zuverlässigkeit.

Komplexität mindern

Wir kehren zu einem häufigen Thema in diesem Buch zurück: die Vielfalt der Öko-
systeme. Können Sie sich eine Gruppe vorstellen, die das erste Auto bevorzugen
würde? Hobbyisten! Und professionelle Rennfahrer, die Ersatzautos haben können! Und
Ingenieure, die fortschrittliche Automobiltechnologie studieren!

Haskell dient in erster Linie der akademischen Forschung als funktionale Program-
miersprache. Die industrielle Nutzung ist ein sekundäres Anliegen. Viele Haskeller
sind auch Hobbyisten, die es hauptsächlich zum Spaß nutzen. Dies sind alles gültige
Verwendungen von Haskell, aber akademische und hobbyistische Praktiker glauben
normalerweise, dass ihre Techniken für die Industrie geeignet sind. Leider funktionieren
sie oft nicht so gut, wie sie hoffen.

Wenn Sie in Haskell nach zwei Autos fragen, werden Sie oft hören, dass Leute das
schnelle Auto empfehlen. Versuchen Sie, mehr über die betreffenden Personen zu
erfahren. Sind sie tatsächlich das schnelle Auto gefahren? Als Pendler? Sind sie dafür
verantwortlich, es zu reparieren, wenn es kaputt geht?

Leute werden Ihnen fantastische und wunderbare Lösungen für Ihre Probleme empfeh-
len. Genießen Sie diese mit Vorsicht. Es gibt nur wenige Codebasen in Haskell, bei denen
eine Technik umfassend untersucht wurde. Nur wenige dieser Untersuchungen gehen
in den allgemeinen Wissensschatz ein.

Der beste Weg, den Erfolg Ihres Haskell-Projekts zu garantieren, besteht darin, die
Komplexität zu bewältigen und die einfachste mögliche Lösung zu bevorzugen.

Warum ist das schwierig?

Haskell selektiert für eine bestimmte Art von Person.

Prinzipien vii

Hobby- und Industrieprogrammierer folgen einem Weg. Wenn Sie keine Freude an
Neuheit und Schwierigkeit haben, werden Sie es schwer haben, eine so neuartige und
komplexe Sprache überhaupt zu lernen. Die meisten Haskell-Entwickler lernen Haskell
in ihrer Freizeit, indem sie persönliche Projekte verfolgen oder intellektuellesWachstum
anstreben. Die Lernmaterialien von Haskell, die sich in letzter Zeit stark verbessert
haben, sind immer noch so schwierig, dass nur entschlossene Menschen mit einer
großen Toleranz für Neuheit und Frustration es schaffen.

Akademische Programmierer tendieren dazu, einen anderen Weg zu folgen. Viele von
ihnen lernen Haskell in Universitätskursen, mit einem Professor, Lehrassistenten und
anderen Kommilitonen, die Unterstützung bieten. Sie verfolgen ihre Forschung und
Studien, um die Grenzen von Programmiersprachen und der Informatik zu erweitern.
Viel akademische Arbeit ist eher ein Machbarkeitsnachweis als eine robuste industrielle
Implementierung. Die resultierenden Arbeiten sind oft ziemlich komplex und fragil.

Die Programmiersprache Haskell ist dafür auch teilweise verantwortlich. Starke Typen
und funktionale Programmierung können Schutz bieten. Programmierer fühlen sich oft
viel selbstbewusster, wenn sie mit diesen Sicherheiten arbeiten. Dieses Selbstvertrauen
ermöglicht es den Entwicklern, nach größeren und komplexeren Lösungen zu streben.

Infolgedessen tendieren ein Großteil des Ökosystems und der Gemeinschaft dazu, weni-
ger abgeneigt gegenüber Komplexität und Neuheit zu sein. Hobbyisten und Akademiker
werden auch von einem anderen Satz von Anreizen angetrieben als Industrieprogram-
mierer. Komplexität und Neuheit sammeln sich schnell in Haskell-Projekten an, wenn
man sie nicht aggressiv kontrolliert.

Neuheit

Neuheit ist die zweite Gefahr in einem Haskell-Projekt. Sie ist fast so gefährlich wie die
Komplexität, und tatsächlich ist das Problem mit der Komplexität oft die Neuheit, die
damit einhergeht.

Im Gegensatz zu einem Komplexitätsbudget, das durch den Einsatz von Geld für
Expertise erhöht werden kann, ist Ihr Neuheitsbudget schwerer zu erhöhen. Neue
Techniken sind in der Regel schwer einzustellen. Sie sind schwer zu erlernen und zu
dokumentieren.

Wenn Sie Haskell als Anwendungssprache ausgewählt haben, haben Sie bereits einen
Großteil Ihrer Komplexitäts- und Neuheitsbudgets ausgegeben. Sie werden wahrschein-
lich grundlegende Bibliotheken für Ihre Domäne schreiben oder pflegen müssen - daher
müssen Sie Bibliotheksingenieure einstellen (oder sich mit der Vergabe dieser Arbeiten

Prinzipien viii

wohlfühlen). Sie müssen ein Verständnis für GHC entwickeln - sowohl den Compiler
als auch das Laufzeitsystem. Expertise (und Beratung) zu diesen Themen ist schwieriger
zu finden als das Tuning der JVM oder des CLR. Vieles dieses Verständnisses kann über
die Prototypenphase hinausgeschoben werden - die Bibliothekssituation von Haskell ist
für viele Domänen gut genug, und die Leistung von GHC ist von Haus aus so gut genug,
dass Sie prototypen können und damit zurechtkommen.

Da Haskell ein großer Posten im Komplexitäts-/Neuheitsbudget ist, ist es wichtig, bei
den restlichen Komponenten auf kostengünstige Entscheidungen zu setzen. Probieren
Sie keine ausgefallene neue Graphdatenbank für Ihre App aus - bleiben Sie bei Post-
gres. Probieren Sie vor allem keine ausgefallenen In-Haskell-Datenbanken aus! Das
Festhalten an Industriestandards und gängiger Technologie eröffnet ein breiteres und
vielfältigeres Feld an Ingenieuren zur Einstellung.

Jede Anforderung, die Sie in Ihrer Stellenausschreibung für einen Entwickler stellen, er-
höht die Schwierigkeit und die Kosten der Einstellung. Haskell ist eine seltene Fähigkeit.
Jahre der Erfahrung mit Haskell im Produktionsbetrieb mit ausgefallenen Bibliotheken
und Techniken sind noch seltener. Die Produktivitätsvorteile von Haskell sind real,
aber diese gelten nur beim Schreiben, Lesen und Verstehen von Code. Dokumentation,
Anforderungen und Qualitätssicherung nehmen genauso viel Zeit in Anspruch wie in
anderen Sprachen.

Kohäsion

Zwei Ingenieure streiten sich wieder einmal über ihre persönlichen Vorlieben. Sie
seufzen und bewerten die Argumente. Beide Lösungen sind in Ordnung. Sicher, sie
haben Kompromisse, aber das hat alles.

Haskell-Ingenieure sind ungewöhnlich meinungsstark, sogar für Software-Ingenieure.
Haskell selbst ist stark meinungsstark - rein funktionale Programmierung ist das einzige
Paradigma, das die Sprache direkt unterstützt. Softwareentwickler, die funktionale
Programmierung lernen möchten und nicht allzu meinungsstark darüber sind, lernen
typischerweise mit JavaScript oder einer weniger extremen funktionalen Sprache wie
OCaml, F# oder Scala. Wenn Sie erfolgreich Haskell lernen, sind Sie wahrscheinlich
ziemlich meinungsstark darüber, wie man es macht!

Die Vielfalt im Haskell-Ökosystem führt zu vielen unterschiedlichen Praktiken und Kon-
ventionen. Der Haskell-Compiler GHC selbst hat viele verschiedene Formatierungsstile
und Konzepte, und viele davon sind spezifisch für dieses Projekt. Ich habe Unterschiede
im Stil bemerkt, die stark mit den kulturellen Zentren korrespondieren - die Ost-

Prinzipien ix

und Westküste der Vereinigten Staaten unterscheiden sich, ebenso wie die Stile der
Niederlande, Schottland und Schweden.

Vanilla Haskell ist flexibel genug. GHCHaskell, die faktische Standardimplementierung,
erlaubt eine große Vielzahl semantischer und syntaktischer Variationen durch Sprach-
Erweiterungen. MultiWayIf, LambdaCase und BlockArguments bieten syn-
taktische Änderungen der Sprache. Die Erweiterungen MultiParamTypeClasses
+ FunctionalDependencies können verwendet werden, um Typenprogrammie-
rung durchzuführen, die weitgehend TypeFamilies entspricht, und welche zu
verwenden ist oft eine Frage der persönlichen Vorliebe. Viele Probleme lassen sich
genauso leicht mit entweder TemplateHaskell oder Generic ableiten lösen, aber
die wirklichen Kompromisse werden oft zugunsten persönlicher Vorlieben ignoriert.

In der Zwischenzeit tragen die verschiedenen Ökosysteme alle konkurrierende Ideen
dazu bei, wie man etwas machen kann. Es gibt oft viele konkurrierende Bibliotheken
für grundlegende Hilfsprogramme, die jeweils einen leicht unterschiedlichen Ansatz
bieten. Menschen entwickeln starke Meinungen zu diesen Hilfsprogrammen, oft unver-
hältnismäßig zu den tatsächlichen Kompromissen, die damit verbunden sind. Ich bin
sicherlich schuldig dessen!

Ein Mangel an Kohäsion kann die Produktivität eines Projekts beeinträchtigen. Erfolg-
reiche Projekte sollten einige Anstrengungen darauf verwenden, Kohäsion aufrechtzu-
erhalten. Die Förderung von Kohäsion ist ein Sonderfall der Vermeidung von Neuheit -
man wählt eine Methode, um Dinge zu tun, und widersteht dann dem Drang, mit einer
anderen Methode zur Problemlösung weitere Neuheiten einzuführen.

Kohäsiver Stil

Haskells Syntax ist extrem flexibel. Bedeutender Leerraum ermöglicht wunderschön
eleganten Code sowie schwierige Parser-Regeln. Vertikale Ausrichtung wird zur Kunst-
form, und die Struktur des Textes kann die Struktur der zugrunde liegenden Berechnung
andeuten. Code wird nicht mehr nur gelesen, sondern wie ein Gedicht angeordnet.
Leider kann diese Schönheit oft das Warten und Verstehen von Code beeinträchtigen.

Projekte sollten einen Stil-Leitfaden übernehmen und sie sollten automatisierte Werk-
zeuge verwenden, um die Einhaltung zu unterstützen. Es gibt vieleWerkzeuge, die dabei
helfen können, aber die Vielfalt der Haskell-Syntax macht es schwierig, sich auf eine
vollständige Lösung festzulegen. Die Erkundung der Kompromisse eines bestimmten
Codestils liegt außerhalb des Umfangs dieses Kapitels, aber ein konsistenter ist wichtig
für die Produktivität.

Prinzipien x

Kohäsive Effekte

Haskeller haben eine enorme Menge an Gedanken und Anstrengungen in das Konzept
von ‘Effekten’ gesteckt. Jede andere Sprache baut ihr Effektsystem in die Sprache selbst
ein, und es ist normalerweise nur imperatives Programmieren mit unbegrenzter Mutati-
on, Ausnahmen und einem gewissen impliziten globalen Kontext. In Haskell haben wir
ein einziges ‘Standard’-Effektsystem - den IO-Typ. Direkt in IO zu schreiben, fühlt sich
unangenehm an, weil es weniger bequem ist als viele imperative Programmiersprachen,
also erfinden wir Erweiterungen, die sich gut anfühlen. All diese Erweiterungen haben
Kompromisse.

Wenn Sie ein exotisches Effektsystem in Ihrer Anwendung verwenden, sollten Sie es
konsequent nutzen. Sie sollten bereit sein, neue Mitarbeiter darin zu schulen und sie
zu lehren, wie man es verwendet, wie man es debuggt und wie man es bei Bedarf
modifiziert. Wenn Sie ein Standard-Effektsystem verwenden, sollten Sie versuchen,
neuartige Effektsysteme nicht einzubeziehen.

Kohäsive Bibliotheken

Es gibt über ein Dutzend Logging-Bibliotheken auf Hackage. Nicht-Logging-
Bibliotheken (wie z.B. Datenbank- oder Webbibliotheken) verlassen sich oft auf
eine einzige Logging-Bibliothek, anstatt diese Verantwortung auf die Anwendung
zu abstrahieren. Infolgedessen ist es einfach, mehrere Logging-Bibliotheken in Ihrer
Anwendung zu sammeln. Sie werden sich auf eine einzige Logging-Bibliothek
standardisieren wollen und dann Adapter für die anderen Bibliotheken nach Bedarf
schreiben.

Diese Situation zeigt sich in anderen Bereichen in Haskell. Es gibt viele mögliche
Situationen, und einige zugrunde liegende Bibliotheken zwingen Sie dazu, mit mehreren
umzugehen. Der Weg des geringsten Widerstands verwendet einfach, was auch immer
die zugrunde liegende Bibliothek tut. Sie sollten dem widerstehen und sich stattdessen
darauf konzentrieren, an einer einzigen Lösung festzuhalten.

Kohäsive Teams

Wenn Sie zwei Entwickler einstellen, die widersprüchlicheMeinungen haben und keiner
von beiden bereit ist, nachzugeben, werden Sie Konflikte in Ihrem Projekt erleben.
Haskeller sind in meiner Erfahrung besonders eigenwillig in dieser Hinsicht. Es ist daher
wichtig, die Standards Ihres Teams in Stellenanzeigen zu kommunizieren. Während Sie

Prinzipien xi

neue Mitarbeiter interviewen, sollten Sie prüfen, wie meinungsstark sie sind und ob sie
Ihre Meinungen teilen.

Glücklicherweise sind keine der starken Meinungen, die ein Haskeller haben könnte,
auf rassische, geschlechtliche, sexuelle oder religiöse Linien ausgerichtet. Sich darauf
zu konzentrieren, eine starke Teamkohäsion zu entwickeln, steht im Einklang mit der
Einstellung einer vielfältigen Gruppe von Menschen.

Empathie

Das letzte Prinzip dieses Buches ist Empathie.

Softwareentwickler sind einigermaßen bekannt dafür, sich in großen Ego-Kämpfen zu
engagieren. Betrachten Sie die Python vs. Ruby Flame Wars oder wie jeder JavaScript
hasst. Über PHP schlecht zu reden, ist weit verbreitet und akzeptiert, und ich weiß, dass
ich sicherlich schuldig bin. Wenn wir auf unsere eigene Perspektive beschränkt sind,
kann es schwierig sein, zu verstehen, warum andere Menschen andere Entscheidungen
treffen.

Die Realität ist komplexer. PHP bietet eine kurze Lernkurve, um produktive Websites in
einer wichtigen Nische zu erstellen. Ruby löst reale Probleme, die echte Programmierer
haben. Python löst andere reale Probleme, die echte Programmierer haben. JavaScript
hat sich weit über sein ursprüngliches Nischenfeld hinaus entwickelt, und JavaScript-
Entwickler arbeiten hart daran, ihre Probleme auf schöne Weise zu lösen.

Um effektiv zu kommunizieren, müssen wir zuerst unser Publikum verstehen. Um
effektiv zuzuhören, müssen wir zuerst den Sprecher verstehen. Dies ist eine wechsel-
seitige Angelegenheit, und es erfordert echten Einsatz von allen Seiten, damit gute
Kommunikation stattfinden kann.

Wenn wir Software lesen oder bewerten, versuchen wir zuerst zu verstehen, woher
sie kommt und welche Probleme sie löst. Dann versuchen wir, die Einschränkungen
zu verstehen, die zu den getroffenen Entscheidungen führten, und vermeiden unnötig
breite negative Bewertungen. Haskell wird von einer besonders breiten Gruppe von
Menschen in verschiedenen Ökosystemen genutzt, hat aber gleichzeitig eine relativ
kleine Gesamtanzahl vonMenschen, die zu einem bestimmten Zeitpunkt daran arbeiten.
Es ist leicht, Missverständnisse zu verursachen und Schaden anzurichten, daher müssen
wir gezielt darauf achten, dies zu vermeiden.

Prinzipien xii

Empathie: Für dich selbst

Haskell ist schwer zu erlernen. Es gibt nicht viele Ressourcen, um Haskell erfolgreich
in der Industrie einzusetzen. Ich habe viele Fehler gemacht, und das wirst du auch
tun. Es ist wichtig, dass ich Empathie für mich selbst habe. Ich weiß, dass ich mein
Bestes gebe, um zu produzieren, zu lehren und zu helfen, auch wenn ich Fehler mache.
Wenn ich diese Fehler mache - selbst wenn sie Schaden verursachen - versuche ich, den
angerichteten Schaden zu erkennen. Ich verzeihe mir selbst und lerne dann, was ich
kann, um diese Fehler in Zukunft ohne obsessive Beurteilung zu vermeiden.

Auch du wirst Fehler machen und Schaden anrichten, während du diese neue Welt
erkundest. Das ist in Ordnung. Irren ist menschlich! Und sich auf unsere Fehler zu
konzentrieren verursacht mehr Leiden und blockiert Heilung. Verzeihe dir selbst für
deine Schwierigkeiten. Verstehe diese Schwierigkeiten. Lerne von ihnen und überwinde
sie!

Empathie: Für dein vergangenes Ich

Dein vergangenes Ich war begeistert von einer neuen Technik und konnte es kaum
erwarten, sie anzuwenden. Es fühlte sich so schlau und zufrieden mit der Lösung! Lass
uns an ihr Glück erinnern und ihnen das Chaos verzeihen, das sie uns hinterlassen haben.
Behalte das Gefühl von Frustration und Angst im Hinterkopf und verzeihe dir selbst,
dass du ihnen begegnest. Diese Gefühle sind normal und ein Zeichen von Wachstum
und Fürsorge.

Vielleicht haben sie etwas übersehen, das im Problemfeld jetzt für dich völlig offen-
sichtlich erscheint. Sie taten damals ihr Bestes mit dem, was sie hatten. Schließlich
hat es der Menschheit fast 9.000 Jahre gedauert, den Kalkül zu erfinden, den wir
zuverlässig Teenagern beibringen können. Deine Frustration und dein Unglaube sind der
Treibstoff, den du brauchst, um zuwachsen und deinem zukünftigen Ichmehr Empathie
entgegenzubringen.

Empathie: Für dein zukünftiges Ich

Jeder weiß, dass Debugging doppelt so schwer ist wie das Schreiben eines
Programms. Wenn du also so clever bist, wie du kannst, wenn du es
schreibst, wie wirst du es jemals debuggen?

• Brian Kernighan, The Elements of Programming Style, 2. Auflage, Kapitel 2

Prinzipien xiii

Dein zukünftiges Ich ist müde, gelangweilt und hat den gesamten Kontext dieser Code-
zeile nicht im Kopf. Schreibe Code, der für sie funktioniert. Schreibe Dokumentation,
die offensichtlich und langweilig erscheint. Stell dir vor, du hast alles vergessen, was du
weißt, und musst es neu lernen - was würdest du aufschreiben?

Software ist schwierig, und du kannst nicht immer 100% deines Gehirns und deiner
Energie in alles stecken. Schreibe etwas, das leichter zu verstehen ist, als du denkst, dass
es notwendig ist, selbst wenn du denkst, dass es einen schwerwiegenden Fehler hat.

Empathie: Für deine Teamkollegen

Gesunde Selbstempathie ist eine Voraussetzung für gesunde Empathie gegenüber ande-
ren Menschen.

So schwierig es auch ist, mit sich selbst empathisch zu sein, ist es noch schwieriger, mit
anderen empathisch zu sein. Du kennst deinen inneren Zustand und deine Gefühle. Viel-
leicht erinnerst du dich sogar an deine vergangenen Zustände. Und du kannst vielleicht
(mit unterschiedlicher Zuverlässigkeit) vorhersagen, wie du auf etwas reagieren wirst.

All diese Intuitionen sind bei anderen Menschen viel schwächer. Wir müssen unser
Verständnis und unsere Vergebung auch auf unsere Teamkollegen anwenden. Sie
arbeiten mit uns zusammen und geben ihr Bestes.

Empathie: Für dein Publikum

Ich entschuldige mich im Voraus für jeglichen Schaden, den dieses Buch verursachen
könnte. Ich hoffe, dass das Publikum meines Buches es für Erfolg und Glück in ihrer
Karriere und ihren Geschäftsprojekten nutzen wird. Ich erkenne auch an, dass mein Rat
- unvermeidlich - misskommuniziert oder falsch angewendet wird und Schaden und
Leiden verursacht.

Ebensomusst du, wenn du Code schreibst, dein Publikum berücksichtigen. Duwirst Teil
deines Publikums sein, daher werden dir die Lektionen, die du über dein Vergangenes-
Ich und Zukunfts-Ich gelernt hast, hilfreich sein. Wenn du Code für eine Anwendung
schreibst, dann bedenke alle Menschen, die ihn lesen könnten. Du wirst die Bedürfnisse
von Anfängern, Neulingen, erfahrenen Entwicklern und Experten berücksichtigen
wollen.

Dies vollständig zu tun, ist unmöglich, daher musst du die Kompromisse sorgfältig
abwägen.Wenn du erwartest, dass dein Publikum hauptsächlich neu in Haskell ist, dann
schreibe einfach und klar. Wenn du fortgeschrittene Fähigkeiten und ausgefallene Tech-
niken benötigst, mach eine Notiz davon und schreibe Beispiele und Dokumentationen,

Prinzipien xiv

um zu demonstrieren, was vor sich geht. Es ist nichts falsch daran, ein Warnsignal oder
eine Notiz anzubringen, um darauf hinzuweisen, dass etwas schwierig sein könnte!

Empathie: Für die Geschäftsleute

Das ist besonders schwer. Sie werden nie Ihren Code lesen. Und sie ändern oft die Anfor-
derungen nach Belieben, ohne Rücksicht auf die Abstraktionen, die Sie entwickelt haben.
Aber - letztendlich - sind wir hier, um Code zu schreiben, der es dem Unternehmen
ermöglicht, profitabel zu sein.

Wir können Empathie für ihre Bedürfnisse haben, indem wir unseren Code ihren
Launen offen lassen. Ein Projekt sollte sich entwickeln und ändern können, ohne neu
geboren werden zu müssen.

Wenn das Unternehmen scheitert, sind wir alle ohne Job. Wenn genug Haskell-Projekte
scheitern, werden wir nicht genug Haskell-Jobs für alle haben, die einen wollen. Und,
am besorgniserregendsten, wenn zu viele Haskell-Projekte scheitern, wird Haskell keine
tragfähige Wahl in der Industrie sein.

Ich glaube, dass alle Haskeller in der Industrie eine Verantwortung gegenüber ihrer
Gemeinschaft haben, um ihren Projekten zum Erfolg zu verhelfen. Dieses Buch ist das
Ergebnis dieses Glaubens.

Referenzen

• You Need a Novelty Budget²
• You have a complexity budget³

²https://www.shimweasel.com/2018/08/25/novelty-budgets
³https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512

https://www.shimweasel.com/2018/08/25/novelty-budgets
https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512
https://www.shimweasel.com/2018/08/25/novelty-budgets
https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512

I Haskell-Teams aufbauen

1. Haskell verkaufen
Dumöchtest Haskell bei der Arbeit einsetzen. Dein Chef ist skeptisch – ist Haskell nicht
eine obskure, ausgefallene, akademische Programmiersprache? Hat es nicht schreckliche
Build-Tools und miserable IDEs? Ist es nicht super schwer zu lernen und zu benutzen?

Haskell-Skeptiker haben viele gemeine Dinge über Haskell zu sagen. Wenn dein Chef
ein Haskell-Skeptiker ist, wirst du wahrscheinlich Haskell in deinem aktuellen Job
nicht einsetzen können. Wenn dein Chef offener dafür ist, Haskell auszuprobieren, und
du die Aufgabe hast, die Eignung von Haskell für eine Aufgabe zu bewerten, dann
wirst du Haskell verkaufen. Um Haskell effektiv zu verkaufen, müssen wir unsere
Programmierer-Mentalität ablegen und die Geschäftsperspektive einnehmen.

Der kluge Geschäftsmann wird das tun, was den größten Gewinn bringt, und wird
langfristige Vorteile gegen kurzfristige Kosten abwägen. Haskell kann das Ergebnis eines
Unternehmens tatsächlich verbessern, und wenn du Haskell verkaufst, musst du wissen,
wie du dafür argumentieren kannst.

1.1 Einschätzung der Aufnahmebereitschaft

Ist deine Firma ein Ruby-Shop? Hassen deine Kollegen statische Typen, lieben Mon-
keypatching und stören sich nicht an gelegentlichen Produktionsabstürzen durch nil-
Fehler? Wenn ja, wirst du wahrscheinlich keinen großen Erfolg haben, ihnen Haskell
schmackhaft zu machen. Um von Haskell überzeugt zu werden, ist es gut, wenn das
Team die gleichen Werte teilt, die die Haskell-Sprache verkörpert.

Auf der anderen Seite hat ein solcher Shop ammeisten von Haskell zu gewinnen. Gibt es
ein Stück Kerninfrastruktur, das langsam und fehlerhaft ist und den Gewinn erheblich
bremst? Wenn ja, könntest du diesen Teil der Infrastruktur neu schreiben und dem
Unternehmen einen enormen Nutzen bieten. Meine Vorgänger bei einem früheren Job
überzeugten das Management, Haskell für eine Neuschreibung zu verwenden, anstatt
einen weiteren Versuch in PHP zu starten, und ich wurde eingestellt, um dies zu tun.
Die Haskell-Version des Dienstes benötigte 1/10 der Cloud-Ressourcen, um zu laufen,
und beseitigte einen Engpass, der es uns ermöglichte, unseren größeren Kunden mehr
Geld zu berechnen.

2

Haskell verkaufen 3

Wenn dein Unternehmen bereits Entwickler beschäftigt, die mit statisch typisierten
funktionalen Sprachen wie Scala oder F# vertraut sind, wirst du es leichter haben, sie
von Haskell zu überzeugen. Vermutlich schätzen sie bereits die Stärken von Haskell,
weshalb sie sich für eine funktionale Sprache entschieden haben. Es könnte jedoch sein,
dass nicht genug Gewinn aus dem Schreiben eines Dienstes in Haskell zu ziehen ist –
schließlich ist Scala ja schon fast dort. Die Entwickler könnten das Gefühl haben, dass
der zusätzliche Aufwand, eine weitere Sprache in den Stack aufzunehmen, minimalen
Nutzen bringt, da es so nah dran ist. In diesem Fall musst du sie von anderen Vorteilen
überzeugen, die Haskell bietet.

1.2 Software-Produktivität

Wir wollen behaupten, dass Haskell die Produktivität von Softwareentwicklern steigern
wird. Dies führt zu reduzierten Entwicklerkosten und erhöhtem Gewinn durch neue
Funktionen. Wir müssen jedoch die Entwicklerproduktivität auf einem etwas nuancier-
ten Niveau verstehen, um dies angemessen zu verkaufen.

Wie messen wir die Produktivität von Entwicklern? Es ist nicht einfach. Es gibt viele
Studien, und alle sind schlecht. Unabhängig von deiner Position zu einer bestimmten
Praxis (dynamische vs. statische Typen, Paarprogrammierung, formale Verifikation,
Wasserfall, agil, usw.) wirst du eine Studie finden, die das unterstützt, was du denkst.
Wir wissen einfach nicht, wie wir die wissenschaftliche Methode effektiv und genau
nutzen können, um die Produktivität von Entwicklern zu messen.

Wie behaupten wir dann, dass Haskell sie verbessert? Wir können nur unsere Erfahrun-
gen nutzen – anekdotische Evidenz. Ebenso können unsere Argumente – bestenfalls –
Menschen dazu bringen, offen zu sein, unsere Erfahrungen zu teilen. Die erfahrungsba-
sierte Natur der Entwicklerproduktivität bedeutet, dass wir in den Ingenieuren, die wir
überzeugen möchten, einen offenen Geist kultivieren müssen, und dann müssen wir sie
dazu führen, die gleichen Erfahrungen zu machen.

Wir werden ein bisschen darüber im Kapitel “Lernen und Lehren von Haskell” erfahren.

1.3 Statistiken zur Produktivität

Das Management interessiert sich für Produktivität, aber es interessiert sich nicht nur
dafür, wie schnell du eine Funktion herausbringen kannst. Es interessiert sich dafür, wie
gut du vorhersagen kannst, wie lange eine Funktion dauern wird. Es interessiert sich

Haskell verkaufen 4

dafür, wie groß der Unterschied in der Produktivität zwischen den Teammitgliedern
sein wird. Varianz ist für das Management wichtig.

Die Statistik gibt uns Werkzeuge, um über die Aggregation von Daten nachzudenken.
Der Durchschnitt wird berechnet, indem alle Einträge summiert und durch die Anzahl
geteilt werden. Es ist das häufigste statistische Maß, kann aber auch schrecklich
irreführend sein. Das durchschnittliche Einkommen in den Vereinigten Staaten beträgt
72.000 $, und du könntest das hören und denken, dass die meisten Menschen in etwa
diesen Betrag verdienen. Tatsächlich verdienen die meisten Menschen weniger als
diesen Betrag.

Ein anderes Maß, der Median, ist angemessener. Der Median ist der Mittelpunkt der
Verteilung, was bedeutet, dass die Hälfte aller Werte über dem Median und die Hälfte
aller Werte unter dem Median liegt. Das Medianeinkommen eines Haushalts beträgt
61.000 $. Der Durchschnitt ist viel höher als der Median, was bedeutet, dass es eine
kleine Anzahl von Menschen gibt, die eine enorme Menge an Geld verdienen. Um zu
wissen, ob ein Durchschnitt oder ein Median für deinen Zweck angemessener ist, musst
du die Verteilung deiner Daten kennen.

Ihr Softwareteam hat möglicherweise eine beeindruckende durchschnittliche Entwick-
lerproduktivität. Dies könnte daran liegen, dass Sie eine Gruppe von überdurchschnittli-
chen Entwicklern haben. Es kann auch daran liegen, dass Sie einen extrem produktiven
Entwickler und eine Gruppe von unterdurchschnittlichen Entwicklern haben. Ein stark
unausgewogenes Team stellt ein Risiko für das Unternehmen dar, da der Verlust eines
einzelnen Entwicklers drastische Konsequenzen haben könnte. Das Management wird
aus diesem Grund eine hohe Median-Entwicklerproduktivität der durchschnittlichen
vorziehen.

Was das Management jedoch wirklich möchte, ist eine geringe Varianz zwischen den
Entwicklern. Varianz ist der Durchschnitt der quadrierten Abweichung vom Durch-
schnitt. Die Abweichung wird quadriert, damit negative und positive Abweichungen
gleichermaßen berücksichtigt werden. Ein Team mit hoher Varianz wird einige Ent-
wickler deutlich über und unter dem Median haben. Dies ist riskant, da die genaue
Zuweisung von Entwicklern drastisch beeinflussen kann, wie schnell und effektiv
Software entwickelt wird. Ein Team mit geringer Varianz wird die meisten Entwickler
relativ nah beieinander in Bezug auf ihre Fähigkeiten haben. Dies reduziert das Risiko,
da ein einzelner Entwickler in den Urlaub gehen kann, ohne die durchschnittliche
Fähigkeit des Teams signifikant zu verändern.

Größere Unternehmen neigen dazu, die Varianz in der individuellen Produktivität zu
minimieren. Sie können es sich leisten, viele Software-Ingenieure einzustellen, und sie
möchten, dass ihr Personal austauschbar und ersetzbar ist. Dies dient nicht ausschließ-
lich dazu, die Mitarbeiter zu entmenschlichen und abzuwerten - es ist einfacher, Urlaub

Haskell verkaufen 5

oder Elternzeit zu nehmen, wennman nicht der einzige ist, der die Arbeit erledigen kann.
Es führt jedoch in der Regel zu einer reduzierten Produktivität für die Spitzenleister.

Es ist eine gültige Entscheidung, auf geringe Varianz zu setzen. Tatsächlich ergibt dies
für Unternehmen viel Sinn. Elm und Go sind zwei neue Programmiersprachen, die
Einfachheit und leichte Erlernbarkeit betonen. Sie opfern Abstraktion und Ausdrucks-
kraft, um die Varianz der Entwicklung in der Sprache zu reduzieren. Das bedeutet,
dass ein Elm-Experte nicht viel produktiver ist als ein Elm-Anfänger. Elm- oder Go-
Programmierer können die Sprache schnell erlernen und so produktiv sein, wie sie es
jemals sein werden. Das Management liebt dies, weil die Einarbeitung neuer Entwickler
schnell geht, man nicht die besten und klügsten einstellen muss, und man zuverlässig
Dinge erledigt bekommt.

Haskell ist keine Sprache mit geringer Varianz. Haskell ist eine Sprache mit extrem
hoher Varianz. Es dauert relativ lange, um minimal kompetent zu werden, und das
Potenzial in Bezug auf Fähigkeiten ist nach oben hin offen. Haskell wird aktiv in der
Wissenschaft eingesetzt, um die Grenzen des Software-Engineerings zu erweitern und
neue Techniken zu entdecken. Experten aus Industrie und Wissenschaft arbeiten hart
daran, Haskell neue Funktionen hinzuzufügen. Der Unterschied in der Produktivität
zwischen jemandem, der es seit Jahren verwendet, und jemandem, der es sechs Monate
studiert hat, ist enorm.

Die Beachtung der Varianz ist entscheidend. Wenn Sie mit Haskell arbeiten, setzen
Sie bereits auf das obere Ende der Varianzkurve. Wenn Sie fortgeschrittene oder
ausgefallene Haskell-Bibliotheken und -Funktionen auswählen, erhöhen Sie die Varianz.
Je schwieriger es ist, in Ihren Code einzusteigen, desto weniger werden Ihre Kollegen
es genießen, und desto skeptischer werden sie gegenüber Haskell insgesamt sein. Aus
diesem Grund ist es wichtig, die einfachsten Haskell-Materialien zu bevorzugen, die Sie
verwenden können.

1.4 Kennen Sie Ihre Konkurrenz

Konkurrenz existiert in jedem Verkaufs- und Marketingproblem. Ihre Konkurrenz beim
Verkauf von Haskell wird hart sein - mehrere andere Programmiersprachen werden
ebenfalls überzeugende Vorteile haben. Haskell muss die Vorteile anderer Sprachen mit
den technischen Gewinnen übertreffen, die erzielt werden können.

In einigen Bereichen, wie Compiler-Design oderWeb-Programmierung, verfügt Haskell
über ausreichende Bibliotheken und eine Community, die es Ihnen ermöglicht, schnell
produktiv zu sein. Die Sprache ist gut positioniert, um einen überzeugenden Vorteil zu

Haskell verkaufen 6

bieten. Andere Bereiche haben nicht so viel Glück, und die Bibliothekssituation wird in
einer anderen Sprache besser sein als in Ihrer.

Wenn Ihr Haskell-Projekt aus irgendeinem Grund scheitert, wird das Projekt in einer
anderen Sprache neu geschrieben. Sie werden wahrscheinlich keine Gelegenheit be-
kommen, es “noch einmal zu versuchen.” Unternehmen sind in der Regel nicht bereit,
außerhalb ihrer Kernkompetenz Wetten abzuschließen, und die Wahl der Program-
miersprache gehört wahrscheinlich nicht zu dieser Kernkompetenz. Deshalb sollten Sie
darauf achten, Haskell als sichere, gewinnende Wahl zu positionieren, mit erheblichen
Vorteilen gegenüber der Konkurrenz.

2. Haskell Lernen und Lehren
Wenn Sie möchten, dass Ihr Haskell-Projekt erfolgreich ist, müssen Sie neue Haskeller
betreuen und unterrichten. Es ist möglich, eine Weile nur erfahrene Ingenieure einzu-
stellen, aber schließlich werden Sie Juniors einstellen wollen. Neben der Ausbildung
und dem Wachstum der Haskell-Community werden Sie neue Perspektiven und Erfah-
rungen gewinnen, die dazu beitragen, Ihren Code robuster zu machen.

2.1 Die Philologie von Haskell

Haskell zu lernen ist ähnlich wie das Erlernen jeder anderen Sprache. Der große
Unterschied besteht darin, dass die meisten Erfahrungen mit dem “Erlernen einer
Programmiersprache” professionelle Ingenieure sind, die eine weitere Sprache lernen,
oft in einer ähnlichen Sprachfamilie. Wenn Sie Java kennen und dann C# lernen, wird
die Erfahrung reibungslos verlaufen - Sie können C# praktisch lernen, indem Sie auf
die Unterschiede zu Java achten. Von Java zu Ruby zu wechseln ist ein größerer Sprung,
aber sie sind beide imperative Programmiersprachenmit viel eingebauter Unterstützung
für objektorientierte Programmierung.

Lassen Sie uns ein wenig über die Geschichte der Programmiersprachen lernen. Dies
ist nützlich zu verstehen, da es hervorhebt, wie anders Haskell im Vergleich zu anderen
Sprachen wirklich ist.

Am Anfang gab es Maschinensprache - Assembler. Dies war fehleranfällig und schwer
zu schreiben, also erfand Grace Hopper den ersten Compiler, der es Programmierern
ermöglichte, höhere Programmiersprachen zu schreiben. Die 1950er und 1960er Jahre
brachten uns viele grundlegende Programmiersprachen: ALGOL (1958) und FORTRAN
(1957) waren frühe imperative Programmiersprachen. LISP (1958) wurde entwickelt, um
KI zu studieren, und wird oft als die erste funktionale Programmiersprache anerkannt.
Simula (1962) war die erste objektorientierte Programmiersprache, direkt inspiriert von
ALGOL.

Smalltalk (1972) versuchte, die objektorientierte Programmierung von Grund auf neu zu
gestalten. Die Programmiersprache C (1972) wurde entwickelt, um beim Betriebssystem
UNIX zu helfen. In der Zwischenzeit führte StandardML (1973) diemoderne funktionale
Programmierung ein, wie wir sie heute kennen. Prolog (1972) und SQL (1974) wurden

7

Haskell Lernen und Lehren 8

ebenfalls in diesem Zeitraum erfunden. Diese Sprachen definieren größtenteils die
Sprachfamilien, die heute gebräuchlich sind.

C++ übernahm Lektionen von Simula und Smalltalk, um C mit objektorientiertem
Verhalten zu erweitern. Java fügte C++ einen Garbage Collector hinzu. Ruby, JavaScript,
Python, PHP, Perl usw. gehören alle zu dieser Sprachfamilie - imperative Programmier-
sprachen mit einem gewissen Grad an objektorientierter Unterstützung. Tatsächlich
gehören fast alle gängigen Sprachen heute zu dieser Familie!

In der Zwischenzeit entwickelte sich Standard ML weiter, und Theoretiker der Pro-
grammiersprachen wollten die funktionale Programmierung genauer untersuchen. Die
Programmiersprache Miranda (1985) war ein Schritt in diese Richtung - sie bietet träge
Auswertung und ein starkes Typsystem. Das Haskell-Komiteewurde gegründet, um eine
Sprache zu schaffen, die die Forschung in der trägen funktionalen Programmierung
vereinheitlicht. Schließlich wurde 1990 die erste Version der Programmiersprache
Haskell veröffentlicht.

Haskell wurde hauptsächlich als Vehikel für die Forschung zu funktionalen Program-
mierungstechnologien genutzt. Viele Menschen erhielten ihre Promotionen, indem sie
Haskell oder GHC mit neuen Funktionen oder Techniken erweiterten. Haskell war bis
Mitte der 2000er Jahre keine praktische Wahl für industrielle Anwendungen. Das Buch
“Real World Haskell” von Don Stewart, Bryan O’Sullivan und John Goerzen zeigte, dass
es endlich möglich war, Haskell zur Lösung von Industrieproblemen zu verwenden. Die
GHC-Laufzeit war schnell und unterstützte hervorragendes Threading.

Zum Zeitpunkt dieses Schreibens ist es 2022. Haskell ist in einer Reihe von Bereichen
erstklassig. Haskell - mehr als alles andere - ist radikal anders als andere Programmier-
sprachen. Die Sprache hat sich nicht mit der Industrie entwickelt. Die Akademie war für
die Forschung, das Design und die Entwicklung verantwortlich. Fast 30 Jahre parallele
Entwicklung fanden statt, um Haskell von Java zu unterscheiden.

2.2 Programmieren ist schwer zu lernen

Wenn Sie ein erfahrener Ingenieur mit zehn Jahren Erfahrung sind, haben Sie wahr-
scheinlich eine Menge Sprachen gelernt. Vielleicht haben Sie kürzlich Go, Rust oder
Swift gelernt und fanden es nicht schwierig. Dann versuchen Sie, Haskell zu lernen,
und plötzlich stehen Sie vor einer Schwierigkeit, die Sie lange nicht mehr gespürt haben.
Diese Schwierigkeit ist die Herausforderung eines neuen Paradigmas.

Die meisten professionellen Programmierer beginnenmit dem Erlernen der imperativen
Programmierung und nehmen später die objektorientierte Programmierung auf. Der

Haskell Lernen und Lehren 9

Großteil ihres Codes ist solide imperativ, mit einigen objektorientierten Elementen.
Daran ist nichts falsch - dieser Stil von Code funktioniert wirklich und löst echte
Geschäftsprobleme, unabhängig davon, wie komplex Programme werden, wenn sie
wachsen. Viele Programmierer haben vergessen, wie schwierig es ist, die imperative
Programmierung zu erlernen oder überhaupt wie eine Maschine zu denken.

Ich möchte mich in diesem Abschnitt auf das Prinzip der Empathie konzentrieren.
Programmieren ist schwer zu lernen. Trivial bedeutet das, dass funktionale Program-
mierung schwer zu lernen ist.

Die Erfahrung, etwas Neues zu erlernen, kann oft unangenehme Gefühle hervorrufen.
Frustration, Traurigkeit und Wut sind häufige Reaktionen auf diese Schwierigkeit. Wir
müssen uns jedoch nicht in diesen Emotionen verlieren. Versuchen Sie, die Erfahrung
positiv umzudeuten: Sie lernen! Genauso wie Muskelkater nach dem Sport ein Zeichen
dafür ist, dass Sie stärker werden, ist leichte Frustration beim Lernen ein Zeichen
dafür, dass Sie Ihren Horizont erweitern. Diese positive Einstellung wird Ihnen helfen,
schneller und angenehmer zu lernen.

2.3 Lernmaterialien auswählen

Ich bevorzuge Haskell Programming from First Principles¹. Chris Allen und Julie
Moronuki haben hart daran gearbeitet, dass das Buch zugänglich ist und das Material
an frischen Studenten getestet. Ich habe es persönlich verwendet, um vielen Menschen
beim Lernen von Haskell zu helfen. Ich habe das Buch als Eckpfeiler des Haskell-
Lehrplans und Ausbildungsprogramms bei Mercury verwendet, wo wir Leute darauf
trainieren, in 2-8 Wochen produktive Haskell-Entwickler zu werden.

2.4 Schreiben Sie viel Code

Beim Lernen und Lehren von Haskell ist es wichtig, einen schnellen Feedback-Kreis
zu ermöglichen. Ablenkungen zu minimieren ist ebenfalls wichtig. Aus diesem Grund
empfehle ich, minimale Werkzeuge zu verwenden - ein einfacher Texteditor mit
Syntaxhervorhebung ist ausreichend. Komplizierte IDEs und Plugins behindern oft den
Lernprozess. Die Zeit, die Sie mit der Einrichtung Ihrer Editor-Situation verbringen, ist
Zeit, die Sie nicht tatsächlich mit dem Lernen von Haskell verbringen.

Studenten sollten sichmitghci vertraut machen, umAusdrücke zu evaluieren und ihre
Arbeit mit :reload neu zu laden, um schnell Rückmeldungen zu erhalten. Das Tool

¹https://haskellbook.com/

https://haskellbook.com/
https://haskellbook.com/

Haskell Lernen und Lehren 10

ghcid² kann diesen Prozess automatisieren, indem es relevante Dateien überwacht
und neu lädt, sobald eine geändert wird.

Wennwir Haskell lernen, besteht die große Herausforderung darin, ein mentales Modell
davon zu entwickeln, wie GHC funktioniert. Ich empfehle, ein “prädiktives Modell” von
GHC zu entwickeln. Ändere zuerst eine Kleinigkeit im Code. Bevor du speicherst, sage
voraus, was deiner Meinung nach passieren wird. Dann speichere die Datei und sieh dir
das Ergebnis an.

Wenn dich das Ergebnis überrascht, ist das gut! Du hast die Gelegenheit, dein Modell
zu verfeinern. Entwickele eine Hypothese, warum deine Vorhersage nicht eingetroffen
ist. Teste dann diese Vorhersage.

Compiler-Fehler zeigen uns, dass etwas nicht stimmt. Wir sollten dann versuchen, eine
Hypothese darüber zu entwickeln, was schiefgelaufen ist. Warum hat mein Code diesen
Fehler?Was habe ich erwartet, dass er tut?Wie unterscheidet sichmeinmentalesModell
von Haskell von dem Verständnis, das GHC hat?

Programmieren ist stilles Wissen. Es reicht nicht aus, darüber zu lesen. Das Lesen
informiert die analytischen und verbalen Teile unseres Gehirns. Aber Programmieren
greift auf viel mehr zurück, was nur durch praktisches Tun wirklich trainiert wird.
Wir müssen Code schreiben – viel davon – und wir müssen auf dem Weg viele Fehler
machen!

2.5 Keine Angst vor dem GHC

Viele Studenten entwickeln eine Abneigung gegen Fehlermeldungen. Sie fühlen Urteil
und Verurteilung durch sie – “Ach, ich bin nicht klug genug, um es richtig zu verstehen!”
In anderen Programmiersprachen sind Compiler-Fehler oft wenig hilfreich, obwohl
sie eine Bildschirmladung an Ausgabe erzeugen. Infolgedessen überspringen sie oft
das Lesen der Fehlermeldungen vollständig. Studenten dazu zu bringen, wirklich die
Compiler-Fehler von GHC zu lesen, hilft erheblich beim Lernen von Haskell. Die
Fehlermeldungen von GHC sind oft hilfreicher als in anderen Sprachen, auch wenn
sie anfangs schwer zu lesen sein können.

Wir wollen die Beziehung der Menschen zu ihren Compilern verbessern. Fehlermeldun-
gen sind Geschenke, die der Compiler dir gibt. Sie sind eine Seite eines Gesprächs, das
du mit einem Computer führst, um ein gemeinsames Ziel zu erreichen. Manchmal sind
sie nicht hilfreich, besonders wenn wir nicht gelernt haben, zwischen den Zeilen zu
lesen.

²https://hackage.haskell.org/package/ghcid

https://hackage.haskell.org/package/ghcid
https://hackage.haskell.org/package/ghcid

Haskell Lernen und Lehren 11

Eine Fehlermeldung bedeutet nicht, dass du nicht klug genug bist. Die Nachricht ist
GHCs Art zu sagen: “Ich kann nicht verstehen, was du geschrieben hast.” GHC ist kein
perfektes Wesen, das in der Lage ist, jede vernünftige Idee zu verstehen – tatsächlich
sind viele hervorragende Ideen durchHaskells Typsystem verboten! Eine Fehlermeldung
kann als Frage von GHC gesehen werden, als Versuch, Klarheit zu gewinnen, um
herauszufinden, was du wirklich gemeint hast.

2.6 Einfach anfangen

Beim Schreiben von Code für einen Anfänger versuche ich, so einfach wie möglich zu
bleiben. “Einfach” ist ein vages Konzept, aber um präziser zu sein, meine ich etwas wie
die kleinste transitive Hülle von Konzepten zu bevorzugen. Oder, “Ideen mit wenigen
Abhängigkeiten.”

Dies bedeutet, viele case-Ausdrücke und explizite Lambdas zu schreiben. Diese
beiden Merkmale sind die grundlegenden Bausteine von Haskell. Studenten können
diese Ausdrücke später vereinfachen, als Lernübung, aber darauf sollten wir uns nicht
konzentrieren – stattdessen sollten wir uns darauf konzentrieren, tatsächliche Probleme
zu lösen! Zusätzliche Sprachstrukturen können im Laufe der Zeit eingeführt werden,
wenn der Student Komfort und Fähigkeiten mit den Grundlagen zeigt.

Als Beispiel, nehmen wir an, wir versuchen, map auf Listen neu zu schreiben:

1 map :: (a -> b) -> [a] -> [b]

2 map function list = ???

Ich würde dem Studenten empfehlen, damit zu beginnen, einen case Ausdruck
einzuführen.

1 map function list =

2 case ??? of

3 patterns ->

4 ???

Was können wir für diese ??? und patterns einsetzen? Nun, wir haben eine list
Variable. Lassen Sie uns das einfügen:

Haskell Lernen und Lehren 12

1 map function list =

2 case list of

3 patterns

Was sind die Muster für eine Liste? Wir können die Dokumentation einsehen und fest-
stellen, dass es zwei Konstruktoren gibt, auf die wir einen Musterabgleich durchführen
können:

1 map function list =

2 case list of

3 [] ->

4 ???

5 (head : tail) ->

6 ???

Die Verwendung eines case-Ausdrucks hat unser Problem in zwei kleinere Probleme
unterteilt. Was können wir zurückgeben, wenn wir eine leere Liste haben? Wir haben
[] als möglichen Wert. Wenn wir eine nicht-leere Liste erstellen wollten, müssten wir
einen b-Wert haben, aber wir haben keinen, also können wir ihn nicht einsetzen.

Für den Fall der nicht-leeren Liste haben wir head :: a und tail :: [a]. Wir
wissen, dass wir die function auf head anwenden können, um ein b zu erhalten.
Wenn wir uns unser “Werkzeugkasten” ansehen, ist der einzige Weg, wie wir ein [b]
erhalten können, indem wir map function aufrufen.

1 map function list =

2 case list of

3 [] ->

4 []

5 (head : tail) ->

6 function head : map function tail

Wir möchten mit einem relativ kleinen Werkzeugkasten von Konzepten beginnen.
Funktionen, Datentypen und case-Ausdrücke werden uns lange Zeit gute Dienste
leisten. Viele Probleme lassen sich leicht mit diesen grundlegenden Bausteinen lösen,
und es ist wichtig, ein starkes grundlegendes Verständnis für ihre Leistungsfähigkeit zu
entwickeln, insbesondere für Anfänger in Haskell.

Haskell Lernen und Lehren 13

Dies knüpft an unsere Prinzipien der Neuheit und Komplexität an. Wir möchten
Konzepte langsam hinzufügen, um uns nicht zu überfordern. Während wir Konzepte
einführen, müssen wir nicht nur das Konzept selbst betrachten, sondern auch, wie dieses
Konzept mit jedem anderen uns bekannten Konzept interagiert. Dies kann leicht zu viel
werden!

2.7 Reale Probleme lösen

Es dauert einige Zeit, bis man sich darauf vorbereitet hat, aber ein Anfänger kann lernen,
den IO-Typ gut genug zu nutzen, um grundlegende Dienstprogramme zu schreiben,
ohne alle Besonderheiten der Monaden zu verstehen. Betrachten Sie schließlich dieses
Beispielprogramm in Java, Ruby und schließlich Haskell:

Java:

1 public class Greeter {

2 public static void main(string[] args) {

3 Scanner in = new Scanner(System.in);

4 String name = in.nextLine();

5 System.out.println("Hello, " + name);

6 }

7 }

Ruby:

1 name = gets

2 puts "Hello" + name

Haskell:

1 main = do

2 name <- getLine

3 putStrLn ("Hello, " ++ name)

Der Java-Code enthält viele Funktionen. Sie müssen nicht erklärt werden. In meinen
Java 101 Kursen an der Universität wurde uns gesagt, wir sollten es einfach “kopieren

Haskell Lernen und Lehren 14

und einfügen” und eine Erklärung würde später folgen. Das hat für mich einigermaßen
funktioniert. Schließlich werden Computer oft als Black Boxes mit mysteriöser magi-
scher Kraft wahrgenommen: Programmiersprachen ähnlich zu behandeln, fühlt sich
natürlich und normal an.

Ein Anfänger kann die übliche Haskell-Ausbildung durchlaufen, indem er Functor,
Monad, Monoid usw. Instanzen für gängige Typen definiert und gleichzeitig grundle-
gende Dienstprogramme und Beispiele entwickelt.

2.8 Pair-Programmierung

Pair-Programmierung kann eine großartige Möglichkeit sein, die implizite Natur der
Programmierung in Haskell zu zeigen. Der Fahrer kann Pairing auch als Gelegenheit
nutzen, um anzugeben und sein eigenes Ego zu füttern, was dem Anfänger schadet. Der
Lehrer muss große Sorgfalt walten lassen, um Empathie für den Lernenden zu haben.

Der Fahrer wird langsamer werden wollen und seinen Denkprozess erklären. Ich
finde es hilfreich, verbale Erklärungen in “Beobachtung der Realität”, “Bemerkung
von Gefühlen” und “Diskussion von Strategien” zu unterteilen. Diese Technik stammt
aus der Gewaltfreien Kommunikation. Ich werde auch mein Vorhersagemodell verbal
erklären. Zum Beispiel, wenn ich ein Problem löse, könnte ich normalerweise ein
paar Vorhersagen überspringen und eine größere Änderung vornehmen, wenn ich
alleine programmiere. Beim Pairing werde ich stattdessen meine Vorhersage äußern,
die Änderung vornehmen und das Ergebnis durchsprechen.

Der Schüler wird aufmerksam sein und Fragen stellen wollen. Hab keine Angst zu
unterbrechen - der Zweck der Übung besteht hauptsächlich darin, Wissen und Praxis
vom Fahrer zu übertragen. Ein großer Teil des Nutzens besteht jedoch darin, den Fahrer
dazu zu bringen, klar über das nachzudenken, was sie tun! Der Fahrer sollte von einer
guten Frage genauso profitieren wie der Schüler.

Leider ist „Pair-Programmierung“ auf diese Weise eine implizite Übung, genau wie das
Programmieren selbst. Ich kann meine Strategien und Techniken für eine erfolgreiche
Sitzung beschreiben, aber der beste Weg, um zu lernen, ist durch Beobachtung und
Teilnahme. Lassen Sie uns ein hypothetisches Beispiel durchgehen.

2.9 Ein Dialog

(Dinge, die ich vielleicht denke, stehen in Klammern. Ich werde sie tatsächlich nicht sa-
gen, weil es wichtig ist, den Schüler nicht mit unnötigen Abschweifungen abzulenken.)

Haskell Lernen und Lehren 15

Schüler: Hey, stört es dich, wenn wir bei etwas zusammenarbeiten?

Matt: Sicher! Ich würde mich freuen.

S: Meine Aufgabe ist es, unsere Benutzerliste zu nehmen und herauszufinden, wie viele
E-Mail-Konten zu jedem Hosting-Dienst gehören.

M: Okay, cool. Also im Grunde zählen, wie viele @gmail.com und @yahoo.com
usw. es gibt?

S: Ja. Ich bin mir nicht sicher, wie ich anfangen soll! Ich weiß, dass ich es in SQL machen
kann, aber ich würde lieber lernen, wie man es in Haskell macht.

M: Sicher! Okay, zuerst werde ich unsere Datenbanktypen überprüfen. Ich möchte
meine Annahmen darüber überprüfen, wie unsere Daten strukturiert sind, da dies
die Quelle unserer Informationen ist. Ich werde zu der Datei navigieren, die unsere
Definition enthält. Hier ist der Typ:

1 data User = User

2 { userId :: UserId

3 , userName :: Text

4 , userEmail :: EmailAddress

5 , userIsAdmin :: Bool

6 }

S: Also möchten wir jeden User nehmen und die EmailAddress überprüfen. Wie
sieht dieser Typ aus?

M: Gute Frage! Wenn ich die Datei nach EmailAddress durchsuchen, finde
ich nichts. Also werde ich die Datei nach Email durchsuchen, da das näher
dran ist. Das führt mich zur Importliste, wo ich sehe, dass wir ein Modul namens
Text.Email.Validate importieren.

S: Woher kommt das?

M: Ich bin mir nicht sicher. Ich sehe dieses Modul nicht in unserem Projekt gelistet,
was bedeutet, dass es in einer Abhängigkeit ist. Also werde ich jetzt meinen Browser
öffnen und auf stackage.org nach EmailAddress suchen. Es gibt hier ein paar
Ergebnisse, und das erste ist ein Paket namens email-validate in einem Modul
Text.Email.Parser. Da es die gleiche Text.Email.* Struktur teilt und es eine
Validierung hat, vermute ich, dass es das ist.

S: Ja, ich glaube nicht, dass es aus der Kryptobibliothek kommt, und wir verwenden
pushbullet nicht, also ist das pushbullet-types wahrscheinlich nicht.

Haskell Lernen und Lehren 16

M: Gute Beobachtung!

S: OK! Ich glaube, ich weiß, was als nächstes kommt. Das Modul exportiert eine Funk-
tion domainPart :: EmailAddress -> ByteString. Also können wir das
verwenden, um die Domain für eine E-Mail zu bekommen!

M: Das ist auch mein Tipp. Jetzt, da wir unsere primitiven Typen verstanden haben,
lasst uns die Signatur aufschreiben. Was ist deine Vermutung für eine erste Signatur?

S: Ich glaube, ich würde hier anfangen:

1 solution :: Database [(ByteString, Int)]

Die ByteStrings sind der domainPart, und die Int ist unsere Zählung.

M: Das klingt gut. Ich würde wahrscheinlich etwas anderes wählen, aber lassen Sie uns
das zuerst erkunden.

S: Warum?

M: Nun, immer wenn ich ein [(a, b)] sehe, denke ich sofort an ein Map a b. Aber
wir können es einfach halten und einfach versuchen, dieses Problem zu lösen. Wenn es
zu nervig wird, suchen wir nach einer alternativen Lösung.

S: Okay, das funktioniert für mich! Ich sehe wirklich nicht, wie ein Map gerade für
uns funktioniert - wir machen keine Nachschlagevorgänge. Also das Erste, was ich tun
möchte, ist, alle Benutzer zu erhalten.

1 solution = do

2 users <- selectAllUsers

3 ???

Sobald ich die Benutzer habe, möchte ich die E-Mail-Adressen erhalten.

1 solution = do

2 users <- selectAllUsers

3 let emails = map userEmail users

M: Gute Verwendung von map dort!

S: Als nächstes möchte ich die Domain-Teile extrahieren.

Haskell Lernen und Lehren 17

1 solution = do

2 users <- selectAllUsers

3 let emails = map userEmail users

4 let domains = map domainPart emails

Und, äh, ich glaube, ich stecke hier fest. Ich möchte die Liste nach den Domains
gruppieren. Aber ich weiß nicht, wie ich das machen soll.

(Ich werde dem Drang widerstehen, den Code prägnanter zu machen! Nur weil ich
das als map (domainPart . userEmail) <$> selectAllUsers schrei-
ben kann, bedeutet das nicht, dass es jetzt wichtig ist.)

M: Okay! Wir haben gerade ein [ByteString]. Wie könnte unsere Gruppierung
aussehen?

S: Ich schätze ein [[ByteString]]?

(Na ja, ein [NonEmpty ByteString] wäre genauer, aber dahin kommen wir
später.)

M: Klingt gut für mich. Nun, wir haben ein paar Möglichkeiten - wenn ich mir bei
einer Funktionalität unsicher bin, schaue ich entweder in die relevanten Module oder
suche bei Hoogle nach der Typsignatur. Wenn ich mir bei den relevanten Modulen
nicht sicher bin, gehe ich direkt zu Hoogle. Also lass uns nach [ByteString] ->
[[ByteString]] suchen.

S: Keines davon ist relevant! text-ldap ist nicht nah dran. subsequences,
inits, permutations, tails, nichts davon hat mit Gruppierung zu tun.

M: Hmm. Ja. Hoogle lässt uns hier im Stich. Was, wenn wir nach group suchen?

S: Oh, dann bekommen wir group :: Eq a => [a] -> [[a]] zurück. Das ist
genau das, was wir wollen!

M: Lass uns die Dokumentation lesen, nur um sicher zu sein. Springt etwas als
potenzielles Problem ins Auge?

S: Ja - das gegebene Beispiel ist ein bisschen seltsam.

1 >>> group "Mississippi"

2 ["M","i","ss","i","ss","i","pp","i"]

Ich würde erwarten, dass alle gleichen Elemente zusammen gruppiert werden, aber s
erscheint zweimal. Ich denke, ich kann dies umgehen!

Haskell Lernen und Lehren 18

(Hmmm, wohin geht der/die Schüler/in? Sortiert er/sie die Liste?)

S: Wir können group aufrufen und dann die Größe der Listen erhalten.

1 func :: [ByteString] -> [(ByteString, Int)]

2 func domains =

3 map (\grp -> (head grp, length grp)) (group domains)

Okay okay okay, also das ist die richtige Form, ABER, wir müssen sie auf eine besondere
Weise verwenden!

M: Wie machen wir das?

S: Okay, nehmen wir an, wir suchen nach gmail.com. Wir würden die Ergebnisliste
nach gmail.com filtern und dann die Ints summieren!

1 domainCount :: ByteString -> [(ByteString, Int)] -> Int

2 domainCount domain withCounts =

3 foldr (\(_, c) acc -> c + acc) 0 $

4 filter (\(name, _) -> domain == name) withCounts

(Widerstehe dem Drang, eine sum . map snd-Umgestaltung vorzuschlagen!)

M: Schön! Das funktioniert für den Fall, dass wir die Domain kennen. Aber wenn wir
nur eine Zusammenfassungsstruktur wollen, wie können wir unseren Code ändern, um
das zu erreichen?

S: Hm. Wir könnten die Liste durchgehen und für jeden Namen domainCount
berechnen, aber das ist ineffizient…

M: Das funktioniert! Aber du hast recht, das ist ineffizient. Ich denke, wir können es
definitiv besser machen. Was fällt dir als Problem ein?

S: Nun, es gibt möglicherweise mehrere Gruppen für jede Domain. Wenn es nur eine
einzige Gruppe für jede Domain gäbe, dann wäre das einfach.

M: Wie könnten wir das erreichen?

S: Nun, wir beginnen mit einem [ByteString]. Oh! Oh. Wir können es doch sort,
oder? Dann wären alle Domains sortiert, nebeneinander, und die group-Funktion
würde funktionieren!

M: Ja! Lass es uns versuchen.

S: LOS GEHT’S!

Haskell Lernen und Lehren 19

1 func domains =

2 map (\grp -> (head grp, length grp)) $

3 group $

4 sort domains

(muss dem Drang widerstehen, darüber zu sprechen, dass head unsicher ist…)

M: Gut gemacht! Wie machen wir nun ein Lookup von, sagen wir, gmail.com?

S: List.lookup "gmail.com" (func domains).

M: Ah, aber da ist lookup - deutet das nicht auf eine Map hin?

S: Eh, klar!

1 Map.lookup "gmail.com"

2 $ Map.fromList

3 $ map (\grp (head grp, length grp))

4 $ group $ sort domains

Aber das scheint nicht wirklich besser zu sein, oder? Ich schätze, wir haben ein
effizienteres Nachschlagen, aber ich denke, wir machen zusätzliche Arbeit, um ein Map
zu konstruieren.

M: Das tun wir, aber ein Großteil dieser Arbeit ist unnötig. Lass uns die Dokumentation
des Data.Map Moduls ansehen, um Maps zu konstruieren. Anstatt die ganze Arbeit
mit Listen zu machen, lass uns versuchen, stattdessen ein Map zu konstruieren.

S: Hm. Ich werde mit foldr anfangen, da man so eine Liste zerlegt.

1 func domains =

2 foldr (\x acc -> ???) Map.empty domains

M: Ein großartiger Start! Nur zur Auffrischung, was ist acc und x hier?

S: acc ist eine Map und x ist ein ByteString.

M: Richtig. Aber von was ist es eine Map? Erinnern Sie sich, wir hatten ein [(Byt-
eString, Int)].

S: Oh, Map ByteString Int.

M: Richtig. Also, was wollen wir mit dem ByteString machen?

Haskell Lernen und Lehren 20

S: Es in die Map einfügen? Hm, aber was sollte der Wert sein?

M: Wir verfolgen die Anzahl. Das deutet darauf hin, dass wir die Map aktualisieren
möchten, anstatt einzufügen, wenn wir einen doppelten Schlüsseltreffer haben.

S: Ah! Okay. Schau dir das an:

1 func domains =

2 foldr (\domain acc ->

3 case Map.lookup domain acc of

4 Nothing ->

5 Map.insert domain 1 acc

6 Just previousCount ->

7 Map.insert domain (previousCount + 1) acc

8) Map.empty domains

M: Gut gemacht! Wir können es jedoch noch besser machen. Lass uns einen Blick darauf
werfen, wie man in der Dokumentation einfügt. Scheint hier etwas vielversprechend zu
sein?

S: Hmm. insertWith könnte es tun. Lass es mich versuchen:

1 func domains =

2 foldr (\domain acc ->

3 Map.insertWith

4 (\newValue oldCount -> newValue + oldCount)

5 domain

6 1

7 acc

8) Map.empty domains

M: Wunderschön.
Dies ist effizient und erfüllt perfekt unsere Bedürfnisse.
Und Sie haben gelernt, was Maps sind!

Haskell zu lehren bedeutet, zu zeigen, wie man die Aktion durchführt, ebenso sehr wie
zu erklären, wie man die Konzepte versteht.

Haskell Lernen und Lehren 21

2.10 Referenzen

• Geschichte der Programmiersprachen³
• Generationenliste von Programmiersprachen⁴
• Stilles Wissen⁵

³https://en.wikipedia.org/wiki/History_of_programming_languages
⁴https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
⁵https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/

https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/
https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/

3. Haskeller einstellen

3.1 Das zweischneidige Schwert

Haskell ist ein zweischneidiges Schwert, wenn es um die Einstellung geht.
Dies ist eine durchgängige Erfahrung jedes Einstellungsmanagers, mit dem ich über
Haskell gesprochen habe, sowie meine eigenen Erfahrungen beim Durchsehen von
Lebensläufen und bei Vorstellungsgesprächen mit Kandidaten.
Eine offene Haskell-Stelle zieht ein fantastisches Verhältnis von hochqualifizierten
Kandidaten an.
Unter ihnen befinden sich Doktoranden, erfahrene Haskeller, Senior-Entwickler in
anderen Sprachen und einige aufgeregte Junioren, die enormes Potenzial zeigen.
Die Position ist möglicherweise “unter” den Bewerbern, aber Haskell ist ein solcher
Vorteil, dass sie dennoch zufrieden sind.

Während die Qualität hoch sein wird, wird die Quantität enttäuschend sein.
Eine Java-Ausschreibung kann 1.000 Bewerbungen anziehen, von denen 25 großartig
sind.
Eine Haskell-Ausschreibung kann 50 Bewerbungen anziehen, von denen 10 großartig
sind.
Dies ist ein echtes Problem, wenn Sie ein großes Team einstellen müssen.
Haskells Produktivitätsvorteile verringern die Notwendigkeit für ein großes Team, aber
das kann man nur so lange hinauszögern.

Sie können ein Haskell-Team ausschließlich durch das Training von Neueinsteigern in
die Sprache aufbauen.
Dies erfordert mindestens einen Haskell-erfahrenen Ingenieur mit einer Vorliebe für
Mentoring und die Zurückhaltung, den Code so einfach zu halten, dass man leicht damit
anfangen kann.
Das ist eine große Herausforderung, aus dem gleichen Grund, dass Komplexität und
Neuheit besonders schwierige Probleme in Haskell sind.
Wenn Sie dies lesen, bevor Sie Ihr Haskell-Team starten, dann bitte ich Sie - schreiben
Sie Code, den Sie einem Junior beibringen können, ohne zu viel Stress.
Wenn Sie bereits einen komplexen Code haben, müssen Sie wahrscheinlich einen Senior
einstellen.

22

Haskeller einstellen 23

3.2 Junioren und Senioren

Dieses Kapitel wird die Begriffe ‘Senior’ und ‘Junior’ verwenden.
Diese Begriffe sind etwas umstritten, mit einem gewissenMaß an Urteil, und ichmöchte
sie definieren, bevor wir fortfahren.

Ein Senior-Entwickler hatte die Zeit und Gelegenheit, mehr Fehler zu machen und aus
ihnen zu lernen.
Senior-Entwickler sind in der Regel erfahren, abgeklärt und hoffentlich weise.
Senior-Entwickler kennen das Gelände und können im Allgemeinen entweder schwie-
rige Situationen meistern oder sie ganz vermeiden.

Ein Junior-Entwickler ist klug, neugierig und hat noch nicht genug Fehler gemacht.
Junioren sind begeistert, lernen schnell und bringen wichtige neue Perspektiven in ein
Projekt ein.
Sie sind keine Belastungen, die schnell zu Senioren werden - ihre neue Energie ist
entscheidend für Experimente und die Herausforderung des möglicherweise veralteten
Wissens Ihres Senior-Teams.
Das freudige Chaos eines talentierten Juniors kann Ihnen mehr über Ihre Systeme
beibringen, als Sie vielleicht für möglich halten.

Eine Person kann zehn Jahre Erfahrung mit Java haben und ein Junior in Haskell sein.
Ein Senior-Haskell-Ingenieur könnte ein Junior in C# sein.
Ein Junior kann erheblich klüger sein als ein Senior.
Eine Person mit zwei Jahren Erfahrung kann erfahrener sein als eine Person mit acht
Jahren.
Das relevante Merkmal - für mich - ist die Summe der gemachten Fehler und der
gelernten Lektionen.

Ein großes Team und Projekt profitiert davon, sowohl Senioren als auch Junioren zu
haben.
Die Haskell-Community als Ganzes profitiert davon, Juniorenrollen zu haben -wie sonst
werden wir erfahrene Haskell-Entwickler bekommen, die neue Unternehmen gründen
und überzeugende Projekte starten können?
Wenn mir das Praktikum nicht angeboten worden wäre, wäre ich heute kein professio-
neller Haskell-Entwickler.
Sie würden dieses Buch nicht lesen.
Wir müssen es weitergeben, um die Community zu vergrößern und den Erfolg dieser
wunderbaren Sprache zu festigen.

Leider sind die meisten Haskell-Projekte, die ich erlebt habe, fast ausschließlich mit
Senior-Entwicklern besetzt.

Haskeller einstellen 24

Es gibt einen Teufelskreis:

1. Alice, eine brillante Haskellerin, bekommt die Möglichkeit, ein Projekt zu starten.
Sie ist einzigartig dafür geeignet - sie hat eine Menge Domänenerfahrung und
kennt Haskell in- und auswendig.

2. Alice nutzt fortgeschrittene Funktionen und Bibliotheken, um das Projekt zu
entwickeln.
Alice nutzt alle Sicherheits- und Produktivitätsmerkmale, um das Projekt pünkt-
lich, unter Budget und fehlerfrei zu liefern.
Das Projekt ist ein durchschlagender Erfolg.

3. Das Projekt sammelt neue Funktionen und Verantwortungen an.
Während Alice in der Lage ist, schnell genug Code zu schreiben, um dieses
Wachstum abzudecken, beginnen die anderen Aspekte eines Projekts, einen
weiteren Entwickler zu erfordern.
Haskell macht das Schreiben von Dokumentationen nicht schneller.

4. Alice erstellt eine Liste von Anforderungen für einen neuen Entwickler.
Um produktiv zu sein, muss der Ingenieur fortgeschrittene Haskell-Tricks verste-
hen.
Es bleibt keine Zeit, einen Junior-Ingenieur auszubilden, um produktiv zu sein.

Dies schafft eine immer größere Nachfrage nach erfahrenen Haskellern. Wenn Sie
ein erfahrener Haskeller sind, denken Sie vielleicht, dass das in Ordnung ist. Mehr
Jobmöglichkeiten und mehr Gehaltswettbewerb!

Dies ist nicht nachhaltig. Das Unternehmen hat immer die Möglichkeit, Haskell ab-
zuschaffen, eine Gruppe von Go/Java/C#-Entwicklern einzustellen und das Haskell-
Projekt zu zerstören. Nicht nur wurde ein Haskell-Projekt zerstört, sondern ein weiterer
Geschäftsmann hat echte Erfahrungen damit gemacht, dass Haskell gescheitert ist.

3.3 Einstellung von Senioren

Sie werden wahrscheinlich erfahrene Haskell-Ingenieure einstellen müssen. Nach rohen
Haskell-Fähigkeiten zu suchen, ist verlockend, aber das ist nicht so notwendig, wie Sie
vielleicht denken. Der ursprüngliche Haskell-Entwickler oder die Entwickler können
alle schwierigen Teile handhaben, die der neue Mitarbeiter nicht versteht. Stattdessen
sollten wir nach den vier Prinzipien dieses Buches suchen:

1. Komplexität: bevorzugt einfache Lösungen

Haskeller einstellen 25

2. Neuheit: bevorzugt traditionelle Lösungen
3. Kohäsion: wird sich nicht auf Stilfragen einlassen
4. Empathie: kann Mitgefühl für andere zeigen

Einstellung ist eine zweiseitige Straße, also schauen wir uns zuerst an, wie Sie die
Wahrscheinlichkeit eines erfolgreichen Einstellungsprozesses verbessern können. Dar-
über hinaus geht es uns nicht nur um das Einstellungsereignis - wir sind auch an der
Bindung interessiert.

Remote-freundlich

Wenn Ihr Unternehmen in San Francisco, New York City, Glasgow oder einer Handvoll
anderer Haskell-Zentren ist, dann können Sie wahrscheinlich lokal einstellen. Andern-
falls müssen Sie Ihre Suche auf vollständig remote Kandidaten ausweiten. Haskell-
Entwickler sindweltweit verteilt, und Siewerden die Qualität undQuantität der Haskell-
Entwickler erheblich steigern, wenn Sie nicht verlangen, dass sie in Ihre Stadt ziehen.

Die ersten paar Einstellungen sind eine großartige Gelegenheit, Ihre remote-freundli-
chen Arbeitsabläufe zu entwickeln. Diese Arbeitsabläufe funktionieren fantastisch für
viele Unternehmen und Open-Source-Gemeinschaften. Darüber hinaus wird Remote-
Arbeit durch die Förderung asynchroner Arbeitspraktiken die Produktivität steigern.

Dies ist kein Buch darüber, wie man ein Remote-Team erfolgreich verwaltet; dafür
müssen Sie woanders nachsehen. Ich bin nur ein bescheidener Haskell-Entwickler und
kann Ihnen nur sagen, was die Einstellung erheblich erleichtert.

Nicht sparen

Es gibt ein Missverständnis, dass Entwickler bereit sind, niedrigere Gehälter zu akzeptie-
ren, um Haskell zu verwenden. Dies ist im Allgemeinen nicht wahr. Erfahrene Haskell-
Ingenieure sind selten und wertvoll, und Sie bekommen, wofür Sie bezahlen. Mein Ge-
halt und meine Leistungen als Haskell-Ingenieur waren in der Regel wettbewerbsfähig
mit dem Markt für meine Rolle und Erfahrung.

Wie bei jedem Missverständnis gibt es in einem bestimmten Kontext einen Kern
Wahrheit. Einige Unternehmen zahlen ihren Ingenieuren außergewöhnlich gut. Google,
Facebook, Netflix, Indeed usw. sind in der Lage, Gesamtvergütungspakete von über
500.000 USD pro Jahr anzubieten. Ich habe noch nie von einem einzigen Haskell-
Entwickler gehört, der so viel verdient, obwohl ich von mindestens einem im Bereich
von 300.000 USD gehört habe.

Haskeller einstellen 26

Sie könnten also in der Lage sein, einen Ex-Googler einzustellen, der es gewohnt ist,
400.000 USD zu verdienen, und ihn “nur” 250.000 USD zahlen, umHaskell zu verwenden.
Aber Sie sollten nicht erwarten, einen erfahrenen Ingenieur einzustellen und unter
100.000 USD zu zahlen - der Rabatt funktioniert nicht so.

Sie könnten in der Lage sein, einen erfahrenen Scala- oder F#-Ingenieur einzustel-
len, der noch nie Haskell in der Produktion verwendet hat, zu einem reduzierten
Preis. Obwohl dies gut funktionieren könnte, sind Haskell und Scala/F# ausreichend
unterschiedlich, dass die Erfahrung nicht so stark übertragbar ist, wie Sie vielleicht
erwarten. Produktions-Haskell hat genug Eigenheiten und Besonderheiten, dass bloße
Sprachgewandtheit mit funktionalen Programmieridiomen Sie nicht weit bringen wird.

Die meisten Haskell-Unternehmen zahlen ihren erfahrenen Ingenieuren einen wettbe-
werbsfähigen Tarif. Und die meisten Haskell-Unternehmen, die nur Senioren einstellen,
erfordern nicht so viel Produktionserfahrung, um eingestellt zu werden. Wenn Sie
einen erfahrenen Scala-Entwickler einstellen, um Haskell zu einem starken Rabatt zu
machen, wird er diese Erfahrung nutzen und schnell einen besser bezahlten Haskell-Job
bekommen.

Dies zeichnet ein Bild der Haskell-Gehaltslandschaft als bimodal. Erfahrene Haskel-
ler können wettbewerbsfähige Gehälter verdienen, wenn nicht wettbewerbsfähig mit
FAANG¹. Weniger erfahrene Haskeller können einen Gehaltsabzug akzeptieren, um
Haskell im Job zu lernen, aber sie werden schnell aufsteigen und in diesen zweiten
Eimer gelangen. Denken Sie daran, dass Haskell eine Sprache mit hoher Varianz ist
- Sie wetten nicht auf Durchschnitte oder Mediane, Sie wetten darauf, die Kurve zu
übertreffen. Statistisch gesehen müssen Sie besser als der Marktdurchschnitt zahlen, um
aus dem oberen Ende der Kurve auszuwählen.

Wenn Sie einen Junior-Haskeller einstellen (der ansonsten ein Senior-Ingenieur ist),
seien Sie bereit, ihm nach einem Jahr eine erhebliche Gehaltserhöhung zu geben oder
bereiten Sie sich auf Fluktuation vor.

Kein Ködern und Wechseln

Erfahrene Haskell-Ingenieure kennen das nur allzu gut. Es gibt eine Stellenanzeige, die
Haskell als gewünschte Fähigkeit aufführt. Oder vielleicht gibt es eine Haskell-Stelle,
aber Sie müssen auch Java, PHP, Ruby und Go kennen. Leider macht Haskell nur einen
winzigen Teil dessen aus, was der Entwickler erwartet wird zu tun, obwohl die Stelle
als “Haskell-Job” verkauft wird.

¹Facebook, Amazon, Apple, Netflix, Google. Ein gängiges Akronym für einige der großen Akteure in der Technologie-
branche bei der Einstellung, mit einigen der höchsten Vergütungen. Obwohl selten, beschäftigen Facebook und Google einige
Haskeller.

Haskeller einstellen 27

Tun Sie das nicht. Sie werden Entwickler frustrieren, die es durchhalten, und Sie werden
Haskell-Talente nicht lange halten, wenn Sie sie die meiste Zeit in einer anderen Sprache
schreiben lassen. Sie können ihre Leidenschaft für Haskell nicht entführen und sie auf
dem gleichen Niveau PHP schreiben lassen. Wie oben, wird der Entwickler in der
Lage sein, Haskell in der Produktion in seinen Lebenslauf aufzunehmen und zu einem
anderen Unternehmen zu wechseln, um die meiste Zeit an Haskell zu arbeiten.

Das bedeutet nicht, dass Sie keinen polyglotten Tech-Stack haben können. Es ist nichts
Falsches daran, Microservices in Go, Ruby und auch Haskell zu haben. Tatsächlich ist
es eine gute Möglichkeit, Pragmatic Haskellers statt Puristen auszuwählen, wenn man
gelegentlich von einem Haskeller verlangt, eine andere Sprache zu schreiben. Dies muss
jedoch ehrlich und im Voraus kommuniziert werden. Wenn Sie erwarten, dass jemand
10% Haskell schreibt, dann bezeichnen Sie es nicht als Haskell-Job. Es ist ein Go-Job mit
einer kleinen Haskell-Verantwortung.

Unreinheitsprüfung

Nicht-Haskell-Verantwortlichkeiten können sinnvoll sein, in die Stellenbeschreibung
aufzunehmen.

Es gibt einen Typ von Haskell-Entwickler, den ich gesehen habe. Sie wollen nur mit
Haskell arbeiten. 100% Haskell. Kein JavaScript, kein Ruby, kein Go, kein Java, kein Bash,
kein PHP, keine Sysadmin-Verantwortlichkeiten, nichts! Nur Haskell.

Diese Entwickler sind oft großartig in Haskell und es ist verlockend, sie einzustellen. Das
sollten Sie wahrscheinlich nicht tun. Obwohl Haskell eine fantastische Wahl für viele
Anwendungen ist, wird jeder, der eine 100% Haskell-Erfahrung benötigt, zwangsläufig
Haskell wählen, wo eine andere Wahl angemessener wäre. Das wollen Sie nicht in
Ihrem Team. Schlimmer noch, sie könnten unerwünschte Komplexität und Neuheit in
das Projekt bringen.

Denken Sie daran, dass das Ziel eines industriellen Softwareprojekts darin besteht, die
Bedürfnisse des Unternehmens zu fördern. Haskell tut dies legitim. Wenn ich das nicht
glaubte (basierend auf meinen Erfahrungen), würde ich kein Buch darüber schreiben,
wie man es erfolgreich macht. Aber Haskell ist keine ausreichende Ursache für Erfolg.
Zu wissen, wann man Haskell einsetzt und wann man auf ein anderes Werkzeug
zurückgreift, ist entscheidend für jeden gut abgerundeten Haskell-Ingenieur.

Vielfalt umarmen

Haskellers sind seltsam. Sie werden nicht wie typische Programmierer aussehen oder
handeln, weil sie es nicht sind! Wenn Sie zu streng auf zusätzliche “Kulturpassung”-

Haskeller einstellen 28

Qualitäten filtern, werden Sie eine Menge guter Ingenieure verpassen. Dies gilt doppelt
für unterrepräsentierte Minderheiten.

Das bedeutet nicht, dass Haskell-Entwickler besser oder schlechter sind als andere, nur
dass sie anders sind. Lehnen Sie sich in die Unterschiede hinein und umarmen Sie sie.

3.4 Juniors einstellen

Ein Junior für Haskell ist jemand, der noch nicht genug Fehler gemacht hat. Das
kann jemand sein, der erst letztes Jahr angefangen hat zu programmieren und ir-
gendwie Haskell ausgewählt hat, oder es könnte ein erfahrener Scala-Entwickler mit
10 Jahren Berufserfahrung sein, der gerade angefangen hat, Haskell zu lernen. Einen
guten Kandidaten für eine Junior-Rolle auszuwählen, ist etwas anders als in anderen
Programmiersprachen.

Haskell hat eine viel kleinere Population als andere Programmiersprachen. Die Popu-
lation ist auf viele Gemeinschaften verteilt. Die insgesamt verfügbare Unterstützung
für Juniors ist geringer als in anderen Sprachen. Das bedeutet, dass Sie den Mangel
ausgleichen müssen.

In eine Kultur der Schulung und Mentorschaft zu investieren, ist eine großartige
Möglichkeit, dies zu erreichen. DirektesMentoring Ihrer Juniors fördert die Kohäsion im
Projekt. Senior-Entwickler erhaltenwertvolle Übung im Lehren und gewinnen Einblicke
von den Juniors.

Die Auswahlwirkungen von Haskell bedeuten, dass Sie wahrscheinlich weniger Mento-
ring benötigen, als Sie vielleicht erwarten. Haskell ist ausreichend seltsam und anders,
dass die meisten Menschen, die sich dafür begeistern, bereits selbständig sind und
hervorragend darin sind, eigenständig zu recherchieren. Die Arbeit des Mentors besteht
weniger darin, zu “lehren”, sondern mehr darin, zu “leiten”.

Alle obigen Ratschläge für die Einstellung von Senioren gelten auch für Juniors. Sie
sollten definitiv versuchen, frühzeitig im Lebenszyklus eines Projekts einen Junior
Haskeller einzustellen, aus einigen wichtigen Gründen. Ein Senior Haskell-Ingenieur
wird dramatisch produktiver sein als in einer anderen Sprache, aber die Gesamt-
arbeitsbelastung eines Ingenieurs ist nur teilweise technisch. Junior-Ingenieure sind
bemerkenswert gut geeignet für viele der Aufgaben im Software-Engineering, die nicht
direkt mit technischer Kompetenz und Erfahrung zu tun haben. Diese Arbeit dient auch
als ausgezeichnetes Training für den Junior.

Haskeller einstellen 29

Unterstützende Aufgaben

Ein erfahrener Haskeller kann Funktionen schneller bereitstellen als in jeder anderen
Sprache, mit weniger Zeitaufwand für Fehlerbehebungen. Leider nimmt die Dokumen-
tation nicht weniger Zeit in Anspruch, um geschrieben zu werden. Wenn Sie für die
Fähigkeit einstellen, Funktionen zu liefern, dann werden Sie nicht die Personenstunden
haben, um Dokumentation zu schreiben oder andere Formen der Unterstützung für das
Projekt bereitzustellen.

Junior-Entwickler haben möglicherweise nicht die gleiche Fähigkeit, Code zu schreiben
wie Senioren, aber sie sind vergleichsweise weniger benachteiligt beim Schreiben von
Dokumentation und der Unterstützung des Projekts in anderer Weise. Das Schreiben
dieser Dokumentation und die Unterstützung des Codes geben ihnen hervorragende
Erfahrungen mit dem Code, was ihnen hilft, ihr Wissen und ihre Fähigkeiten weiterzu-
entwickeln.

Das soll nicht heißen, dass Senioren keine Dokumentation schreiben sollten. Sie sollten
es unbedingt tun! Aber die Dokumentation eines Seniors könnte den Kontext vermissen,
der für jemanden, der tief im Projekt eingebunden ist, nicht offensichtlich ist. Die
Dokumentation, die ein Junior schreibt, wird oft umfassender sein und weniger über
den Leser voraussetzen, es sei denn, der Senior ist ein besonders guter technischer Autor.

Der Prozess der Überprüfung dieser Dokumentation ist eine ausgezeichnete Gelegenheit
für einen Senior, zusätzliche Informationen und Klarstellungen für den Junior bereitzu-
stellen.

Konzepte klären

Erfahrene Haskeller werden die Komplexität eines Projekts natürlich erhöhen, es
sei denn, sie wenden konsequent Anstrengungen an, dies zu vermeiden. Ein Senior
Haskeller ist jedoch schlecht positioniert, um Entscheidungen darüber zu treffen, wie
viel Komplexität genau eingeführt wird. Schließlich kennen und verstehen sie es oder
haben bereits die Arbeit erledigt, um es herauszufinden. Der umgebende Kontext und
die Annahmen sind im Hintergrund.

Der Akt, Entscheidungen und Konzepte einem Junior zu erklären, ist eine erzwungene
Funktion, um die Komplexität zu identifizieren, die damit verbunden ist. Wenn die
Idee für den Junior im Team zu kompliziert ist, um sie ohne erhebliche Anleitung zu
verstehen, dann ist sie zu kompliziert!

Das soll nicht heißen, dass Junioren nicht in der Lage sind, komplexe Ideen zu verstehen,
oder dass ein Junior ein Vetorecht über jedes Konzept in einer Codebasis haben sollte.

Haskeller einstellen 30

Junioren bieten eine kraftvolle neue Perspektive, die Entscheidungen informieren kann.
Diese Perspektive zu respektieren ist entscheidend, aber ihr vollständig nachzugeben ist
unnötig. Einen Junior dabei zu unterstützen, komplexere Ideen zu lernen und praktische
Erfahrungen damit zu sammeln, ist Teil des Prozesses.

Institutionelles Wissen

Angenommen, Ihr Haupt-Haskell-Entwickler gewinnt im Lotto und kündigt. Sie müssen
diese Person ersetzen. Ein Junior könnte sogar die Gelegenheit ergreifen und den
kürzlich ausgeschiedenen Entwickler vollständig ersetzen. Wir sollten nicht erwarten
oder Druck auf sie ausüben, dies zu tun.

Der Junior wird jedoch in einer ausgezeichneten Position sein, dieses institutionelle
Wissen zu bewahren. Sie können helfen, neue Kandidaten zu interviewen und Einblicke
darüber zu geben, was die Codebasis benötigt. Die Natur eines Junior-Entwicklers bietet
ihnen einen ausgezeichneten Einblick, was helfen wird, die Codebasis zu erweitern und
über die Zeit wartbar zu halten. Ein Senior-Ingenieur, der nicht in der Lage ist, einem
Junior-Ingenieur etwas beizubringen oder zu erklären, wird keine großartige Ergänzung
sein.

Junioren sind in einer besseren Position, um diese Transfers zu machen, weil sie weniger
internalisierte Annahmen als Senioren haben. Dies gibt ihnen eine bessere Perspektive
bei der Bewertung und Weitergabe von Wissen an neue Mitarbeiter.

4. Bewertung von
Beratungsfirmen

Möglicherweise müssen Sie Berater einstellen, um an Ihrem Projekt zu arbeiten. Haskell-
Beratungsfirmen können eine ausgezeichnete Quelle für tiefes Fachwissen sein. Auf-
grund der Nischenart der Sprache gibt es nicht viele Haskell-Beratungsfirmen, und sie
sind alle brillant. Ich erwarte nicht, dass dies für immer so bleiben wird, also werde
ich teilen, wie ich Beratungsfirmen bewerte, um herauszufinden, wo sie am besten
angewendet werden könnten.

4.1 Identifizierung des Ziels

Wenige Beratungsfirmen senden potenzielle Geschäfte an ihre Konkurrenz. Infolgedes-
sen wird eine Beratungsfirma Ihr Geschäft gerne annehmen, selbst wenn Sie von einem
anderen Unternehmen besser bedient werden könnten. Genau wie die Haskell-Sprache
viele Gemeinschaften hat, sind diese Beratungsfirmen normalerweise besser für einige
Gemeinschaften als für andere geeignet.

Alle Beratungsfirmen werden sagen, dass sie sich auf industrielles Haskell spezialisie-
ren. Ihre Ansätze unterscheiden sich jedoch, und einige sind mehr oder weniger für
verschiedene Anwendungsbereiche in dieser Nische geeignet.

Haskell-Beratungsfirmen werben über Open-Source-Portfolios und Blogbeiträge. Diese
Portfolios bilden einen Beweis für die Arbeit und können analysiert werden, um die rich-
tige Passform zu bestimmen. Viele der Techniken zur Bewertung von Beratungsfirmen
erfordern die Bewertung von Bibliotheken, und ich behandle das nicht, bis Abschnitt 5
(“Interfacing the Real”). Wir können jedoch eine allgemeine Vorstellung vom Zielmarkt
bekommen, ohne zu tief einzutauchen.

Zuerst schauen wir uns die Website, den Blog und andere Marketingmaterialien an. Be-
ratungsfirmen richten sich im Allgemeinen an ihre Nischen, und wenn sie nicht auf Ihre
Bedürfnisse eingehen, sind sie wahrscheinlich keine gute Passform. Beratungsfirmen
erhalten Material für Blogbeiträge aus unabhängiger Forschung und aus Lektionen, die
sie in der Beratungsarbeit gelernt haben, daher ist dies eine gute Möglichkeit zu sehen,
wie sie mit auftretenden Problemen umgehen. Zusätzlich bekommen Sie ein Gefühl für
ihren Kommunikationsstil (zumindest, wie er der Welt präsentiert wird).

31

Bewertung von Beratungsfirmen 32

Als nächstes wollen wir die Bibliotheken bewerten, die die Beratungsfirma unterstützt.
Dies gibt uns wichtige Informationen darüber, wie sie Code schreiben undwelche Ansät-
ze sie unterstützen. Der einfachsteWeg, dies zu tun, besteht darin, nach der Hauptquelle
der Code-Repository-Organisation für die Beratungsfirma zu suchen (oft GitHub, aber
auch GitLab und BitBucket sind Möglichkeiten). Wir werden auch die GitHub-Konten
von Mitarbeitern ansehen wollen, wenn wir sie finden können. Beratungsfirmen stellen
in der Regel Ingenieure wegen ihrer Open-Source-Beiträge ein - wenn Sie den Ingenieur
einstellen, der die X-Bibliothek unterstützt, können Sie den Benutzern dieser Bibliothek
Beratungsdienste anbieten.

Schließlich wollen wir versuchen, Erfahrungsberichte von Unternehmen zu finden,
die diese Beratungsfirmen genutzt haben. Mitarbeiter, die an Projekten gearbeitet
haben, die von Beratungsfirmen unterstützt oder abgeschlossen wurden, sind hier eine
weitere wertvolle Ressource. Diese Informationen werden schwieriger zu beschaffen
sein. Unternehmen wollen selten solche Details veröffentlichen, daher werden Sie sie
wahrscheinlich eher durch Community-Beteiligung erhalten. Einzelpersonen werden
keine negativen Erfahrungsberichte veröffentlichen, da Beratungsfirmen dazu neigen,
einen übergroßen Einfluss auf die öffentliche Meinung in kleinen Gemeinschaften wie
Haskell zu haben.

Lassen Sie uns einige der größeren Beratungsunternehmen untersuchen.

4.2 Well-Typed

Well-Typed präsentiert sich als “Die Haskell-Berater”. Mit Schwergewichten der Com-
munity wie Duncan Coutts, Andres Löh und Edsko de Vries haben sie sicherlich
Anspruch auf diesen Titel. Das Unternehmen ist seit 2008 aktiv. Dies ist ein solides
Fundament für Erfolg, und sie haben eine Erfolgsbilanz, die dies untermauert.

Fast jeder in der Mitarbeiterliste hat einen Abschluss in Informatik, und mehr haben
einen Doktortitel als nur einen Bachelor-Abschluss. Der akademische Hintergrund bei
Well-Typed ist gut vertreten.

Das GitHub unter https://www.github.com/well-typed listet eine Reihe
von Repositories auf, die es zu untersuchen gilt. Ich werde hier einige auswählen:

• optics, eine alternative lens-Bibliothek, die stark verbesserte Fehlermeldun-
gen bietet

• generics-sop, eine Alternative zu GHC.Generics
• ixset-typed, eine stark typisierte indizierte Datenstruktur

Bewertung von Beratungsfirmen 33

• cborg, eine Binärserialisierungsbibliothek

Darüber hinaus sehen wir eine Reihe von Beiträgen zum cabal-Repository von
Well-Typed-Mitarbeitern, zusammen mit anderer wichtiger Haskell-Infrastruktur. Die
Hauptverantwortlichen für die Servant-Webbibliothek sind bei Well-Typed beschäftigt.
Die acid-state-Datenbank wird ebenfalls von Well-Typed-Mitarbeitern gewartet.

Ich habe direkt mit Well-Typed zusammengearbeitet, während ich bei IOHK angestellt
war. Das starke theoretische Wissen war entscheidend für die Entwicklung vieler der
hochtheoretischen Aspekte der Codebasis. Das ebenso starke technische Wissen für
die Haskell-Entwicklung war hervorragend für die Entwicklung des Wallet-Teils der
Codebasis.

Well-Typed liefert extrem starke theoretische Kenntnisse und Haskell-Expertise. Dies
offenbart jedoch eine operative Schwachstelle: die Abhängigkeit von Haskell, wo andere
Werkzeuge möglicherweise besser geeignet sind. Die Verwendung von acid-state
bei IOHK war die Quelle zahlreicher Probleme, die im Datenbankkapitel dieses Buches
dokumentiert sind. Darüber hinaus spiegelt sich die extrem hohe Kompetenz der Well-
Typed-Mitarbeiter in der Komplexität und Schwierigkeit der gelieferten Lösungen
wider.

Ich würde nicht zögern, Well-Typed für ein Projekt im industriellen Einsatz zu engagie-
ren, insbesondere wenn das Projekt neuartige theoretische Erkenntnisse erfordert. Ich
wäre jedoch vorsichtig, um sicherzustellen, dass die resultierende Lösung leicht vom
Kernteam der Ingenieure verstanden werden kann. Die Schulungen von Well-Typed
sind hervorragend, um einen Haskeller auf mittlerem oder fortgeschrittenem Niveau
auf die nächste Stufe zu bringen.

4.3 FP Complete

FP Complete bezeichnete sich früher hauptsächlich als Haskell-Berater, hat sich jedoch
in den letzten Jahren auch auf DevOps und Blockchain konzentriert. Michael Snoyman
ist der Leiter der Technik, und abgesehen davon listet ihre Website keine Ingenieure auf.
Ihr Blog enthält Beiträge zu vielen Themen, einschließlich Rust, DevOps, Container und
Haskell.

Michael Snoyman und Aaron Contorer, die beiden treibenden Mitglieder von FP
Complete, haben keinen umfangreichen Hintergrund in der akademischen Welt oder
der Informatiktheorie. Michaels Abschluss ist in Versicherungsmathematik, während
Aaron sich bei Microsoft auf aufkommende Technologien spezialisierte. Der Ansatz des
Unternehmens wird in erster Linie von industriellen Bedürfnissen geprägt. Dies hilft,

Bewertung von Beratungsfirmen 34

ihre vielfältigere Ausrichtung zu erklären - Haskell spielt eine prominente Rolle, aber
DevOps, Rust und andere Technologien sind wichtig für ihre Geschäftsstrategie und ihr
Marketing.

Das GitHub unter https://www.github.com/fpco bietet ein paar weitere
Hinweise. Es gibt mehrere Mitglieder der Organisation, die aufgeführt sind: Niklas
Hambüchen, Sibi Prabakaran, Chris Done stechen als Haskell-Beitragende hervor. Das
FPCo GitHub hat viele Repositories, die wir prüfen können:

• safe-exceptions, eine Bibliothek zur Unterstützung bei sicherem und vor-
hersehbarem Exception-Handling

• stackage-server, der Code, der das Stackage-Paketset hostet
• weigh, eine Bibliothek zur Messung von Speicherzuweisungen von Haskell-
Funktionen

• resourcet, eine Bibliothek für sichere und zeitnahe Ressourcenverwaltung

Andere relevante Bibliotheken umfassen das Yesod-Web-Framework, die Persistent-
Datenbankbibliothek und das stack-Build-Tool.

Ich habe nicht direkt mit FP Complete gearbeitet, habe jedoch umfangreiche Erfahrun-
gen mit Yesod, Persistent und habe direkt mit Michael Snoyman zusammengearbeitet.
Ich habe diese Bibliotheken verwendet, um schnell und effektiv funktionierende und
wartbare Software in meinem ersten Job zu liefern, und der Fokus auf reale industrielle
Anliegen führte zu meinem Erfolg dort. Die Bibliotheken sind in der Regel einfach
zu handhaben, nehmen regelmäßig Beiträge von Neulingen an und sind nicht allzu
streng in Bezug auf Codierungsstandards. Dies ist ein zweischneidiges Schwert - viele
Bibliotheken werfen häufiger Ausnahmen, als es Programmierern lieb ist, anstatt mit
typisierten Fehlerkanälen zu signalisieren. Template Haskell wird oft verwendet, um
Boilerplate zu reduzieren und Typsicherheit zu bieten, eine Wahl, die pragmatisch ist,
aber unter eher ‘reinen’ funktionalen Persönlichkeiten unpopulär.

Ich würde nicht zögern, FP Complete für den industriellen Einsatz zu engagieren,
insbesondere wenn das Projekt keine neuartigen theoretischen Anforderungen hat.
Die Schulung von FP Complete hat sich bewährt, um Junioren mit Haskell vertraut
zu machen, und sie sind in der Lage, auch auf fortgeschrittene und knifflige GHC-
Verhaltensweisen zu schulen.

Ausnahmen

FP Complete hat den definitiven Artikel über sicheres Ausnahmehandling in Haskell¹
geschrieben. Es mag nicht überraschen, dass ihre Bibliotheken dazu neigen, Laufzeit-

¹https://www.fpcomplete.com/haskell/tutorial/exceptions/

https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://www.fpcomplete.com/haskell/tutorial/exceptions/

Bewertung von Beratungsfirmen 35

ausnahmen häufiger auszulösen, als man erwartet oder möchte. Einige Bibliotheken
im Haskell-Ökosystem verwenden den ExceptT-Monadentransformator, um Ausnah-
men anzuzeigen. FP Complete hält dies für ein Antimuster und hat einen Artikel
geschrieben², der dies erklärt. Stattdessen kann man erwarten, dass IO-Funktionen in
FP Complete Bibliotheken Laufzeitausnahmen auslösen.

TemplateHaskell

FP Completes Bibliotheken neigen dazu, TemplateHaskell extensiv für Funktiona-
lität zu verwenden. Yesod verwendet einen QuasiQuoter, um Routen für die Web-
App zu definieren. Shakespeare verwendet einenQuasiQuoter, umWerte zu interpo-
lieren. monad-logger verwendet TemplateHaskell-Logging-Funktionen, um
den Ort der Logzeile einzufügen. persistent verwendet einen QuasiQuoter, um
Typen für die Interaktion mit der Datenbank zu definieren.

TemplateHaskell und QuasiQuoters werden oft unter Haskellers kritisiert. Sie
haben einige Nachteile. Jede Verwendung von TemplateHaskell in einem Modul
erfordert, dass GHC einen Code-Interpreter startet - dies verlangsamt die Kompilierung
mit einem konstanten Schlag von ein paar hundert Millisekunden auf meinem Laptop.
Das Generieren des Codes ist jedoch in der Regel recht schnell. Wenn der resultierende
generierte Code extrem groß ist, wird das Kompilieren dessen langsam sein.

QuasiQuoters definieren eine separate Sprache, die in einen Haskell-Ausdruck
geparst wird. Eine separate Sprache hat einige Vorteile: Man kann genau das definieren,
was man will und braucht, ohne sich um die Beschränkungen von Haskell kümmern zu
müssen. Leider muss man seine eigene Syntax und Parser erfinden. Diese Dinge müssen
dokumentiert und diese Dokumente aktuell gehalten werden. Der vomQuasiQuoter
generierte Code ist oft nicht zur Inspektion geeignet - man kann nicht “Zur Definition
springen” bei einem Typ, der von TemplateHaskell generiert wird, noch kannman
den Code leicht einsehen.

²https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices

https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices
https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices
https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices

5. Invertiere Deine Mocks!
Mocking wird häufig in Diskussionen über das Testen von effektvollem Code in
Haskell erwähnt. Ein Vorteil von mtl Typklassen oder Eff Freien Monaden ist, dass
du Implementierungen austauschen und dasselbe Programm auf unterschiedlichen
zugrunde liegenden Interpretationen ausführen kannst. Das ist cool! Allerdings ist es
eine extrem schwergewichtige Technik mit einer Menge Komplexität.

Im vorherigen Kapitel habe ich empfohlen, mit dem ReaderTMuster zu arbeiten - so
etwas wie das:

1 newtype App a = App { unApp :: ReaderT AppCtx IO a }

Wie würde ich nun vorgehen, um eine solche Funktion zu testen?

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 for_ users $ \user -> do

6 thing <- getSomething user

7 let result = compute thing

8 runRedis (writeKey (userRedisKey user) result)

Wenn wir unsere mtl- oder Eff- oder OOP-Mocking-Hüte aufhaben, könnten wir
denken:

Ich weiß! Wir müssen unsere HTTP-, Datenbank- und Redis-Effekte si-
mulieren. Dann können wir die Umgebung mit Mock-Implementierungen
kontrollieren und überprüfen, ob die Ergebnisse stimmig sind!

Mocking ist schrecklich. Es verkompliziert jeden Aspekt unseres Codebasises und führt
nicht einmal zu zuverlässigen Tests. Ich werde Techniken zum Mocking in einem
späteren Teil des Buches behandeln, aber es wäre erheblich angenehmer, wenn wir es

36

Invertiere Deine Mocks! 37

nie tun müssten. Wer weiß - vielleicht müssen Sie es nie! Aber zuerst müssen wir Wege
finden, unseren Code zu testen, ohne uns auf Mocking zu verlassen.

Lassen Sie uns einen Schritt zurücktreten und einige grundlegendere Techniken auf
dieses Problem anwenden.

5.1 Effekte Dekomponieren

Das Erste, waswir tunmüssen, ist zu erkennen, dass Effekte undWerte getrennt sind und
versuchen, sie so weit wie möglich getrennt zu halten. Die Trennung von Effekten und
Werten ist ein grundlegendes Prinzip der rein funktionalen Programmierung. Allgemein
gesprochen sind Funktionen, die wie doWork aussehen, nicht funktional (im Sinne
der “funktionalen Programmierung”). Schauen wir uns die Typsignatur an, um ein paar
Hinweise zu finden.

1 doWork :: App ()

Unsere erste Warnung ist, dass diese Funktion keine Argumente hat. Das bedeutet,
dass alle Eingaben in diese Funktion aus der App-Umgebung kommen müssen. Diese
Eingaben sind Effekte.

Ebenso gibt diese Funktion () zurück - den Einheitstyp, was nichts bedeutet. Es gibt
hier keinen sinnvollen Wert. Wenn diese Funktion überhaupt etwas tut, muss es ein
Nebeneffekt sein.

Schauen wir uns also noch einmal an, was die Funktion tut. Wir müssen die Funktion
zerlegen, bevor wir sie testen können.

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 for_ users $ \user -> do

6 thing <- getSomething user

7 let result = compute thing

8 runRedis (writeKey (userRedisKey user) result)

Wir erhalten eine Menge von Dingen - Eingaben -, die als Ergebnis eines Effekts
erworben werden. Um dies direkt zu testen, müssen wir irgendwie den Effekt abfangen
und einen anderen Wert bereitstellen. Dies ist in Haskell unangenehm zu tun.

Invertiere Deine Mocks! 38

Stattdessen lassen Sie uns dies in zwei Funktionen aufteilen. Die erstewird für die Durch-
führung der Eingabeeffekte verantwortlich sein. Die zweite akzeptiert die Ergebnisse
dieser Eingabeeffekte als einen Parameter der reinen Funktion.

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 doWorkHelper users

6

7 doWorkHelper :: [User] -> App ()

8 doWorkHelper users =

9 for_ users $ \user -> do

10 thing <- getSomething user

11 let result = compute thing

12 runRedis (writeKey (userRedisKey user) result)

Nun, um doWorkHelper zu testen, müssen wir die Effekte, die den [User] her-
ausholen, nicht mocken. Wir können in unseren Tests beliebige [User] bereitstellen,
ohne einen gefälschten HTTP-Dienst und eine Datenbank orchestrieren zu müssen.

Jetzt sind die einzigen verbleibenden Effekte in doWorkHelper getSomething
und runRedis. Aber ich bin nicht zufrieden. Wir können getSomething loswer-
den, indem wir einen weiteren Helfer ausgliedern. Wir folgen demselben Muster: den
Eingabeeffekt aufrufen, die Werte sammeln und sie als Eingaben für eine neue Funktion
bereitstellen.

1 doWorkHelper :: [User] -> App ()

2 doWorkHelper users = do

3 things'users <- for users $ \user -> do

4 thing <- getSomething user

5 pure (thing, user)

6 lookMaNoInputs thing'users

7

8 lookMaNoInputs :: [(Thing, User)] -> App ()

9 lookMaNoInputs things'users =

10 for_ things'users $ \(thing, user) -> do

11 let result = compute thing

12 runRedis (writeKey (userRedisKey user) result)

Invertiere Deine Mocks! 39

Wir haben nun alle “Eingabeeffekte” extrahiert. Die Funktion lookMaNoInputs
führt, wie der Name schon sagt, nur Ausgabeeffekte aus. Wenn wir dies testen wollen,
können wir jede beliebige [(Thing, User)] bereitstellen.

Allerdings stecken wir immer noch mit unseren Ausgabeeffekten fest. Wenn wir dies
testen wollen, müssten wir überprüfen, ob sich die App-Umgebung (oder die realeWelt)
tatsächlich so verändert hat, wie wir es erwarten. Glücklicherweise haben wir dafür
einen Trick in petto. Lassen Sie uns unseren Ausgabeeffekt untersuchen:

1 runRedis (writeKey (userRedisKey user) result)

Es erwartet zwei Dinge:

1. Den Redis-Schlüssel des Benutzers
2. Das berechnete Ergebnis von thing.

Wir können den Redis-Schlüssel und das berechnete Ergebnis ziemlich einfach vorbe-
reiten:

1 businessLogic :: (Thing, User) -> (RedisKey, Result)

2 businessLogic (thing, user) = (userRedisKey user, compute thing)

3

4 lookMaNoInputs :: [(Thing, User)] -> App ()

5 lookMaNoInputs users = do

6 for_ (map businessLogic users) $ \(key, result) -> do

7 runRedis (writeKey key result)

Toll! Wir haben die Kern-Geschäftslogik isoliert, und jetzt können wir schöne Unittests
für diese Geschäftslogik schreiben. Das Tupel ist etwas irrelevant - die userRedis-
Key-Funktion und der compute thing-Aufruf sind völlig unabhängig. Wir können
Tests für compute und userRedisKey unabhängig schreiben. Die Komposition
dieser beiden Funktionen sollte auch in Ordnung sein, selbst ohne businessLogic
selbst zu testen. Die gesamte Geschäftslogik wurde aus dem effektreichen Code heraus-
genommen, und wir haben die Menge des zu testenden Codes reduziert.

Nun, Sie möchten vielleicht dennoch Integrationstests für die verschiedenen effektrei-
chen Funktionen schreiben. Es ist wichtig zu überprüfen, dass diese korrekt funk-
tionieren. Allerdings möchten Sie sie nicht immer wieder testen. Sie möchten Ihre
Geschäftslogik unabhängig von Ihrer effektreichen Logik testen.

Invertiere Deine Mocks! 40

5.2 Streaming-Zerlegung

Streaming-Bibliotheken wie Pipes und Conduit sind eine großartige Möglichkeit,
große Datensätze zu verarbeiten und Effekte zu überlagern. Sie sind auch eine groß-
artige Möglichkeit, Funktionen zu zerlegen und “inverted mocking” Möglichkeiten in
Ihre Programme zu integrieren. Sie haben vielleicht bemerkt, dass unser Refactoring
im vorherigen Abschnitt von einer einzigen Iteration über die Daten zu mehreren
Iterationen geführt hat. Zuerst haben wir die [User] geholt, und für jeden User eine
Anfrage gestellt und nach Redis geschrieben. Aber die endgültige Version iteriert über
die [User] und paart sie mit der Anfrage. Dann iterieren wir erneut über das Ergebnis
und schreiben gleichzeitig nach Redis.

Wir können conduit verwenden, um den zusätzlichen Durchlauf zu vermeiden,
während wir unseren Code schön strukturiert und testbar halten.

Die meisten Conduits sehen so aus:

1 import Data.Conduit (runConduit, (.|))

2 import qualified Data.Conduit.List as CL

3

4 streamSomeStuff :: IO ()

5 streamSomeStuff = do

6 runConduit

7 $ conduitThatGetsStuff

8 .| conduitThatProcessesStuff

9 .| conduitThatConsumesStuff

Der Pipe-Operator (.|) kann wie eine Unix-Pipe betrachtet werden - “nehmen Sie
die gestreamten Ausgaben vom ersten Conduit und stecken Sie sie als Eingaben in
das zweite Conduit ein.” Der erste Teil eines Conduit ist der “Produzent” oder
die “Quelle.” Dies kann aus einer Datenbankaktion, einer HTTP-Anfrage oder von
einem Datei-Handle stammen. Sie können auch aus einer einfachen Liste von Werten
produzieren.

Schauen wir uns conduitThatGetsStuff an - es produziert die Werte für uns.

Invertiere Deine Mocks! 41

1 -- Explicit

2 type ConduitT input output monad returnValue

3

4 -- Abbreviated

5 type ConduitT i o m r

6

7 conduitThatGetsStuff

8 :: ConduitT () ByteString IO ()

9 -- ^ ^ ^ ^

10 -- | | | return

11 -- | | monad

12 -- | output

13 -- input

conduitThatGetsStuff akzeptiert () als Eingabe. Dies signalisiert, dass es
hauptsächlich genutzt wird, um Dinge zu produzieren, insbesondere im monad-Typ.
Daher kann conduitThatGetsStuff IO-Effekte ausführen, um ByteString-
Blöcke zu erzeugen. Wenn der Conduit seine Ausführung beendet hat, gibt er () zurück
– oder, nichts Wichtiges.

Der nächste Teil des Conduits ist conduitThatProcessesStuff. Diese Funktion
befindet sich genau hier:

1 conduitThatProcessesStuff :: ConduitT ByteString RealThing IO ()

2 conduitThatProcessesStuff =

3 CL.map parseFromByteString

4 .| CL.mapM (either throwIO pure)

5 .| CL.map convertSomeThing

6 .| CL.filter someFilterCondition

DieseConduitT akzeptiertByteString als Eingabe, gibtRealThing als Ausgabe
aus und arbeitet in IO. Wir beginnen, indem wir Werte in ein Either parsen.
Der zweite Teil der Pipeline wirft eine Ausnahme, wenn der vorherige Schritt Left
zurückgegeben hat, oder gibt das Right an den nächsten Teil der Pipeline weiter.
CL.map führt eine Umwandlung durch, und CL.filter gibt nur RealThings
weiter, die eine Bedingung erfüllen.

Schließlich müssen wir tatsächlich etwas mit dem RealThing machen.

Invertiere Deine Mocks! 42

1 conduitThatConsumesStuff :: Consumer RealThing IO ()

2 conduitThatConsumesStuff =

3 passThrough print

4 .| passThrough makeHttpPost

5 .| CL.mapM_ saveToDatabase

6 where

7 passThrough :: (a -> IO ()) -> Conduit a IO a

8 passThrough action = CL.mapM $ \a -> do

9 action a

10 pure a

Dies printet jedes Element, bevor es an makeHttpPost übergeben wird, das
schließlich an saveToDatabase weiterleitet.

Wir haben eine Menge kleiner, zerlegter Dinge. Unser conduitThatProcessesS-
tuff ist es egal, woher es die ByteStrings erhält, die es parst – Sie können es mit
jedem ConduitT i ByteString IO r verbinden. Datenbanken, HTTP-Aufrufe,
Datei-IO oder sogar einfach nur CL.sourceList [example1, example2,
example3].

Ebenso ist es dem conduitThatConsumesStuff egal, woher die RealThings
kommen. Sie können CL.sourceList verwenden, um eine Reihe von Fake-Input
bereitzustellen.

Normalerweise arbeiten wir hier auch nicht direkt mit Conduits – die meisten Funk-
tionen werden CL.mapM_, CL.filter oder CL.map bereitgestellt. Das ermöglicht
es uns, Funktionen zu schreiben, die einfache a -> m b oder a -> Bool oder a
-> b sind, und diese sind wirklich einfach zu testen.

doWork: im Conduit-Stil

Oben hatten wir doWork, und wir haben es in mehrere kleine Funktionen zerlegt. Ob-
wohl wir zuversichtlich sein können, dass es die Eingabeliste effizient verarbeitet, sind
wir nicht garantiert, dass es in einer konstanten Menge an Speicher funktioniert. Die
ursprüngliche Implementierungmachte einen einzigenDurchlauf über die Benutzerliste.
Die zweite macht konzeptionell drei: der erste for_, um die sekundären Eingaben zu
erfassen, der Aufruf von map businessLogic und der abschließende for_, um
den Ausgabe-Effekt auszuführen. Wenn es mehr Durchgänge gäbe und wir sofortige
Effekte garantieren wollten, könnten wir einen Conduit verwenden.

Invertiere Deine Mocks! 43

Lassen Sie uns also doWork als ConduitT umschreiben. Zuerst möchten wir einen
Produzenten, der unsere User-Datensätze nach unten weitergibt.

1 sourceUsers :: ConduitT () User App ()

2 sourceUsers = do

3 users <- lift $ do

4 query <- runHttp getUserQuery

5 runDB (usersSatisfying query)

6 sourceList yieldMany users

Nun definieren wir einen Kanal, der eine Sache für einen Benutzer erhält und sie
weitergibt.

1 -- Alternatively, using the `Conduit.List` API:

2 getThing :: ConduitT User (User, Thing) App ()

3 getThing =

4 CL.mapM $ \user -> do

5 thing <- getSomething user

6 pure (user, thing)

Eine andere Leitung berechnet das Ergebnis.

1 computeResult :: Monad m => ConduitT (User, Thing) (User, Result) m ()

2 computeResult =

3 mapC $ \(user, thing) -> (user, compute thing)

Der letzte Schritt in der Pipeline ist es, das Ergebnis zu verwenden.

1 consumeResult :: ConduitT (User, Result) Void App ()

2 consumeResult = do

3 CL.mapM_ $ \(user, result) ->

4 runRedis $ writeKey (userRedisKey user) result

Die zusammengestellte Lösung ist hier:

Invertiere Deine Mocks! 44

1 doWork :: App ()

2 doWork = runConduit

3 $ sourceUsers

4 .| getThing

5 .| computeResult

6 .| consumeResult

Dies hat die gleiche Effizienz wie die ursprüngliche Implementierung und verarbeitet
die Dinge auch in der gleichen Reihenfolge. Wir konnten jedoch die Effekte extrahieren
und sie trennen. Das computeResult :: ConduitT _ _ _ ist rein und kann
getestet werden, ohne irgendein IO auszuführen.

Selbst wenn man annimmt, dass computeResult in einfachem IO wäre, ist das
leichter zu testen als ein potenziell komplexer App-Typ.

5.3 Einfachste Abstraktion

Denken Sie immer an die leichtesten und allgemeinsten Techniken in der funktionalen
Programmierung:

1. Machen Sie es zu einer Funktion
2. Abstrahieren Sie einen Parameter

Diese werden Sie weit bringen.

Lassen Sie uns das doWork Geschäft oben noch einmal betrachten:

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 for_ users $ \user -> do

6 thing <- getSomething user

7 let result = compute thing

8 runRedis (writeKey (userRedisKey user) result)

Wir können dies abstrakt machen, indem wir konkrete Begriffe nehmen und sie zu
Funktionsparametern machen. Die wörtliche Definition der lambda abstraction!

Invertiere Deine Mocks! 45

1 doWorkAbstract

2 :: Monad m

3 => m Query -- ^ The HTTP getUserQuery

4 -> (Query -> m [User]) -- ^ The database action

5 -> (User -> m Thing) -- ^ The getSomething function

6 -> (RedisKey -> Result -> m ()) -- ^ finally, the redis action

7 -> m ()

8 doWorkAbstract getUserQuery getUsers getSomething redisAction = do

9 query <- getUserQuery

10 users <- getUsers query

11 for_ users $ \user -> do

12 thing <- getSomething user

13 let result = compute thing

14 redisAction (userRedisKey user) result

Es gibt einige interessante Dinge, die man über diese abstrakte Definition beachten
sollte:

1. Sie ist über jedeMonad parametrisiert.Identity, State, IO, was auch immer.
Sie haben die Wahl!

2. Wir haben eine reine Spezifikation der Effektlogik. Diese kann nichts tun. Sie
beschreibt nur, was zu tun ist, wenn die richtigen Werkzeuge gegeben sind.

3. Das ist im Grunde Dependency Injection im Extremfall.

Angesichts der oben genannten abstrakten Definition können wir die konkretedoWork
leicht wiederherstellen, indem wir die nötigen Funktionen bereitstellen:

1 doWork :: App ()

2 doWork =

3 doWorkAbstract

4 (runHTTP getUserQuery)

5 (\query -> runDB (usersSatisfying query))

6 (\user -> getSomething user)

7 (\key result -> runRedis (writeKey key result))

Wir können auch problemlos eine Testvariante erhalten, die die durchgeführten Aktio-
nen protokolliert:

Invertiere Deine Mocks! 46

1 doWorkScribe :: Writer [String] ()

2 doWorkScribe =

3 doWorkAbstract getQ getUsers getSomething redis

4 where

5 getQ = do

6 tell ["getting users query"]

7 pure AnyUserQuery

8 getUsers _ = do

9 tell ["getting users"]

10 pure [exampleUser1, exampleUser2]

11 getSomething u = do

12 tell ["getting something for " <> show u]

13 pure (fakeSomethingFor u)

14 redis k v = do

15 tell ["wrote k: " <> show k]

16 tell ["wrote v: " <> show v]

Alles, ohne sich mit Monad-Transformatoren, Typklassen oder sonst etwas schrecklich
Kompliziertem herumschlagen zu müssen.

5.4 Zerlegen!!!

Letztendlich geht es darum, Programme in ihre kleinsten, am einfachsten testbaren Teile
zu zerlegen. Diese kleinen Teile werden dann einzeln oder anhand von Eigenschaften
getestet, um sicherzustellen, dass sie zusammenarbeiten. Wenn alle Teile unabhängig
funktionieren, sollten sie auch in der Komposition zusammenarbeiten.

Ihre Effekte sollten idealerweise nicht in der Nähe Ihrer Geschäftslogik sein. Reine
Funktionen von a nach b sind unglaublich einfach zu testen, besonders wenn Sie
Eigenschaften ausdrücken können.

Wenn Ihre Geschäftslogik wirklich Effekte ausführen muss, versuchen Sie zunächst die
einfachsten Techniken: Funktionen und Abstraktionen. Ich glaube, dass das Schreiben
und Testen von Funktionen, die reine Werte verarbeiten, einfacher und leichter ist.
Diese sind unabhängig davon, woher die Daten kommen, und müssen überhaupt nicht
gemockt werden. Diese Transformation ist typischerweise einfacher als die Einführung
von mtl-Klassen, Monad-Transformatoren, Eff oder ähnlichen Techniken.

Invertiere Deine Mocks! 47

5.5 Was, wenn ichmuss?

Manchmal kann man es einfach nicht vermeiden, effektvollen Code zu testen. Ein
häufiges Muster, das mir aufgefallen ist, ist, dass Leute Dinge auf einer viel zu niedrigen
Ebene abstrakt machen wollen. Sie möchten die Abstraktion so schwach wie möglich
machen, um sie leicht mocken zu können.

Betrachten Sie den häufigen Fall, die Datenbank mocken zu wollen. Das ist verständlich:
Datenbankaufrufe sind extrem langsam! Eine Mock-Datenbank zu implementieren,
ist jedoch eine extrem schwierige Aufgabe – im Grunde müssen Sie eine Datenbank
implementieren. Wo sich das Verhalten der Datenbank von Ihrem Mock unterscheidet,
werden Sie einen Test-/Produktionsmismatch haben, der irgendwann explodieren wird.

Gehen Sie stattdessen eine Ebene höher - schaffen Sie eine neue Indirektionsebene,
die sowohl von der Datenbank als auch von einem einfach zu implementierenden
Mock erfüllt werden kann. Sie können dies mit einer Typklasse tun oder einfach
durch konkrete Abstraktion der relevanten Funktionen. Die Abstraktion der relevanten
Funktionen ist die einfachste und unkomplizierteste Technik, aber es ist auch nicht
unvernünftig zu schreiben:

1 data UserQuery

2 = AllUsers

3 | UserById UserId

4 | UserByEmail Email

5

6 class Monad m => GetUsers m where

7 runUserQuery :: UserQuery -> m [User]

Dies ist eine weitaus tragfähigere Schnittstelle zu implementieren als eine SQL-
Datenbank! Schreiben wir unsere Instanzen, eine für die persistent¹ Bibliothek
und eine andere für ein Mock, das den Gen-Typ von QuickCheck verwendet:

¹https://hackage.haskell.org/package/persistent

https://hackage.haskell.org/package/persistent
https://hackage.haskell.org/package/persistent

Invertiere Deine Mocks! 48

1 instance MonadIO m => GetUsers (SqlPersistT m) where

2 runUserQuery = selectList . convertToQuery

3

4 instance GetUsers Gen where

5 runUserQuery query =

6 case query of

7 AllUsers ->

8 arbitrary

9 UserById userId ->

10 take 1 . fmap (setUserId userId) <$> arbitrary

11 UserByEmail userEmail ->

12 take 1 . fmap (setUserEmail userEmail) <$> arbitrary

Alternativ können Sie einfach Funktionen manuell übergeben, anstatt den Typeclass-
Mechanismus zu verwenden, der dies für Sie übernimmt.

Oh, warte, nein! Diese GetUsers Gen-Instanz hat einen Fehler! Können Sie erraten,
was es ist?

Im Fall von UserById und UserByEmail testen wir nie den “leere Liste”-Fall - was,
wenn dieser Benutzer nicht existiert?

Eine korrigierte Variante sieht so aus:

1 instance GetUsers Gen where

2 runUserQuery query =

3 case query of

4 AllUsers ->

5 arbitrary

6 UserById userId -> do

7 oneOrZero <- choose (0, 1)

8 users <- map (setUserId userId) <$> arbitrary

9 pure $ take oneOrZero users

10 UserByEmail userEmail -> do

11 oneOrZero <- choose (0, 1)

12 users <- map (setUserEmail userEmail) <$> arbitrary

13 pure $ take oneOrZero users

Invertiere Deine Mocks! 49

Ich habe einen Fehler gemacht, als ich ein super einfaches Generator geschrieben habe.
Stellen Sie sich vor, wie viele Fehler ich gemacht hätte, wenn ich versucht hätte, etwas
Komplexeres zu modellieren!

6. Das Problemmit typisierten
Fehlern

Wir Haskell-Entwickler mögen keine Laufzeitfehler. Sie sind schrecklich und widerlich!
Man muss sie debuggen, und sie sind nicht in den Typen repräsentiert. Stattdessen
verwenden wir gerne Either (oder etwas Isomorphes), um Dinge darzustellen, die
fehlschlagen könnten:

1 data Either l r = Left l | Right r

Either hat eine Monad-Instanz, daher können Sie eine Either l r-Berechnung
mit einem l-Wert kurzschließen oder sie an eine Funktion auf dem r-Wert binden.
Die Namen des Typs und der Konstruktoren sind nicht willkürlich. Wir haben zwei
Typvariablen:Either left right. Dieleft-Typvariable befindet sich imLeft-
Konstruktor, und die right-Typvariable befindet sich im Right-Konstruktor.

Also nehmen wir unsere unsicheren, zur Laufzeit fehlerhaften Funktionen:

1 head :: [a] -> a

2 lookup :: k -> Map k v -> v

3 parse :: String -> Integer

und wir verwenden informative Fehlertypen, um ihre möglichen Fehler darzustellen:

1 data HeadError = ListWasEmpty

2

3 head :: [a] -> Either HeadError a

4

5 data LookupError = KeyWasNotPresent

6

7 lookup :: k -> Map k v -> Either LookupError v

8

9 data ParseError

50

Das Problem mit typisierten Fehlern 51

10 = UnexpectedChar Char String

11 | RanOutOfInput

12

13 parse :: String -> Either ParseError Integer

Außer, dass wir Typen wie HeadError oder LookupError eigentlich nicht ver-
wenden. Es gibt nur eine Möglichkeit, wie head oder lookup fehlschlagen könnten.
Deshalb verwenden wir stattdessen einfach Maybe. Maybe a ist genau wie Either
() a zu verwenden - es gibt nur einen möglichen Left ()-Wert, und es gibt
nur einen möglichen Nothing-Wert. (Wenn Sie nicht überzeugt sind, schreiben
Sie newtype Maybe a = Maybe (Either () a), leiten Sie alle relevanten
Instanzen ab, und versuchen Sie, einen Unterschied zwischen diesem Maybe und dem
Standard-Maybe zu erkennen).

Aber, Maybe ist nicht ideal - wir haben Informationen verloren! Angenommen, wir
haben eine Berechnung:

1 foo :: String -> Maybe Integer

2 foo str = do

3 c <- head str

4 r <- lookup str strMap

5 eitherToMaybe (parse (c : r))

Jetzt probieren wir es mit einem Eingabewert aus, und es gibt uns Nothing zurück.
Welche Schritt ist fehlgeschlagen? Tatsächlich können wir das nicht wissen! Alles, was
wir wissen können, ist, dass etwas fehlgeschlagen ist.

Also, versuchen wir Either zu verwenden, um mehr Informationen darüber zu
bekommen, was fehlgeschlagen ist. Können wir das einfach so schreiben?

1 foo :: String -> Either ??? Integer

2 foo str = do

3 c <- head str

4 r <- lookup str strMap

5 parse (c : r)

Leider ergibt dies einen Typfehler. Wir können sehen, warum, indem wir uns den Typ
von >>= ansehen:

Das Problem mit typisierten Fehlern 52

1 (>>=) :: (Monad m) => m a -> (a -> m b) -> m b

Die Typvariable m muss eine Instanz von Monad sein, und der Typ m muss genau
derselbe sein sowohl für den Wert auf der linken Seite als auch für die Funktion auf
der rechten Seite. Either LookupError und Either ParseError sind nicht
derselbe Typ, und daher schlägt dieser Typencheck fehl.

Stattdessen benötigen wir eine Möglichkeit, diese möglichen Fehler zu akkumulieren.
Wir werden eine Hilfsfunktion mapLeft einführen, die uns dabei hilft:

1 mapLeft :: (l -> l') -> Either l r -> Either l' r

2 mapLeft f (Left l) = Left (f l)

3 mapLeft _ r = r

Nun können wir diese Fehlertypen kombinieren:

1 foo :: String

2 -> Either

3 (Either HeadError (Either LookupError ParseError))

4 Integer

5 foo str = do

6 c <- mapLeft Left (head str)

7 r <- mapLeft (Right . Left) (lookup str strMap)

8 mapLeft (Right . Right) (parse (c : r))

Da! Jetzt können wir genau wissen, wie und warum die Berechnung fehlgeschlagen
ist. Leider ist dieser Typ ein bisschen ein Monster. Er ist weitschweifig und der ganze
mapLeft-Standardmäßiger Code ist nervig.

An diesem Punkt werden die meisten Anwendungsentwickler einen
“Anwendungsfehler”-Typ erstellen und einfach alles hineinschieben, was schiefgehen
kann.

Das Problem mit typisierten Fehlern 53

1 data AllErrorsEver

2 = AllParseError ParseError

3 | AllLookupError LookupError

4 | AllHeadError HeadError

5 | AllWhateverError WhateverError

6 | FileNotFound FileNotFoundError

7 | etc...

Nun, dies räumt den Code etwas auf:

1 foo :: String -> Either AllErrorsEver Integer

2 foo str = do

3 c <- mapLeft AllHeadError (head str)

4 r <- mapLeft AllLookupError (lookup str strMap)

5 mapLeft AllParseError (parse (c : r))

Allerdings gibt es ein ziemlich großes Problem mit diesem Code. foo behauptet, dass
es alle möglichen Fehler “werfen” kann - es ist ehrlich in Bezug auf Parserfehler,
Nachschlagefehler und Head-Fehler, aber es behauptet auch, dass es werfen wird, wenn
Dateien nicht gefunden werden, “was auch immer” passiert, und usw. Es gibt keine
Möglichkeit, dass ein Aufruf vonfoo zu Datei nicht gefunden führt, weil foo
nicht einmal E/A machen kann! Das ist absurd. Der Typ ist zu groß! Das vorherige
Kapitel diskutiert, wie wichtig es ist, die Typen klein zu halten und wie wunderbar es
sein kann, um Fehler zu beseitigen.

Angenommen, wir wollen foo’s Fehler behandeln. Wir rufen die Funktion auf und
schreiben dann einen Fallausdruck wie gute Haskeller:

1 case foo "hello world" of

2 Right val ->

3 pure val

4 Left err ->

5 case err of

6 AllParseError parseError ->

7 handleParseError parseError

8 AllLookupError lookupErr ->

9 handleLookupError

10 AllHeadError headErr ->

Das Problem mit typisierten Fehlern 54

11 handleHeadError

12 _ ->

13 error "impossible?!?!?!"

Leider ist dieser Code anfällig für Refaktorisierung! Wir behaupten, alle Fehler zu be-
handeln, aber inWirklichkeit behandeln wir viele davon nicht. Wir “wissen” momentan,
dass dies die einzigen Fehler sind, die auftreten können, aber es gibt keine Garantie
durch den Compiler, dass dies der Fall ist. Jemand könnte später foo ändern, um
einen anderen Fehler auszulösen, und dieser Fallausdruck würde fehlschlagen. Jeder
Fallausdruck, der ein Ergebnis von foo auswertet, muss aktualisiert werden.

Der Fehlertyp ist zu groß, und so besteht die Möglichkeit, ihn falsch zu behandeln. Es
gibt ein weiteres Problem. Angenommen, wir wissen, wie man einen oder zwei Fälle
des Fehlers behandelt, aber wir müssen den Rest der Fehlerfälle nach oben weiterleiten:

1 bar :: String -> Either AllErrorsEver Integer

2 bar str =

3 case foo str of

4 Right val ->

5 Right val

6 Left err ->

7 case err of

8 AllParseError pe ->

9 Right (handleParseError pe)

10 _ ->

11 Left err

Wir wissen, dass AllParseError von bar gehandhabt wurde, weil - schauen Sie
es sich einfach an! Der Compiler hat jedoch keine Ahnung. Wann immer wir den
Fehlerinhalt von bar überprüfen, müssen wir entweder a) einen Fehlerfall „behandeln“,
der vielleicht zweifelhaft bereits behandelt wurde, oder b) den Fehler ignorieren und
verzweifelt hoffen, dass kein zugrundeliegender Code jemals den Fehler auslöst.

Sind wir mit den Problemen dieses Ansatzes fertig? Nein! Es gibt keine Garantie, dass
ich den richtigen Fehler werfe!

Das Problem mit typisierten Fehlern 55

1 head :: [a] -> Either AllErrorsEver a

2 head (x:xs) = Right x

3 head [] = Left (AllLookupError KeyWasNotPresent)

Dieser Code wird typgeprüft, aber er ist falsch, weil LookupError nur von lookup
ausgelöst werden soll! In diesem Fall ist es offensichtlich, aber in größeren Funktionen
und Codebasen wird es nicht so klar sein.

6.1 Monolithische Fehlertypen sind schlecht

Ein monolithischer Fehlertyp hat also viele Probleme. Ich werde hier eine Behauptung
aufstellen:

Alle Fehlertypen sollten einen einzigen Konstruktor haben

Das heißt, Fehler sollten keine Summentypen sein. Der Name des Typs und der Name
des Konstruktors sollten gleich sein. Die Ausnahme sollte tatsächliche Werte enthalten,
die nützlich wären, um einen Komponententest zu schreiben oder das Problem zu
debuggen. Ein String-Nachricht mitzuschleppen ist ein No-Go.

Fast alle Programme können auf mehrere potenzielle Arten fehlschlagen. Wie können
wir dies darstellen, wenn wir nur einen einzigen Konstruktor pro Typ verwenden?

Vielleicht können wir sehen, ob wir Either angenehmer verwenden können. Wir
definieren ein paar Helfer, die den nötigen Schreibaufwand reduzieren:

1 type (+) = Either

2 infixr + 5

3

4 l :: l -> Either l r

5 l = Left

6

7 r :: r -> Either l r

8 r = Right

Nun, lassen Sie uns diesen unansehnlicheren Either-Code mit diesen neuen Hilfsmit-
teln refaktorisieren:

Das Problem mit typisierten Fehlern 56

1 foo :: String

2 -> Either

3 (HeadError + LookupError + ParseError)

4 Integer

5 foo str = do

6 c <- mapLeft l (head str)

7 r <- mapLeft (r . l) (lookup str strMap)

8 mapLeft (r . r) (parse (c : r))

Nun, die Syntax ist schöner. Wir können über das verschachtelte Either im Feh-
lerzweig mit case gehen, um einzelne Fehlerfälle zu eliminieren. Es ist einfacher
sicherzustellen, dass wir nicht behaupten, Fehler auszulösen, die wir nicht auslösen
- schließlich wird GHC den Typ von foo korrekt ableiten, und wenn GHC eine
Typvariable für irgendein + ableitet, können wir annehmen, dass wir diesen Fehlerplatz
nicht verwenden und ihn löschen können.

Leider gibt es immer noch den mapLeft-Standardcode. Und Ausdrücke, von denen
man wirklich möchte, dass sie gleich sind, sind es nicht –

1 x :: Either (HeadError + LookupError) Int

2 y :: Either (LookupError + HeadError) Int

Die Werte x und y sind isomorph, aber wir können sie in einem do Block nicht
verwenden, da sie nicht exakt gleich sind. Wenn wir Fehler hinzufügen, müssen wir alle
mapLeft-Codes sowie alle case-Ausdrücke, die die Fehler überprüfen, überarbeiten.
Glücklicherweise sind dies vollständig vom Compiler geführte Refaktorisierungen,
sodass die Wahrscheinlichkeit, dabei Fehler zu machen, gering ist. Sie tragen jedoch
erheblich zu Boilerplate, Lärm und Fleißarbeit in unserem Programm bei.

6.2 Boilerplate ade!

Nun, es stellt sich heraus, dass wir die Abhängigkeitsreihenfolge und Boilerplate mit
Typklassen loswerden können! Der erste Ansatz besteht darin, “classy prisms” aus dem
lens-Paket zu verwenden. Lassen Sie uns unsere Typen von konkreten Werten in
prismatische umwandeln:

Das Problem mit typisierten Fehlern 57

1 -- Concrete:

2 head :: [a] -> Either HeadError a

3

4 -- Prismatic:

5 head :: AsHeadError err => [a] -> Either err a

6

7

8 -- Concrete:

9 lookup :: k -> Map k v -> Either LookupError v

10

11 -- Prismatic:

12 lookup

13 :: (AsLookupError err)

14 => k -> Map k v -> Either err v

Nun, Typklasseneinschränkungen kümmern sich nicht um die Reihenfolge - (Foo a,
Bar a) => a und (Bar a, Foo a) => a sind genau dasselbe, soweit es GHC
betrifft. Die AsXXX Typklassen werden automatisch die mapLeft Sachen für uns
bereitstellen, so dass unsere foo Funktion jetzt viel übersichtlicher aussieht:

1 foo :: (AsHeadError err, AsLookupError err, AsParseError err)

2 => String -> Either err Integer

3 foo str = do

4 c <- head str

5 r <- lookup str strMap

6 parse (c : r)

Dies scheint eine deutliche Verbesserung gegenüber dem zu sein, was wir vorher hatten!
Und der meiste Standardcode mit den AsXXX-Klassen wird über Template Haskell
erledigt:

Das Problem mit typisierten Fehlern 58

1 makeClassyPrisms ''ParseError

2 -- this line generates the following:

3

4 class AsParseError a where

5 _ParseError :: Prism' a ParseError

6 _UnexpectedChar :: Prism' a (Char, String)

7 _RanOutOfInput :: Prism' a ()

8

9 -- etc...

10 instance AsParseError ParseError where

Allerdings müssen wir unseren eigenen Boilerplate schreiben, wenn wir schließlich die-
se Typen konkret behandeln wollen. Wir könnten am Ende einen riesigen AppError
schreiben, in den all diese Fehler eingespeist werden.

Es gibt einen großen, fatalen Fehler bei diesem Ansatz. Obwohl es sich gut zusammen-
setzt, zerfällt es überhaupt nicht! Es gibt keine Möglichkeit, einen einzelnen Fall zu
erfassen und sicherzustellen, dass er behandelt wird. Die Mechanik, die uns Prismen
bieten, erlaubt es nicht, eine einzelne Einschränkung herauszulösen, sodass wir keinen
Pattern Match auf einen einzelnen Fehler durchführen können.

Unsere Typen werden erneut immer größer, mit all den damit verbundenen Problemen.

6.3 Typklassen zur Rettung!

Was wir wirklich wollen, ist:

• Unabhängigkeit von der Reihenfolge
• Kein Boilerplate
• Einfache Zusammensetzung
• Einfache Zerlegung

In PureScript oder OCaml können Sie offene Variantentypen verwenden, um dies feh-
lerfrei zu tun. Haskell hat keine offenen Varianten, und die Versuche, sie nachzubilden,
sind in der Praxis recht umständlich zu verwenden.

Glücklicherweise können wir Typklassen und Einschränkungen verwenden, um etwas
Ähnliches zu erreichen. Oben hatten wir eine Menge Probleme mit dem “verschachtel-
ten Either“-Muster - Either (Either (Either A B) C) D. Dies ermög-
licht es uns, den Ausnahme-Typ zu vergrößern und zu verkleinern, was es uns erlaubt,

Das Problem mit typisierten Fehlern 59

Fälle zu behandeln und neue einzuführen. Aber die Benutzerfreundlichkeit ist ziemlich
schlecht.

Der Grund ist, dassEither _ _ einen binären Baum von Typen darstellt. Wir wollen
keinen binären Baum - wir wollen eine Menge. Aber eine Menge von Typen wird am
besten als Typklasse-Einschränkung modelliert. Wir brauchen also eine Möglichkeit zu
sagen, dass A, B, C und D alle im Typ ‘enthalten’ sind.

Obwohl ich dieses Thema gerne vollständig im Buch aufnehmen würde, wäre es
unehrlich. Ich habe die Technik nicht in der Produktion verwendet und kann sie daher
nicht voll empfehlen. Wenn Sie daran interessiert sind, mehr über experimentelles
Material zu lesen, dann empfehle ich den Blogbeitrag “Plucking Constraints”¹, sowie die
plucky² Proof-of-Concept Bibliothek und das super experimentelleprio³ Repository,
das die plucky Technik mit IO-basierten Ausnahmen verwendet.

6.4 Die Tugend von ungetypten Fehlern

Wir haben gesehen, dass getypte Fehler eine Reihe von Problemen haben. Es ist
schwierig, Fehlerfälle zu entfernen. Der Boilerplate ist intensiv. Die Buchhaltung ist
selten ergonomisch oder benutzerfreundlich.

Getypte Fehler haben viele Probleme und erfordern viel Arbeit. Währenddessen haben
ungetypte Fehler viele Probleme, erfordern aber wenig Arbeit. Deshalb denke ich, dass
es am besten ist, bei ungetypten Ausnahmen zu bleiben, bis etwas Robusteres kommt.

1 throwIO :: (Exception e) => e -> IO a

¹https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
²https://hackage.haskell.org/package/plucky
³https://github.com/parsonsmatt/prio

https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
https://hackage.haskell.org/package/plucky
https://github.com/parsonsmatt/prio
https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
https://hackage.haskell.org/package/plucky
https://github.com/parsonsmatt/prio

7. Template Haskell ist nicht
beängstigend

7.1 Ein Anfängertutorial

Dieses Tutorial richtet sich an Personen, die Anfänger bis fortgeschrittene Haskeller sind
und die Grundlagen von Template Haskell erlernen möchten.

Ich habe über die Macht und den Nutzen der Metaprogrammierung in Ruby gelernt.
Ruby-Metaprogrammierung wird durchgeführt, indem Quellcode durch Zeichenket-
tenverkettung konstruiert wird und der Interpreter ihn ausführt. Es gibt auch einige
Methoden, die verwendet werden können, um Methoden, Konstanten, Variablen usw.
zu definieren.

In meiner Squirrell¹ Ruby-Bibliothek, die entwickelt wurde, um das Kapseln von SQL-
Abfragen etwas einfacher zu machen, habe ich ein paar Elemente der Metaprogrammie-
rung, um einige Annehmlichkeiten bei der Definition von Klassen zu ermöglichen. Die
Idee ist, dass Sie eine Abfrageklasse so definieren können:

1 class PermissionExample

2 include Squirrell

3

4 requires :user_id

5 permits :post_id

6

7 def raw_sql

8 <<SQL

9 SELECT *

10 FROM users

11 INNER JOIN posts ON users.id = posts.user_id

12 WHERE users.id = #{user_id} #{has_post?}

13 SQL

¹https://github.com/parsonsmatt/squirrell/

60

https://github.com/parsonsmatt/squirrell/
https://github.com/parsonsmatt/squirrell/

Template Haskell ist nicht beängstigend 61

14 end

15

16 def has_post?

17 post_id ? "AND posts.id = #{post_id}" : ""

18 end

19 end

und indem Sie requiresmit den Symbolen angeben, die Sie benötigenmöchten, wird
es für Sie eine Instanzvariable und einen Attributleser definieren und Fehler auslösen,
wenn Sie den erforderlichen Parameter nicht übergeben. Das zu erreichen war ziemlich
einfach. Der Aufruf von requires erledigt etwas Buchhaltung mit den erforderlichen
Parametern und ruft dann diese Methode mit den übergebenen Argumenten auf:

1 def define_readers(args)

2 args.each do |arg|

3 attr_reader arg

4 end

5 end

Man kann es ein wenig wie ein Makro lesen: Nimm die Argumente und rufe attr_-
readermit jedem auf. Die Magie passiert später, wo ich die initialize-Methode
überschrieben habe:

1 def initialize(args = {})

2 return self if args.empty?

3

4 Squirrell.requires[self.class].each do |k|

5

6 unless args.keys.include? k

7 fail MissingParameterError, "Missing required parameter: #{k}"

8 end

9

10 instance_variable_set "@#{k}", args.delete(k)

11 end

12

13 fail UnusedParameter, "Unspecified parameters: #{args}" if args.any?

14 end

Template Haskell ist nicht beängstigend 62

Wir iterieren über die an new übergebenen Argumente, und wenn erforderliche
fehlen, tritt ein Fehler auf. Andernfalls setzen wir die mit dem Argument verbundene
Instanzvariable und entfernen es aus dem Hash.

Ein anderer Ansatz besteht darin, einen String zu nehmen und ihn imKontext der Klasse,
in der Sie sich befinden, auszuwerten:

1 def lolwat(your_method, your_string)

2 class_eval "def #{your_method}; puts #{your_string}; end"

3 end

Diese Codezeile definiert eine Methode mit einem Namen Ihrer Wahl und einem String,
der im Kontext der ausführenden Klasse gedruckt wird.

7.2 Moment mal, das ist nicht Haskell, was
mache ich hier

Metaprogrammierung in Ruby basiert hauptsächlich auf einem textuellen Ansatz von
Code. Man verwendet Ruby, um einen String von Ruby-Code zu generieren, und lässt
Ruby dann den Code auswerten.

Wenn Sie aus einem solchen Hintergrund kommen (wie ich), wird Ihnen Template
Haskell anders und seltsam vorkommen. Sie denken vielleicht: “Oh, ich weiß, ich
benutze einfach QuasiQuoters, und alles wird gut funktionieren.” Nein. Sie müssen
anders über Metaprogrammierung in Template Haskell nachdenken. Sie werden keine
Strings zusammensetzen, die zufällig gültigen Code ergeben. Das ist Haskell, wir werden
eine Kompilierzeitprüfung durchführen!

7.3 Konstruktion eines AST

In Ruby haben wir einen String erstellt, den der Ruby-Interpreter dann geparst, in einen
abstrakten Syntaxbaum umgewandelt und interpretiert hat. In Haskell überspringen
wir den String-Schritt. Wir bauen den Abstrakten Syntaxbaum (AST) direkt mit Stan-
darddatenkonstruktoren. GHCwird überprüfen, ob beimAufbau des Syntaxbaums alles
in Ordnung ist, und den Syntaxbaum dann in unseren Quellcode einfügen, bevor das
Ganze kompiliert wird. So erhalten wir zwei Ebenen der Kompilierzeitprüfung - dass
wir eine korrekte Vorlage erstellt haben und dass wir die Vorlage korrekt verwendet
haben.

Template Haskell ist nicht beängstigend 63

Eines der unangenehmsten Dinge an textueller Metaprogrammierung ist das fehlende
Garantie, dass Ihre Syntax korrekt ist. Das Debuggen von Syntaxfehlern im generierten
Code kann schwierig sein. Die Überprüfung der Korrektheit unseres Codes ist einfacher,
wenn wir direkt in einen AST programmieren. Die QuasiQuoter sind eine bequeme
Ergänzung zur AST-Programmierung, aber ich bin der Meinung, dass man zuerst das
AST-Zeug lernen sollte und dann in die Quoter eintauchen sollte, wenn man eine gute
Vorstellung davon hat, wie sie funktionieren.

Also, lassen Sie uns mit unserem ersten Beispiel beginnen. Wir haben eine Funktion
bigBadMathProblem :: Int -> Double geschrieben, die zur Laufzeit viel
Zeit in Anspruch nimmt, und wir möchten eine Nachschlagetabelle für die häufigsten
Werte erstellen. Da wir sicherstellen wollen, dass die Laufzeitgeschwindigkeit super
schnell ist und wir keine Probleme haben, auf den Compiler zu warten, werden wir
dies mit Template Haskell tun. Wir geben eine Liste von häufigen Zahlen ein, führen
die Funktion für jede aus, um sie vorab zu berechnen, und übergeben dann schließlich
die Funktion, wenn wir die Zahl nicht zwischengespeichert haben.

Da wir etwas Ähnliches wie die makeLenses-Funktion tun möchten, um eine Menge
Deklarationen für uns zu generieren, schauen wir uns zuerst den Typ dieser Funktion
in der lens-Bibliothek an. Wenn wir zu den Lens-Dokumenten² springen, können
wir sehen, dass der Typ von makeLenses Name -> DecsQ ist. Wenn wir zu den
Template Haskell-Dokumenten³ springen, ist DecsQ ein Typsynonym für Q [Dec].
Q scheint ein Monad für Template Haskell zu sein, und ein Dec⁴ ist der Datentyp für
eine Deklaration. Der Konstruktor zur Erstellung einer Funktionsdeklaration ist FunD.
Damit können wir loslegen!

Wir beginnen mit der Definition unserer Funktion. Sie nimmt eine Liste von häufig
verwendeten Werten, wendet die Funktion auf jeden an und speichert das Ergebnis.
Schließlich benötigen wir eine Klausel, die den Wert an die Mathematikfunktion
weitergibt, falls wir ihn nicht zwischengespeichert haben.

1 precompute :: [Int] -> DecsQ

2 precompute xs = do

3 --

4 return [FunD name clauses]

Da Q eine Monad ist und DecsQ ein Typsynonym dafür ist, wissen wir, dass wir mit
do beginnen können. Und wir wissen, dass wir eine Funktionsdefinition zurückgeben

²https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
³https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
⁴https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec

https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec
https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec

Template Haskell ist nicht beängstigend 64

werden, die gemäß der Dec-Dokumentation ein Feld für den Namen der Funktion
und die Liste der Klauseln hat. Jetzt liegt es an uns, den Namen und die Klauseln zu
generieren. Namen sind einfach, also machen wir das zuerst.

Wir können einen Namen aus einem String mithilfe von mkName erhalten. Dies
konvertiert einen String in einen unqualifizierten Namen. Wir werden lookupTable
als den Namen unserer Nachschlagetabelle wählen, sodass wir diesen direkt verwenden
können.

1 precompute xs = do

2 let name = mkName "lookupTable"

3 -- ...

Nunmüssen wir jede Variable in xs auf die Funktion namens bigBadMathProblem
anwenden. Dies wird im [Clause]-Feld stehen, also schauen wir uns an, was eine
Clause ausmacht. Laut der Dokumentation⁵ ist eine Klausel ein Datenkonstruktor
mit drei Feldern: einer Liste von Pat-Mustern, einem Body und einer Liste von Dec-
Deklarationen. Der Body entspricht der tatsächlichen Funktionsdefinition, die Pat-
Muster entsprechen den Mustern, auf die wir Eingabeargumente abgleichen, und die
Dec-Deklarationen sind das, was wir möglicherweise in einer where-Klausel finden.

Lassen Sie uns zuerst unsere Muster identifizieren. Wir versuchen, direkt auf die Ints
abzugleichen. Unser gewünschtes Ergebnis wird ungefähr so aussehen:

1 lookupTable 0 = 123.546

2 lookupTable 12 = 151626.4234

3 lookupTable 42 = 0.0

4 -- ...

5 lookupTable x = bigBadMathProblem x

Also brauchen wir eine Möglichkeit, die Ints in unserer xs-Variablen in ein Pat-
Muster zu bringen. Wir brauchen eine Funktion Int -> Pat… Lassen Sie uns die
Dokumentation⁶ für Pat ansehen und sehen, wie sie funktioniert. Das erste Muster ist
LitP, das ein Argument vom Typ Lit annimmt. Ein Lit ist ein Summen-Typ, der
einen Konstruktor für die primitiven Haskell-Typen hat. Es gibt einen für IntegerL,
den wir verwenden können.

So können wir von Int -> Pat mit der folgenden Funktion kommen:

⁵https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
⁶https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat

Template Haskell ist nicht beängstigend 65

1 intToPat :: Int -> Pat

2 intToPat = LitP . IntegerL . toInteger

Was wir auf die Anfangsliste abbilden können, um unser [Pat] zu erhalten!

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 -- ...

5 return [FunD name clauses]

Unsere lookupTable-Funktion wird nur ein einziges Argument entgegennehmen,
daher möchten wir unsere Pat-Ganzzahlen in Clause umwandeln, indem wir von
[Pat] -> [Clause] gehen. Das wird die clauses-Variable nutzen, die wir
benötigen. Von oben ist eine Klausel wie folgt definiert:

1 data Clause = Clause [Pat] Body [Dec]

Also, unser [Pat] ist einfach - wir haben nur einen literalen Wert, auf den wir passen.
Body ist definiert als entweder ein GuardedB, das Musterwächter verwendet, oder
ein NormalB, das dies nicht tut. Wir könnten unsere Funktion in Bezug auf eine
einzelne Klausel mit einem GuardedB Körper definieren, aber das klingt nach mehr
Arbeit, also verwenden wir einen NormalBKörper. Der NormalBKonstruktor nimmt
ein Argument vom Typ Exp. Also lassen Sie uns in die Dokumentation von Exp!⁷
eintauchen.

Hier gibt es viel. Wie oben erwähnt, möchten wir wirklich eine einzige Sache - einen
Literal! Den vorkomputiertenWert. Es gibt einen LitEKonstruktor, der einen Lit Typ
nimmt. Der Lit Typ hat einen Konstruktor für DoublePrimL, der einen Rational
nimmt, also müssen wir ein wenig Umwandlung durchführen.

1 precomputeInteger :: Int -> Exp

2 precomputeInteger =

3 LitE . DoublePrimL . toRational . bigBadMathProblem

Wir können die Bodys für die Clauses erhalten, indem wir diese Funktion über die
Liste der Argumente abbilden. Die Deklarationen werden leer sein, also sind wir bereit,
unsere clauses zu erstellen!

⁷https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp

Template Haskell ist nicht beängstigend 66

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 fnBodies = map precomputeInteger xs

5 precomputedClauses =

6 zipWith

7 (\body pat -> Clause [pat] (NormalB body) [])

8 fnBodies

9 patterns

10 --

11 return [FunD name clauses]

Es gibt noch eine Sache, die hier zu tun ist. Wir müssen eine weitere Klausel mit einer
Variablenx erstellen, diewir an die Funktion delegieren. DamkName es erlaubt, dass die
Variable überschattet wird und dies eineWarnung im generierten Code erzeugen könnte,
möchten wir newName verwenden, um einen hygienischen Namen für die Variable zu
erstellen. Wir müssen ein wenig komplizierter mit unserem Body-Ausdruck werden,
da eine Anwendung auf eine Funktion stattfindet.

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 fnBodies = map precomputeInteger xs

5 precomputedClauses =

6 zipWith

7 (\body pat -> Clause [pat] (NormalB body) [])

8 fnBodies

9 patterns

10 x' <- newName "x"

11 let lastClause = [Clause [VarP x'] (NormalB appBody) []]

12 -- ...

13 clauses = precomputedClauses ++ lastClause

14 return [FunD name clauses]

Zurückkehrend zum Exp Typ, suchen wir nun nach etwas, das die Idee der Anwendung
erfasst. Der Exp Typ hat einen Datenkonstruktor AppE, der zwei Ausdrücke nimmt
und den zweiten auf den ersten anwendet. Genau das brauchen wir! Er hat auch

Template Haskell ist nicht beängstigend 67

einen Datenkonstruktor VarE, der ein Name Argument nimmt. Das ist alles, was wir
brauchen. Los geht’s.

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 fnBodies = map precomputeInteger xs

5 precomputedClauses =

6 zipWith

7 (\body pat -> Clause [pat] (NormalB body) [])

8 fnBodies

9 patterns

10 x' <- newName "x"

11 let lastClause =

12 [Clause [VarP x'] (NormalB appBody) []]

13 appBody =

14 AppE (VarE 'bigBadMathProblem) (VarE x')

15 clauses =

16 precomputedClauses ++ lastClause

17 return [FunD name clauses]

Um den Namen für bigBadMathProblem zu erhalten, haben wir ein Template
Haskell Zitat verwendet. Das Zeichen ' erstellt einen Name aus einem Wert, während
zwei Apostrophe einen Name aus einem Typ erstellen. Dies sieht man oft beim Ableiten:
deriveJSON ''MyType.

Wir haben es geschafft! Wir haben etwas Template Haskell zusammengestellt und uns
eine Nachschlagetabelle geschrieben. Jetzt möchten wir sie mit der Spleiß-Syntax $()
in die oberste Ebene unseres Programms einfügen:

1 $(precompute [1..1000])

Wie es der Zufall will, ist GHC intelligent genug, um zu erkennen, dass ein Ausdruck
auf oberster Ebene mit dem Typ Q [Dec] ohne die explizite Splicing-Syntax eingefügt
werden kann. Wir hätten also auch schreiben können:

Template Haskell ist nicht beängstigend 68

1 module X where

2

3 import Precompute (precompute)

4

5 precompute [1..1000]

Haskell-Ausdrücke mit den Datenkonstruktoren zu erstellen, ist wirklich einfach, wenn
auch ein wenig umständlich. Schauen wir uns ein etwas komplizierteres Beispiel an.

7.4 Boilerplate Ade!

Wir freuen uns, die ausgezeichnete users-Bibliothek mit dem persistent-
Backend für die Webanwendung, an der wir gerade arbeiten, zu verwenden (Quellcode
hier, falls Sie neugierig sind⁸). Es erledigt alle möglichen Dinge für uns und kümmert
sich um eine Menge Standardcode und benutzerbezogenen Code. Es erwartet als
erstes Argument einen Wert, der entpackt und verwendet werden kann, um eine
Persistent-Abfrage auszuführen. Es operiert außerdem in der IO-Monade. Derzeit ist
unsere Anwendung so eingerichtet, dass sie eine benutzerdefinierte Monade AppM
verwendet, die folgendermaßen definiert ist:

1 type AppM = ReaderT Config (EitherT ServantErr IO)

Um die Funktionen in der users-Bibliothek tatsächlich zu nutzen, müssen wir diese
lustige Angelegenheit erledigen:

1 someFunc :: AppM [User]

2 someFunc = do

3 connPool <- asks getPool

4 let conn = Persistent (`runSqlPool` connPool)

5 users <- liftIO (listUsers conn Nothing)

6 return (map snd users)

Das wird schnell lästig, also beginnen wir, spezielle Funktionen für unsere Monad zu
schreiben, die wir aufrufen können, anstatt das ganze Lifting und Wrapping selbst zu
machen.

⁸https://github.com/parsonsmatt/QuickLift/

https://github.com/parsonsmatt/QuickLift/
https://github.com/parsonsmatt/QuickLift/

Template Haskell ist nicht beängstigend 69

1 backend :: AppM Persistent

2 backend = do

3 pool <- asks getPool

4 return (Persistent (`runSqlPool` pool))

5

6 myListUsers :: Maybe (Int64, Int64) -> AppM [(LoginId, QLUser)]

7 myListUsers m = do

8 b <- backend

9 liftIO (listUsers b m)

10

11 myGetUserById :: LoginId -> AppM (Maybe QLUser)

12 myGetUserById l = do

13 b <- backend

14 liftIO (getUserById b l)

15

16 myUpdateUser

17 :: LoginId

18 -> (QLUser -> QLUser)

19 -> AppM (Either UpdateUserError ())

20 myUpdateUser id fn = do

21 b <- backend

22 liftIO (updateUser b id fn)

ahh, total mechanischer Code. Einfach nur Standardcode. Das ist genau die Art von
Sache, die ich in Ruby metaprogrammiert hätte. Also lass uns das in Haskell metapro-
grammieren!

Zuerst wollen wir den Ausdruck vereinfachen. Lass uns listUsers als Beispiel
nehmen. Wir machen es so einfach wie möglich - keine Infix-Operatoren, keine do-
Notation, etc.

1 listUsersSimple m =

2 (>>=) backend (\b -> liftIO (listUsers b m))

Schön. Um das Betrachten des AST ein wenig einfacher zu machen, können wir noch
einen Schritt weiter gehen. Zeigen wir alle Funktionsanwendungen explizit, indem wir
Klammern hinzufügen, um alles so deutlich wie möglich zu machen.

Template Haskell ist nicht beängstigend 70

1 listUsersExplicit m =

2 ((>>=) backend) (\b -> liftIO ((listUsers b) m))

Die allgemeine Formel, die wir anstreben, ist:

1 derivedFunction arg1 arg2 ... argn =

2 ((>>=) backend)

3 (\b -> liftIO ((...(((function b) arg1) arg2)...) argn))

Wir beginnen damit, unsere deriveReader-Funktion zu erstellen, die als erstes
Argument den backend-Funktionsnamen übernimmt.

1 deriveReader :: Name -> DecsQ

2 deriveReader rd =

3 mapM (decForFunc rd)

4 ['destroyUserBackend

5 , 'housekeepBackend

6 , 'getUserIdByName

7 , 'getUserById

8 , 'listUsers

9 , 'countUsers

10 , 'createUser

11 , 'updateUser

12 , 'updateUserDetails

13 , 'authUser

14 , 'deleteUser

15]

Dies ist unser erster Teil der speziellen Syntax. Das einfache Anführungszeichen in
'destroyUserBackend gibt den Name für destroyUserBackend zurück.
Im Gegensatz zu mkName "destroyUserBackend" ist dies jedoch ein global
qualifizierter Name. Dieser Name funktioniert auch dann, wenn das Modul, das den
Code einfügt, den Code, aus dem er stammt, nicht importiert. Wenn Sie sich auf Namen
beziehen, die außerhalb des von Ihnen generierten Codes existieren, müssen Sie diese
Form verwenden. Andernfalls müssen Ihre Benutzer eine Menge Module importieren,
um die Anforderungen Ihres Makros zu erfüllen.

Template Haskell ist nicht beängstigend 71

Nun, was wir brauchen, ist eine Funktion decForFunc, die die Signatur Name ->
Name -> Q Dec hat.

Um dies zu tun, müssen wir einige Informationen über die Funktion erhalten, die wir
ableiten möchten. Insbesondere müssen wir wissen, wie viele Argumente die Quellfunk-
tion annimmt. Es gibt einen ganzen Abschnitt in der Template Haskell Dokumentation
über ‘Abfragen des Compilers’⁹, den wir gut nutzen können.

Die Funktion reify gibt einen Wert vom Typ Info zurück. Für Typklassenopera-
tionen hat sie den Datenkonstruktor ClassOpI mit den Argumenten Name, Type,
ParentName und Fixity. Keiner dieser hat direkt die Stelligkeit der Funktion…

Ich denke, es ist an der Zeit, ein wenig erkundendes Programmieren im REPL zumachen.
Wir können GHCi starten und mit den folgenden Befehlen einige Template Haskell-
Sachen machen:

1 λ: :set -XTemplateHaskell

2 λ: import Language.Haskell.TH

Wir können auch den folgenden Befehl ausführen, und es wird den gesamten generier-
ten Code ausgeben, den es erstellt:

1 λ: :set -ddump-splices

Lassen Sie uns nun reify auf etwas Einfaches ausführen und das Ergebnis sehen!

1 λ: reify 'id

2

3 <interactive>:4:1:

4 No instance for (Show (Q Info)) arising from a use of ‘print’

5 In a stmt of an interactive GHCi command: print it

Hm.. Keine Show-Instanz. Glücklicherweise gibt es eine Umgehungslösung, die Dinge
im Q-Monaden ausdrucken kann:

⁹https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3

Template Haskell ist nicht beängstigend 72

1 λ: $(stringE . show =<< reify 'id)

2 "VarI

3 GHC.Base.id

4 (ForallT

5 [KindedTV a_1627463132 StarT]

6 []

7 (AppT

8 (AppT ArrowT (VarT a_1627463132))

9 (VarT a_1627463132)

10)

11)

12 Nothing

13 (Fixity 9 InfixL)"

Ich habe es ein wenig formatiert, um es etwas leserlicher zu machen. Wir haben den
Name, den Type, einen Nothing-Wert, der immer Nothing ist, und die Fixität der
Funktion. Der Type scheint ziemlich nützlich zu sein… Schauen wir uns die reify-
Ausgabe für eine der Klassenmethoden an, mit denen wir arbeiten wollen:

1 λ: $(stringE . show =<< reify 'Web.Users.Types.getUserById)

2 "ClassOpI

3 Web.Users.Types.getUserById

4 (ForallT

5 [KindedTV b_1627432398 StarT]

6 [AppT

7 (ConT Web.Users.Types.UserStorageBackend)

8 (VarT b_1627432398)

9]

10 (ForallT

11 [KindedTV a_1627482920 StarT]

12 [AppT

13 (ConT Data.Aeson.Types.Class.FromJSON) (VarT a_1627482920)

14 , AppT (ConT Data.Aeson.Types.Class.ToJSON) (VarT a_1627482920)

15]

16 (AppT

17 (AppT

18 ArrowT

Template Haskell ist nicht beängstigend 73

19 (VarT b_1627432398)

20)

21 (AppT

22 (AppT

23 ArrowT

24 (AppT

25 (ConT Web.Users.Types.UserId)

26 (VarT b_1627432398)

27)

28)

29 (AppT

30 (ConT GHC.Types.IO)

31 (AppT

32 (ConT GHC.Base.Maybe)

33 (AppT

34 (ConT Web.Users.Types.User)

35 (VarT a_1627482920)

36)

37)

38)

39)

40)

41)

42)

43 Web.Users.Types.UserStorageBackend

44 (Fixity 9 InfixL)"

Wow, das ist eine Menge Text! Glaub es oder nicht, ich habe es formatiert, um es
ein wenig leserlicher zu machen. Wir interessieren uns hauptsächlich für die Type-
Deklaration, und wir können viele Informationen darüber erhalten, welche Datenkon-
struktoren verwendet werden, aus der Dokumentation¹⁰. Genau wie AppE ist, wie wir
einen Ausdruck auf einen Ausdruck anwenden, ist AppT die Art und Weise, wie wir
einen Typ auf einen Typ anwenden. ArrowT ist der Funktionspfeil in der Typsignatur.

Nur als Übung gehen wir die folgende Typsignatur durch und verwandeln sie in etwas
Ähnliches wie das oben:

¹⁰https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type

Template Haskell ist nicht beängstigend 74

1 fmap

2 :: (a -> b) -> f a -> f b

3 ~ ((->) a b) -> (f a) -> (f b)

4 ~ (->) ((->) a b) ((f a) -> (f b))

5 ~ (->) ((->) a b) ((->) (f a) (f b))

Okay, jetzt sind alle unsere (->)s in Präfixform geschrieben. Wir werden die
Pfeile durch ArrowT ersetzen, explizite Klammern hinzufügen und die ApplyT-
Konstruktoren von den innersten Ausdrücken nach außen einfügen.

1 ~ (ArrowT ((ArrowT a) b)) ((ArrowT (f a)) (f b))

2 ~ (ArrowT ((ApplyT ArrowT a) b)) ((ArrowT (ApplyT f a)) (ApplyT f b))

3 ~ (ArrowT (ApplyT (ApplyT ArrowT a) b))

4 (ApplyT (ApplyT ArrowT (ApplyT f a)) (ApplyT f b))

5 ~ ApplyT (ArrowT (ApplyT (ApplyT ArrowT a) b))

6 (ApplyT (ApplyT ArrowT (ApplyT f a)) (ApplyT f b))

Das ist ziemlich aus dem Ruder gelaufen und sieht unordentlich aus. Aber wir haben
jetzt eine gute Vorstellung davon, wie wir von einer Darstellung zur anderen gelangen
können.

Ausgehend von unserer Typsignatur sieht es so aus, als könnten wir herausfinden,
wie wir die benötigten Argumente aus dem Typ erhalten können! Wir werden einen
Musterabgleich an der Typsignatur durchführen, undwennwir etwas sehen, das wie die
Fortsetzung einer Typsignatur aussieht, werden wir eins zu einer Zählung hinzufügen
und tiefer gehen. Andernfalls werden wir aussteigen.

Die Funktionsdefinition sieht so aus:

1 functionLevels :: Type -> Int

2 functionLevels = go 0

3 where

4 go :: Int -> Type -> Int

5 go n (AppT (AppT ArrowT _) rest) =

6 go (n+1) rest

7 go n (ForallT _ _ rest) =

8 go n rest

9 go n _ =

10 n

Template Haskell ist nicht beängstigend 75

Toll! Wir können diese genauso wie gewöhnliche Haskell-Werte pattern matchen. Nun,
sie sind gewöhnliche Haskell-Werte, also ergibt das vollkommen Sinn.

Zuletzt brauchen wir eine Funktion, die den Typ aus einem Info erhält. Nicht alle
Info haben Typen, daher kodieren wir das mit Maybe.

1 getType :: Info -> Maybe Type

2 getType info =

3 case info of

4 ClassOpI _ t _ _ ->

5 Just t

6 DataConI _ t _ _ ->

7 Just t

8 VarI _ t _ _ ->

9 Just t

10 TyVarI _ t ->

11 Just t

12 _ ->

13 Nothing

Gut, wir sind bereit, mit der decForFunc-Funktion zu beginnen! Füllen wir aus, was
wir wissen, dass wir tun müssen:

1 decForFunc :: Name -> Name -> Q Dec

2 decForFunc reader fn = do

3 info <- reify fn

4 arity <-

5 case getType info of

6 Nothing -> do

7 reportError "Unable to get arity of name"

8 return 0

9 Just typ ->

10 pure $ functionLevels typ

11 -- ...

12 return (FunD fnName [Clause varPat (NormalB final) []])

Stelligkeit erfasst. Jetzt möchten wir eine Liste neuer Variablennamen erstellen, die den
Funktionsargumenten entsprechen. Wenn wir hygienisch mit unseren Variablennamen

Template Haskell ist nicht beängstigend 76

sein wollen, verwenden wir die Funktion newName, die einen völlig einzigartigen Va-
riablennamenmit dem davor angefügten String erstellt.Wirmöchten(Stelligkeit
- 1) neue Namen, da wir den gebundenenWert aus der Leserfunktion für den anderen
verwenden werden. Wir benötigen auch einen Namen für den Wert, den wir aus dem
Lambda binden werden.

1 varNames <- replicateM (arity - 1) (newName "arg")

2 b <- newName "b"

Als Nächstes steht der neue Funktionsname an. Um eine konsistente API beizubehalten,
verwenden wir denselben Namen wie im eigentlichen Paket. Dies erfordert, dass wir
das andere Paket qualifiziert importieren, um einen Namenskonflikt zu vermeiden.

1 let fnName = mkName . nameBase $ fn

nameBase hat den Typ Name -> String und erhält den nicht qualifizierten
Namensstring für einen gegebenen Name-Wert. Dann verwenden wir mkName mit
dem String, was uns einen neuen, nicht qualifizierten Namen mit demselben Wert wie
die ursprüngliche Funktion gibt. Könnte das eine schlechte Idee sein? Wahrscheinlich
möchten Sie eine eindeutige Kennung bereitstellen. Allerdings kann es hilfreich sein,
die Namen konsistent zu halten, um die Entdeckung zu erleichtern.

Als nächstes möchten wir die (>>=) Funktion auf den reader anwenden. Dann
möchten wir eine Funktion erstellen, die den bound Ausdruck auf eine Lambda
anwendet. Lambdas haben einen LamE¹¹ Konstruktor im Exp Typ. Sie nehmen ein
[Pat] zum Abgleichen und ein Exp, das den Lambda-Körper darstellt.

1 bound = AppE (VarE '(>>=)) (VarE reader)

2 binder = AppE bound . LamE [VarP b]

Also ist AppE bound . LamE [VarP b] genau dasselbe wie (>>=) reader
(\b -> ...)! Cool.

Als nächstes müssen wir VarE-Werte für alle Variablen erstellen. Dann müssen wir alle
Werte auf den Ausdruck VarE fn anwenden. Funktionsanwendung bindet nach links,
also haben wir:

¹¹https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE

Template Haskell ist nicht beängstigend 77

1 fn ~ VarE fn

2 fn a ~ AppE (VarE fn) (VarE a)

3 fn a b ~ AppE (AppE (VarE fn) (VarE a)) (VarE b)

4 fn a b c ~ AppE (AppE (AppE (VarE fn) (VarE a)) (VarE b)) (VarE c)

Das sieht aus wie ein linker Fold! Sobald wir das haben, werden wir den vollständig
angewandten fn-Ausdruck auf VarE 'liftIO anwenden und schließlich an die
Lambda binden.

1 varExprs = map VarE (b : varNames)

2 fullExpr = foldl AppE (VarE fn) varExprs

3 liftedExpr = AppE (VarE 'liftIO) fullExpr

4 final = binder liftedExpr

Dies erzeugt unseren Ausdruck (>>=) reader (\b -> fn b arg1 arg2
... argn).

Das letzte, was wir tun müssen, ist, unsere Muster zu erhalten. Dies ist die Liste von
Variablen, die wir zuvor erstellt haben.

1 varPat = map VarP varNames

Und nun das Ganze:

1 deriveReader :: Name -> DecsQ

2 deriveReader rd =

3 mapM (decForFunc rd)

4 ['destroyUserBackend

5 , 'housekeepBackend

6 , 'getUserIdByName

7 , 'getUserById

8 , 'listUsers

9 , 'countUsers

10 , 'createUser

11 , 'updateUser

12 , 'updateUserDetails

13 , 'authUser

Template Haskell ist nicht beängstigend 78

14 , 'deleteUser

15]

16

17 decForFunc :: Name -> Name -> Q Dec

18 decForFunc reader fn = do

19 info <- reify fn

20 arity <-

21 case getType info of

22 Nothing -> do

23 reportError "Unable to get arity of name"

24 return 0

25 Just typ ->

26 pure $ functionLevels typ

27 varNames <- replicateM (arity - 1) (newName "arg")

28 b <- newName "b"

29 let fnName = mkName . nameBase $ fn

30 bound = AppE (VarE '(>>=)) (VarE reader)

31 binder = AppE bound . LamE [VarP b]

32 varExprs = map VarE (b : varNames)

33 fullExpr = foldl AppE (VarE fn) varExprs

34 liftedExpr = AppE (VarE 'liftIO) fullExpr

35 final = binder liftedExpr

36 varPat = map VarP varNames

37 return $ FunD fnName [Clause varPat (NormalB final) []]

Und wir haben nun eine Menge Boilerplate metaprogrammiert!

Wir haben die Dokumentation für Template Haskell durchgesehen, herausgefunden,
wie man Werte in Haskells AST konstruiert, und erarbeitet, wie man einige Arbeiten
zur Kompilierzeit erledigt sowie etwas Boilerplate automatisiert. Ich bin gespannt
darauf, mehr über die Magie der Definition von Quasiquoters und fortgeschritteneren
Template-Haskell-Konstrukten zu lernen, aber selbst ein super grundlegender Ansatz,
der “Ausdrücke und Deklarationen mit Datenkonstruktoren baut”, ist nützlich.

	Inhaltsverzeichnis
	Einführung
	Ein Meinungsfreudiger Reiseführer
	Über den Autor

	Prinzipien
	Komplexität
	Neuheit
	Kohäsion
	Empathie
	Referenzen

	I Haskell-Teams aufbauen
	Haskell verkaufen
	Einschätzung der Aufnahmebereitschaft
	Software-Produktivität
	Statistiken zur Produktivität
	Kennen Sie Ihre Konkurrenz

	Haskell Lernen und Lehren
	Die Philologie von Haskell
	Programmieren ist schwer zu lernen
	Lernmaterialien auswählen
	Schreiben Sie viel Code
	Keine Angst vor dem GHC
	Einfach anfangen
	Reale Probleme lösen
	Pair-Programmierung
	Ein Dialog
	Referenzen

	Haskeller einstellen
	Das zweischneidige Schwert
	Junioren und Senioren
	Einstellung von Senioren
	Juniors einstellen

	Bewertung von Beratungsfirmen
	Identifizierung des Ziels
	Well-Typed
	FP Complete

	Invertiere Deine Mocks!
	Effekte Dekomponieren
	Streaming-Zerlegung
	Einfachste Abstraktion
	Zerlegen!!!
	Was, wenn ich muss?

	Das Problem mit typisierten Fehlern
	Monolithische Fehlertypen sind schlecht
	Boilerplate ade!
	Typklassen zur Rettung!
	Die Tugend von ungetypten Fehlern

	Template Haskell ist nicht beängstigend
	Ein Anfängertutorial
	Moment mal, das ist nicht Haskell, was mache ich hier
	Konstruktion eines AST
	Boilerplate Ade!

