3
P

55

&

production
haskell

P75

b
2%
4%

5%

S

xR

A‘
2

5 @8

LY

LY

)

&/

)

L

s
6%,
S

2
»

Sw

L)

o i

&9

A,
N

in
dustry with

haskell

5

&5

S
L

=
4

(]

7
ing

N

‘e

)

&

N

~ 7

B
&

@?

&
@)
1‘159

succeed

in

matt parsons

O
Q
®
)
2,
S
<
O
£
Q
N
e
S
O
Q

Production Haskell (Deutsche Ausgabe)

Erfolg in der Industrie mit Haskell

Matt Parsons
Dieses Buch wird verkauft unter http://leanpub.com/production-haskell-de

Diese Version wurde verdffentlicht am 2024-08-13

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Moglichkeiten des Publizierens. Lean Publishing bedeutet die
wiederholte Veréffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschliefenden Vermarktung des Buches. Lean Publishing
unterstiitzt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

© 2024 Matt Parsons

http://leanpub.com/production-haskell-de
https://leanpub.com/
https://leanpub.com/manifesto

Inhaltsverzeichnis

Einfihrung L i
Ein Meinungsfreudiger Reisefithrer i
Uberden Autor e ii

Prinzipien o iv
Komplexitat iv
Neuheit vii
Kohdsion viii
Empathie xi
Referenzen Xiv

I Haskell-Teams aufbauen 1

1. Haskell verkaufen 2
1.1 Einschatzung der Aufnahmebereitschaft 2
1.2 Software-Produktivitat 3
1.3 Statistiken zur Produktivitat 3
1.4 Kennen Sie IThre Konkurrenz 5

2. Haskell Lernenund Lehren 7
2.1 Die Philologie von Haskell 7
2.2 Programmieren ist schwer zulernen 8
2.3 Lernmaterialien auswéhlen 9
2.4 Schreiben Sieviel Code 9
25 Keine Angstvordem GHC 10
2.6 Einfachanfangen 11
2.7 Reale Problemelésen 13
2.8 Pair-Programmierung 14

29 EinDialog 14

INHALTSVERZEICHNIS

210 Referenzen 21
3. Haskellereinstellen 22
3.1 Das zweischneidige Schwert 22
3.2 Juniorenund Senioren. 23
3.3 Einstellung von Senioren L. 24
3.4 Juniorseinstellen 28
4. Bewertung von Beratungsfirmen 31
4.1 Identifizierungdes Ziels 31
42 Well-Typed 32
43 FPComplete 33
5. Invertiere Deine Mocks! 36
5.1 Effekte Dekomponieren 37
5.2 Streaming-Zerlegung L oL 40
53 Einfachste Abstraktion 44
54 Zerlegen!l! 46
55 Was, wennich muss? 47
6. Das Problem mit typisierten Fehlern 50
6.1 Monolithische Fehlertypen sind schlecht 55
6.2 Boilerplateade! Lo o 56
6.3 Typklassen zur Rettung! 58
6.4 Die Tugend von ungetypten Fehlern 59
7. Template Haskell ist nicht bedngstigend 60
7.1 Ein Anféngertutorial oL 60
7.2 Moment mal, das ist nicht Haskell, was mache ich hier 62
7.3 Konstruktioneines AST L. 62

7.4 Boilerplate Ade! 68

EinfUhrung

Ein Meinungsfreudiger Reisefuihrer

Also, du hast Haskell gelernt. Du hast deinen Freunden etwas {iber Monaden beige-
bracht, hast einige Einsteiger-Lehrbiicher durchgearbeitet und vielleicht mit einigen
Open-Source-Projekten gespielt. Jetzt, wo du einen Vorgeschmack bekommen hast,
willst du mehr: Du mdchtest eine Anwendung in Haskell aus Spaf3 schreiben! Vielleicht
mochtest du Haskell bei der Arbeit einsetzen!

Du setzt dich an deinen Computer und bist ratlos.
Wie schafft es eigentlich jemand, mit dieser Sprache etwas zu erledigen?

Das ist eine haufige Frage.

Haskell hat immer eine Vielzahl an hochwertigen Lernmaterialien fiir fortgeschrittene
Teile der Sprache genossen, wenn man sich nicht vor akademischen Artikeln scheut.
In den letzten finf Jahren haben viele Menschen fantastische Ressourcen fiir Anfanger
geschaffen. Jedoch gibt es nicht viele Ressourcen, um die Sprache in der Produktion
zu nutzen. Die Haskell-Okosysteme kénnen schwer zu navigieren sein. Es gibt viele
Ressourcen unterschiedlicher Qualitat mit unklaren Zielen und Werten. Den richtigen
Rat zu finden, ist fast ebenso herausfordernd wie ihn tiberhaupt erst zu entdecken.

Haskell ist ein duflerst vielfiltiges Umfeld. Es gibt viele regionale Gruppen: das Vereinig-
te Konigreich, Skandinavien, das Festland Europas, Russland, die USA, Japan, China und
Indien verfiigen alle iiber florierende Haskell-Okosysteme mit interessanten Dialekten
und Unterschieden in Sitten und Gebrauchen.

Menschen kommen mit vielen verschiedenen Hintergriinden zu Haskell. Einige haben
Haskell erst spét in ihrer Karriere gelernt und hatten vorher eine lange Karriere mit Java,
Scala oder C#. Einige kamen von dynamisch typisierten Sprachen wie LISP oder Ruby
zu Haskell. Einige begannen frith in ihrer Programmierkarriere mit Haskell und nutzen
es als Vergleichsbasis. Manche verwenden Haskell hauptséchlich in der akademischen
Forschung, wiahrend andere es hauptsichlich in industriellen Anwendungen nutzen.
Einige sind Hobbyisten und schreiben einfach gerne aus Spafl Haskell!

Einfithrung ii

Dieses Buch richtet sich an Personen, die Haskell in der Industrie schreiben mochten.
Die Kompromisse und Einschriankungen, denen industrielle Programmierer gegeniiber-
stehen, unterscheiden sich von denen akademischer oder Hobby-Programmierer. Dieses
Buch behandelt nicht nur technische Aspekte der Haskell-Sprache, sondern auch soziale
und ingenieurtechnische Anliegen, die nicht “wirklich” mit Haskell zu tun haben.

Ein Teil dieses Buches wird objektiv sein. Ich werde dir beibringen, wie man einige
interessante Techniken und Ideen nutzt, um die Entwicklung mit Haskell produktiver
zu machen. Wir werden tiber Template Haskell, Typ-Level-Programmierung und andere
spannende Themen lernen.

Jedoch ist dieses Buch grofitenteils von Natur aus subjektiv. Da Haskell so vielen
Okosystemen dient, ist es unerlisslich zu erkennen, fiir welches Okosystem etwas
gedacht ist. Mehr als nur Rezepte zu geben - “Diese Bibliothek ist produktionsreif! Das
ist ein Spielzeug!” - hoffe ich, meinen Denkprozess zu zeigen und dir zu erméglichen,
eigene Urteile zu fallen.

Letztendlich ist dies ein Buch tber die soziale Realitit des Software-Engineerings in
einer Nischensprache.

Nach dem Lesen dieses Buches solltest du dich wohlfiihlen:

+ Grof3e Softwareprojekte in Haskell zu schreiben
» Konkurrenzfihige Bibliotheken und Techniken zu bewerten
+ Material von einer Vielzahl von Haskell-Nutzern produktiv zu lesen

Uber den Autor

Ich bin Matt Parsons.

Ich begann im Januar 2014 mit der Informatik 101 an der Universitdt von Georgia
mit dem Programmieren. Zu der Zeit arbeitete ich in der IT-Abteilung, installierte
Windows und behebt Druckerprobleme. Mein Vorgesetzter mochte mich nicht und
machte deutlich, dass er mich bei jeder Gelegenheit unter den Bus werfen wiirde. Ich
war verzweifelt auf der Suche nach einer neuen Karriere und hatte eine Menge College-
Credits von einem gescheiterten Versuch eines Biochemie-Studiums. Informatik schien
die beste Option zu sein, um aus diesem Job herauszukommen.

CS101 brachte mir die Grundlagen der Java-Programmierung bei. Keines der lokalen
Startups oder Programmierer nutzten oder mochten Java, also fragte ich, was ich
lernen sollte, um schnell einen Job zu bekommen. JavaScript und Ruby waren die

Einfithrung iii

Top-Optionen. Ich lernte JavaScript in jenem Sommer mit dem ausgezeichneten Buch
Eloquent JavaScript', das Kapitel tiber funktionale Programmierung und objektorien-
tierte Programmierung hatte. Ich fand das Kapitel tiber funktionale Programmierung
intuitiver, also merkte ich mir, die funktionalste Sprache zu lernen, die ich finden konnte.
Einige Monate spater begann ich mit dem Lernen von Haskell und Ruby on Rails.

Ich kiindigte meinen IT-Job im Dezember 2014, um Vollzeitstudent zu werden. Mitte
Januar hatte ich ein Rails-Praktikum bei einem lokalen Startup - so viel zum Vollzeitstu-
dium.

Mein Gehirn nahm Haskell schnell auf. Ich hatte kaum begonnen, imperativ und
objektorientiert zu programmieren, sodass die schwierige Neuheit, neues Fachjargon
und Konzepte zu lernen, erwartet wurde. Die Ruby-Sprache war bemerkenswert emp-
fanglich fir die Implementierung von Haskell-Ideen, obwohl die Community nicht
so begeistert war. Die Konzepte, die ich in Haskell lernte, halfen mir, in Ruby leicht
testbaren und zuverlédssigen Code zu schreiben.

Im August 2015 begann ich ein Haskell-Praktikum, wo ich Webanwendungen und
schnelle Parser bauen durfte. Ich durfte Haskell in meinem Kurs fiir Kinstliche In-
telligenz verwenden. In meinem letzten Semester am College nutzte ich Haskell in
meiner Bachelorarbeit, um die Verbindung zwischen Kategorientheorie, Modallogik und
verteilten Systemen zu untersuchen.

Ich habe das Gliick, diese Moglichkeiten gehabt zu haben, da sie mich fiir den Erfolg
mit Haskell vorbereitet haben. Mein erster Job nach dem Studium bestand darin, PHP-
Anwendungen in Neuentwicklungen mit Haskell zu konvertieren, und seitdem arbeite
ich Vollzeit mit Haskell. Ich habe in verschiedenen Kontexten gearbeitet: Einem Startup,
das nicht zu 100% von Haskell Giberzeugt war, einem gréfieren Unternehmen, das von
Haskell iberzeugt war, aber mit sozialen und technischen Schwierigkeiten eines riesigen
Code-Bestands und Entwicklungsteams zu kdmpfen hatte, und einem Startup, das von
Haskell iiberzeugt war und auf Wachstum hinarbeitete. Ich trage auch zu vielen Open-
Source-Projekten bei und bin mit den meisten Okosystemen vertraut. Alles in allem
habe ich mit Millionen von Zeilen Haskell-Code gearbeitet.

Ich habe gesehen, wie Haskell scheitert. Ich habe gesehen, wie es erfolgreich ist. Ich
mochte Thnen helfen, mit Haskell erfolgreich zu sein.

'https://eloquent-javascript.net

https://eloquent-javascript.net/
https://eloquent-javascript.net/

Prinzipien

Dieser Abschnitt dokumentiert die Leitprinzipien fiir das Buch. Ich habe festgestellt,
dass diese Kernideen wichtig sind, um erfolgreiche Haskell-Projekte zu verwalten.

+ Komplexitat

« Neuheit

« Kohésion

« Empathie
Komplexitat

Das Management von Komplexitét ist die wichtigste und schwierigste Aufgabe bei
Haskell-Projekten.

Das ist so wichtig, dass ich daraus das erste Prinzip mache, und ich sage es sogar
zweimal:

Das Management von Komplexitat ist die wichtigste und schwierigste Aufgabe bei
Haskell-Projekten.

Genauso wie es “technische Schulden” gibt, gibt es ein “Komplexititsbudget.” Sie
verwenden Ihr Komplexitatsbudget, indem Sie ausgefallene Technologien nutzen, und
Sie verwenden Thr Neuheitsbudget, indem Sie neue oder interessante oder andere Tech-
nologien auswahlen. Sie konnen Thr Budget erhdhen, indem Sie erfahrene Ingenieure
und Berater einstellen. Im Gegensatz zu technischen Schulden haben diese Budgets
einen realen und direkten Einfluss auf Ihr tatséchliches finanzielles Budget.

Komplexitat ist ein Fat Tail

Es ist leicht, die Ubel der Komplexitat zu beklagen, wenn man nur iber Komplexitit
spricht. Aber wir nehmen Komplexitét nicht fiir sich allein auf. Codebasen iibernehmen
kleine Funktionen, clevere Tricks und Sicherheitsfunktionen langsam. Mit der Zeit
akkumulieren sie sich zu hochkomplexen Systemen, die schwer zu verstehen sind. Das
passiert sogar, wenn jedes zusétzliche Stiick Komplexitét scheinbar sein eigenes Gewicht
tragt!

iv

Prinzipien A%

Wie passiert das?

Eine Codeeinheit steht nicht allein. Sie muss sich auf den Code beziehen, der sie verwen-
det, sowie auf den Code, den sie aufruft. Es sei denn, sie ist sorgfiltig versteckt, muss
die durch eine Codeeinheit eingefithrte Komplexitét von allen Codes, die sie verwenden,
behandelt werden. Wir missen die Beziehungen zwischen den Codeeinheiten sowie
die Einheiten selbst beriicksichtigen. Deshalb fiigen sich zwei Stiicke Komplexitit nicht
einfach zusammen - sie multiplizieren sich! Leider multiplizieren sich die Vorteile der
Komplexitat nicht - sie sind normalerweise nur additiv.

Ein System, das schwer zu verstehen ist, ist schwer zu bearbeiten. Schliellich kann
ein System so schwer verstindlich werden, dass es zu einer Blackbox wird, mit der
man praktisch nicht arbeiten kann. In diesem Fall ist ein kompletter Neuanfang oft die
angenehmste Option fiir das Projekt. Das tétet oft das Projekt, wenn nicht sogar das
Unternehmen. Das missen wir vermeiden.

Komplexitat malt uns in eine Ecke. Sicherheitsfunktionen besonders schrianken unsere
Optionen ein und reduzieren die Flexibilitit des Systems. Schlieflich besteht der ganze
Sinn von “Programmsicherheit” darin, ungiiltige Programme zu verbieten. Wenn sich
die Anforderungen dndern und sich die Vorstellung eines “ungiiltigen Programms”
ebenfalls dndert, konnen die Sicherheitsfunktionen hinderlich werden. Komplexitat
birgt ein Risiko bei jeder Anderung der Codebasis.

Die Kosten oder die Zeit, die erforderlich sind, um ein komplexes System zu &ndern,
vorherzusagen, ist schwierig. Die Varianz dieser Vorhersagen wachst mit der Komplexi-
tat des Systems. Aufgaben, die einfach erscheinen, konnten extrem schwierig werden,
und es wird ebenso problematisch sein, Schatzungen iiber die verbleibende Zeit zur
Fertigstellung einer Aufgabe abzugeben.

In der Messung betrachten wir Genauigkeit und Prézision als separate Konzepte.
Eine prazise Messung oder Vorhersage ist hochgradig konsistent - fiir eine gegebene
Wabhrheit wird sie eine dhnliche Messung konsistent melden. Eine genaue Messung
oder Vorhersage liegt nahe an der tatsachlichen Wahrheit. Wir konnen uns Vorhersagen
vorstellen, die prazise, aber nicht genau sind, sowie genaue, aber nicht prazise.

Komplexe Systeme verschlechtern sowohl die Prézision als auch die Genauigkeit
von Vorhersagen. Prizision ist das ernstere Problem. Unternehmen verlassen sich auf
Prognosen und Regelmafligkeit, um Plane zu machen. Wenn die Vorhersage unprazise
wird, wird es schwieriger, das Geschaft aufrechtzuerhalten.

Ein hochkomplexes System ist dann eher katastrophalen Ausfillen ausgesetzt als ein
einfaches System. Das gilt selbst dann, wenn das System in jeder anderen Hinsicht
besser ist! Stellen Sie sich zwei Autos vor - eines fahrt 100 Meilen pro Gallone, kann mit

Prinzipien vi

200 Meilen pro Stunde fahren und nimmt Kurven wie ein Traum. Das andere ist viel
schlechter: nur 40 Meilen pro Gallone und eine Héochstgeschwindigkeit von 60 Meilen
pro Stunde. Natiirlich gibt es einen Haken: Das erste Auto wird relativ oft und zufillig
ausfallen, und es kann bis zu einer Woche dauern, es zu reparieren. Das zweite Auto ist
nicht perfekt, aber es fillt einmal im Jahr zuverlassig aus, und es dauert immer einen
Tag, es zu reparieren.

Wenn Sie ein Auto brauchen, um zur Arbeit zu kommen, und nur ein Auto haben
konnen, dann wollen Sie das zweite Auto. Sicher, das erste Auto kann schneller fahren
und kostet weniger, aber die wesentliche Qualitit, die Sie bei einem Pendlerfahrzeug
brauchen, ist Zuverlassigkeit.

Komplexitat mindern

Wir kehren zu einem haufigen Thema in diesem Buch zuriick: die Vielfalt der Oko-
systeme. Konnen Sie sich eine Gruppe vorstellen, die das erste Auto bevorzugen
wiirde? Hobbyisten! Und professionelle Rennfahrer, die Ersatzautos haben konnen! Und
Ingenieure, die fortschrittliche Automobiltechnologie studieren!

Haskell dient in erster Linie der akademischen Forschung als funktionale Program-
miersprache. Die industrielle Nutzung ist ein sekundares Anliegen. Viele Haskeller
sind auch Hobbyisten, die es hauptsichlich zum Spaf} nutzen. Dies sind alles giiltige
Verwendungen von Haskell, aber akademische und hobbyistische Praktiker glauben
normalerweise, dass ihre Techniken fiir die Industrie geeignet sind. Leider funktionieren
sie oft nicht so gut, wie sie hoffen.

Wenn Sie in Haskell nach zwei Autos fragen, werden Sie oft horen, dass Leute das
schnelle Auto empfehlen. Versuchen Sie, mehr tber die betreffenden Personen zu
erfahren. Sind sie tatsichlich das schnelle Auto gefahren? Als Pendler? Sind sie dafiir
verantwortlich, es zu reparieren, wenn es kaputt geht?

Leute werden Thnen fantastische und wunderbare Losungen fiir Thre Probleme empfeh-
len. Genief3en Sie diese mit Vorsicht. Es gibt nur wenige Codebasen in Haskell, bei denen
eine Technik umfassend untersucht wurde. Nur wenige dieser Untersuchungen gehen
in den allgemeinen Wissensschatz ein.

Der beste Weg, den Erfolg Thres Haskell-Projekts zu garantieren, besteht darin, die
Komplexitat zu bewiltigen und die einfachste mogliche Losung zu bevorzugen.

Warum ist das schwierig?

Haskell selektiert fiir eine bestimmte Art von Person.

Prinzipien vii

Hobby- und Industrieprogrammierer folgen einem Weg. Wenn Sie keine Freude an
Neuheit und Schwierigkeit haben, werden Sie es schwer haben, eine so neuartige und
komplexe Sprache iiberhaupt zu lernen. Die meisten Haskell-Entwickler lernen Haskell
in ihrer Freizeit, indem sie personliche Projekte verfolgen oder intellektuelles Wachstum
anstreben. Die Lernmaterialien von Haskell, die sich in letzter Zeit stark verbessert
haben, sind immer noch so schwierig, dass nur entschlossene Menschen mit einer
groflen Toleranz fiir Neuheit und Frustration es schaffen.

Akademische Programmierer tendieren dazu, einen anderen Weg zu folgen. Viele von
ihnen lernen Haskell in Universitatskursen, mit einem Professor, Lehrassistenten und
anderen Kommilitonen, die Unterstiitzung bieten. Sie verfolgen ihre Forschung und
Studien, um die Grenzen von Programmiersprachen und der Informatik zu erweitern.
Viel akademische Arbeit ist eher ein Machbarkeitsnachweis als eine robuste industrielle
Implementierung. Die resultierenden Arbeiten sind oft ziemlich komplex und fragil.

Die Programmiersprache Haskell ist dafiir auch teilweise verantwortlich. Starke Typen
und funktionale Programmierung kénnen Schutz bieten. Programmierer fiithlen sich oft
viel selbstbewusster, wenn sie mit diesen Sicherheiten arbeiten. Dieses Selbstvertrauen
ermoglicht es den Entwicklern, nach grofleren und komplexeren Losungen zu streben.

Infolgedessen tendieren ein Grof3teil des Okosystems und der Gemeinschaft dazu, weni-
ger abgeneigt gegeniiber Komplexitat und Neuheit zu sein. Hobbyisten und Akademiker
werden auch von einem anderen Satz von Anreizen angetrieben als Industrieprogram-
mierer. Komplexitat und Neuheit sammeln sich schnell in Haskell-Projekten an, wenn
man sie nicht aggressiv kontrolliert.

Neuheit

Neuheit ist die zweite Gefahr in einem Haskell-Projekt. Sie ist fast so gefahrlich wie die
Komplexitat, und tatsachlich ist das Problem mit der Komplexitit oft die Neuheit, die
damit einhergeht.

Im Gegensatz zu einem Komplexitatsbudget, das durch den Einsatz von Geld fiir
Expertise erhoht werden kann, ist Thr Neuheitsbudget schwerer zu erhohen. Neue
Techniken sind in der Regel schwer einzustellen. Sie sind schwer zu erlernen und zu
dokumentieren.

Wenn Sie Haskell als Anwendungssprache ausgewahlt haben, haben Sie bereits einen
Grofiteil Threr Komplexitats- und Neuheitsbudgets ausgegeben. Sie werden wahrschein-
lich grundlegende Bibliotheken fiir Ihre Doméne schreiben oder pflegen miissen - daher
miissen Sie Bibliotheksingenieure einstellen (oder sich mit der Vergabe dieser Arbeiten

Prinzipien viii

wohlfiihlen). Sie miissen ein Verstdndnis fiir GHC entwickeln - sowohl den Compiler
als auch das Laufzeitsystem. Expertise (und Beratung) zu diesen Themen ist schwieriger
zu finden als das Tuning der JVM oder des CLR. Vieles dieses Verstandnisses kann tiber
die Prototypenphase hinausgeschoben werden - die Bibliothekssituation von Haskell ist
fiir viele Doménen gut genug, und die Leistung von GHC ist von Haus aus so gut genug,
dass Sie prototypen konnen und damit zurechtkommen.

Da Haskell ein grofier Posten im Komplexitéts-/Neuheitsbudget ist, ist es wichtig, bei
den restlichen Komponenten auf kostengiinstige Entscheidungen zu setzen. Probieren
Sie keine ausgefallene neue Graphdatenbank fiir Thre App aus - bleiben Sie bei Post-
gres. Probieren Sie vor allem keine ausgefallenen In-Haskell-Datenbanken aus! Das
Festhalten an Industriestandards und géngiger Technologie er6ffnet ein breiteres und
vielfiltigeres Feld an Ingenieuren zur Einstellung.

Jede Anforderung, die Sie in Ihrer Stellenausschreibung fiir einen Entwickler stellen, er-
hoht die Schwierigkeit und die Kosten der Einstellung. Haskell ist eine seltene Fahigkeit.
Jahre der Erfahrung mit Haskell im Produktionsbetrieb mit ausgefallenen Bibliotheken
und Techniken sind noch seltener. Die Produktivitatsvorteile von Haskell sind real,
aber diese gelten nur beim Schreiben, Lesen und Verstehen von Code. Dokumentation,
Anforderungen und Qualitatssicherung nehmen genauso viel Zeit in Anspruch wie in
anderen Sprachen.

Kohasion

Zwei Ingenieure streiten sich wieder einmal tiber ihre personlichen Vorlieben. Sie
seufzen und bewerten die Argumente. Beide Losungen sind in Ordnung. Sicher, sie
haben Kompromisse, aber das hat alles.

Haskell-Ingenieure sind ungewohnlich meinungsstark, sogar fiir Software-Ingenieure.
Haskell selbst ist stark meinungsstark - rein funktionale Programmierung ist das einzige
Paradigma, das die Sprache direkt unterstiitzt. Softwareentwickler, die funktionale
Programmierung lernen mochten und nicht allzu meinungsstark dariiber sind, lernen
typischerweise mit JavaScript oder einer weniger extremen funktionalen Sprache wie
OCaml, F# oder Scala. Wenn Sie erfolgreich Haskell lernen, sind Sie wahrscheinlich
ziemlich meinungsstark dariiber, wie man es macht!

Die Vielfalt im Haskell-Okosystem fiihrt zu vielen unterschiedlichen Praktiken und Kon-
ventionen. Der Haskell-Compiler GHC selbst hat viele verschiedene Formatierungsstile
und Konzepte, und viele davon sind spezifisch fiir dieses Projekt. Ich habe Unterschiede
im Stil bemerkt, die stark mit den kulturellen Zentren korrespondieren - die Ost-

Prinzipien ix

und Westkiiste der Vereinigten Staaten unterscheiden sich, ebenso wie die Stile der
Niederlande, Schottland und Schweden.

Vanilla Haskell ist flexibel genug. GHC Haskell, die faktische Standardimplementierung,
erlaubt eine grofie Vielzahl semantischer und syntaktischer Variationen durch Sprach-
Erweiterungen. MultiWayIf, LambdaCase und BlockArguments bieten syn-
taktische Anderungen der Sprache. Die Erweiterungen MultiParamTypeClasses

+ FunctionalDependencies konnen verwendet werden, um Typenprogrammie-
rung durchzufithren, die weitgehend TypeFamilies entspricht, und welche zu
verwenden ist oft eine Frage der personlichen Vorliebe. Viele Probleme lassen sich
genauso leicht mit entweder TemplateHaskell oder Generic ableiten 16sen, aber
die wirklichen Kompromisse werden oft zugunsten personlicher Vorlieben ignoriert.

In der Zwischenzeit tragen die verschiedenen Okosysteme alle konkurrierende Ideen
dazu bei, wie man etwas machen kann. Es gibt oft viele konkurrierende Bibliotheken
fiir grundlegende Hilfsprogramme, die jeweils einen leicht unterschiedlichen Ansatz
bieten. Menschen entwickeln starke Meinungen zu diesen Hilfsprogrammen, oft unver-
haltnismafig zu den tatsichlichen Kompromissen, die damit verbunden sind. Ich bin
sicherlich schuldig dessen!

Ein Mangel an Kohédsion kann die Produktivitat eines Projekts beeintrachtigen. Erfolg-
reiche Projekte sollten einige Anstrengungen darauf verwenden, Kohision aufrechtzu-
erhalten. Die Forderung von Kohésion ist ein Sonderfall der Vermeidung von Neuheit -
man wahlt eine Methode, um Dinge zu tun, und widersteht dann dem Drang, mit einer
anderen Methode zur Problemlésung weitere Neuheiten einzufiihren.

Kohasiver Stil

Haskells Syntax ist extrem flexibel. Bedeutender Leerraum ermoglicht wunderschon
eleganten Code sowie schwierige Parser-Regeln. Vertikale Ausrichtung wird zur Kunst-
form, und die Struktur des Textes kann die Struktur der zugrunde liegenden Berechnung
andeuten. Code wird nicht mehr nur gelesen, sondern wie ein Gedicht angeordnet.
Leider kann diese Schonheit oft das Warten und Verstehen von Code beeintrichtigen.

Projekte sollten einen Stil-Leitfaden tibernehmen und sie sollten automatisierte Werk-
zeuge verwenden, um die Einhaltung zu unterstiitzen. Es gibt viele Werkzeuge, die dabei
helfen konnen, aber die Vielfalt der Haskell-Syntax macht es schwierig, sich auf eine
vollstindige Losung festzulegen. Die Erkundung der Kompromisse eines bestimmten
Codestils liegt auflerhalb des Umfangs dieses Kapitels, aber ein konsistenter ist wichtig
fir die Produktivitat.

Prinzipien X

Kohasive Effekte

Haskeller haben eine enorme Menge an Gedanken und Anstrengungen in das Konzept
von ‘Effekten’ gesteckt. Jede andere Sprache baut ihr Effektsystem in die Sprache selbst
ein, und es ist normalerweise nur imperatives Programmieren mit unbegrenzter Mutati-
on, Ausnahmen und einem gewissen impliziten globalen Kontext. In Haskell haben wir
ein einziges ‘Standard’-Effektsystem - den IO-Typ. Direkt in IO zu schreiben, fithlt sich
unangenehm an, weil es weniger bequem ist als viele imperative Programmiersprachen,
also erfinden wir Erweiterungen, die sich gut anfiihlen. All diese Erweiterungen haben
Kompromisse.

Wenn Sie ein exotisches Effektsystem in Ihrer Anwendung verwenden, sollten Sie es
konsequent nutzen. Sie sollten bereit sein, neue Mitarbeiter darin zu schulen und sie
zu lehren, wie man es verwendet, wie man es debuggt und wie man es bei Bedarf
modifiziert. Wenn Sie ein Standard-Effektsystem verwenden, sollten Sie versuchen,
neuartige Effektsysteme nicht einzubeziehen.

Kohasive Bibliotheken

Es gibt iber ein Dutzend Logging-Bibliotheken auf Hackage. Nicht-Logging-
Bibliotheken (wie z.B. Datenbank- oder Webbibliotheken) verlassen sich oft auf
eine einzige Logging-Bibliothek, anstatt diese Verantwortung auf die Anwendung
zu abstrahieren. Infolgedessen ist es einfach, mehrere Logging-Bibliotheken in Ihrer
Anwendung zu sammeln. Sie werden sich auf eine einzige Logging-Bibliothek
standardisieren wollen und dann Adapter fiir die anderen Bibliotheken nach Bedarf
schreiben.

Diese Situation zeigt sich in anderen Bereichen in Haskell. Es gibt viele mogliche
Situationen, und einige zugrunde liegende Bibliotheken zwingen Sie dazu, mit mehreren
umzugehen. Der Weg des geringsten Widerstands verwendet einfach, was auch immer
die zugrunde liegende Bibliothek tut. Sie sollten dem widerstehen und sich stattdessen
darauf konzentrieren, an einer einzigen Losung festzuhalten.

Kohasive Teams

Wenn Sie zwei Entwickler einstellen, die widerspriichliche Meinungen haben und keiner
von beiden bereit ist, nachzugeben, werden Sie Konflikte in Threm Projekt erleben.
Haskeller sind in meiner Erfahrung besonders eigenwillig in dieser Hinsicht. Es ist daher
wichtig, die Standards Ihres Teams in Stellenanzeigen zu kommunizieren. Wéhrend Sie

Prinzipien xi

neue Mitarbeiter interviewen, sollten Sie priifen, wie meinungsstark sie sind und ob sie
Thre Meinungen teilen.

Gliicklicherweise sind keine der starken Meinungen, die ein Haskeller haben konnte,
auf rassische, geschlechtliche, sexuelle oder religiose Linien ausgerichtet. Sich darauf
zu konzentrieren, eine starke Teamkohésion zu entwickeln, steht im Einklang mit der
Einstellung einer vielfaltigen Gruppe von Menschen.

Empathie

Das letzte Prinzip dieses Buches ist Empathie.

Softwareentwickler sind einigermaf3en bekannt dafiir, sich in groflen Ego-Kampfen zu
engagieren. Betrachten Sie die Python vs. Ruby Flame Wars oder wie jeder JavaScript
hasst. Uber PHP schlecht zu reden, ist weit verbreitet und akzeptiert, und ich weif3, dass
ich sicherlich schuldig bin. Wenn wir auf unsere eigene Perspektive beschrankt sind,
kann es schwierig sein, zu verstehen, warum andere Menschen andere Entscheidungen
treffen.

Die Realitét ist komplexer. PHP bietet eine kurze Lernkurve, um produktive Websites in
einer wichtigen Nische zu erstellen. Ruby 16st reale Probleme, die echte Programmierer
haben. Python 16st andere reale Probleme, die echte Programmierer haben. JavaScript
hat sich weit {iber sein urspriingliches Nischenfeld hinaus entwickelt, und JavaScript-
Entwickler arbeiten hart daran, ihre Probleme auf schone Weise zu 19sen.

Um effektiv zu kommunizieren, miissen wir zuerst unser Publikum verstehen. Um
effektiv zuzuhoren, miissen wir zuerst den Sprecher verstehen. Dies ist eine wechsel-
seitige Angelegenheit, und es erfordert echten Einsatz von allen Seiten, damit gute
Kommunikation stattfinden kann.

Wenn wir Software lesen oder bewerten, versuchen wir zuerst zu verstehen, woher
sie kommt und welche Probleme sie 16st. Dann versuchen wir, die Einschrankungen
zu verstehen, die zu den getroffenen Entscheidungen fithrten, und vermeiden unnétig
breite negative Bewertungen. Haskell wird von einer besonders breiten Gruppe von
Menschen in verschiedenen Okosystemen genutzt, hat aber gleichzeitig eine relativ
kleine Gesamtanzahl von Menschen, die zu einem bestimmten Zeitpunkt daran arbeiten.
Es ist leicht, Missverstandnisse zu verursachen und Schaden anzurichten, daher miissen
wir gezielt darauf achten, dies zu vermeiden.

Prinzipien xii

Empathie: Fiir dich selbst

Haskell ist schwer zu erlernen. Es gibt nicht viele Ressourcen, um Haskell erfolgreich
in der Industrie einzusetzen. Ich habe viele Fehler gemacht, und das wirst du auch
tun. Es ist wichtig, dass ich Empathie fiir mich selbst habe. Ich weif3, dass ich mein
Bestes gebe, um zu produzieren, zu lehren und zu helfen, auch wenn ich Fehler mache.
Wenn ich diese Fehler mache - selbst wenn sie Schaden verursachen - versuche ich, den
angerichteten Schaden zu erkennen. Ich verzeihe mir selbst und lerne dann, was ich
kann, um diese Fehler in Zukunft ohne obsessive Beurteilung zu vermeiden.

Auch du wirst Fehler machen und Schaden anrichten, wiahrend du diese neue Welt
erkundest. Das ist in Ordnung. Irren ist menschlich! Und sich auf unsere Fehler zu
konzentrieren verursacht mehr Leiden und blockiert Heilung. Verzeihe dir selbst fiir
deine Schwierigkeiten. Verstehe diese Schwierigkeiten. Lerne von ihnen und tiberwinde
sie!

Empathie: Fiir dein vergangenes Ich

Dein vergangenes Ich war begeistert von einer neuen Technik und konnte es kaum
erwarten, sie anzuwenden. Es fiihlte sich so schlau und zufrieden mit der Losung! Lass
uns an ihr Gluck erinnern und ihnen das Chaos verzeihen, das sie uns hinterlassen haben.
Behalte das Gefiihl von Frustration und Angst im Hinterkopf und verzeihe dir selbst,
dass du ihnen begegnest. Diese Gefiihle sind normal und ein Zeichen von Wachstum
und Fiirsorge.

Vielleicht haben sie etwas iibersehen, das im Problemfeld jetzt fiir dich v6llig offen-
sichtlich erscheint. Sie taten damals ihr Bestes mit dem, was sie hatten. Schlief}lich
hat es der Menschheit fast 9.000 Jahre gedauert, den Kalkil zu erfinden, den wir
zuverlassig Teenagern beibringen kénnen. Deine Frustration und dein Unglaube sind der
Treibstoff, den du brauchst, um zu wachsen und deinem zukiinftigen Ich mehr Empathie
entgegenzubringen.

Empathie: Fiir dein zukunftiges Ich

Jeder weif3, dass Debugging doppelt so schwer ist wie das Schreiben eines
Programms. Wenn du also so clever bist, wie du kannst, wenn du es
schreibst, wie wirst du es jemals debuggen?

« Brian Kernighan, The Elements of Programming Style, 2. Auflage, Kapitel 2

Prinzipien xiii

Dein zukiinftiges Ich ist miide, gelangweilt und hat den gesamten Kontext dieser Code-
zeile nicht im Kopf. Schreibe Code, der fiir sie funktioniert. Schreibe Dokumentation,
die offensichtlich und langweilig erscheint. Stell dir vor, du hast alles vergessen, was du
weifdt, und musst es neu lernen - was wurdest du aufschreiben?

Software ist schwierig, und du kannst nicht immer 100% deines Gehirns und deiner
Energie in alles stecken. Schreibe etwas, das leichter zu verstehen ist, als du denkst, dass
es notwendig ist, selbst wenn du denkst, dass es einen schwerwiegenden Fehler hat.

Empathie: Fir deine Teamkollegen

Gesunde Selbstempathie ist eine Voraussetzung fiir gesunde Empathie gegeniiber ande-
ren Menschen.

So schwierig es auch ist, mit sich selbst empathisch zu sein, ist es noch schwieriger, mit
anderen empathisch zu sein. Du kennst deinen inneren Zustand und deine Gefiihle. Viel-
leicht erinnerst du dich sogar an deine vergangenen Zusténde. Und du kannst vielleicht
(mit unterschiedlicher Zuverlassigkeit) vorhersagen, wie du auf etwas reagieren wirst.

All diese Intuitionen sind bei anderen Menschen viel schwécher. Wir miissen unser
Verstandnis und unsere Vergebung auch auf unsere Teamkollegen anwenden. Sie
arbeiten mit uns zusammen und geben ihr Bestes.

Empathie: Fiir dein Publikum

Ich entschuldige mich im Voraus fiir jeglichen Schaden, den dieses Buch verursachen
konnte. Ich hoffe, dass das Publikum meines Buches es fiir Erfolg und Gliick in ihrer
Karriere und ihren Geschéftsprojekten nutzen wird. Ich erkenne auch an, dass mein Rat
- unvermeidlich - misskommuniziert oder falsch angewendet wird und Schaden und
Leiden verursacht.

Ebenso musst du, wenn du Code schreibst, dein Publikum berticksichtigen. Du wirst Teil
deines Publikums sein, daher werden dir die Lektionen, die du iiber dein Vergangenes-
Ich und Zukunfts-Ich gelernt hast, hilfreich sein. Wenn du Code fiir eine Anwendung
schreibst, dann bedenke alle Menschen, die ihn lesen konnten. Du wirst die Bedurfnisse
von Anfingern, Neulingen, erfahrenen Entwicklern und Experten beriicksichtigen
wollen.

Dies vollstandig zu tun, ist unmoglich, daher musst du die Kompromisse sorgfiltig
abwigen. Wenn du erwartest, dass dein Publikum hauptsachlich neu in Haskell ist, dann
schreibe einfach und klar. Wenn du fortgeschrittene Fahigkeiten und ausgefallene Tech-
niken benétigst, mach eine Notiz davon und schreibe Beispiele und Dokumentationen,

Prinzipien Xiv

um zu demonstrieren, was vor sich geht. Es ist nichts falsch daran, ein Warnsignal oder
eine Notiz anzubringen, um darauf hinzuweisen, dass etwas schwierig sein kénnte!

Empathie: Fiir die Geschaftsleute

Das ist besonders schwer. Sie werden nie Thren Code lesen. Und sie 4ndern oft die Anfor-
derungen nach Belieben, ohne Riicksicht auf die Abstraktionen, die Sie entwickelt haben.
Aber - letztendlich - sind wir hier, um Code zu schreiben, der es dem Unternehmen
ermoglicht, profitabel zu sein.

Wir kénnen Empathie fiir ihre Bediirfnisse haben, indem wir unseren Code ihren
Launen offen lassen. Ein Projekt sollte sich entwickeln und dndern kénnen, ohne neu
geboren werden zu miissen.

Wenn das Unternehmen scheitert, sind wir alle ohne Job. Wenn genug Haskell-Projekte
scheitern, werden wir nicht genug Haskell-Jobs fiir alle haben, die einen wollen. Und,
am besorgniserregendsten, wenn zu viele Haskell-Projekte scheitern, wird Haskell keine
tragfahige Wahl in der Industrie sein.

Ich glaube, dass alle Haskeller in der Industrie eine Verantwortung gegeniiber ihrer
Gemeinschaft haben, um ihren Projekten zum Erfolg zu verhelfen. Dieses Buch ist das
Ergebnis dieses Glaubens.

Referenzen

+ You Need a Novelty Budget®
+ You have a complexity budget®

*https://www.shimweasel.com/2018/08/25/novelty-budgets
*https://medium.com/@girifox/you-have-a-complexity-budget- spend- it-wisely-74ba9dfc7512

https://www.shimweasel.com/2018/08/25/novelty-budgets
https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512
https://www.shimweasel.com/2018/08/25/novelty-budgets
https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512

| Haskell-Teams aufbauen

1. Haskell verkaufen

Du mochtest Haskell bei der Arbeit einsetzen. Dein Chef ist skeptisch — ist Haskell nicht
eine obskure, ausgefallene, akademische Programmiersprache? Hat es nicht schreckliche
Build-Tools und miserable IDEs? Ist es nicht super schwer zu lernen und zu benutzen?

Haskell-Skeptiker haben viele gemeine Dinge tiber Haskell zu sagen. Wenn dein Chef
ein Haskell-Skeptiker ist, wirst du wahrscheinlich Haskell in deinem aktuellen Job
nicht einsetzen konnen. Wenn dein Chef offener dafiir ist, Haskell auszuprobieren, und
du die Aufgabe hast, die Eignung von Haskell fiir eine Aufgabe zu bewerten, dann
wirst du Haskell verkaufen. Um Haskell effektiv zu verkaufen, miissen wir unsere
Programmierer-Mentalitéit ablegen und die Geschiftsperspektive einnehmen.

Der kluge Geschéftsmann wird das tun, was den grofiten Gewinn bringt, und wird
langfristige Vorteile gegen kurzfristige Kosten abwagen. Haskell kann das Ergebnis eines
Unternehmens tatsiachlich verbessern, und wenn du Haskell verkaufst, musst du wissen,
wie du dafiir argumentieren kannst.

1.1 Einschatzung der Aufnahmebereitschaft

Ist deine Firma ein Ruby-Shop? Hassen deine Kollegen statische Typen, lieben Mon-
keypatching und storen sich nicht an gelegentlichen Produktionsabstiirzen durchnil-
Fehler? Wenn ja, wirst du wahrscheinlich keinen groflen Erfolg haben, ihnen Haskell
schmackhaft zu machen. Um von Haskell tiberzeugt zu werden, ist es gut, wenn das
Team die gleichen Werte teilt, die die Haskell-Sprache verkorpert.

Auf der anderen Seite hat ein solcher Shop am meisten von Haskell zu gewinnen. Gibt es
ein Stiick Kerninfrastruktur, das langsam und fehlerhaft ist und den Gewinn erheblich
bremst? Wenn ja, kénntest du diesen Teil der Infrastruktur neu schreiben und dem
Unternehmen einen enormen Nutzen bieten. Meine Vorgénger bei einem fritheren Job
iberzeugten das Management, Haskell fiir eine Neuschreibung zu verwenden, anstatt
einen weiteren Versuch in PHP zu starten, und ich wurde eingestellt, um dies zu tun.
Die Haskell-Version des Dienstes benétigte 1/10 der Cloud-Ressourcen, um zu laufen,
und beseitigte einen Engpass, der es uns ermdglichte, unseren grofieren Kunden mehr
Geld zu berechnen.

Haskell verkaufen 3

Wenn dein Unternehmen bereits Entwickler beschiftigt, die mit statisch typisierten
funktionalen Sprachen wie Scala oder F# vertraut sind, wirst du es leichter haben, sie
von Haskell zu tiberzeugen. Vermutlich schétzen sie bereits die Stirken von Haskell,
weshalb sie sich fiir eine funktionale Sprache entschieden haben. Es kénnte jedoch sein,
dass nicht genug Gewinn aus dem Schreiben eines Dienstes in Haskell zu ziehen ist —
schlieB3lich ist Scala ja schon fast dort. Die Entwickler konnten das Gefiihl haben, dass
der zusitzliche Aufwand, eine weitere Sprache in den Stack aufzunehmen, minimalen
Nutzen bringt, da es so nah dran ist. In diesem Fall musst du sie von anderen Vorteilen
iiberzeugen, die Haskell bietet.

1.2 Software-Produktivitat

Wir wollen behaupten, dass Haskell die Produktivitit von Softwareentwicklern steigern
wird. Dies fithrt zu reduzierten Entwicklerkosten und erh6htem Gewinn durch neue
Funktionen. Wir miissen jedoch die Entwicklerproduktivitit auf einem etwas nuancier-
ten Niveau verstehen, um dies angemessen zu verkaufen.

Wie messen wir die Produktivitat von Entwicklern? Es ist nicht einfach. Es gibt viele
Studien, und alle sind schlecht. Unabhingig von deiner Position zu einer bestimmten
Praxis (dynamische vs. statische Typen, Paarprogrammierung, formale Verifikation,
Wasserfall, agil, usw.) wirst du eine Studie finden, die das unterstitzt, was du denkst.
Wir wissen einfach nicht, wie wir die wissenschaftliche Methode effektiv und genau
nutzen konnen, um die Produktivitat von Entwicklern zu messen.

Wie behaupten wir dann, dass Haskell sie verbessert? Wir konnen nur unsere Erfahrun-
gen nutzen — anekdotische Evidenz. Ebenso kénnen unsere Argumente — bestenfalls —
Menschen dazu bringen, offen zu sein, unsere Erfahrungen zu teilen. Die erfahrungsba-
sierte Natur der Entwicklerproduktivitit bedeutet, dass wir in den Ingenieuren, die wir
tiberzeugen mochten, einen offenen Geist kultivieren miissen, und dann miissen wir sie
dazu fithren, die gleichen Erfahrungen zu machen.

Wir werden ein bisschen dariiber im Kapitel “Lernen und Lehren von Haskell” erfahren.

1.3 Statistiken zur Produktivitat

Das Management interessiert sich fir Produktivitit, aber es interessiert sich nicht nur
dafiir, wie schnell du eine Funktion herausbringen kannst. Es interessiert sich dafiir, wie
gut du vorhersagen kannst, wie lange eine Funktion dauern wird. Es interessiert sich

Haskell verkaufen 4

dafiir, wie grofl der Unterschied in der Produktivitit zwischen den Teammitgliedern
sein wird. Varianz ist fir das Management wichtig.

Die Statistik gibt uns Werkzeuge, um tiber die Aggregation von Daten nachzudenken.
Der Durchschnitt wird berechnet, indem alle Eintrage summiert und durch die Anzahl
geteilt werden. Es ist das haufigste statistische Maf}, kann aber auch schrecklich
irrefithrend sein. Das durchschnittliche Einkommen in den Vereinigten Staaten betragt
72.000 $, und du konntest das horen und denken, dass die meisten Menschen in etwa
diesen Betrag verdienen. Tatsdchlich verdienen die meisten Menschen weniger als
diesen Betrag.

Ein anderes Maf}, der Median, ist angemessener. Der Median ist der Mittelpunkt der
Verteilung, was bedeutet, dass die Hélfte aller Werte tiber dem Median und die Halfte
aller Werte unter dem Median liegt. Das Medianeinkommen eines Haushalts betragt
61.000 $. Der Durchschnitt ist viel hoher als der Median, was bedeutet, dass es eine
kleine Anzahl von Menschen gibt, die eine enorme Menge an Geld verdienen. Um zu
wissen, ob ein Durchschnitt oder ein Median fiir deinen Zweck angemessener ist, musst
du die Verteilung deiner Daten kennen.

Thr Softwareteam hat moglicherweise eine beeindruckende durchschnittliche Entwick-
lerproduktivitét. Dies konnte daran liegen, dass Sie eine Gruppe von tiberdurchschnittli-
chen Entwicklern haben. Es kann auch daran liegen, dass Sie einen extrem produktiven
Entwickler und eine Gruppe von unterdurchschnittlichen Entwicklern haben. Ein stark
unausgewogenes Team stellt ein Risiko fiir das Unternehmen dar, da der Verlust eines
einzelnen Entwicklers drastische Konsequenzen haben kénnte. Das Management wird
aus diesem Grund eine hohe Median-Entwicklerproduktivitat der durchschnittlichen
vorziehen.

Was das Management jedoch wirklich mochte, ist eine geringe Varianz zwischen den
Entwicklern. Varianz ist der Durchschnitt der quadrierten Abweichung vom Durch-
schnitt. Die Abweichung wird quadriert, damit negative und positive Abweichungen
gleichermaflen beriicksichtigt werden. Ein Team mit hoher Varianz wird einige Ent-
wickler deutlich tiber und unter dem Median haben. Dies ist riskant, da die genaue
Zuweisung von Entwicklern drastisch beeinflussen kann, wie schnell und effektiv
Software entwickelt wird. Ein Team mit geringer Varianz wird die meisten Entwickler
relativ nah beieinander in Bezug auf ihre Fahigkeiten haben. Dies reduziert das Risiko,
da ein einzelner Entwickler in den Urlaub gehen kann, ohne die durchschnittliche
Fahigkeit des Teams signifikant zu verandern.

Gro8ere Unternehmen neigen dazu, die Varianz in der individuellen Produktivitat zu
minimieren. Sie kdnnen es sich leisten, viele Software-Ingenieure einzustellen, und sie
mochten, dass ihr Personal austauschbar und ersetzbar ist. Dies dient nicht ausschlief3-
lich dazu, die Mitarbeiter zu entmenschlichen und abzuwerten - es ist einfacher, Urlaub

Haskell verkaufen 5

oder Elternzeit zu nehmen, wenn man nicht der einzige ist, der die Arbeit erledigen kann.
Es fithrt jedoch in der Regel zu einer reduzierten Produktivitat fiir die Spitzenleister.

Es ist eine giiltige Entscheidung, auf geringe Varianz zu setzen. Tatséchlich ergibt dies
fiir Unternehmen viel Sinn. Elm und Go sind zwei neue Programmiersprachen, die
Einfachheit und leichte Erlernbarkeit betonen. Sie opfern Abstraktion und Ausdrucks-
kraft, um die Varianz der Entwicklung in der Sprache zu reduzieren. Das bedeutet,
dass ein Elm-Experte nicht viel produktiver ist als ein Elm-Anfanger. EIm- oder Go-
Programmierer konnen die Sprache schnell erlernen und so produktiv sein, wie sie es
jemals sein werden. Das Management liebt dies, weil die Einarbeitung neuer Entwickler
schnell geht, man nicht die besten und kliigsten einstellen muss, und man zuverlassig
Dinge erledigt bekommt.

Haskell ist keine Sprache mit geringer Varianz. Haskell ist eine Sprache mit extrem
hoher Varianz. Es dauert relativ lange, um minimal kompetent zu werden, und das
Potenzial in Bezug auf Fahigkeiten ist nach oben hin offen. Haskell wird aktiv in der
Wissenschaft eingesetzt, um die Grenzen des Software-Engineerings zu erweitern und
neue Techniken zu entdecken. Experten aus Industrie und Wissenschaft arbeiten hart
daran, Haskell neue Funktionen hinzuzufiigen. Der Unterschied in der Produktivitat
zwischen jemandem, der es seit Jahren verwendet, und jemandem, der es sechs Monate
studiert hat, ist enorm.

Die Beachtung der Varianz ist entscheidend. Wenn Sie mit Haskell arbeiten, setzen
Sie bereits auf das obere Ende der Varianzkurve. Wenn Sie fortgeschrittene oder
ausgefallene Haskell-Bibliotheken und -Funktionen auswahlen, erhohen Sie die Varianz.
Je schwieriger es ist, in Ihren Code einzusteigen, desto weniger werden Thre Kollegen
es genief3en, und desto skeptischer werden sie gegeniiber Haskell insgesamt sein. Aus
diesem Grund ist es wichtig, die einfachsten Haskell-Materialien zu bevorzugen, die Sie
verwenden konnen.

1.4 Kennen Sie lhre Konkurrenz

Konkurrenz existiert in jedem Verkaufs- und Marketingproblem. Thre Konkurrenz beim
Verkauf von Haskell wird hart sein - mehrere andere Programmiersprachen werden
ebenfalls iiberzeugende Vorteile haben. Haskell muss die Vorteile anderer Sprachen mit
den technischen Gewinnen Ubertreffen, die erzielt werden kénnen.

In einigen Bereichen, wie Compiler-Design oder Web-Programmierung, verfiigt Haskell
iiber ausreichende Bibliotheken und eine Community, die es Thnen erméglicht, schnell
produktiv zu sein. Die Sprache ist gut positioniert, um einen tiberzeugenden Vorteil zu

Haskell verkaufen 6

bieten. Andere Bereiche haben nicht so viel Gliick, und die Bibliothekssituation wird in
einer anderen Sprache besser sein als in Threr.

Wenn Thr Haskell-Projekt aus irgendeinem Grund scheitert, wird das Projekt in einer
anderen Sprache neu geschrieben. Sie werden wahrscheinlich keine Gelegenheit be-
kommen, es “noch einmal zu versuchen.” Unternehmen sind in der Regel nicht bereit,
auflerhalb ihrer Kernkompetenz Wetten abzuschliefen, und die Wahl der Program-
miersprache gehort wahrscheinlich nicht zu dieser Kernkompetenz. Deshalb sollten Sie
darauf achten, Haskell als sichere, gewinnende Wahl zu positionieren, mit erheblichen
Vorteilen gegentiber der Konkurrenz.

2. Haskell Lernen und Lehren

Wenn Sie mochten, dass Ihr Haskell-Projekt erfolgreich ist, miissen Sie neue Haskeller
betreuen und unterrichten. Es ist moglich, eine Weile nur erfahrene Ingenieure einzu-
stellen, aber schliefflich werden Sie Juniors einstellen wollen. Neben der Ausbildung
und dem Wachstum der Haskell-Community werden Sie neue Perspektiven und Erfah-
rungen gewinnen, die dazu beitragen, Thren Code robuster zu machen.

2.1 Die Philologie von Haskell

Haskell zu lernen ist &hnlich wie das Erlernen jeder anderen Sprache. Der grofle
Unterschied besteht darin, dass die meisten Erfahrungen mit dem “Erlernen einer
Programmiersprache” professionelle Ingenieure sind, die eine weitere Sprache lernen,
oft in einer dhnlichen Sprachfamilie. Wenn Sie Java kennen und dann C# lernen, wird
die Erfahrung reibungslos verlaufen - Sie kénnen C# praktisch lernen, indem Sie auf
die Unterschiede zu Java achten. Von Java zu Ruby zu wechseln ist ein groflerer Sprung,
aber sie sind beide imperative Programmiersprachen mit viel eingebauter Unterstiitzung
fiir objektorientierte Programmierung.

Lassen Sie uns ein wenig iiber die Geschichte der Programmiersprachen lernen. Dies
ist niitzlich zu verstehen, da es hervorhebt, wie anders Haskell im Vergleich zu anderen
Sprachen wirklich ist.

Am Anfang gab es Maschinensprache - Assembler. Dies war fehleranfillig und schwer
zu schreiben, also erfand Grace Hopper den ersten Compiler, der es Programmierern
ermoglichte, hohere Programmiersprachen zu schreiben. Die 1950er und 1960er Jahre
brachten uns viele grundlegende Programmiersprachen: ALGOL (1958) und FORTRAN
(1957) waren frithe imperative Programmiersprachen. LISP (1958) wurde entwickelt, um
KI zu studieren, und wird oft als die erste funktionale Programmiersprache anerkannt.
Simula (1962) war die erste objektorientierte Programmiersprache, direkt inspiriert von
ALGOL.

Smalltalk (1972) versuchte, die objektorientierte Programmierung von Grund auf neu zu
gestalten. Die Programmiersprache C (1972) wurde entwickelt, um beim Betriebssystem
UNIX zu helfen. In der Zwischenzeit fithrte Standard ML (1973) die moderne funktionale
Programmierung ein, wie wir sie heute kennen. Prolog (1972) und SQL (1974) wurden

Haskell Lernen und Lehren 8

ebenfalls in diesem Zeitraum erfunden. Diese Sprachen definieren grofitenteils die
Sprachfamilien, die heute gebrauchlich sind.

C++ tUbernahm Lektionen von Simula und Smalltalk, um C mit objektorientiertem
Verhalten zu erweitern. Java fiigte C++ einen Garbage Collector hinzu. Ruby, JavaScript,
Python, PHP, Perl usw. gehéren alle zu dieser Sprachfamilie - imperative Programmier-
sprachen mit einem gewissen Grad an objektorientierter Unterstiitzung. Tatsachlich
gehoren fast alle gangigen Sprachen heute zu dieser Familie!

In der Zwischenzeit entwickelte sich Standard ML weiter, und Theoretiker der Pro-
grammiersprachen wollten die funktionale Programmierung genauer untersuchen. Die
Programmiersprache Miranda (1985) war ein Schritt in diese Richtung - sie bietet trage
Auswertung und ein starkes Typsystem. Das Haskell-Komitee wurde gegriindet, um eine
Sprache zu schaffen, die die Forschung in der tragen funktionalen Programmierung
vereinheitlicht. Schlieflich wurde 1990 die erste Version der Programmiersprache
Haskell veréffentlicht.

Haskell wurde hauptséchlich als Vehikel fiir die Forschung zu funktionalen Program-
mierungstechnologien genutzt. Viele Menschen erhielten ihre Promotionen, indem sie
Haskell oder GHC mit neuen Funktionen oder Techniken erweiterten. Haskell war bis
Mitte der 2000er Jahre keine praktische Wahl fiir industrielle Anwendungen. Das Buch
“Real World Haskell” von Don Stewart, Bryan O’Sullivan und John Goerzen zeigte, dass
es endlich moglich war, Haskell zur Losung von Industrieproblemen zu verwenden. Die
GHC-Laufzeit war schnell und unterstiitzte hervorragendes Threading.

Zum Zeitpunkt dieses Schreibens ist es 2022. Haskell ist in einer Reihe von Bereichen
erstklassig. Haskell - mehr als alles andere - ist radikal anders als andere Programmier-
sprachen. Die Sprache hat sich nicht mit der Industrie entwickelt. Die Akademie war fiir
die Forschung, das Design und die Entwicklung verantwortlich. Fast 30 Jahre parallele
Entwicklung fanden statt, um Haskell von Java zu unterscheiden.

2.2 Programmieren ist schwer zu lernen

Wenn Sie ein erfahrener Ingenieur mit zehn Jahren Erfahrung sind, haben Sie wahr-
scheinlich eine Menge Sprachen gelernt. Vielleicht haben Sie kiirzlich Go, Rust oder
Swift gelernt und fanden es nicht schwierig. Dann versuchen Sie, Haskell zu lernen,
und plotzlich stehen Sie vor einer Schwierigkeit, die Sie lange nicht mehr gespiirt haben.
Diese Schwierigkeit ist die Herausforderung eines neuen Paradigmas.

Die meisten professionellen Programmierer beginnen mit dem Erlernen der imperativen
Programmierung und nehmen spater die objektorientierte Programmierung auf. Der

Haskell Lernen und Lehren 9

Grof3teil ihres Codes ist solide imperativ, mit einigen objektorientierten Elementen.
Daran ist nichts falsch - dieser Stil von Code funktioniert wirklich und 16st echte
Geschaftsprobleme, unabhangig davon, wie komplex Programme werden, wenn sie
wachsen. Viele Programmierer haben vergessen, wie schwierig es ist, die imperative
Programmierung zu erlernen oder iiberhaupt wie eine Maschine zu denken.

Ich mochte mich in diesem Abschnitt auf das Prinzip der Empathie konzentrieren.
Programmieren ist schwer zu lernen. Trivial bedeutet das, dass funktionale Program-
mierung schwer zu lernen ist.

Die Erfahrung, etwas Neues zu erlernen, kann oft unangenehme Gefiihle hervorrufen.
Frustration, Traurigkeit und Wut sind haufige Reaktionen auf diese Schwierigkeit. Wir
miissen uns jedoch nicht in diesen Emotionen verlieren. Versuchen Sie, die Erfahrung
positiv umzudeuten: Sie lernen! Genauso wie Muskelkater nach dem Sport ein Zeichen
dafur ist, dass Sie starker werden, ist leichte Frustration beim Lernen ein Zeichen
dafiir, dass Sie Ihren Horizont erweitern. Diese positive Einstellung wird Ihnen helfen,
schneller und angenehmer zu lernen.

2.3 Lernmaterialien auswahlen

Ich bevorzuge Haskell Programming from First Principles'. Chris Allen und Julie
Moronuki haben hart daran gearbeitet, dass das Buch zugénglich ist und das Material
an frischen Studenten getestet. Ich habe es personlich verwendet, um vielen Menschen
beim Lernen von Haskell zu helfen. Ich habe das Buch als Eckpfeiler des Haskell-
Lehrplans und Ausbildungsprogramms bei Mercury verwendet, wo wir Leute darauf
trainieren, in 2-8 Wochen produktive Haskell-Entwickler zu werden.

2.4 Schreiben Sie viel Code

Beim Lernen und Lehren von Haskell ist es wichtig, einen schnellen Feedback-Kreis
zu ermdglichen. Ablenkungen zu minimieren ist ebenfalls wichtig. Aus diesem Grund
empfehle ich, minimale Werkzeuge zu verwenden - ein einfacher Texteditor mit
Syntaxhervorhebung ist ausreichend. Komplizierte IDEs und Plugins behindern oft den
Lernprozess. Die Zeit, die Sie mit der Einrichtung Ihrer Editor-Situation verbringen, ist
Zeit, die Sie nicht tatsachlich mit dem Lernen von Haskell verbringen.

Studenten sollten sich mitghc i vertraut machen, um Ausdriicke zu evaluieren und ihre
Arbeit mit : reload neu zu laden, um schnell Rickmeldungen zu erhalten. Das Tool

'https://haskellbook.com/

https://haskellbook.com/
https://haskellbook.com/

Haskell Lernen und Lehren 10

ghcid? kann diesen Prozess automatisieren, indem es relevante Dateien tiberwacht
und neu ladt, sobald eine gedndert wird.

Wenn wir Haskell lernen, besteht die grofie Herausforderung darin, ein mentales Modell
davon zu entwickeln, wie GHC funktioniert. Ich empfehle, ein “pradiktives Modell” von
GHC zu entwickeln. Andere zuerst eine Kleinigkeit im Code. Bevor du speicherst, sage
voraus, was deiner Meinung nach passieren wird. Dann speichere die Datei und sieh dir
das Ergebnis an.

Wenn dich das Ergebnis iiberrascht, ist das gut! Du hast die Gelegenheit, dein Modell
zu verfeinern. Entwickele eine Hypothese, warum deine Vorhersage nicht eingetroffen
ist. Teste dann diese Vorhersage.

Compiler-Fehler zeigen uns, dass etwas nicht stimmt. Wir sollten dann versuchen, eine
Hypothese dariiber zu entwickeln, was schiefgelaufen ist. Warum hat mein Code diesen
Fehler? Was habe ich erwartet, dass er tut? Wie unterscheidet sich mein mentales Modell
von Haskell von dem Verstandnis, das GHC hat?

Programmieren ist stilles Wissen. Es reicht nicht aus, dariiber zu lesen. Das Lesen
informiert die analytischen und verbalen Teile unseres Gehirns. Aber Programmieren
greift auf viel mehr zuriick, was nur durch praktisches Tun wirklich trainiert wird.
Wir missen Code schreiben — viel davon — und wir mussen auf dem Weg viele Fehler
machen!

2.5 Keine Angst vor dem GHC

Viele Studenten entwickeln eine Abneigung gegen Fehlermeldungen. Sie fiithlen Urteil
und Verurteilung durch sie — “Ach, ich bin nicht klug genug, um es richtig zu verstehen!”
In anderen Programmiersprachen sind Compiler-Fehler oft wenig hilfreich, obwohl
sie eine Bildschirmladung an Ausgabe erzeugen. Infolgedessen iiberspringen sie oft
das Lesen der Fehlermeldungen vollstindig. Studenten dazu zu bringen, wirklich die
Compiler-Fehler von GHC zu lesen, hilft erheblich beim Lernen von Haskell. Die
Fehlermeldungen von GHC sind oft hilfreicher als in anderen Sprachen, auch wenn
sie anfangs schwer zu lesen sein konnen.

Wir wollen die Beziehung der Menschen zu ihren Compilern verbessern. Fehlermeldun-
gen sind Geschenke, die der Compiler dir gibt. Sie sind eine Seite eines Gesprichs, das
du mit einem Computer fiihrst, um ein gemeinsames Ziel zu erreichen. Manchmal sind
sie nicht hilfreich, besonders wenn wir nicht gelernt haben, zwischen den Zeilen zu
lesen.

*https://hackage.haskell.org/package/ghcid

https://hackage.haskell.org/package/ghcid
https://hackage.haskell.org/package/ghcid

BwWw N

Haskell Lernen und Lehren 11

Eine Fehlermeldung bedeutet nicht, dass du nicht klug genug bist. Die Nachricht ist
GHCs Art zu sagen: “Ich kann nicht verstehen, was du geschrieben hast” GHC ist kein
perfektes Wesen, das in der Lage ist, jede verniinftige Idee zu verstehen - tatsachlich
sind viele hervorragende Ideen durch Haskells Typsystem verboten! Eine Fehlermeldung
kann als Frage von GHC gesehen werden, als Versuch, Klarheit zu gewinnen, um
herauszufinden, was du wirklich gemeint hast.

2.6 Einfach anfangen

Beim Schreiben von Code fiir einen Anfanger versuche ich, so einfach wie méglich zu
bleiben. “Einfach” ist ein vages Konzept, aber um priziser zu sein, meine ich etwas wie
die kleinste transitive Hiille von Konzepten zu bevorzugen. Oder, “Ideen mit wenigen
Abhéngigkeiten”

Dies bedeutet, viele case-Ausdriicke und explizite Lambdas zu schreiben. Diese
beiden Merkmale sind die grundlegenden Bausteine von Haskell. Studenten kénnen
diese Ausdriicke spater vereinfachen, als Lerniibung, aber darauf sollten wir uns nicht
konzentrieren — stattdessen sollten wir uns darauf konzentrieren, tatsachliche Probleme
zu 16sen! Zusitzliche Sprachstrukturen kénnen im Laufe der Zeit eingefithrt werden,
wenn der Student Komfort und Fahigkeiten mit den Grundlagen zeigt.

Als Beispiel, nehmen wir an, wir versuchen, map auf Listen neu zu schreiben:

map :: (a -> b) -> [a] -> [b]
map function list = 777

Ich wiirde dem Studenten empfehlen, damit zu beginnen, einen case Ausdruck
einzufiihren.

map function list =
case 7?7 of
patterns ->
7277

Was konnen wir fir diese ??? und patterns einsetzen? Nun, wir haben eine 1ist
Variable. Lassen Sie uns das einfiigen:

O O W N

> O B W N

Haskell Lernen und Lehren 12

map function list =
case list of
patterns

Was sind die Muster fir eine Liste? Wir konnen die Dokumentation einsehen und fest-
stellen, dass es zwei Konstruktoren gibt, auf die wir einen Musterabgleich durchfiithren
koénnen:

map function list =
case list of
(1 ->
7277
(head : tail) -»
?27?

Die Verwendung eines case-Ausdrucks hat unser Problem in zwei kleinere Probleme
unterteilt. Was konnen wir zuriickgeben, wenn wir eine leere Liste haben? Wir haben
[] als méglichen Wert. Wenn wir eine nicht-leere Liste erstellen wollten, miissten wir
einen b-Wert haben, aber wir haben keinen, also kénnen wir ihn nicht einsetzen.

Fiir den Fall der nicht-leeren Liste haben wirhead :: aundtail :: [a].Wir
wissen, dass wir die function auf head anwenden konnen, um ein b zu erhalten.
Wenn wir uns unser “Werkzeugkasten” ansehen, ist der einzige Weg, wie wir ein [b]
erhalten konnen, indem wirmap function aufrufen.

map function list =
case list of
1 ->
(1
(head : tail) -»
function head : map function tail

Wir mochten mit einem relativ kleinen Werkzeugkasten von Konzepten beginnen.
Funktionen, Datentypen und case-Ausdriicke werden uns lange Zeit gute Dienste
leisten. Viele Probleme lassen sich leicht mit diesen grundlegenden Bausteinen l6sen,
und es ist wichtig, ein starkes grundlegendes Verstindnis fir ihre Leistungsfahigkeit zu
entwickeln, insbesondere fiir Anféinger in Haskell.

=~ O O W N

Haskell Lernen und Lehren 13

Dies kniipft an unsere Prinzipien der Neuheit und Komplexitdt an. Wir méchten
Konzepte langsam hinzufiigen, um uns nicht zu iiberfordern. Wahrend wir Konzepte
einfithren, miissen wir nicht nur das Konzept selbst betrachten, sondern auch, wie dieses
Konzept mit jedem anderen uns bekannten Konzept interagiert. Dies kann leicht zu viel
werden!

2.7 Reale Probleme losen

Es dauert einige Zeit, bis man sich darauf vorbereitet hat, aber ein Anfinger kann lernen,
den IO-Typ gut genug zu nutzen, um grundlegende Dienstprogramme zu schreiben,
ohne alle Besonderheiten der Monaden zu verstehen. Betrachten Sie schlief3lich dieses
Beispielprogramm in Java, Ruby und schlie8lich Haskell:

Java:

public class Greeter {
public static void main(string[] args) {
Scanner in = new Scanner(System.in);
String name = in.nextlLine();
System.out.printin("Hello, " + name);

Ruby:

name = gets
puts "Hello" + name

Haskell:

main = do
name <- getlLine
putStrLn ("Hello, " ++ name)

Der Java-Code enthilt viele Funktionen. Sie miissen nicht erklart werden. In meinen
Java 101 Kursen an der Universitat wurde uns gesagt, wir sollten es einfach “kopieren

Haskell Lernen und Lehren 14

und einfiigen” und eine Erklérung wiirde spater folgen. Das hat fiir mich einigermafien
funktioniert. Schlieflich werden Computer oft als Black Boxes mit mysteriéser magi-
scher Kraft wahrgenommen: Programmiersprachen dhnlich zu behandeln, fithlt sich
natiirlich und normal an.

Ein Anfanger kann die tbliche Haskell-Ausbildung durchlaufen, indem er Functor,
Monad, Monoid usw. Instanzen fiir gédngige Typen definiert und gleichzeitig grundle-
gende Dienstprogramme und Beispiele entwickelt.

2.8 Pair-Programmierung

Pair-Programmierung kann eine grofartige Moglichkeit sein, die implizite Natur der
Programmierung in Haskell zu zeigen. Der Fahrer kann Pairing auch als Gelegenheit
nutzen, um anzugeben und sein eigenes Ego zu fiittern, was dem Anfanger schadet. Der
Lehrer muss grof3e Sorgfalt walten lassen, um Empathie fiir den Lernenden zu haben.

Der Fahrer wird langsamer werden wollen und seinen Denkprozess erklaren. Ich
finde es hilfreich, verbale Erklarungen in “Beobachtung der Realitit”, “Bemerkung
von Gefithlen” und “Diskussion von Strategien” zu unterteilen. Diese Technik stammt
aus der Gewaltfreien Kommunikation. Ich werde auch mein Vorhersagemodell verbal
erklaren. Zum Beispiel, wenn ich ein Problem l6se, konnte ich normalerweise ein
paar Vorhersagen tberspringen und eine gréere Anderung vornehmen, wenn ich
alleine programmiere. Beim Pairing werde ich stattdessen meine Vorhersage auflern,
die Anderung vornehmen und das Ergebnis durchsprechen.

Der Schiiler wird aufmerksam sein und Fragen stellen wollen. Hab keine Angst zu
unterbrechen - der Zweck der Ubung besteht hauptséchlich darin, Wissen und Praxis
vom Fahrer zu tibertragen. Ein grofler Teil des Nutzens besteht jedoch darin, den Fahrer
dazu zu bringen, klar tiber das nachzudenken, was sie tun! Der Fahrer sollte von einer
guten Frage genauso profitieren wie der Schiiler.

Leider ist ,Pair-Programmierung® auf diese Weise eine implizite Ubung, genau wie das
Programmieren selbst. Ich kann meine Strategien und Techniken fiir eine erfolgreiche
Sitzung beschreiben, aber der beste Weg, um zu lernen, ist durch Beobachtung und
Teilnahme. Lassen Sie uns ein hypothetisches Beispiel durchgehen.

2.9 Ein Dialog

(Dinge, die ich vielleicht denke, stehen in Klammern. Ich werde sie tatsachlich nicht sa-
gen, weil es wichtig ist, den Schiiler nicht mit unnétigen Abschweifungen abzulenken.)

O O W N

Haskell Lernen und Lehren 15

Schiiler: Hey, stort es dich, wenn wir bei etwas zusammenarbeiten?
Matt: Sicher! Ich wiirde mich freuen.

S: Meine Aufgabe ist es, unsere Benutzerliste zu nehmen und herauszufinden, wie viele
E-Mail-Konten zu jedem Hosting-Dienst gehéren.

M: Okay, cool. Also im Grunde zdhlen, wie viele @gmail .com und @yahoo.com
usw. es gibt?

S:Ja. Ich bin mir nicht sicher, wie ich anfangen soll! Ich weif3, dass ich es in SQL machen
kann, aber ich wiirde lieber lernen, wie man es in Haskell macht.

M: Sicher! Okay, zuerst werde ich unsere Datenbanktypen tberprifen. Ich mdchte
meine Annahmen dariiber tberpriifen, wie unsere Daten strukturiert sind, da dies
die Quelle unserer Informationen ist. Ich werde zu der Datei navigieren, die unsere
Definition enthalt. Hier ist der Typ:

data User = User
{ userld :: Userld
, userName :: Text
, userEmail :: EmailAddress
, userIsAdmin :: Bool

S: Also mochten wir jeden User nehmen und die EmailAddress iiberpriifen. Wie
sieht dieser Typ aus?

M: Gute Frage! Wenn ich die Datei nach EmailAddress durchsuchen, finde
ich nichts. Also werde ich die Datei nach Email durchsuchen, da das naher
dran ist. Das fithrt mich zur Importliste, wo ich sehe, dass wir ein Modul namens
Text.Email.Validate importieren.

S: Woher kommt das?

M: Ich bin mir nicht sicher. Ich sehe dieses Modul nicht in unserem Projekt gelistet,
was bedeutet, dass es in einer Abhéngigkeit ist. Also werde ich jetzt meinen Browser
6ffnen und auf stackage . org nach EmailAddress suchen. Es gibt hier ein paar
Ergebnisse, und das erste ist ein Paket namens email-validate in einem Modul
Text.Email .Parser.Daesdiegleiche Text.Email . * Struktur teilt und es eine
Validierung hat, vermute ich, dass es das ist.

S: Ja, ich glaube nicht, dass es aus der Kryptobibliothek kommt, und wir verwenden
pushbullet nicht, also ist das pushbullet -types wahrscheinlich nicht.

Haskell Lernen und Lehren 16

M: Gute Beobachtung!

S: OK! Ich glaube, ich weif3, was als nachstes kommt. Das Modul exportiert eine Funk-
tiondomainPart :: EmailAddress -> ByteString. Also kénnen wir das
verwenden, um die Domain fiir eine E-Mail zu bekommen!

M: Das ist auch mein Tipp. Jetzt, da wir unsere primitiven Typen verstanden haben,
lasst uns die Signatur aufschreiben. Was ist deine Vermutung fiir eine erste Signatur?

S: Ich glaube, ich wiirde hier anfangen:
solution :: Database [(ByteString, Int)]

Die ByteStrings sind der domainPart, und die Int ist unsere Zahlung.

M: Das klingt gut. Ich wiirde wahrscheinlich etwas anderes wéhlen, aber lassen Sie uns
das zuerst erkunden.

S: Warum?

M: Nun, immer wenn ich ein [(a, b)] sehe, denke ich sofort an einMap a b. Aber
wir konnen es einfach halten und einfach versuchen, dieses Problem zu l6sen. Wenn es
zu nervig wird, suchen wir nach einer alternativen Losung.

S: Okay, das funktioniert fiir mich! Ich sehe wirklich nicht, wie ein Map gerade fiir
uns funktioniert - wir machen keine Nachschlagevorgénge. Also das Erste, was ich tun
mochte, ist, alle Benutzer zu erhalten.

solution = do

users <- selectAllUsers
??7?

Sobald ich die Benutzer habe, méchte ich die E-Mail-Adressen erhalten.

solution = do
users <- selectAllUsers
let emails = map userEmail users

M: Gute Verwendung von map dort!

S: Als néachstes méchte ich die Domain-Teile extrahieren.

swWwN

Haskell Lernen und Lehren 17

solution = do
users <- selectAllUsers
let emails = map userEmail users
let domains = map domainPart emails

Und, &h, ich glaube, ich stecke hier fest. Ich mochte die Liste nach den Domains
gruppieren. Aber ich weif3 nicht, wie ich das machen soll.

(Ich werde dem Drang widerstehen, den Code priagnanter zu machen! Nur weil ich
das als map (domainPart . userEmail) <$> selectAllUsers schrei-
ben kann, bedeutet das nicht, dass es jetzt wichtig ist.)

M: Okay! Wir haben gerade ein [ByteString]. Wie kénnte unsere Gruppierung
aussehen?

S: Ich schitze ein [[ByteString]]?

(Na ja, ein [NonEmpty ByteString] wire genauer, aber dahin kommen wir
spater.)

M: Klingt gut fiir mich. Nun, wir haben ein paar Moglichkeiten - wenn ich mir bei
einer Funktionalitat unsicher bin, schaue ich entweder in die relevanten Module oder
suche bei Hoogle nach der Typsignatur. Wenn ich mir bei den relevanten Modulen
nicht sicher bin, gehe ich direkt zu Hoogle. Also lass uns nach [ByteString] ->
[[ByteString]] suchen.

S: Keines davon ist relevant! text-1dap ist nicht nah dran. subsequences,
inits,permutations, tails, nichts davon hat mit Gruppierung zu tun.

M: Hmm. Ja. Hoogle lasst uns hier im Stich. Was, wenn wir nach group suchen?

S: Oh, dann bekommen wirgroup :: Eq a => [a] -> [[a]] zuriick. Das ist
genau das, was wir wollen!

M: Lass uns die Dokumentation lesen, nur um sicher zu sein. Springt etwas als
potenzielles Problem ins Auge?

S: Ja - das gegebene Beispiel ist ein bisschen seltsam.

>>> group "Mississippi”

nonzunon n an

["M”,”i”,"SS”,"i",”SS ,tit, ppt, i

Ich wiirde erwarten, dass alle gleichen Elemente zusammen gruppiert werden, aber S
erscheint zweimal. Ich denke, ich kann dies umgehen!

W N

Haskell Lernen und Lehren 18

(Hmmm, wohin geht der/die Schiiler/in? Sortiert er/sie die Liste?)

S: Wir konnen group aufrufen und dann die Grof3e der Listen erhalten.

func :: [ByteString] -> [(ByteString, Int)]
func domains =
map (\grp -> (head grp, length grp)) (group domains)

Okay okay okay, also das ist die richtige Form, ABER, wir miissen sie auf eine besondere
Weise verwenden!
M: Wie machen wir das?

S: Okay, nehmen wir an, wir suchen nach gmail . com. Wir wiirden die Ergebnisliste
nach gmail . com filtern und dann die Ints summieren!

domainCount :: ByteString -> [(ByteString, Int)] -> Int
domainCount domain withCounts =

foldr (\(_, ¢) acc -> ¢ + acc) 0 $

filter (\(name, _) -> domain == name) withCounts

(Widerstehe dem Drang, einesum . map snd-Umgestaltung vorzuschlagen!)

M: Schon! Das funktioniert fiir den Fall, dass wir die Domain kennen. Aber wenn wir
nur eine Zusammenfassungsstruktur wollen, wie konnen wir unseren Code &ndern, um
das zu erreichen?

S: Hm. Wir kénnten die Liste durchgehen und fiir jeden Namen domainCount
berechnen, aber das ist ineffizient...

M: Das funktioniert! Aber du hast recht, das ist ineffizient. Ich denke, wir kdnnen es
definitiv besser machen. Was fallt dir als Problem ein?

S: Nun, es gibt moglicherweise mehrere Gruppen fiir jede Domain. Wenn es nur eine
einzige Gruppe fiir jede Domain gébe, dann wire das einfach.

M: Wie konnten wir das erreichen?

S: Nun, wir beginnen mit einem [ByteString]. Oh! Oh. Wir kénnen es doch sort,
oder? Dann wiren alle Domains sortiert, nebeneinander, und die group-Funktion
wiirde funktionieren!

M: Ja! Lass es uns versuchen.

S: LOS GEHT’S!

swWwN

W N e

Haskell Lernen und Lehren 19

func domains =
map (\grp -> (head grp, length grp)) $
group $
sort domains

(muss dem Drang widerstehen, dariiber zu sprechen, dass head unsicher ist...)
M: Gut gemacht! Wie machen wir nun ein Lookup von, sagen wir,gmail .com?
S:List.lookup "gmail.com" (func domains).

M: Ah, aber da ist lookup - deutet das nicht auf eine Map hin?

S: Eh, klar!

Map.lookup "gmail.com"
$ Map.fromList
$ map (\grp (head grp, length grp))
$ group $ sort domains

Aber das scheint nicht wirklich besser zu sein, oder? Ich schitze, wir haben ein
effizienteres Nachschlagen, aber ich denke, wir machen zusétzliche Arbeit, um ein Map
zu konstruieren.

M: Das tun wir, aber ein Grof3teil dieser Arbeit ist unnétig. Lass uns die Dokumentation
des Data.Map Moduls ansehen, um Maps zu konstruieren. Anstatt die ganze Arbeit
mit Listen zu machen, lass uns versuchen, stattdessen ein Map zu konstruieren.

S: Hm. Ich werde mit foldr anfangen, da man so eine Liste zerlegt.

func domains =
foldr (\x acc -> ???) Map.empty domains

M: Ein grof8artiger Start! Nur zur Auffrischung, was ist acc und x hier?
S:acc ist eine Map und x ist ein ByteString.

M: Richtig. Aber von was ist es eine Map? Erinnern Sie sich, wir hatten ein [(Byt-
eString, Int)].

S: Oh,Map ByteString Int.

M: Richtig. Also, was wollen wir mit dem ByteString machen?

w N O O b W N =

0w I O O b W N =

Haskell Lernen und Lehren 20

S: Es in die Map einfiigen? Hm, aber was sollte der Wert sein?

M: Wir verfolgen die Anzahl. Das deutet darauf hin, dass wir die Map aktualisieren
mochten, anstatt einzufiigen, wenn wir einen doppelten Schliisseltreffer haben.

S: Ah! Okay. Schau dir das an:

func domains =
foldr (\domain acc ->
case Map.lookup domain acc of
Nothing ->
Map.insert domain 1 acc
Just previousCount ->
Map.insert domain (previousCount + 1) acc
) Map.empty domains

M: Gut gemacht! Wir kénnen es jedoch noch besser machen. Lass uns einen Blick darauf
werfen, wie man in der Dokumentation einfiigt. Scheint hier etwas vielversprechend zu
sein?

S: Hmm. insertWith konnte es tun. Lass es mich versuchen:

func domains =
foldr (\domain acc ->
Map.insertWith

(\newValue oldCount -> newValue + oldCount)
domain
1
acc

) Map.empty domains

M: Wunderschon.
Dies ist effizient und erfiillt perfekt unsere Bediirfnisse.
Und Sie haben gelernt, was Maps sind!

Haskell zu lehren bedeutet, zu zeigen, wie man die Aktion durchfiihrt, ebenso sehr wie
zu erkldren, wie man die Konzepte versteht.

Haskell Lernen und Lehren

2.10 Referenzen

+ Geschichte der Programmiersprachen’
+ Generationenliste von Programmiersprachen*

o Stilles Wissen®

*https://en.wikipedia.org/wiki/History_of programming_languages
“https://en.wikipedia.org/wiki/Generational_list_of _programming_languages
*https://commoncog.com/blog/tacit-knowledge- is-a-real- thing/

21

https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/
https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/

3. Haskeller einstellen

3.1 Das zweischneidige Schwert

Haskell ist ein zweischneidiges Schwert, wenn es um die Einstellung geht.

Dies ist eine durchgéngige Erfahrung jedes Einstellungsmanagers, mit dem ich iiber
Haskell gesprochen habe, sowie meine eigenen Erfahrungen beim Durchsehen von
Lebensldufen und bei Vorstellungsgesprichen mit Kandidaten.

Eine offene Haskell-Stelle zieht ein fantastisches Verhiltnis von hochqualifizierten
Kandidaten an.

Unter ihnen befinden sich Doktoranden, erfahrene Haskeller, Senior-Entwickler in
anderen Sprachen und einige aufgeregte Junioren, die enormes Potenzial zeigen.

Die Position ist méglicherweise “unter” den Bewerbern, aber Haskell ist ein solcher
Vorteil, dass sie dennoch zufrieden sind.

Wihrend die Qualitat hoch sein wird, wird die Quantitat enttduschend sein.

Eine Java-Ausschreibung kann 1.000 Bewerbungen anziehen, von denen 25 grof3artig
sind.

Eine Haskell-Ausschreibung kann 50 Bewerbungen anziehen, von denen 10 grof3artig
sind.

Dies ist ein echtes Problem, wenn Sie ein grofies Team einstellen miissen.

Haskells Produktivitatsvorteile verringern die Notwendigkeit fiir ein grofles Team, aber
das kann man nur so lange hinauszégern.

Sie kénnen ein Haskell-Team ausschlief8lich durch das Training von Neueinsteigern in
die Sprache aufbauen.

Dies erfordert mindestens einen Haskell-erfahrenen Ingenieur mit einer Vorliebe fiir
Mentoring und die Zuriickhaltung, den Code so einfach zu halten, dass man leicht damit
anfangen kann.

Das ist eine grofie Herausforderung, aus dem gleichen Grund, dass Komplexitit und
Neuheit besonders schwierige Probleme in Haskell sind.

Wenn Sie dies lesen, bevor Sie Thr Haskell-Team starten, dann bitte ich Sie - schreiben
Sie Code, den Sie einem Junior beibringen konnen, ohne zu viel Stress.

Wenn Sie bereits einen komplexen Code haben, miissen Sie wahrscheinlich einen Senior
einstellen.

22

Haskeller einstellen 23

3.2 Junioren und Senioren

Dieses Kapitel wird die Begriffe ‘Senior’ und ‘Junior’ verwenden.
Diese Begriffe sind etwas umstritten, mit einem gewissen Maf} an Urteil, und ich mochte
sie definieren, bevor wir fortfahren.

Ein Senior-Entwickler hatte die Zeit und Gelegenheit, mehr Fehler zu machen und aus
ihnen zu lernen.

Senior-Entwickler sind in der Regel erfahren, abgeklart und hoffentlich weise.
Senior-Entwickler kennen das Geldnde und koénnen im Allgemeinen entweder schwie-
rige Situationen meistern oder sie ganz vermeiden.

Ein Junior-Entwickler ist klug, neugierig und hat noch nicht genug Fehler gemacht.
Junioren sind begeistert, lernen schnell und bringen wichtige neue Perspektiven in ein
Projekt ein.

Sie sind keine Belastungen, die schnell zu Senioren werden - ihre neue Energie ist
entscheidend fiir Experimente und die Herausforderung des moglicherweise veralteten
Wissens Thres Senior-Teams.

Das freudige Chaos eines talentierten Juniors kann Thnen mehr iiber Thre Systeme
beibringen, als Sie vielleicht fiir moglich halten.

Eine Person kann zehn Jahre Erfahrung mit Java haben und ein Junior in Haskell sein.
Ein Senior-Haskell-Ingenieur konnte ein Junior in C# sein.

Ein Junior kann erheblich kliiger sein als ein Senior.

Eine Person mit zwei Jahren Erfahrung kann erfahrener sein als eine Person mit acht
Jahren.

Das relevante Merkmal - fiir mich - ist die Summe der gemachten Fehler und der
gelernten Lektionen.

Ein grofies Team und Projekt profitiert davon, sowohl Senioren als auch Junioren zu
haben.

Die Haskell-Community als Ganzes profitiert davon, Juniorenrollen zu haben - wie sonst
werden wir erfahrene Haskell-Entwickler bekommen, die neue Unternehmen griinden
und tberzeugende Projekte starten kénnen?

Wenn mir das Praktikum nicht angeboten worden wire, wire ich heute kein professio-
neller Haskell-Entwickler.

Sie wiirden dieses Buch nicht lesen.

Wir miissen es weitergeben, um die Community zu vergréfiern und den Erfolg dieser
wunderbaren Sprache zu festigen.

Leider sind die meisten Haskell-Projekte, die ich erlebt habe, fast ausschliefilich mit
Senior-Entwicklern besetzt.

Haskeller einstellen 24

Es gibt einen Teufelskreis:

1. Alice, eine brillante Haskellerin, bekommt die Moglichkeit, ein Projekt zu starten.
Sie ist einzigartig dafiir geeignet - sie hat eine Menge Doménenerfahrung und
kennt Haskell in- und auswendig.

2. Alice nutzt fortgeschrittene Funktionen und Bibliotheken, um das Projekt zu
entwickeln.

Alice nutzt alle Sicherheits- und Produktivitdtsmerkmale, um das Projekt piinkt-
lich, unter Budget und fehlerfrei zu liefern.
Das Projekt ist ein durchschlagender Erfolg.

3. Das Projekt sammelt neue Funktionen und Verantwortungen an.

Waihrend Alice in der Lage ist, schnell genug Code zu schreiben, um dieses
Wachstum abzudecken, beginnen die anderen Aspekte eines Projekts, einen
weiteren Entwickler zu erfordern.

Haskell macht das Schreiben von Dokumentationen nicht schneller.

4. Alice erstellt eine Liste von Anforderungen fiir einen neuen Entwickler.

Um produktiv zu sein, muss der Ingenieur fortgeschrittene Haskell-Tricks verste-
hen.
Es bleibt keine Zeit, einen Junior-Ingenieur auszubilden, um produktiv zu sein.

Dies schafft eine immer grofiere Nachfrage nach erfahrenen Haskellern. Wenn Sie
ein erfahrener Haskeller sind, denken Sie vielleicht, dass das in Ordnung ist. Mehr
Jobmoglichkeiten und mehr Gehaltswettbewerb!

Dies ist nicht nachhaltig. Das Unternehmen hat immer die Moglichkeit, Haskell ab-
zuschaffen, eine Gruppe von Go/Java/C#-Entwicklern einzustellen und das Haskell-
Projekt zu zerstéren. Nicht nur wurde ein Haskell-Projekt zerstort, sondern ein weiterer
Geschaftsmann hat echte Erfahrungen damit gemacht, dass Haskell gescheitert ist.

3.3 Einstellung von Senioren

Sie werden wahrscheinlich erfahrene Haskell-Ingenieure einstellen miissen. Nach rohen
Haskell-Fahigkeiten zu suchen, ist verlockend, aber das ist nicht so notwendig, wie Sie
vielleicht denken. Der urspriingliche Haskell-Entwickler oder die Entwickler konnen
alle schwierigen Teile handhaben, die der neue Mitarbeiter nicht versteht. Stattdessen
sollten wir nach den vier Prinzipien dieses Buches suchen:

1. Komplexitit: bevorzugt einfache Losungen

Haskeller einstellen 25

2. Neuheit: bevorzugt traditionelle Losungen
3. Kohiésion: wird sich nicht auf Stilfragen einlassen
4. Empathie: kann Mitgefiihl fur andere zeigen

Einstellung ist eine zweiseitige Strafle, also schauen wir uns zuerst an, wie Sie die
Wahrscheinlichkeit eines erfolgreichen Einstellungsprozesses verbessern kénnen. Dar-
tiber hinaus geht es uns nicht nur um das Einstellungsereignis - wir sind auch an der
Bindung interessiert.

Remote-freundlich

Wenn Thr Unternehmen in San Francisco, New York City, Glasgow oder einer Handvoll
anderer Haskell-Zentren ist, dann kénnen Sie wahrscheinlich lokal einstellen. Andern-
falls miissen Sie Ihre Suche auf vollstindig remote Kandidaten ausweiten. Haskell-
Entwickler sind weltweit verteilt, und Sie werden die Qualitit und Quantitat der Haskell-
Entwickler erheblich steigern, wenn Sie nicht verlangen, dass sie in Thre Stadt ziehen.

Die ersten paar Einstellungen sind eine groflartige Gelegenheit, IThre remote-freundli-
chen Arbeitsabldufe zu entwickeln. Diese Arbeitsablaufe funktionieren fantastisch fiir
viele Unternehmen und Open-Source-Gemeinschaften. Dariiber hinaus wird Remote-
Arbeit durch die Forderung asynchroner Arbeitspraktiken die Produktivitét steigern.

Dies ist kein Buch dariiber, wie man ein Remote-Team erfolgreich verwaltet; dafiir
missen Sie woanders nachsehen. Ich bin nur ein bescheidener Haskell-Entwickler und
kann Thnen nur sagen, was die Einstellung erheblich erleichtert.

Nicht sparen

Es gibt ein Missverstandnis, dass Entwickler bereit sind, niedrigere Gehélter zu akzeptie-
ren, um Haskell zu verwenden. Dies ist im Allgemeinen nicht wahr. Erfahrene Haskell-
Ingenieure sind selten und wertvoll, und Sie bekommen, wofiir Sie bezahlen. Mein Ge-
halt und meine Leistungen als Haskell-Ingenieur waren in der Regel wettbewerbsfahig
mit dem Markt fiir meine Rolle und Erfahrung.

Wie bei jedem Missverstindnis gibt es in einem bestimmten Kontext einen Kern
Wabhrheit. Einige Unternehmen zahlen ihren Ingenieuren auflergew6hnlich gut. Google,
Facebook, Netflix, Indeed usw. sind in der Lage, Gesamtvergiitungspakete von iber
500.000 USD pro Jahr anzubieten. Ich habe noch nie von einem einzigen Haskell-
Entwickler gehort, der so viel verdient, obwohl ich von mindestens einem im Bereich
von 300.000 USD gehort habe.

Haskeller einstellen 26

Sie konnten also in der Lage sein, einen Ex-Googler einzustellen, der es gewohnt ist,
400.000 USD zu verdienen, und ihn “nur” 250.000 USD zahlen, um Haskell zu verwenden.
Aber Sie sollten nicht erwarten, einen erfahrenen Ingenieur einzustellen und unter
100.000 USD zu zahlen - der Rabatt funktioniert nicht so.

Sie konnten in der Lage sein, einen erfahrenen Scala- oder F#-Ingenieur einzustel-
len, der noch nie Haskell in der Produktion verwendet hat, zu einem reduzierten
Preis. Obwohl dies gut funktionieren konnte, sind Haskell und Scala/F# ausreichend
unterschiedlich, dass die Erfahrung nicht so stark tibertragbar ist, wie Sie vielleicht
erwarten. Produktions-Haskell hat genug Eigenheiten und Besonderheiten, dass blof3e
Sprachgewandtheit mit funktionalen Programmieridiomen Sie nicht weit bringen wird.

Die meisten Haskell-Unternehmen zahlen ihren erfahrenen Ingenieuren einen wettbe-
werbsfahigen Tarif. Und die meisten Haskell-Unternehmen, die nur Senioren einstellen,
erfordern nicht so viel Produktionserfahrung, um eingestellt zu werden. Wenn Sie
einen erfahrenen Scala-Entwickler einstellen, um Haskell zu einem starken Rabatt zu
machen, wird er diese Erfahrung nutzen und schnell einen besser bezahlten Haskell-Job
bekommen.

Dies zeichnet ein Bild der Haskell-Gehaltslandschaft als bimodal. Erfahrene Haskel-
ler kénnen wettbewerbsfahige Gehélter verdienen, wenn nicht wettbewerbsfiahig mit
FAANG'. Weniger erfahrene Haskeller konnen einen Gehaltsabzug akzeptieren, um
Haskell im Job zu lernen, aber sie werden schnell aufsteigen und in diesen zweiten
Eimer gelangen. Denken Sie daran, dass Haskell eine Sprache mit hoher Varianz ist
- Sie wetten nicht auf Durchschnitte oder Mediane, Sie wetten darauf, die Kurve zu
tibertreffen. Statistisch gesehen miissen Sie besser als der Marktdurchschnitt zahlen, um
aus dem oberen Ende der Kurve auszuwéhlen.

Wenn Sie einen Junior-Haskeller einstellen (der ansonsten ein Senior-Ingenieur ist),
seien Sie bereit, ihm nach einem Jahr eine erhebliche Gehaltserhchung zu geben oder
bereiten Sie sich auf Fluktuation vor.

Kein Kédern und Wechseln

Erfahrene Haskell-Ingenieure kennen das nur allzu gut. Es gibt eine Stellenanzeige, die
Haskell als gewiinschte Fahigkeit auffithrt. Oder vielleicht gibt es eine Haskell-Stelle,
aber Sie miissen auch Java, PHP, Ruby und Go kennen. Leider macht Haskell nur einen
winzigen Teil dessen aus, was der Entwickler erwartet wird zu tun, obwohl die Stelle
als “Haskell-Job” verkauft wird.

'Facebook, Amazon, Apple, Netflix, Google. Ein géngiges Akronym fiir einige der groBen Akteure in der Technologie-
branche bei der Einstellung, mit einigen der hochsten Vergiitungen. Obwohl selten, beschaftigen Facebook und Google einige
Haskeller.

Haskeller einstellen 27

Tun Sie das nicht. Sie werden Entwickler frustrieren, die es durchhalten, und Sie werden
Haskell-Talente nicht lange halten, wenn Sie sie die meiste Zeit in einer anderen Sprache
schreiben lassen. Sie konnen ihre Leidenschaft fiir Haskell nicht entfithren und sie auf
dem gleichen Niveau PHP schreiben lassen. Wie oben, wird der Entwickler in der
Lage sein, Haskell in der Produktion in seinen Lebenslauf aufzunehmen und zu einem
anderen Unternehmen zu wechseln, um die meiste Zeit an Haskell zu arbeiten.

Das bedeutet nicht, dass Sie keinen polyglotten Tech-Stack haben kénnen. Es ist nichts
Falsches daran, Microservices in Go, Ruby und auch Haskell zu haben. Tatsachlich ist
es eine gute Moglichkeit, Pragmatic Haskellers statt Puristen auszuwahlen, wenn man
gelegentlich von einem Haskeller verlangt, eine andere Sprache zu schreiben. Dies muss
jedoch ehrlich und im Voraus kommuniziert werden. Wenn Sie erwarten, dass jemand
10% Haskell schreibt, dann bezeichnen Sie es nicht als Haskell-Job. Es ist ein Go-Job mit
einer kleinen Haskell-Verantwortung.

Unreinheitspriufung

Nicht-Haskell-Verantwortlichkeiten kénnen sinnvoll sein, in die Stellenbeschreibung
aufzunehmen.

Es gibt einen Typ von Haskell-Entwickler, den ich gesehen habe. Sie wollen nur mit
Haskell arbeiten. 100% Haskell. Kein JavaScript, kein Ruby, kein Go, kein Java, kein Bash,
kein PHP, keine Sysadmin-Verantwortlichkeiten, nichts! Nur Haskell.

Diese Entwickler sind oft grof3artig in Haskell und es ist verlockend, sie einzustellen. Das
sollten Sie wahrscheinlich nicht tun. Obwohl Haskell eine fantastische Wahl fiir viele
Anwendungen ist, wird jeder, der eine 100% Haskell-Erfahrung benétigt, zwangslaufig
Haskell wihlen, wo eine andere Wahl angemessener wire. Das wollen Sie nicht in
Threm Team. Schlimmer noch, sie konnten unerwiinschte Komplexitit und Neuheit in
das Projekt bringen.

Denken Sie daran, dass das Ziel eines industriellen Softwareprojekts darin besteht, die
Bediirfnisse des Unternehmens zu fordern. Haskell tut dies legitim. Wenn ich das nicht
glaubte (basierend auf meinen Erfahrungen), wiirde ich kein Buch dariiber schreiben,
wie man es erfolgreich macht. Aber Haskell ist keine ausreichende Ursache fiir Erfolg.
Zu wissen, wann man Haskell einsetzt und wann man auf ein anderes Werkzeug
zuriickgreift, ist entscheidend fiir jeden gut abgerundeten Haskell-Ingenieur.

Vielfalt umarmen

Haskellers sind seltsam. Sie werden nicht wie typische Programmierer aussehen oder
handeln, weil sie es nicht sind! Wenn Sie zu streng auf zusatzliche “Kulturpassung”-

Haskeller einstellen 28

Qualitaten filtern, werden Sie eine Menge guter Ingenieure verpassen. Dies gilt doppelt
fiir unterreprasentierte Minderheiten.

Das bedeutet nicht, dass Haskell-Entwickler besser oder schlechter sind als andere, nur
dass sie anders sind. Lehnen Sie sich in die Unterschiede hinein und umarmen Sie sie.

3.4 Juniors einstellen

Ein Junior fiir Haskell ist jemand, der noch nicht genug Fehler gemacht hat. Das
kann jemand sein, der erst letztes Jahr angefangen hat zu programmieren und ir-
gendwie Haskell ausgewahlt hat, oder es konnte ein erfahrener Scala-Entwickler mit
10 Jahren Berufserfahrung sein, der gerade angefangen hat, Haskell zu lernen. Einen
guten Kandidaten fiir eine Junior-Rolle auszuwihlen, ist etwas anders als in anderen
Programmiersprachen.

Haskell hat eine viel kleinere Population als andere Programmiersprachen. Die Popu-
lation ist auf viele Gemeinschaften verteilt. Die insgesamt verfiigbare Unterstiitzung
fiir Juniors ist geringer als in anderen Sprachen. Das bedeutet, dass Sie den Mangel
ausgleichen miissen.

In eine Kultur der Schulung und Mentorschaft zu investieren, ist eine grofartige
Moglichkeit, dies zu erreichen. Direktes Mentoring Ihrer Juniors fordert die Kohésion im
Projekt. Senior-Entwickler erhalten wertvolle Ubung im Lehren und gewinnen Einblicke
von den Juniors.

Die Auswahlwirkungen von Haskell bedeuten, dass Sie wahrscheinlich weniger Mento-
ring benétigen, als Sie vielleicht erwarten. Haskell ist ausreichend seltsam und anders,
dass die meisten Menschen, die sich dafiir begeistern, bereits selbstdndig sind und
hervorragend darin sind, eigenstiandig zu recherchieren. Die Arbeit des Mentors besteht
weniger darin, zu “lehren”, sondern mehr darin, zu “leiten”.

Alle obigen Ratschlédge fiir die Einstellung von Senioren gelten auch fiir Juniors. Sie
sollten definitiv versuchen, frithzeitig im Lebenszyklus eines Projekts einen Junior
Haskeller einzustellen, aus einigen wichtigen Griinden. Ein Senior Haskell-Ingenieur
wird dramatisch produktiver sein als in einer anderen Sprache, aber die Gesamt-
arbeitsbelastung eines Ingenieurs ist nur teilweise technisch. Junior-Ingenieure sind
bemerkenswert gut geeignet fiir viele der Aufgaben im Software-Engineering, die nicht
direkt mit technischer Kompetenz und Erfahrung zu tun haben. Diese Arbeit dient auch
als ausgezeichnetes Training fiir den Junior.

Haskeller einstellen 29

Unterstutzende Aufgaben

Ein erfahrener Haskeller kann Funktionen schneller bereitstellen als in jeder anderen
Sprache, mit weniger Zeitaufwand fiir Fehlerbehebungen. Leider nimmt die Dokumen-
tation nicht weniger Zeit in Anspruch, um geschrieben zu werden. Wenn Sie fir die
Fahigkeit einstellen, Funktionen zu liefern, dann werden Sie nicht die Personenstunden
haben, um Dokumentation zu schreiben oder andere Formen der Unterstiitzung fiir das
Projekt bereitzustellen.

Junior-Entwickler haben moglicherweise nicht die gleiche Fahigkeit, Code zu schreiben
wie Senioren, aber sie sind vergleichsweise weniger benachteiligt beim Schreiben von
Dokumentation und der Unterstiitzung des Projekts in anderer Weise. Das Schreiben
dieser Dokumentation und die Unterstiitzung des Codes geben ihnen hervorragende
Erfahrungen mit dem Code, was ihnen hilft, ihr Wissen und ihre Fihigkeiten weiterzu-
entwickeln.

Das soll nicht heifien, dass Senioren keine Dokumentation schreiben sollten. Sie sollten
es unbedingt tun! Aber die Dokumentation eines Seniors kénnte den Kontext vermissen,
der fiir jemanden, der tief im Projekt eingebunden ist, nicht offensichtlich ist. Die
Dokumentation, die ein Junior schreibt, wird oft umfassender sein und weniger iiber
den Leser voraussetzen, es sei denn, der Senior ist ein besonders guter technischer Autor.

Der Prozess der Uberpriifung dieser Dokumentation ist eine ausgezeichnete Gelegenheit
fiir einen Senior, zusatzliche Informationen und Klarstellungen fiir den Junior bereitzu-
stellen.

Konzepte kldren

Erfahrene Haskeller werden die Komplexitdt eines Projekts natiirlich erhohen, es
sei denn, sie wenden konsequent Anstrengungen an, dies zu vermeiden. Ein Senior
Haskeller ist jedoch schlecht positioniert, um Entscheidungen dartiber zu treffen, wie
viel Komplexitat genau eingefiihrt wird. Schliellich kennen und verstehen sie es oder
haben bereits die Arbeit erledigt, um es herauszufinden. Der umgebende Kontext und
die Annahmen sind im Hintergrund.

Der Akt, Entscheidungen und Konzepte einem Junior zu erkléren, ist eine erzwungene
Funktion, um die Komplexitat zu identifizieren, die damit verbunden ist. Wenn die
Idee fiir den Junior im Team zu kompliziert ist, um sie ohne erhebliche Anleitung zu
verstehen, dann ist sie zu kompliziert!

Das soll nicht heiflen, dass Junioren nicht in der Lage sind, komplexe Ideen zu verstehen,
oder dass ein Junior ein Vetorecht iiber jedes Konzept in einer Codebasis haben sollte.

Haskeller einstellen 30

Junioren bieten eine kraftvolle neue Perspektive, die Entscheidungen informieren kann.
Diese Perspektive zu respektieren ist entscheidend, aber ihr vollstandig nachzugeben ist
unnétig. Einen Junior dabei zu unterstiitzen, komplexere Ideen zu lernen und praktische
Erfahrungen damit zu sammeln, ist Teil des Prozesses.

Institutionelles Wissen

Angenommen, Thr Haupt-Haskell-Entwickler gewinnt im Lotto und kiindigt. Sie miissen
diese Person ersetzen. Ein Junior konnte sogar die Gelegenheit ergreifen und den
kirzlich ausgeschiedenen Entwickler vollstindig ersetzen. Wir sollten nicht erwarten
oder Druck auf sie ausiiben, dies zu tun.

Der Junior wird jedoch in einer ausgezeichneten Position sein, dieses institutionelle
Wissen zu bewahren. Sie konnen helfen, neue Kandidaten zu interviewen und Einblicke
dartiber zu geben, was die Codebasis benétigt. Die Natur eines Junior-Entwicklers bietet
ihnen einen ausgezeichneten Einblick, was helfen wird, die Codebasis zu erweitern und
tiber die Zeit wartbar zu halten. Ein Senior-Ingenieur, der nicht in der Lage ist, einem
Junior-Ingenieur etwas beizubringen oder zu erklaren, wird keine groflartige Ergédnzung
sein.

Junioren sind in einer besseren Position, um diese Transfers zu machen, weil sie weniger
internalisierte Annahmen als Senioren haben. Dies gibt ihnen eine bessere Perspektive
bei der Bewertung und Weitergabe von Wissen an neue Mitarbeiter.

4. Bewertung von
Beratungsfirmen

Moglicherweise miissen Sie Berater einstellen, um an Ihrem Projekt zu arbeiten. Haskell-
Beratungsfirmen konnen eine ausgezeichnete Quelle fiir tiefes Fachwissen sein. Auf-
grund der Nischenart der Sprache gibt es nicht viele Haskell-Beratungsfirmen, und sie
sind alle brillant. Ich erwarte nicht, dass dies fiir immer so bleiben wird, also werde
ich teilen, wie ich Beratungsfirmen bewerte, um herauszufinden, wo sie am besten
angewendet werden konnten.

4.1 Identifizierung des Ziels

Wenige Beratungsfirmen senden potenzielle Geschéfte an ihre Konkurrenz. Infolgedes-
sen wird eine Beratungsfirma Thr Geschiaft gerne annehmen, selbst wenn Sie von einem
anderen Unternehmen besser bedient werden konnten. Genau wie die Haskell-Sprache
viele Gemeinschaften hat, sind diese Beratungsfirmen normalerweise besser fiir einige
Gemeinschaften als fiir andere geeignet.

Alle Beratungsfirmen werden sagen, dass sie sich auf industrielles Haskell spezialisie-
ren. Thre Ansitze unterscheiden sich jedoch, und einige sind mehr oder weniger fiir
verschiedene Anwendungsbereiche in dieser Nische geeignet.

Haskell-Beratungsfirmen werben iiber Open-Source-Portfolios und Blogbeitrige. Diese
Portfolios bilden einen Beweis fiir die Arbeit und kénnen analysiert werden, um die rich-
tige Passform zu bestimmen. Viele der Techniken zur Bewertung von Beratungsfirmen
erfordern die Bewertung von Bibliotheken, und ich behandle das nicht, bis Abschnitt 5
(“Interfacing the Real”). Wir konnen jedoch eine allgemeine Vorstellung vom Zielmarkt
bekommen, ohne zu tief einzutauchen.

Zuerst schauen wir uns die Website, den Blog und andere Marketingmaterialien an. Be-
ratungsfirmen richten sich im Allgemeinen an ihre Nischen, und wenn sie nicht auf Thre
Bediirfnisse eingehen, sind sie wahrscheinlich keine gute Passform. Beratungsfirmen
erhalten Material fiir Blogbeitrage aus unabhangiger Forschung und aus Lektionen, die
sie in der Beratungsarbeit gelernt haben, daher ist dies eine gute Moglichkeit zu sehen,
wie sie mit auftretenden Problemen umgehen. Zusétzlich bekommen Sie ein Gefiihl fir
ihren Kommunikationsstil (zumindest, wie er der Welt prasentiert wird).

31

Bewertung von Beratungsfirmen 32

Als néchstes wollen wir die Bibliotheken bewerten, die die Beratungsfirma unterstitzt.
Dies gibt uns wichtige Informationen dariiber, wie sie Code schreiben und welche Ansat-
ze sie unterstiitzen. Der einfachste Weg, dies zu tun, besteht darin, nach der Hauptquelle
der Code-Repository-Organisation fiir die Beratungsfirma zu suchen (oft GitHub, aber
auch GitLab und BitBucket sind Méglichkeiten). Wir werden auch die GitHub-Konten
von Mitarbeitern ansehen wollen, wenn wir sie finden konnen. Beratungsfirmen stellen
in der Regel Ingenieure wegen ihrer Open-Source-Beitrége ein - wenn Sie den Ingenieur
einstellen, der die X-Bibliothek unterstiitzt, konnen Sie den Benutzern dieser Bibliothek
Beratungsdienste anbieten.

Schliellich wollen wir versuchen, Erfahrungsberichte von Unternehmen zu finden,
die diese Beratungsfirmen genutzt haben. Mitarbeiter, die an Projekten gearbeitet
haben, die von Beratungsfirmen unterstiitzt oder abgeschlossen wurden, sind hier eine
weitere wertvolle Ressource. Diese Informationen werden schwieriger zu beschaffen
sein. Unternehmen wollen selten solche Details verdffentlichen, daher werden Sie sie
wahrscheinlich eher durch Community-Beteiligung erhalten. Einzelpersonen werden
keine negativen Erfahrungsberichte verdffentlichen, da Beratungsfirmen dazu neigen,
einen ibergrofien Einfluss auf die 6ffentliche Meinung in kleinen Gemeinschaften wie
Haskell zu haben.

Lassen Sie uns einige der grofleren Beratungsunternehmen untersuchen.

4.2 Well-Typed

Well-Typed prisentiert sich als “Die Haskell-Berater”. Mit Schwergewichten der Com-
munity wie Duncan Coutts, Andres Loh und Edsko de Vries haben sie sicherlich
Anspruch auf diesen Titel. Das Unternehmen ist seit 2008 aktiv. Dies ist ein solides
Fundament fiir Erfolg, und sie haben eine Erfolgsbilanz, die dies untermauert.

Fast jeder in der Mitarbeiterliste hat einen Abschluss in Informatik, und mehr haben
einen Doktortitel als nur einen Bachelor-Abschluss. Der akademische Hintergrund bei
Well-Typed ist gut vertreten.

Das GitHub unter https://www.github.com/well-typed listet eine Reihe
von Repositories auf, die es zu untersuchen gilt. Ich werde hier einige auswahlen:

. optics, eine alternative 1ens-Bibliothek, die stark verbesserte Fehlermeldun-
gen bietet

« generics-sop, eine Alternative zu GHC . Generics

» ixset-typed, eine stark typisierte indizierte Datenstruktur

Bewertung von Beratungsfirmen 33

« cborg, eine Binarserialisierungsbibliothek

Dariiber hinaus sehen wir eine Reihe von Beitrigen zum cabal-Repository von
Well-Typed-Mitarbeitern, zusammen mit anderer wichtiger Haskell-Infrastruktur. Die
Hauptverantwortlichen fiir die Servant-Webbibliothek sind bei Well-Typed beschaftigt.
Die acid-state-Datenbank wird ebenfalls von Well-Typed-Mitarbeitern gewartet.

Ich habe direkt mit Well-Typed zusammengearbeitet, wahrend ich bei IOHK angestellt
war. Das starke theoretische Wissen war entscheidend fiir die Entwicklung vieler der
hochtheoretischen Aspekte der Codebasis. Das ebenso starke technische Wissen fiir
die Haskell-Entwicklung war hervorragend fiir die Entwicklung des Wallet-Teils der
Codebasis.

Well-Typed liefert extrem starke theoretische Kenntnisse und Haskell-Expertise. Dies
offenbart jedoch eine operative Schwachstelle: die Abhangigkeit von Haskell, wo andere
Werkzeuge moglicherweise besser geeignet sind. Die Verwendung von acid-state
bei IOHK war die Quelle zahlreicher Probleme, die im Datenbankkapitel dieses Buches
dokumentiert sind. Dariiber hinaus spiegelt sich die extrem hohe Kompetenz der Well-
Typed-Mitarbeiter in der Komplexitdt und Schwierigkeit der gelieferten Losungen
wider.

Ich wiirde nicht zégern, Well-Typed fiir ein Projekt im industriellen Einsatz zu engagie-
ren, insbesondere wenn das Projekt neuartige theoretische Erkenntnisse erfordert. Ich
wire jedoch vorsichtig, um sicherzustellen, dass die resultierende Losung leicht vom
Kernteam der Ingenieure verstanden werden kann. Die Schulungen von Well-Typed
sind hervorragend, um einen Haskeller auf mittlerem oder fortgeschrittenem Niveau
auf die néchste Stufe zu bringen.

4.3 FP Complete

FP Complete bezeichnete sich frither hauptsachlich als Haskell-Berater, hat sich jedoch
in den letzten Jahren auch auf DevOps und Blockchain konzentriert. Michael Snoyman
ist der Leiter der Technik, und abgesehen davon listet ihre Website keine Ingenieure auf.
Thr Blog enthalt Beitrage zu vielen Themen, einschliefllich Rust, DevOps, Container und
Haskell.

Michael Snoyman und Aaron Contorer, die beiden treibenden Mitglieder von FP
Complete, haben keinen umfangreichen Hintergrund in der akademischen Welt oder
der Informatiktheorie. Michaels Abschluss ist in Versicherungsmathematik, wahrend
Aaron sich bei Microsoft auf aufkommende Technologien spezialisierte. Der Ansatz des
Unternehmens wird in erster Linie von industriellen Bediirfnissen gepragt. Dies hilft,

Bewertung von Beratungsfirmen 34

ihre vielféltigere Ausrichtung zu erkléren - Haskell spielt eine prominente Rolle, aber
DevOps, Rust und andere Technologien sind wichtig fiir ihre Geschéftsstrategie und ihr
Marketing.

Das GitHub unter https://www.github.com/fpco bietet ein paar weitere
Hinweise. Es gibt mehrere Mitglieder der Organisation, die aufgefithrt sind: Niklas
Hambiichen, Sibi Prabakaran, Chris Done stechen als Haskell-Beitragende hervor. Das
FPCo GitHub hat viele Repositories, die wir priifen kénnen:

- safe-exceptions, eine Bibliothek zur Unterstiitzung bei sicherem und vor-
hersehbarem Exception-Handling

- stackage-server, der Code, der das Stackage-Paketset hostet

« weigh, eine Bibliothek zur Messung von Speicherzuweisungen von Haskell-
Funktionen

« resourcet, eine Bibliothek fiir sichere und zeitnahe Ressourcenverwaltung

Andere relevante Bibliotheken umfassen das Yesod-Web-Framework, die Persistent-
Datenbankbibliothek und das stack-Build-Tool.

Ich habe nicht direkt mit FP Complete gearbeitet, habe jedoch umfangreiche Erfahrun-
gen mit Yesod, Persistent und habe direkt mit Michael Snoyman zusammengearbeitet.
Ich habe diese Bibliotheken verwendet, um schnell und effektiv funktionierende und
wartbare Software in meinem ersten Job zu liefern, und der Fokus auf reale industrielle
Anliegen fithrte zu meinem Erfolg dort. Die Bibliotheken sind in der Regel einfach
zu handhaben, nehmen regelmiaflig Beitrdge von Neulingen an und sind nicht allzu
streng in Bezug auf Codierungsstandards. Dies ist ein zweischneidiges Schwert - viele
Bibliotheken werfen haufiger Ausnahmen, als es Programmierern lieb ist, anstatt mit
typisierten Fehlerkandlen zu signalisieren. Template Haskell wird oft verwendet, um
Boilerplate zu reduzieren und Typsicherheit zu bieten, eine Wahl, die pragmatisch ist,
aber unter eher ‘reinen’ funktionalen Persénlichkeiten unpopulr.

Ich wirde nicht z6gern, FP Complete fiir den industriellen Einsatz zu engagieren,
insbesondere wenn das Projekt keine neuartigen theoretischen Anforderungen hat.
Die Schulung von FP Complete hat sich bew#hrt, um Junioren mit Haskell vertraut
zu machen, und sie sind in der Lage, auch auf fortgeschrittene und knifflige GHC-
Verhaltensweisen zu schulen.

Ausnahmen

FP Complete hat den definitiven Artikel iiber sicheres Ausnahmehandling in Haskell*
geschrieben. Es mag nicht iiberraschen, dass ihre Bibliotheken dazu neigen, Laufzeit-

'https://www.fpcomplete.com/haskell/tutorial/exceptions/

https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://www.fpcomplete.com/haskell/tutorial/exceptions/

Bewertung von Beratungsfirmen 35

ausnahmen héaufiger auszulosen, als man erwartet oder mochte. Einige Bibliotheken
im Haskell-Okosystem verwenden den ExceptT-Monadentransformator, um Ausnah-
men anzuzeigen. FP Complete halt dies fiir ein Antimuster und hat einen Artikel
geschrieben?®, der dies erklart. Stattdessen kann man erwarten, dass I0-Funktionen in
FP Complete Bibliotheken Laufzeitausnahmen auslosen.

TemplateHaskell

FP Completes Bibliotheken neigen dazu, TemplateHaskell extensiv fiir Funktiona-
litat zu verwenden. Yesod verwendet einen QuasiQuoter, um Routen fir die Web-
App zu definieren. Shakespeare verwendet einen QuasiQuoter, um Werte zu interpo-
lieren. monad-1logger verwendet TemplateHaskell-Logging-Funktionen, um
den Ort der Logzeile einzufiigen. persistent verwendet einen QuasiQuoter, um
Typen fiir die Interaktion mit der Datenbank zu definieren.

TemplateHaskell und QuasiQuoters werden oft unter Haskellers kritisiert. Sie
haben einige Nachteile. Jede Verwendung von TemplateHaskell in einem Modul
erfordert, dass GHC einen Code-Interpreter startet - dies verlangsamt die Kompilierung
mit einem konstanten Schlag von ein paar hundert Millisekunden auf meinem Laptop.
Das Generieren des Codes ist jedoch in der Regel recht schnell. Wenn der resultierende
generierte Code extrem grof§ ist, wird das Kompilieren dessen langsam sein.

QuasiQuoters definieren eine separate Sprache, die in einen Haskell-Ausdruck
geparst wird. Eine separate Sprache hat einige Vorteile: Man kann genau das definieren,
was man will und braucht, ohne sich um die Beschrankungen von Haskell kiimmern zu
miissen. Leider muss man seine eigene Syntax und Parser erfinden. Diese Dinge miissen
dokumentiert und diese Dokumente aktuell gehalten werden. Der vom QuasiQuoter
generierte Code ist oft nicht zur Inspektion geeignet - man kann nicht “Zur Definition
springen” bei einem Typ, der von TemplateHaskell generiert wird, noch kann man
den Code leicht einsehen.

*https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices

https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices
https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices
https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices

0w N O O b W N =

5. Invertiere Deine Mocks!

Mocking wird hiufig in Diskussionen iiber das Testen von effektvollem Code in
Haskell erwéhnt. Ein Vorteil von mt1 Typklassen oder Eff Freien Monaden ist, dass
du Implementierungen austauschen und dasselbe Programm auf unterschiedlichen
zugrunde liegenden Interpretationen ausfiihren kannst. Das ist cool! Allerdings ist es
eine extrem schwergewichtige Technik mit einer Menge Komplexitét.

Im vorherigen Kapitel habe ich empfohlen, mit dem ReaderT Muster zu arbeiten - so
etwas wie das:

newtype App a = App { unApp :: ReaderT AppCtx IO a }

Wie wiirde ich nun vorgehen, um eine solche Funktion zu testen?

doWork :: App ()
doWork = do
query <- runHTTP getUserQuery
users <- runDB (usersSatisfying query)
for_ users $ \user -> do
thing <- getSomething user
let result = compute thing

runRedis (writeKey (userRedisKey user) result)

Wenn wir unsere mt1- oder Eff- oder OOP-Mocking-Hiite authaben, kénnten wir
denken:

Ich weif3! Wir miussen unsere HTTP-, Datenbank- und Redis-Effekte si-
mulieren. Dann kénnen wir die Umgebung mit Mock-Implementierungen
kontrollieren und tiberpriifen, ob die Ergebnisse stimmig sind!

Mocking ist schrecklich. Es verkompliziert jeden Aspekt unseres Codebasises und fithrt
nicht einmal zu zuverldssigen Tests. Ich werde Techniken zum Mocking in einem
spateren Teil des Buches behandeln, aber es wire erheblich angenehmer, wenn wir es

36

N

w

o N O O

Invertiere Deine Mocks! 37

nie tun miissten. Wer weif3 - vielleicht miissen Sie es nie! Aber zuerst miissen wir Wege
finden, unseren Code zu testen, ohne uns auf Mocking zu verlassen.

Lassen Sie uns einen Schritt zuriicktreten und einige grundlegendere Techniken auf
dieses Problem anwenden.

5.1 Effekte Dekomponieren

Das Erste, was wir tun miissen, ist zu erkennen, dass Effekte und Werte getrennt sind und
versuchen, sie so weit wie moglich getrennt zu halten. Die Trennung von Effekten und
Werten ist ein grundlegendes Prinzip der rein funktionalen Programmierung. Allgemein
gesprochen sind Funktionen, die wie doWork aussehen, nicht funktional (im Sinne
der “funktionalen Programmierung”). Schauen wir uns die Typsignatur an, um ein paar
Hinweise zu finden.

doWork :: App ()

Unsere erste Warnung ist, dass diese Funktion keine Argumente hat. Das bedeutet,
dass alle Eingaben in diese Funktion aus der App-Umgebung kommen miissen. Diese
Eingaben sind Effekte.

Ebenso gibt diese Funktion () zuriick - den Einheitstyp, was nichts bedeutet. Es gibt
hier keinen sinnvollen Wert. Wenn diese Funktion ziberhaupt etwas tut, muss es ein
Nebeneffekt sein.

Schauen wir uns also noch einmal an, was die Funktion tut. Wir miissen die Funktion
zerlegen, bevor wir sie testen konnen.

doWork :: App ()
doWork = do
query <- runHTTP getUserQuery
users <- runDB (usersSatisfying query)
for_ users $ \user -> do
thing <- getSomething user
let result = compute thing
runRedis (writeKey (userRedisKey user) result)

Wir erhalten eine Menge von Dingen - Eingaben -, die als Ergebnis eines Effekts
erworben werden. Um dies direkt zu testen, miissen wir irgendwie den Effekt abfangen
und einen anderen Wert bereitstellen. Dies ist in Haskell unangenehm zu tun.

© 0 N O O b W N =

(RSN
N~

© 00 N O O b W N =

RN
N~

Invertiere Deine Mocks! 38

Stattdessen lassen Sie uns dies in zwei Funktionen aufteilen. Die erste wird fiir die Durch-
fihrung der Eingabeeffekte verantwortlich sein. Die zweite akzeptiert die Ergebnisse
dieser Eingabeeffekte als einen Parameter der reinen Funktion.

doWork :: App ()

doWork = do
query <- runHTTP getUserQuery
users <- runDB (usersSatisfying query)
doWorkHelper users

doWorkHelper :: [User] -> App ()
doWorkHelper users =
for_ users $ \user -> do
thing <- getSomething user
let result = compute thing

runRedis (writeKey (userRedisKey user) result)

Nun, um doWorkHelper zu testen, miissen wir die Effekte, die den [User] her-
ausholen, nicht mocken. Wir kénnen in unseren Tests beliebige [User] bereitstellen,
ohne einen gefalschten HTTP-Dienst und eine Datenbank orchestrieren zu miissen.

Jetzt sind die einzigen verbleibenden Effekte in doWorkHelper getSomething
und runRedis. Aber ich bin nicht zufrieden. Wir konnen getSomething loswer-
den, indem wir einen weiteren Helfer ausgliedern. Wir folgen demselben Muster: den
Eingabeeffekt aufrufen, die Werte sammeln und sie als Eingaben fiir eine neue Funktion
bereitstellen.

doWorkHelper :: [User] -> App ()
doWorkHelper users = do
things'users <- for users $ \user -> do
thing <- getSomething user
pure (thing, user)
lookMaNoInputs thing'users

lookMaNoInputs :: [(Thing, User)] -> App ()
lookMaNoInputs things'users =
for_ things'users $ \(thing, user) -> do
let result = compute thing

runRedis (writeKey (userRedisKey user) result)

N O O s~ W N

Invertiere Deine Mocks! 39

Wir haben nun alle “Eingabeeffekte” extrahiert. Die Funktion 1ookMaNoInputs
fithrt, wie der Name schon sagt, nur Ausgabeeffekte aus. Wenn wir dies testen wollen,
koénnen wir jede beliebige [(Thing, User)] bereitstellen.

Allerdings stecken wir immer noch mit unseren Ausgabeeffekten fest. Wenn wir dies
testen wollen, miissten wir iiberpriifen, ob sich die App-Umgebung (oder die reale Welt)
tatsachlich so verdndert hat, wie wir es erwarten. Gliicklicherweise haben wir dafiir
einen Trick in petto. Lassen Sie uns unseren Ausgabeeffekt untersuchen:

runRedis (writeKey (userRedisKey user) result)
Es erwartet zwei Dinge:

1. Den Redis-Schliissel des Benutzers
2. Das berechnete Ergebnis von thing.

Wir konnen den Redis-Schliissel und das berechnete Ergebnis ziemlich einfach vorbe-
reiten:

businessLogic :: (Thing, User) -> (RedisKey, Result)
businessLogic (thing, user) = (userRedisKey user, compute thing)

lookMaNoInputs :: [(Thing, User)] -> App ()
lookMaNoInputs users = do
for_ (map businesslLogic users) $ \(key, result) -> do
runRedis (writeKey key result)

Toll! Wir haben die Kern-Geschaftslogik isoliert, und jetzt konnen wir schone Unittests
fiir diese Geschiftslogik schreiben. Das Tupel ist etwas irrelevant - die userRedis-
Key-Funktion und der compute thing-Aufruf sind vollig unabhangig. Wir konnen
Tests fiir compute und userRedisKey unabhingig schreiben. Die Komposition
dieser beiden Funktionen sollte auch in Ordnung sein, selbst ohne businessLogic
selbst zu testen. Die gesamte Geschéftslogik wurde aus dem effektreichen Code heraus-
genommen, und wir haben die Menge des zu testenden Codes reduziert.

Nun, Sie méchten vielleicht dennoch Integrationstests fiir die verschiedenen effektrei-
chen Funktionen schreiben. Es ist wichtig zu iberpriifen, dass diese korrekt funk-
tionieren. Allerdings mochten Sie sie nicht immer wieder testen. Sie mochten Ihre
Geschiftslogik unabhangig von Threr effektreichen Logik testen.

O© 0 9 O U b W N =~

Invertiere Deine Mocks! 40

5.2 Streaming-Zerlegung

Streaming-Bibliotheken wie Pipes und Conduit sind eine groflartige Moglichkeit,
grofle Datensitze zu verarbeiten und Effekte zu iiberlagern. Sie sind auch eine grof3-
artige Moglichkeit, Funktionen zu zerlegen und “inverted mocking” Méglichkeiten in
Thre Programme zu integrieren. Sie haben vielleicht bemerkt, dass unser Refactoring
im vorherigen Abschnitt von einer einzigen Iteration iber die Daten zu mehreren
Tterationen gefiihrt hat. Zuerst haben wir die [User] geholt, und fiir jeden User eine
Anfrage gestellt und nach Redis geschrieben. Aber die endgiiltige Version iteriert iber
die [User] und paart sie mit der Anfrage. Dann iterieren wir erneut iiber das Ergebnis
und schreiben gleichzeitig nach Redis.

Wir kénnen conduit verwenden, um den zusitzlichen Durchlauf zu vermeiden,
wahrend wir unseren Code schon strukturiert und testbar halten.

Die meisten Conduits sehen so aus:

import Data.Conduit (runConduit, (.[))
import qualified Data.Conduit.List as CL

streamSomeStuff :: IO ()
streamSomeStuff = do
runConduit
$ conduitThatGetsStuff
.| conduitThatProcessesStuff
.| conduitThatConsumesStuff

Der Pipe-Operator (. |) kann wie eine Unix-Pipe betrachtet werden - “nehmen Sie
die gestreamten Ausgaben vom ersten Conduit und stecken Sie sie als Eingaben in
das zweite Conduit ein” Der erste Teil eines Conduit ist der “Produzent” oder
die “Quelle” Dies kann aus einer Datenbankaktion, einer HTTP-Anfrage oder von
einem Datei-Handle stammen. Sie kdnnen auch aus einer einfachen Liste von Werten
produzieren.

Schauen wir uns conduitThatGetsStuff an - es produziert die Werte fiir uns.

© 00 9 O O & W N =

[=N
w N =~ O

O O W N

Invertiere Deine Mocks! 41

-- Explicit
type ConduitT input output monad returnValue

-- Abbreviated
type ConduitT i omr

conduitThatGetsStuff
:: ConduitT () ByteString IO ()
- A A A A
.- I | return
-- [monad
-- | output
-- input

conduitThatGetsStuff akzeptiert () als Eingabe. Dies signalisiert, dass es
hauptséchlich genutzt wird, um Dinge zu produzieren, insbesondere im monad-Typ.
Daher kann conduitThatGetsStuff I0-Effekte ausfithren, um ByteString-
Blocke zu erzeugen. Wenn der Conduit seine Ausfithrung beendet hat, gibt er () zuriick
- oder, nichts Wichtiges.

Der nichste Teil des Conduits ist conduitThatProcessesStuf f. Diese Funktion
befindet sich genau hier:

conduitThatProcessesStuff :: ConduitT ByteString RealThing IO ()
conduitThatProcessesStuff =
CL.map parseFromByteString
| CL.mapM (either throwlIO pure)
.| CL.map convertSomeThing
| CL.filter someFilterCondition

Diese ConduitT akzeptiertByteString alsEingabe, gibtReal Thing als Ausgabe
aus und arbeitet in I0. Wir beginnen, indem wir Werte in ein Either parsen.
Der zweite Teil der Pipeline wirft eine Ausnahme, wenn der vorherige Schritt Left
zurlickgegeben hat, oder gibt das Right an den nichsten Teil der Pipeline weiter.
CL .map fihrt eine Umwandlung durch, und CL . filter gibt nur RealThings
weiter, die eine Bedingung erfiillen.

SchlieBlich miissen wir tatsachlich etwas mit dem RealThing machen.

Invertiere Deine Mocks! 42

conduitThatConsumesStuff :: Consumer RealThing IO ()
conduitThatConsumesStuff =
passThrough print
.| passThrough makeHttpPost
.| CL.mapM_ saveToDatabase
where
passThrough :: (a -> I0 ()) -> Conduit a IO a
passThrough action = CL.mapM $ \a -> do
action a
pure a

Dies printet jedes Element, bevor es an makeHttpPost ibergeben wird, das
schlief3lich an saveToDatabase weiterleitet.

Wir haben eine Menge kleiner, zerlegter Dinge. Unser conduitThatProcessesS-
tuff ist es egal, woher es die ByteStrings erhilt, die es parst — Sie kdnnen es mit
jedemConduitT i ByteString IO r verbinden.Datenbanken, HTTP-Aufrufe,
Datei-IO oder sogar einfach nur CL.sourcelList [examplel, example2,
example3].

Ebenso ist es dem conduitThatConsumesStuff egal, woher die RealThings
kommen. Sie konnen CL . sourcelL ist verwenden, um eine Reihe von Fake-Input
bereitzustellen.

Normalerweise arbeiten wir hier auch nicht direkt mit Conduits - die meisten Funk-
tionen werden CL .mapM_, CL . filter oder CL . map bereitgestellt. Das ermoglicht
es uns, Funktionen zu schreiben, die einfachea -> m b odera -> Bool oder a
-> b sind, und diese sind wirklich einfach zu testen.

doWork: im Conduit-Stil

Oben hatten wir doWork, und wir haben es in mehrere kleine Funktionen zerlegt. Ob-
wohl wir zuversichtlich sein konnen, dass es die Eingabeliste effizient verarbeitet, sind
wir nicht garantiert, dass es in einer konstanten Menge an Speicher funktioniert. Die
urspriingliche Implementierung machte einen einzigen Durchlauf tiber die Benutzerliste.
Die zweite macht konzeptionell drei: der erste for_, um die sekundéren Eingaben zu
erfassen, der Aufruf von map businesslLogic und der abschlieende for_, um
den Ausgabe-Effekt auszufithren. Wenn es mehr Durchgiange gébe und wir sofortige
Effekte garantieren wollten, konnten wir einen Conduit verwenden.

O U W N

O O B W N

W N

Invertiere Deine Mocks! 43

Lassen Sie uns also doWork als ConduitT umschreiben. Zuerst mochten wir einen
Produzenten, der unsere User -Datensétze nach unten weitergibt.

sourceUsers :: ConduitT () User App ()
sourceUsers = do
users <- lift $ do
query <- runHttp getUserQuery
runDB (usersSatisfying query)
sourcelList yieldMany users

Nun definieren wir einen Kanal, der eine Sache fiir einen Benutzer erhilt und sie
weitergibt.

-- Alternatively, using the “Conduit.List® API:
getThing :: ConduitT User (User, Thing) App ()
getThing =
CL.mapM $ \user -> do
thing <- getSomething user
pure (user, thing)

Eine andere Leitung berechnet das Ergebnis.

computeResult :: Monad m => ConduitT (User, Thing) (User, Result) m ()
computeResult =
mapC $ \(user, thing) -> (user, compute thing)

Der letzte Schritt in der Pipeline ist es, das Ergebnis zu verwenden.

consumeResult :: ConduitT (User, Result) Void App ()
consumeResult = do
CL.mapM_ $ \(user, result) ->
runRedis $ writeKey (userRedisKey user) result

Die zusammengestellte Losung ist hier:

O O W N

0w I O O & W N =

Invertiere Deine Mocks! 44

doWork :: App ()
doWork = runConduit
$ sourceUsers
.| getThing
.| computeResult
.| consumeResult

Dies hat die gleiche Effizienz wie die urspriingliche Implementierung und verarbeitet
die Dinge auch in der gleichen Reihenfolge. Wir konnten jedoch die Effekte extrahieren
und sie trennen. Das computeResult :: ConduitT _ _ _ ist rein und kann
getestet werden, ohne irgendein 10 auszufiihren.

Selbst wenn man annimmt, dass computeResult in einfachem IO wire, ist das
leichter zu testen als ein potenziell komplexer App-Typ.

5.3 Einfachste Abstraktion

Denken Sie immer an die leichtesten und allgemeinsten Techniken in der funktionalen
Programmierung:

1. Machen Sie es zu einer Funktion
2. Abstrahieren Sie einen Parameter

Diese werden Sie weit bringen.

Lassen Sie uns das doWork Geschift oben noch einmal betrachten:

doWork :: App ()
doWork = do
query <- runHTTP getUserQuery
users <- runDB (usersSatisfying query)
for_ users $ \user -> do
thing <- getSomething user
let result = compute thing
runRedis (writeKey (userRedisKey user) result)

Wir konnen dies abstrakt machen, indem wir konkrete Begriffe nehmen und sie zu
Funktionsparametern machen. Die wortliche Definition der lambda abstraction!

© 00 9 O O & W N =

I = SN
s W N o

=~ O O b W N

Invertiere Deine Mocks! 45

doWorkAbstract
Monad m
=> m Query -- " The HTTP getUserQuery

-> (Query -> m [User]) -- 7 The database action

-> (User -> m Thing) -- " The getSomething function

-> (RedisKey -> Result -> m ()) -- 7 finally, the redis action
->m ()

doWorkAbstract getUserQuery getUsers getSomething redisAction = do
query <- getUserQuery
users <- getUsers query
for_ users $ \user -> do
thing <- getSomething user
let result = compute thing
redisAction (userRedisKey user) result

Es gibt einige interessante Dinge, die man iber diese abstrakte Definition beachten
sollte:

1. Sieist tiber jede Monad parametrisiert. Identity,State, I0, was auch immer.
Sie haben die Wahl!

2. Wir haben eine reine Spezifikation der Effektlogik. Diese kann nichts tun. Sie
beschreibt nur, was zu tun ist, wenn die richtigen Werkzeuge gegeben sind.

3. Das ist im Grunde Dependency Injection im Extremfall.

Angesichts der oben genannten abstrakten Definition kénnen wir die konkrete doWork
leicht wiederherstellen, indem wir die nétigen Funktionen bereitstellen:

doWork :: App ()
doWork =
doWorkAbstract
(runHTTP getUserQuery)
(\query -> runDB (usersSatisfying query))
(\user -> getSomething user)
(\key result -> runRedis (writeKey key result))

Wir kénnen auch problemlos eine Testvariante erhalten, die die durchgefiihrten Aktio-
nen protokolliert:

Invertiere Deine Mocks! 46

doWorkScribe :: Writer [String] ()
doWorkScribe =
doWorkAbstract getQ getUsers getSomething redis
where
getQ = do
tell ["getting users query"]
pure AnyUserQuery
getUsers _ = do
tell ["getting users"]
pure [exampleUseri1, exampleUser2]
getSomething u = do

tell ["getting something for <> show u]
pure (fakeSomethingFor u)

redis k v = do
tell ["wrote k: " <> show k]

tell ["wrote v: <> show v]

Alles, ohne sich mit Monad-Transformatoren, Typklassen oder sonst etwas schrecklich
Kompliziertem herumschlagen zu miissen.

5.4 Zerlegen!!!

Letztendlich geht es darum, Programme in ihre kleinsten, am einfachsten testbaren Teile
zu zerlegen. Diese kleinen Teile werden dann einzeln oder anhand von Eigenschaften
getestet, um sicherzustellen, dass sie zusammenarbeiten. Wenn alle Teile unabhéngig
funktionieren, sollten sie auch in der Komposition zusammenarbeiten.

Ihre Effekte sollten idealerweise nicht in der Nahe Ihrer Geschéftslogik sein. Reine
Funktionen von a nach b sind unglaublich einfach zu testen, besonders wenn Sie
Eigenschaften ausdriicken konnen.

Wenn Thre Geschaftslogik wirklich Effekte ausfithren muss, versuchen Sie zunéchst die
einfachsten Techniken: Funktionen und Abstraktionen. Ich glaube, dass das Schreiben
und Testen von Funktionen, die reine Werte verarbeiten, einfacher und leichter ist.
Diese sind unabhéangig davon, woher die Daten kommen, und miissen {iberhaupt nicht
gemockt werden. Diese Transformation ist typischerweise einfacher als die Einfithrung
von mt 1-Klassen, Monad-Transformatoren, E f f oder dhnlichen Techniken.

=N O O Bk W

Invertiere Deine Mocks! 47

5.5 Was, wenn ich muss?

Manchmal kann man es einfach nicht vermeiden, effektvollen Code zu testen. Ein
haufiges Muster, das mir aufgefallen ist, ist, dass Leute Dinge auf einer viel zu niedrigen
Ebene abstrakt machen wollen. Sie méchten die Abstraktion so schwach wie moglich
machen, um sie leicht mocken zu konnen.

Betrachten Sie den héufigen Fall, die Datenbank mocken zu wollen. Das ist verstandlich:
Datenbankaufrufe sind extrem langsam! Eine Mock-Datenbank zu implementieren,
ist jedoch eine extrem schwierige Aufgabe — im Grunde miissen Sie eine Datenbank
implementieren. Wo sich das Verhalten der Datenbank von Threm Mock unterscheidet,
werden Sie einen Test-/Produktionsmismatch haben, der irgendwann explodieren wird.

Gehen Sie stattdessen eine Ebene hoher - schaffen Sie eine neue Indirektionsebene,
die sowohl von der Datenbank als auch von einem einfach zu implementierenden
Mock erfiillt werden kann. Sie kénnen dies mit einer Typklasse tun oder einfach
durch konkrete Abstraktion der relevanten Funktionen. Die Abstraktion der relevanten
Funktionen ist die einfachste und unkomplizierteste Technik, aber es ist auch nicht
unverniinftig zu schreiben:

data UserQuery
= AllUsers
| UserById Userld
| UserByEmail Email

class Monad m => GetUsers m where

runUserQuery :: UserQuery -> m [User]

Dies ist eine weitaus tragfahigere Schnittstelle zu implementieren als eine SQL-
Datenbank! Schreiben wir unsere Instanzen, eine fir die persistent® Bibliothek
und eine andere fiir ein Mock, das den Gen-Typ von QuickCheck verwendet:

'https://hackage.haskell.org/package/persistent

https://hackage.haskell.org/package/persistent
https://hackage.haskell.org/package/persistent

© 00 9 O O & W N =

RN
N~

© 00 9 O O & W N =

[T =N
w N =~ O

Invertiere Deine Mocks! 48

instance MonadIO m => GetUsers (SqlPersistT m) where
runUserQuery = selectlList . convertToQuery

instance GetUsers Gen where
runUserQuery query =
case query of

AllUsers ->
arbitrary

UserById userId ->
take 1 . fmap (setUserld userld) <$> arbitrary

UserByEmail userEmail ->
take 1 . fmap (setUserEmail userEmail) <$> arbitrary

Alternativ kénnen Sie einfach Funktionen manuell ibergeben, anstatt den Typeclass-
Mechanismus zu verwenden, der dies fiir Sie ibernimmt.

Oh, warte, nein! Diese GetUsers Gen-Instanz hat einen Fehler! Konnen Sie erraten,
was es ist?

Im Fall von UserById und UserByEmail testen wir nie den “leere Liste”-Fall - was,
wenn dieser Benutzer nicht existiert?

Eine korrigierte Variante sieht so aus:

instance GetUsers Gen where
runUserQuery query =
case query of

AllUsers ->
arbitrary

UserById userlId -> do
oneOrZero <- choose (0, 1)
users <- map (setUserld userld) <$> arbitrary
pure $ take oneOrZero users

UserByEmail userEmail -> do
oneOrZero <- choose (0, 1)
users <- map (setUserEmail userEmail) <$> arbitrary

pure $ take oneOrZero users

Invertiere Deine Mocks! 49

Ich habe einen Fehler gemacht, als ich ein super einfaches Generator geschrieben habe.
Stellen Sie sich vor, wie viele Fehler ich gemacht hétte, wenn ich versucht hitte, etwas
Komplexeres zu modellieren!

© 00 39 O O b W N =~

6. Das Problem mit typisierten
Fehlern

Wir Haskell-Entwickler mégen keine Laufzeitfehler. Sie sind schrecklich und widerlich!
Man muss sie debuggen, und sie sind nicht in den Typen repréasentiert. Stattdessen
verwenden wir gerne Either (oder etwas Isomorphes), um Dinge darzustellen, die
fehlschlagen kénnten:

data Either 1 r = Left 1 | Right r

Either hat eine MOnad-Instanz, daher konnen Sie eine Either 1 r-Berechnung
mit einem 1-Wert kurzschlielen oder sie an eine Funktion auf dem r-Wert binden.
Die Namen des Typs und der Konstruktoren sind nicht willkiirlich. Wir haben zwei
Typvariablen:Either left right.Dieleft-Typvariable befindetsichimlLeft-
Konstruktor, und die r ight-Typvariable befindet sich im Right-Konstruktor.

Also nehmen wir unsere unsicheren, zur Laufzeit fehlerhaften Funktionen:

head :: [a] -> a
lookup :: k -> Map k v -> v
parse :: String -> Integer

und wir verwenden informative Fehlertypen, um ihre moglichen Fehler darzustellen:

data HeadError = ListWasEmpty

head :: [a] -> Either HeadError a

data LookupError = KeyWasNotPresent

lookup :: k -> Map k v -> Either LookupError v
data ParseError

50

10
11
12
13

a > W N

g o W N

Das Problem mit typisierten Fehlern 51

= UnexpectedChar Char String
| RanOutOfInput

parse :: String -> Either ParseError Integer

Aufler, dass wir Typen wie HeadError oder LookupError eigentlich nicht ver-
wenden. Es gibt nur eine Moglichkeit, wie head oder 1ookup fehlschlagen koénnten.
Deshalb verwenden wir stattdessen einfach Maybe. Maybe a ist genau wie Either
() a zu verwenden - es gibt nur einen méglichen Left ()-Wert, und es gibt
nur einen moglichen Nothing-Wert. (Wenn Sie nicht tberzeugt sind, schreiben
Sie newtype Maybe a = Maybe (Either () a), leiten Sie alle relevanten
Instanzen ab, und versuchen Sie, einen Unterschied zwischen diesem Maybe und dem
Standard-Maybe zu erkennen).

Aber, Maybe ist nicht ideal - wir haben Informationen verloren! Angenommen, wir
haben eine Berechnung:

foo :: String -> Maybe Integer
foo str = do
c <- head str
r <- lookup str strMap
eitherToMaybe (parse (c : r))

Jetzt probieren wir es mit einem Eingabewert aus, und es gibt uns Nothing zuriick.
Welche Schritt ist fehlgeschlagen? Tatséchlich kénnen wir das nicht wissen! Alles, was
wir wissen konnen, ist, dass etwas fehlgeschlagen ist.

Also, versuchen wir Either zu verwenden, um mehr Informationen dariber zu
bekommen, was fehlgeschlagen ist. Kénnen wir das einfach so schreiben?

foo :: String -> Either ?77?? Integer
foo str = do

¢ <- head str

r <- lookup str strMap

parse (¢ : r)

Leider ergibt dies einen Typfehler. Wir konnen sehen, warum, indem wir uns den Typ
von > >= ansehen:

0w N O O & W N =

Das Problem mit typisierten Fehlern 52

(>>=) :: (Monad m) => ma -> (a -> mb) ->mb

Die Typvariable m muss eine Instanz von Monad sein, und der Typ m muss genau
derselbe sein sowohl fiir den Wert auf der linken Seite als auch fiir die Funktion auf
der rechten Seite. Either LookupError undEither ParseError sind nicht
derselbe Typ, und daher schlagt dieser Typencheck fehl.

Stattdessen bendétigen wir eine Moglichkeit, diese moglichen Fehler zu akkumulieren.
Wir werden eine Hilfsfunktion mapLeft einfiithren, die uns dabei hilft:

mapLeft :: (1 -> 1') -> Either 1 r -> Either 1' r
mapLeft f (Left 1) = Left (f 1)
mapLeft _r =1

Nun kénnen wir diese Fehlertypen kombinieren:

foo :: String
-> Either
(Either HeadError (Either LookupError ParseError))
Integer
foo str = do
c <- mapLeft Left (head str)
r <- mapLeft (Right . Left) (lookup str strMap)
mapLeft (Right . Right) (parse (c : r))

Da! Jetzt konnen wir genau wissen, wie und warum die Berechnung fehlgeschlagen
ist. Leider ist dieser Typ ein bisschen ein Monster. Er ist weitschweifig und der ganze
mapLe ft-Standardmafiiger Code ist nervig.

An diesem Punkt werden die meisten Anwendungsentwickler einen
“Anwendungsfehler”-Typ erstellen und einfach alles hineinschieben, was schiefgehen
kann.

a o wN -

© 00 39 O O b W N =~

-
()

Das Problem mit typisierten Fehlern 53

data AllErrorsEver
= AllParseError ParseError
AllLookupError LookupError
AllHeadError HeadError

|

|

| AllWhateverError WhateverError
| FileNotFound FileNotFoundError
|

etc. ..
Nun, dies riumt den Code etwas auf:

foo :: String -> Either AllErrorsEver Integer

foo str = do
¢ <- mapLeft AllHeadError (head str)
r <- mapLeft AllLookupError (lookup str strMap)
mapLeft AllParseError (parse (c : r))

Allerdings gibt es ein ziemlich grofies Problem mit diesem Code. 0O behauptet, dass
es alle moglichen Fehler “werfen” kann - es ist ehrlich in Bezug auf Parserfehler,
Nachschlagefehler und Head-Fehler, aber es behauptet auch, dass es werfen wird, wenn
Dateien nicht gefunden werden, “was auch immer” passiert, und usw. Es gibt keine
Maoglichkeit, dass ein Aufruf von foo zuDatei nicht gefunden fiihrt, weil foo
nicht einmal E/A machen kann! Das ist absurd. Der Typ ist zu grofi! Das vorherige
Kapitel diskutiert, wie wichtig es ist, die Typen klein zu halten und wie wunderbar es
sein kann, um Fehler zu beseitigen.

Angenommen, wir wollen f00’s Fehler behandeln. Wir rufen die Funktion auf und
schreiben dann einen Fallausdruck wie gute Haskeller:

case foo "hello world" of
Right val ->
pure val
Left err ->
case err of
AllParseError parseError ->
handleParsekError parseError
AllLookupError lookupErr ->
handlelLookupError
AllHeadError headErr ->

11
12
13

© 00 9 O O b W N =~

NN
]

Das Problem mit typisierten Fehlern 54

handleHeadError
->

Leider ist dieser Code anfillig fiir Refaktorisierung! Wir behaupten, alle Fehler zu be-
handeln, aber in Wirklichkeit behandeln wir viele davon nicht. Wir “wissen” momentan,
dass dies die einzigen Fehler sind, die auftreten konnen, aber es gibt keine Garantie
durch den Compiler, dass dies der Fall ist. Jemand konnte spater foo dndern, um
einen anderen Fehler auszulosen, und dieser Fallausdruck wiirde fehlschlagen. Jeder
Fallausdruck, der ein Ergebnis von fOO auswertet, muss aktualisiert werden.

Der Fehlertyp ist zu grof3, und so besteht die Moglichkeit, ihn falsch zu behandeln. Es
gibt ein weiteres Problem. Angenommen, wir wissen, wie man einen oder zwei Falle
des Fehlers behandelt, aber wir miissen den Rest der Fehlerfille nach oben weiterleiten:

bar :: String -> Either AllErrorsEver Integer
bar str =
case foo str of
Right val ->
Right val
Left err -»
case err of
AllParseError pe ->
Right (handleParseError pe)
->

Left err

Wir wissen, dass Al 1ParseError von bar gehandhabt wurde, weil - schauen Sie
es sich einfach an! Der Compiler hat jedoch keine Ahnung. Wann immer wir den
Fehlerinhalt von bar iiberpriifen, miissen wir entweder a) einen Fehlerfall ,behandeln®,
der vielleicht zweifelhaft bereits behandelt wurde, oder b) den Fehler ignorieren und
verzweifelt hoffen, dass kein zugrundeliegender Code jemals den Fehler auslost.

Sind wir mit den Problemen dieses Ansatzes fertig? Nein! Es gibt keine Garantie, dass
ich den richtigen Fehler werfe!

w N O O b W N =

Das Problem mit typisierten Fehlern 55

head :: [a] -> Either AllErrorsEver a
head (x:xs) = Right x
head [] = Left (AllLookupError KeyWasNotPresent)

Dieser Code wird typgepriift, aber er ist falsch, weil LookupError nur von 1ookup
ausgeldst werden soll! In diesem Fall ist es offensichtlich, aber in gréfieren Funktionen
und Codebasen wird es nicht so klar sein.

6.1 Monolithische Fehlertypen sind schlecht

Ein monolithischer Fehlertyp hat also viele Probleme. Ich werde hier eine Behauptung
aufstellen:

Alle Fehlertypen sollten einen einzigen Konstruktor haben

Das heifit, Fehler sollten keine Summentypen sein. Der Name des Typs und der Name
des Konstruktors sollten gleich sein. Die Ausnahme sollte tatsdchliche Werte enthalten,
die nitzlich wéren, um einen Komponententest zu schreiben oder das Problem zu
debuggen. Ein String-Nachricht mitzuschleppen ist ein No-Go.

Fast alle Programme konnen auf mehrere potenzielle Arten fehlschlagen. Wie kénnen
wir dies darstellen, wenn wir nur einen einzigen Konstruktor pro Typ verwenden?

Vielleicht kénnen wir sehen, ob wir Either angenehmer verwenden kénnen. Wir
definieren ein paar Helfer, die den notigen Schreibaufwand reduzieren:

type (+) = Either
infixr + 5

1 ::1 -> Either 1 r

1 = Left
r :: r -> Either 1 r
= Right

Nun, lassen Sie uns diesen unansehnlicheren E i ther-Code mit diesen neuen Hilfsmit-
teln refaktorisieren:

0w I O O & W N =

Das Problem mit typisierten Fehlern 56

foo :: String
-> Either
(HeadError + LookupError + ParseError)
Integer
foo str = do
¢ <- mapLeft 1 (head str)
r <- mapLeft (r . 1) (lookup str strMap)
mapLeft (r . r) (parse (c : 1))

Nun, die Syntax ist schoner. Wir konnen tiber das verschachtelte Either im Feh-
lerzweig mit case gehen, um einzelne Fehlerfille zu eliminieren. Es ist einfacher
sicherzustellen, dass wir nicht behaupten, Fehler auszulésen, die wir nicht auslosen
- schliellich wird GHC den Typ von foo korrekt ableiten, und wenn GHC eine
Typvariable fiir irgendein + ableitet, kénnen wir annehmen, dass wir diesen Fehlerplatz
nicht verwenden und ihn l6schen konnen.

Leider gibt es immer noch den maplLeft-Standardcode. Und Ausdriicke, von denen
man wirklich mochte, dass sie gleich sind, sind es nicht -

x :: Either (HeadError + LookupError) Int
y :: Either (LookupError + HeadError) Int

Die Werte x und y sind isomorph, aber wir konnen sie in einem do Block nicht
verwenden, da sie nicht exakt gleich sind. Wenn wir Fehler hinzufiigen, miissen wir alle
maplL e ft-Codes sowie alle case-Ausdriicke, die die Fehler tiberpriifen, iiberarbeiten.
Glucklicherweise sind dies vollstaindig vom Compiler gefithrte Refaktorisierungen,
sodass die Wahrscheinlichkeit, dabei Fehler zu machen, gering ist. Sie tragen jedoch
erheblich zu Boilerplate, Larm und Fleiflarbeit in unserem Programm bei.

6.2 Boilerplate ade!

Nun, es stellt sich heraus, dass wir die Abhéngigkeitsreihenfolge und Boilerplate mit
Typklassen loswerden kénnen! Der erste Ansatz besteht darin, “classy prisms” aus dem
lens-Paket zu verwenden. Lassen Sie uns unsere Typen von konkreten Werten in
prismatische umwandeln:

© 00 9 O O & W N =

I = SN
s W N o

O O B W N

Das Problem mit typisierten Fehlern 57

-- Concrete:
head :: [a] -> Either HeadError a

-- Prismatic:
head :: AsHeadError err => [a] -> Either err a

-- Concrete:
lookup :: k -> Map k v -> Either LookupError v

-- Prismatic:
lookup
(AsLookupError err)
=> k -> Map k v -> Either err v

Nun, Typklasseneinschrankungen kiimmern sich nicht um die Reihenfolge - (Foo a,
Bar a) => aund(Bar a, Foo a) => a sind genau dasselbe, soweit es GHC
betrifft. Die AsXXX Typklassen werden automatisch die mapLeft Sachen fir uns
bereitstellen, so dass unsere OO Funktion jetzt viel tibersichtlicher aussieht:

foo :: (AsHeadError err, AsLookupError err, AsParseError err)
=> String -> Either err Integer
foo str = do
c <- head str
r <- lookup str strMap
parse (c : r)

Dies scheint eine deutliche Verbesserung gegeniiber dem zu sein, was wir vorher hatten!
Und der meiste Standardcode mit den AsXXX-Klassen wird tiber Template Haskell
erledigt:

© 00 9 O O & W N =

-
()

Das Problem mit typisierten Fehlern 58

makeClassyPrisms ''ParseError

-- this line generates the following:

class AsParseError a where
_ParseError :: Prism' a ParseError
_UnexpectedChar :: Prism' a (Char, String)
_RanOutOfInput :: Prism' a ()

-- etc. ..

instance AsParseError ParseError where

Allerdings miissen wir unseren eigenen Boilerplate schreiben, wenn wir schlief3lich die-
se Typen konkret behandeln wollen. Wir kénnten am Ende einen riesigen AppError
schreiben, in den all diese Fehler eingespeist werden.

Es gibt einen grofien, fatalen Fehler bei diesem Ansatz. Obwohl es sich gut zusammen-
setzt, zerfillt es iiberhaupt nicht! Es gibt keine Mdglichkeit, einen einzelnen Fall zu
erfassen und sicherzustellen, dass er behandelt wird. Die Mechanik, die uns Prismen
bieten, erlaubt es nicht, eine einzelne Einschrinkung herauszuldsen, sodass wir keinen
Pattern Match auf einen einzelnen Fehler durchfithren konnen.

Unsere Typen werden erneut immer gréfier, mit all den damit verbundenen Problemen.

6.3 Typklassen zur Rettung!

Was wir wirklich wollen, ist:

» Unabhingigkeit von der Reihenfolge
+ Kein Boilerplate

« Einfache Zusammensetzung

« Einfache Zerlegung

In PureScript oder OCaml konnen Sie offene Variantentypen verwenden, um dies feh-
lerfrei zu tun. Haskell hat keine offenen Varianten, und die Versuche, sie nachzubilden,
sind in der Praxis recht umstindlich zu verwenden.

Glicklicherweise konnen wir Typklassen und Einschrankungen verwenden, um etwas
Ahnliches zu erreichen. Oben hatten wir eine Menge Probleme mit dem “verschachtel-
ten Either“-Muster - Either (Either (Either A B) C) D. Dies ermég-

licht es uns, den Ausnahme-Typ zu vergrofiern und zu verkleinern, was es uns erlaubt,

Das Problem mit typisierten Fehlern 59

Falle zu behandeln und neue einzufithren. Aber die Benutzerfreundlichkeit ist ziemlich
schlecht.

Der Grund ist,dassEither _ _ einen bindren Baum von Typen darstellt. Wir wollen
keinen binédren Baum - wir wollen eine Menge. Aber eine Menge von Typen wird am
besten als Typklasse-Einschrankung modelliert. Wir brauchen also eine Moglichkeit zu
sagen, dass A, B, C und D alle im Typ ‘enthalten’ sind.

Obwohl ich dieses Thema gerne vollstindig im Buch aufnehmen wiirde, wire es
unehrlich. Ich habe die Technik nicht in der Produktion verwendet und kann sie daher
nicht voll empfehlen. Wenn Sie daran interessiert sind, mehr iber experimentelles
Material zu lesen, dann empfehle ich den Blogbeitrag “Plucking Constraints™, sowie die
plucky? Proof-of-Concept Bibliothek und das super experimentelle pr i 0® Repository,
das die plucky Technik mit IO-basierten Ausnahmen verwendet.

6.4 Die Tugend von ungetypten Fehlern

Wir haben gesehen, dass getypte Fehler eine Reihe von Problemen haben. Es ist
schwierig, Fehlerfille zu entfernen. Der Boilerplate ist intensiv. Die Buchhaltung ist
selten ergonomisch oder benutzerfreundlich.

Getypte Fehler haben viele Probleme und erfordern viel Arbeit. Wahrenddessen haben
ungetypte Fehler viele Probleme, erfordern aber wenig Arbeit. Deshalb denke ich, dass
es am besten ist, bei ungetypten Ausnahmen zu bleiben, bis etwas Robusteres kommt.

throwIO :: (Exception e) => e -> I0 a

*https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
*https://hackage.haskell.org/package/plucky
*https://github.com/parsonsmatt/prio

https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
https://hackage.haskell.org/package/plucky
https://github.com/parsonsmatt/prio
https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
https://hackage.haskell.org/package/plucky
https://github.com/parsonsmatt/prio

N =

w

© 00 I O O

10
11
12

7. Template Haskell ist nicht
beangstigend

7.1 Ein Anféngertutorial

Dieses Tutorial richtet sich an Personen, die Anfanger bis fortgeschrittene Haskeller sind
und die Grundlagen von Template Haskell erlernen mochten.

Ich habe tiber die Macht und den Nutzen der Metaprogrammierung in Ruby gelernt.
Ruby-Metaprogrammierung wird durchgefiihrt, indem Quellcode durch Zeichenket-
tenverkettung konstruiert wird und der Interpreter ihn ausfiihrt. Es gibt auch einige
Methoden, die verwendet werden konnen, um Methoden, Konstanten, Variablen usw.
zu definieren.

In meiner Squirrell' Ruby-Bibliothek, die entwickelt wurde, um das Kapseln von SQL-
Abfragen etwas einfacher zu machen, habe ich ein paar Elemente der Metaprogrammie-
rung, um einige Annehmlichkeiten bei der Definition von Klassen zu ermdglichen. Die
Idee ist, dass Sie eine Abfrageklasse so definieren kénnen:

class PermissionExample
include Squirrell

requires :user_id

permits :post_id

def raw_sql
<<SQL
SELECT *
FROM users
INNER JOIN posts ON users.id = posts.user_id
WHERE users.id = #{user_id} #{has_post?}
SQL

*https://github.com/parsonsmatt/squirrell/

60

https://github.com/parsonsmatt/squirrell/
https://github.com/parsonsmatt/squirrell/

14
15
16
17
18
19

g o W N

O© 0 9 O U b W N =~

I = =N
B N o

Template Haskell ist nicht beangstigend 61

end

def has_post?
post_id ? "AND posts.id = #{post_id}" : ""
end
end

und indem Sierequires mit den Symbolen angeben, die Sie benétigen mochten, wird
es fur Sie eine Instanzvariable und einen Attributleser definieren und Fehler auslosen,
wenn Sie den erforderlichen Parameter nicht iibergeben. Das zu erreichen war ziemlich
einfach. Der Aufruf vonrequires erledigt etwas Buchhaltung mit den erforderlichen
Parametern und ruft dann diese Methode mit den tibergebenen Argumenten auf:

def define_readers(args)
args.each do |argl
attr_reader arg
end
end

Man kann es ein wenig wie ein Makro lesen: Nimm die Argumente und rufe attr_-
reader mit jedem auf. Die Magie passiert spater, wo ich die initial ize-Methode
iiberschrieben habe:

def initialize(args = {})
return self if args.empty?

Squirrell .requires[self.class].each do |k|
unless args.keys.include? k
fail MissingParameterError, "Missing required parameter: #{k}"

end

instance_variable_set "@#{k}", args.delete(k)
end

fail UnusedParameter, "Unspecified parameters: #{args}" if args.any?
end

Template Haskell ist nicht beangstigend 62

Wir iterieren Uber die an new ibergebenen Argumente, und wenn erforderliche
fehlen, tritt ein Fehler auf. Andernfalls setzen wir die mit dem Argument verbundene
Instanzvariable und entfernen es aus dem Hash.

Ein anderer Ansatz besteht darin, einen String zu nehmen und ihn im Kontext der Klasse,
in der Sie sich befinden, auszuwerten:

def lolwat(your_method, your_string)
class_eval "def #{your_method}; puts #{your_string}; end"
end

Diese Codezeile definiert eine Methode mit einem Namen Threr Wahl und einem String,
der im Kontext der ausfithrenden Klasse gedruckt wird.

7.2 Moment mal, das ist nicht Haskell, was
mache ich hier

Metaprogrammierung in Ruby basiert hauptséchlich auf einem textuellen Ansatz von
Code. Man verwendet Ruby, um einen String von Ruby-Code zu generieren, und lasst
Ruby dann den Code auswerten.

Wenn Sie aus einem solchen Hintergrund kommen (wie ich), wird Thnen Template
Haskell anders und seltsam vorkommen. Sie denken vielleicht: “Oh, ich weif3, ich
benutze einfach QuasiQuoters, und alles wird gut funktionieren” Nein. Sie miissen
anders tiber Metaprogrammierung in Template Haskell nachdenken. Sie werden keine
Strings zusammensetzen, die zufillig giiltigen Code ergeben. Das ist Haskell, wir werden
eine Kompilierzeitpriifung durchfiihren!

7.3 Konstruktion eines AST

In Ruby haben wir einen String erstellt, den der Ruby-Interpreter dann geparst, in einen
abstrakten Syntaxbaum umgewandelt und interpretiert hat. In Haskell iiberspringen
wir den String-Schritt. Wir bauen den Abstrakten Syntaxbaum (AST) direkt mit Stan-
darddatenkonstruktoren. GHC wird iiberpriifen, ob beim Aufbau des Syntaxbaums alles
in Ordnung ist, und den Syntaxbaum dann in unseren Quellcode einfiigen, bevor das
Ganze kompiliert wird. So erhalten wir zwei Ebenen der Kompilierzeitpriifung - dass

wir eine korrekte Vorlage erstellt haben und dass wir die Vorlage korrekt verwendet
haben.

N =

w

Template Haskell ist nicht beangstigend 63

Eines der unangenehmsten Dinge an textueller Metaprogrammierung ist das fehlende
Garantie, dass Thre Syntax korrekt ist. Das Debuggen von Syntaxfehlern im generierten
Code kann schwierig sein. Die Uberpriifung der Korrektheit unseres Codes ist einfacher,
wenn wir direkt in einen AST programmieren. Die QuasiQuoter sind eine bequeme
Ergénzung zur AST-Programmierung, aber ich bin der Meinung, dass man zuerst das
AST-Zeug lernen sollte und dann in die Quoter eintauchen sollte, wenn man eine gute
Vorstellung davon hat, wie sie funktionieren.

Also, lassen Sie uns mit unserem ersten Beispiel beginnen. Wir haben eine Funktion
bigBadMathProblem :: Int -> Double geschrieben, die zur Laufzeit viel
Zeit in Anspruch nimmt, und wir méchten eine Nachschlagetabelle fiir die haufigsten
Werte erstellen. Da wir sicherstellen wollen, dass die Laufzeitgeschwindigkeit super
schnell ist und wir keine Probleme haben, auf den Compiler zu warten, werden wir
dies mit Template Haskell tun. Wir geben eine Liste von haufigen Zahlen ein, fithren
die Funktion fiir jede aus, um sie vorab zu berechnen, und tibergeben dann schlief8lich
die Funktion, wenn wir die Zahl nicht zwischengespeichert haben.

Da wir etwas Ahnliches wie die makelL enses-Funktion tun méchten, um eine Menge
Deklarationen fiir uns zu generieren, schauen wir uns zuerst den Typ dieser Funktion
in der 1ens-Bibliothek an. Wenn wir zu den Lens-Dokumenten® springen, kénnen
wir sehen, dass der Typ von makelLenses Name -> Decs(Q ist. Wenn wir zu den
Template Haskell-Dokumenten® springen, ist DecsQ ein Typsynonym fiir Q [Dec].
Q scheint ein Monad fiir Template Haskell zu sein, und ein Dec* ist der Datentyp fiir
eine Deklaration. Der Konstruktor zur Erstellung einer Funktionsdeklaration ist FunD.
Damit kénnen wir loslegen!

Wir beginnen mit der Definition unserer Funktion. Sie nimmt eine Liste von héufig
verwendeten Werten, wendet die Funktion auf jeden an und speichert das Ergebnis.
Schliellich benétigen wir eine Klausel, die den Wert an die Mathematikfunktion
weitergibt, falls wir ihn nicht zwischengespeichert haben.

precompute :: [Int] -> DecsQ
precompute xs = do

return [FunD name clauses]

Da Q eine Monad ist und DecsQ ein Typsynonym dafiir ist, wissen wir, dass wir mit
do beginnen konnen. Und wir wissen, dass wir eine Funktionsdefinition zuriickgeben

*https://hackage.haskell.org/package/lens-4.13/docs/Control- Lens- TH.html
*https://hackage.haskell.org/package/template- haskell-2.10.0.0/docs/Language- Haskell- TH.html
“https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language- Haskell- TH.html#t:Dec

https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec
https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec

g W N

Template Haskell ist nicht beangstigend 64

werden, die gemafl der Dec-Dokumentation ein Feld fiir den Namen der Funktion
und die Liste der Klauseln hat. Jetzt liegt es an uns, den Namen und die Klauseln zu
generieren. Namen sind einfach, also machen wir das zuerst.

Wir konnen einen Namen aus einem String mithilfe von mkName erhalten. Dies
konvertiert einen String in einen unqualifizierten Namen. Wir werden 1ookupTable
als den Namen unserer Nachschlagetabelle wihlen, sodass wir diesen direkt verwenden
konnen.

precompute xs = do
let name = mkName "lookupTable"

Nun miissen wir jede Variable in Xs auf die Funktion namensbigBadMathProblem
anwenden. Dies wird im [Clause] -Feld stehen, also schauen wir uns an, was eine
Clause ausmacht. Laut der Dokumentation® ist eine Klausel ein Datenkonstruktor
mit drei Feldern: einer Liste von Pat-Mustern, einem Body und einer Liste von Dec-
Deklarationen. Der Body entspricht der tatsdchlichen Funktionsdefinition, die Pat-
Muster entsprechen den Mustern, auf die wir Eingabeargumente abgleichen, und die
Dec-Deklarationen sind das, was wir moglicherweise in einer where-Klausel finden.

Lassen Sie uns zuerst unsere Muster identifizieren. Wir versuchen, direkt auf die Ints
abzugleichen. Unser gewiinschtes Ergebnis wird ungefahr so aussehen:

lookupTable @ = 123.546
lookupTable 12 = 151626.4234
lookupTable 42 = 0.0

lookupTable x = bigBadMathProblem x

Also brauchen wir eine Mdglichkeit, die Ints in unserer xs-Variablen in ein Pat-
Muster zu bringen. Wir brauchen eine Funktion Int -> Pat... Lassen Sie uns die
Dokumentation® fiur Pat ansehen und sehen, wie sie funktioniert. Das erste Muster ist
LitP, das ein Argument vom Typ Lit annimmt. Ein Lit ist ein Summen-Typ, der
einen Konstruktor fiir die primitiven Haskell-Typen hat. Es gibt einen fiir IntegerL,
den wir verwenden koénnen.

So kénnen wir von Int -> Pat mit der folgenden Funktion kommen:

*https://hackage.haskell.org/package/template- haskell-2.10.0.0/docs/Language- Haskell- TH.html#t:Clause
“https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language- Haskell- TH.html#t:Pat

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat

g > W N

Template Haskell ist nicht beangstigend 65

intToPat :: Int -> Pat
intToPat = LitP . IntegerL . tolnteger

Was wir auf die Anfangsliste abbilden kénnen, um unser [Pat] zu erhalten!

precompute xs = do
let name = mkName "lookupTable"
patterns = map intToPat xs

return [FunD name clauses]

Unsere 1ookupTable-Funktion wird nur ein einziges Argument entgegennehmen,
daher méchten wir unsere Pat-Ganzzahlen in Clause umwandeln, indem wir von
[Pat] -> [Clause] gehen. Das wird die clauses-Variable nutzen, die wir
bendtigen. Von oben ist eine Klausel wie folgt definiert:

data Clause = Clause [Pat] Body [Dec]

Also, unser [Pat] ist einfach - wir haben nur einen literalen Wert, auf den wir passen.
Body ist definiert als entweder ein GuardedB, das Musterwéchter verwendet, oder
ein NormalB, das dies nicht tut. Wir konnten unsere Funktion in Bezug auf eine
einzelne Klausel mit einem GuardedB Korper definieren, aber das klingt nach mehr
Arbeit, also verwenden wir einen NormalB Korper. Der NormalB Konstruktor nimmt
ein Argument vom Typ Exp. Also lassen Sie uns in die Dokumentation von Exp!”
eintauchen.

Hier gibt es viel. Wie oben erwiahnt, mochten wir wirklich eine einzige Sache - einen
Literal! Den vorkomputierten Wert. Es gibt einen L 1 tE Konstruktor, der einenL it Typ
nimmt. Der L it Typ hat einen Konstruktor fiir DoublePrimL, der einenRational
nimmt, also miissen wir ein wenig Umwandlung durchfiithren.

precomputelnteger :: Int -> Exp
precomputelnteger =
LitE . DoublePrimL . toRational . bigBadMathProblem

Wir konnen die Bodys fiir die Clauses erhalten, indem wir diese Funktion {iber die
Liste der Argumente abbilden. Die Deklarationen werden leer sein, also sind wir bereit,
unsere clauses zu erstellen!

"https://hackage.haskell.org/package/template- haskell-2.10.0.0/docs/Language- Haskell- TH.html#t:Exp

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp

Template Haskell ist nicht beangstigend

precompute xs = do
let name = mkName "lookupTable"
patterns = map intToPat xs
fnBodies = map precomputelnteger xs
precomputedClauses =
zipWith

(\body pat -> Clause [pat] (NormalB body) [])

fnBodies
patterns

return [FunD name clauses]

66

© 00 9 O O b W N =~

[= =N
B W N =~ O

Es gibt noch eine Sache, die hier zu tun ist. Wir miissen eine weitere Klausel mit einer
Variablen x erstellen, die wir an die Funktion delegieren. DamkName es erlaubt, dass die
Variable tiberschattet wird und dies eine Warnung im generierten Code erzeugen konnte,
mochten wir newName verwenden, um einen hygienischen Namen fiir die Variable zu
erstellen. Wir miissen ein wenig komplizierter mit unserem Body-Ausdruck werden,
da eine Anwendung auf eine Funktion stattfindet.

precompute xs = do
let name = mkName "lookupTable"
patterns = map intToPat xs
fnBodies = map precomputelnteger xs
precomputedClauses =
zipWith
(\body pat -> Clause [pat] (NormalB body) [])
fnBodies
patterns

1 n

x"' <- newName "x"

let lastClause = [Clause [VarP x'] (NormalB appBody) []]
clauses = precomputedClauses ++ lastClause

return [FunD name clauses]

Zuriickkehrend zum Exp Typ, suchen wir nun nach etwas, das die Idee der Anwendung
erfasst. Der Exp Typ hat einen Datenkonstruktor AppE, der zwei Ausdriicke nimmt
und den zweiten auf den ersten anwendet. Genau das brauchen wir! Er hat auch

© 00 9 O O b W N =

L = SN
=~ O O s W N =~

Template Haskell ist nicht beangstigend 67

einen Datenkonstruktor VarE, der ein Name Argument nimmt. Das ist alles, was wir
brauchen. Los geht’s.

precompute xs = do
let name = mkName "lookupTable"
patterns = map intToPat xs
fnBodies = map precomputelnteger xs
precomputedClauses =
zipWith
(\body pat -> Clause [pat] (NormalB body) [])
fnBodies
patterns

1 nen

x' <- newName "x
let lastClause =
[Clause [VarP x'] (NormalB appBody) []]
appBody =
AppE (VarE 'bigBadMathProblem) (VarE x')
clauses =
precomputedClauses ++ lastClause

return [FunD name clauses]

Um den Namen fir bigBadMathProblem zu erhalten, haben wir ein Template
Haskell Zitat verwendet. Das Zeichen ' erstellt einen Name aus einem Wert, wiahrend
zwei Apostrophe einen Name aus einem Typ erstellen. Dies sieht man oft beim Ableiten:

deriveJSON ' '"MyType.

Wir haben es geschafft! Wir haben etwas Template Haskell zusammengestellt und uns
eine Nachschlagetabelle geschrieben. Jetzt méchten wir sie mit der Spleif3-Syntax $()
in die oberste Ebene unseres Programms einfiigen:

$(precompute [1..1000])

Wie es der Zufall will, ist GHC intelligent genug, um zu erkennen, dass ein Ausdruck
auf oberster Ebene mit dem TypQ [Dec] ohne die explizite Splicing-Syntax eingefiigt
werden kann. Wir hatten also auch schreiben kénnen:

g dx wWw N

O O W N

Template Haskell ist nicht beangstigend 68

module X where
import Precompute (precompute)

precompute [1..1000]

Haskell-Ausdriicke mit den Datenkonstruktoren zu erstellen, ist wirklich einfach, wenn
auch ein wenig umsténdlich. Schauen wir uns ein etwas komplizierteres Beispiel an.

7.4 Boilerplate Ade!

Wir freuen uns, die ausgezeichnete users-Bibliothek mit dem persistent-
Backend fiir die Webanwendung, an der wir gerade arbeiten, zu verwenden (Quellcode
hier, falls Sie neugierig sind®). Es erledigt alle moglichen Dinge fiir uns und kiitmmert
sich um eine Menge Standardcode und benutzerbezogenen Code. Es erwartet als
erstes Argument einen Wert, der entpackt und verwendet werden kann, um eine
Persistent-Abfrage auszufithren. Es operiert auflerdem in der I0-Monade. Derzeit ist
unsere Anwendung so eingerichtet, dass sie eine benutzerdefinierte Monade AppM
verwendet, die folgendermafien definiert ist:

type AppM = ReaderT Config (EitherT ServantErr IO0)

Um die Funktionen in der users-Bibliothek tatsichlich zu nutzen, miissen wir diese
lustige Angelegenheit erledigen:

someFunc :: AppM [User]

someFunc = do
connPool <- asks getPool
let conn = Persistent (“runSqlPool connPool)
users <- liftIO (listUsers conn Nothing)
return (map snd users)

Das wird schnell lastig, also beginnen wir, spezielle Funktionen fiir unsere Monad zu
schreiben, die wir aufrufen kénnen, anstatt das ganze Lifting und Wrapping selbst zu
machen.

*https://github.com/parsonsmatt/QuickLift/

https://github.com/parsonsmatt/QuickLift/
https://github.com/parsonsmatt/QuickLift/

© 00 9 O O & W N =

T T N T O T = U S
N »~ © O 00 9 O O b W N~ O

Template Haskell ist nicht beangstigend 69

backend :: AppM Persistent
backend = do
pool <- asks getPool
return (Persistent (“runSqlPool” pool))

myListUsers :: Maybe (Int64, Int64) -> AppM [(LoginId, QLUser)]
myListUsers m = do

b <- backend

1iftI0 (listUsers b m)

myGetUserById :: LoginId -> AppM (Maybe QLUser)
myGetUserById 1 = do

b <- backend

1iftI0 (getUserByld b 1)

myUpdateUser

:: LoginlId

-> (QLUser -> QLUser)

-> AppM (Either UpdateUserError ())
myUpdateUser id fn = do

b <- backend

1iftI0 (updateUser b id fn)

ahh, total mechanischer Code. Einfach nur Standardcode. Das ist genau die Art von
Sache, die ich in Ruby metaprogrammiert hétte. Also lass uns das in Haskell metapro-
grammieren!

Zuerst wollen wir den Ausdruck vereinfachen. Lass uns 1istUsers als Beispiel
nehmen. Wir machen es so einfach wie moglich - keine Infix-Operatoren, keine do-
Notation, etc.

listUsersSimple m =
(>>=) backend (\b -> 1iftIO (listUsers b m))

Schén. Um das Betrachten des AST ein wenig einfacher zu machen, konnen wir noch
einen Schritt weiter gehen. Zeigen wir alle Funktionsanwendungen explizit, indem wir
Klammern hinzufiigen, um alles so deutlich wie mdglich zu machen.

© 00 N9 O O b W N =

[= ==
a s W N =~

Template Haskell ist nicht beangstigend 70

listUsersExplicit m =
((>>=) backend) (\b -> 1iftIO ((listUsers b) m))

Die allgemeine Formel, die wir anstreben, ist:

derivedFunction argl arg2 ... argn =
((>>=) backend)
(\b -> 1iftIO ((...(((function b) argl) arg2)...) argn))

Wir beginnen damit, unsere der iveReader-Funktion zu erstellen, die als erstes
Argument den backend-Funktionsnamen tibernimmt.

deriveReader :: Name -> DecsQ
deriveReader rd =
mapM (decForFunc rd)
['destroyUserBackend
, "housekeepBackend
, 'getUserIdByName
, 'getUserBylId
, 'listUsers
, 'countUsers
, 'createUser
, ‘'updateUser
, 'updateUserDetails
, ‘authUser
, 'deleteUser

Dies ist unser erster Teil der speziellen Syntax. Das einfache Anfithrungszeichen in
"destroyUserBackend gibt den Name fiir destroyUserBackend zuriick.
Im Gegensatz zu mkName "destroyUserBackend" ist dies jedoch ein global
qualifizierter Name. Dieser Name funktioniert auch dann, wenn das Modul, das den
Code einfiigt, den Code, aus dem er stammt, nicht importiert. Wenn Sie sich auf Namen
beziehen, die auflerhalb des von Ihnen generierten Codes existieren, miissen Sie diese
Form verwenden. Andernfalls miissen Thre Benutzer eine Menge Module importieren,
um die Anforderungen Ihres Makros zu erfiillen.

a > W N

Template Haskell ist nicht beangstigend 71

Nun, was wir brauchen, ist eine Funktion decForFunc, die die Signatur Name ->
Name -> Q Dec hat.

Um dies zu tun, miissen wir einige Informationen tiber die Funktion erhalten, die wir
ableiten mochten. Insbesondere miissen wir wissen, wie viele Argumente die Quellfunk-
tion annimmt. Es gibt einen ganzen Abschnitt in der Template Haskell Dokumentation
tiber ‘Abfragen des Compilers™, den wir gut nutzen konnen.

Die Funktion reify gibt einen Wert vom Typ Info zurick. Fir Typklassenopera-
tionen hat sie den Datenkonstruktor ClassOpI mit den Argumenten Name, Type,
ParentName und Fixity. Keiner dieser hat direkt die Stelligkeit der Funktion...

Ich denke, es ist an der Zeit, ein wenig erkundendes Programmieren im REPL zu machen.
Wir kénnen GHC1i starten und mit den folgenden Befehlen einige Template Haskell-
Sachen machen:

A: :set -XTemplateHaskell
A: import Language.Haskell.TH

Wir kénnen auch den folgenden Befehl ausfiihren, und es wird den gesamten generier-
ten Code ausgeben, den es erstellt:

A: :set -ddump-splices
Lassen Sie uns nun rei fy auf etwas Einfaches ausfithren und das Ergebnis sehen!
A: reify 'id

<interactive>:4:1:
No instance for (Show (Q Info)) arising from a use of ‘print’
In a stmt of an interactive GHCi command: print it

Hm.. Keine Show-Instanz. Gliicklicherweise gibt es eine Umgehungslésung, die Dinge
im Q-Monaden ausdrucken kann:

*https://hackage.haskell.org/package/template- haskell-2.10.0.0/docs/Language- Haskell- TH.html#g:3

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3

© 00 9 O O & W N =

10
11
12
13

© 00 9 O O b W N =~

I S SN
o N O O s W N =~ O

Template Haskell ist nicht beangstigend 72

A: $(stringE . show =<< reify 'id)
"Varl
GHC .Base. id
(ForallT
[KindedTV a_1627463132 StarT]
[]
(AppT
(AppT ArrowT (VarT a_1627463132))
(VarT a_1627463132)

)
Nothing

(Fixity 9 InfixL)"

Ich habe es ein wenig formatiert, um es etwas leserlicher zu machen. Wir haben den
Name, den Type, einen Nothing-Wert, der immer Nothing ist, und die Fixitét der
Funktion. Der Type scheint ziemlich niitzlich zu sein... Schauen wir uns die rei fy-
Ausgabe fiir eine der Klassenmethoden an, mit denen wir arbeiten wollen:

A: $(stringE . show =<< reify 'Web.Users.Types.getUserById)
"ClassOplI
Web.Users.Types.getUserById
(ForallT
[KindedTV b_1627432398 StarT]
[AppT
(ConT Web.Users.Types.UserStorageBackend)
(VarT b_1627432398)
]
(ForallT
[KindedTV a_1627482920 StarT]
[AppT
(ConT Data.Aeson.Types.Class.FromJSON) (VarT a_1627482920)
, AppT (ConT Data.Aeson.Types.Class.ToJSON) (VarT a_1627482920)
]
(AppT
(AppT
ArrowT

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Template Haskell ist nicht beangstigend 73

(VarT b_1627432398)

)
(AppT
(AppT
ArrowT
(AppT
(ConT Web.Users.Types.UserId)
(VarT b_1627432398)

)
(AppT
(ConT GHC.Types.I0)
(AppT
(ConT GHC.Base.Maybe)
(AppT
(ConT Web.Users.Types.User)
(VarT a_1627482920)

)

Web.Users.Types.UserStorageBackend
(Fixity 9 InfixL)"

Wow, das ist eine Menge Text! Glaub es oder nicht, ich habe es formatiert, um es
ein wenig leserlicher zu machen. Wir interessieren uns hauptsichlich fiir die Type-
Deklaration, und wir konnen viele Informationen dariiber erhalten, welche Datenkon-
struktoren verwendet werden, aus der Dokumentation'®. Genau wie AppE ist, wie wir
einen Ausdruck auf einen Ausdruck anwenden, ist AppT die Art und Weise, wie wir
einen Typ auf einen Typ anwenden. ArTowT ist der Funktionspfeil in der Typsignatur.

Nur als Ubung gehen wir die folgende Typsignatur durch und verwandeln sie in etwas
Ahnliches wie das oben:

°https://hackage.haskell.org/package/template- haskell-2.10.0.0/docs/Language- Haskell- TH.html#t:Type

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type

g dx wWw N

O O B W N

© 00 39 O O b W N =~

-
()

Template Haskell ist nicht beangstigend 74

fmap
:: (a->b) ->fa->fb
~ ((->) ab) -> (fa) -> (fb)
~ (->) ((->) ab) ((fa) -> (fDb))
~ (=) ((->) ab) ((->) (f a) (fDb))

Okay, jetzt sind alle unsere (->)s in Prifixform geschrieben. Wir werden die
Pfeile durch ArrowT ersetzen, explizite Klammern hinzufigen und die ApplyT-
Konstruktoren von den innersten Ausdriicken nach aufien einfiigen.

2

(ArrowT ((ArrowT a) b)) ((ArrowT (f a)) (f b))
(ArrowT ((ApplyT ArrowT a) b)) ((ArrowT (ApplyT f a)) (ApplyT f b))
(ArrowT (ApplyT (ApplyT ArrowT a) b))
(ApplyT (ApplyT ArrowT (ApplyT f a)) (ApplyT f b))
ApplyT (ArrowT (ApplyT (ApplyT ArrowT a) b))
(ApplyT (ApplyT ArrowT (ApplyT f a)) (ApplyT f b))

R

3

R

Das ist ziemlich aus dem Ruder gelaufen und sieht unordentlich aus. Aber wir haben
jetzt eine gute Vorstellung davon, wie wir von einer Darstellung zur anderen gelangen
konnen.

Ausgehend von unserer Typsignatur sieht es so aus, als konnten wir herausfinden,
wie wir die benétigten Argumente aus dem Typ erhalten konnen! Wir werden einen
Musterabgleich an der Typsignatur durchfiithren, und wenn wir etwas sehen, das wie die
Fortsetzung einer Typsignatur aussieht, werden wir eins zu einer Zahlung hinzufiigen
und tiefer gehen. Andernfalls werden wir aussteigen.

Die Funktionsdefinition sieht so aus:

functionLevels :: Type -> Int
functionlLevels = go 0
where
go :: Int -> Type -> Int
go n (AppT (AppT ArrowT _) rest) =
go (n+1) rest

go n (ForallT _ _ rest) =

go n rest

© 0 N O O b W N =

I ==Y
w N =~ O

© 00 9 O O & W N =~

(RN
N~

Template Haskell ist nicht beangstigend 75

Toll! Wir kénnen diese genauso wie gewohnliche Haskell-Werte pattern matchen. Nun,
sie sind gewohnliche Haskell-Werte, also ergibt das vollkommen Sinn.

Zuletzt brauchen wir eine Funktion, die den Typ aus einem Info erhilt. Nicht alle
Info haben Typen, daher kodieren wir das mit Maybe.

getType :: Info -> Maybe Type
getType info =
case info of
ClassOplI t ->
Just t
DataConlI t - -
Just t
Varl _ t ->
Just
TyVarl _
Just t
->

o ot
'
v

Nothing

Gut, wir sind bereit, mit der decForFunc-Funktion zu beginnen! Fiillen wir aus, was
wir wissen, dass wir tun miissen:

decForFunc :: Name -> Name -> Q Dec
decForFunc reader fn = do
info <- reify fn
arity <-
case getType info of
Nothing -> do
reportError "Unable to get arity of name"
return 0
Just typ ->
pure $ functionLevels typ

return (FunD fnName [Clause varPat (NormalB final) []])

Stelligkeit erfasst. Jetzt mochten wir eine Liste neuer Variablennamen erstellen, die den
Funktionsargumenten entsprechen. Wenn wir hygienisch mit unseren Variablennamen

Template Haskell ist nicht beangstigend 76

sein wollen, verwenden wir die Funktion newName, die einen véllig einzigartigen Va-
riablennamen mit dem davor angefiigten String erstellt. Wir méchten (Stelligkeit
- 1) neue Namen, da wir den gebundenen Wert aus der Leserfunktion fiir den anderen
verwenden werden. Wir benotigen auch einen Namen fiir den Wert, den wir aus dem
Lambda binden werden.

varNames <- replicateM (arity - 1) (newName "arg")
b <- newName "b"

Als Niachstes steht der neue Funktionsname an. Um eine konsistente API beizubehalten,
verwenden wir denselben Namen wie im eigentlichen Paket. Dies erfordert, dass wir
das andere Paket qualifiziert importieren, um einen Namenskonflikt zu vermeiden.

let fnName = mkName . nameBase $ fn

nameBase hat den Typ Name -> String und erhilt den nicht qualifizierten
Namensstring fiir einen gegebenen Name-Wert. Dann verwenden wir mkName mit
dem String, was uns einen neuen, nicht qualifizierten Namen mit demselben Wert wie
die urspriingliche Funktion gibt. Konnte das eine schlechte Idee sein? Wahrscheinlich
mochten Sie eine eindeutige Kennung bereitstellen. Allerdings kann es hilfreich sein,
die Namen konsistent zu halten, um die Entdeckung zu erleichtern.

Als nichstes mochten wir die (>>=) Funktion auf den reader anwenden. Dann
mochten wir eine Funktion erstellen, die den bound Ausdruck auf eine Lambda
anwendet. Lambdas haben einen LamE'" Konstruktor im Exp Typ. Sie nehmen ein
[Pat] zum Abgleichen und ein EXp, das den Lambda-Kérper darstellt.

bound = AppE (VarE '(>>=)) (VarE reader)
binder = AppE bound . LamE [VarP b]

Also ist AppE bound . LamE [VarP b] genau dasselbe wie (>>=) reader
(\b -> ...)!Cool

Als nichstes miissen wir Var E -Werte fur alle Variablen erstellen. Dann miissen wir alle
Werte auf den AusdruckVarE fn anwenden. Funktionsanwendung bindet nach links,
also haben wir:

"https://hackage.haskell.org/package/template- haskell-2.10.0.0/docs/Language- Haskell- TH.html#v:LamE

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE

swWwN

BwWwN

© 00 9 O O & W N =

[T =N
w N =~ O

Template Haskell ist nicht beangstigend 77

fn ~ VarE fn

fn a ~ AppE (VarE fn) (VarE a)

fnab =~ AppE (AppE (VarE fn) (VarE a)) (VarE b)

fn a b ¢ ~ AppE (AppE (AppE (VarE fn) (VarE a)) (VarE b)) (VarE c)

Das sieht aus wie ein linker Fold! Sobald wir das haben, werden wir den vollstandig
angewandten fn-Ausdruck auf VarkE '1iftIO anwenden und schliefllich an die
Lambda binden.

varkExprs = map VarE (b : varNames)
fullExpr = foldl AppE (VarE fn) varExprs
liftedExpr = AppE (VarE 'l1iftIO) fullExpr
final = binder liftedExpr

Dies erzeugt unseren Ausdruck (>>=) reader (\b -> fn b argl arg2
argn).

Das letzte, was wir tun miussen, ist, unsere Muster zu erhalten. Dies ist die Liste von
Variablen, die wir zuvor erstellt haben.

varPat = map VarP varNames
Und nun das Ganze:

deriveReader :: Name -> DecsQ
deriveReader rd =
mapM (decForFunc rd)
["destroyUserBackend
, "housekeepBackend
, 'getUserIdByName
, 'getUserBylId
'listUsers
, 'countUsers
, 'createUser
, 'updateUser
, ‘'updateUserDetails
'authUser

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Template Haskell ist nicht beangstigend 78

, 'deleteUser

]

decForFunc :: Name -> Name -> Q Dec
decForFunc reader fn = do
info <- reify fn
arity <-
case getType info of
Nothing -> do
reportError "Unable to get arity of name"
return 0
Just typ ->
pure $ functionLevels typ
varNames <- replicateM (arity - 1) (newName "arg")
b <- newName "b"

let fnName = mkName . nameBase $ fn
bound = AppE (VarE '(»>>=)) (VarE reader)
binder = AppE bound . LamE [VarP b]
varkExprs = map VarE (b : varNames)
fullExpr = foldl AppE (VarE fn) varExprs
liftedExpr = AppE (VarE '1iftIO) fullExpr
final = binder liftedExpr
varPat = map VarP varNames

return $ FunD fnName [Clause varPat (NormalB final) []]

Und wir haben nun eine Menge Boilerplate metaprogrammiert!

Wir haben die Dokumentation fiir Template Haskell durchgesehen, herausgefunden,
wie man Werte in Haskells AST konstruiert, und erarbeitet, wie man einige Arbeiten
zur Kompilierzeit erledigt sowie etwas Boilerplate automatisiert. Ich bin gespannt
darauf, mehr iiber die Magie der Definition von Quasiquoters und fortgeschritteneren
Template-Haskell-Konstrukten zu lernen, aber selbst ein super grundlegender Ansatz,
der “Ausdriicke und Deklarationen mit Datenkonstruktoren baut”, ist niitzlich.

	Inhaltsverzeichnis
	Einführung
	Ein Meinungsfreudiger Reiseführer
	Über den Autor

	Prinzipien
	Komplexität
	Neuheit
	Kohäsion
	Empathie
	Referenzen

	I Haskell-Teams aufbauen
	Haskell verkaufen
	Einschätzung der Aufnahmebereitschaft
	Software-Produktivität
	Statistiken zur Produktivität
	Kennen Sie Ihre Konkurrenz

	Haskell Lernen und Lehren
	Die Philologie von Haskell
	Programmieren ist schwer zu lernen
	Lernmaterialien auswählen
	Schreiben Sie viel Code
	Keine Angst vor dem GHC
	Einfach anfangen
	Reale Probleme lösen
	Pair-Programmierung
	Ein Dialog
	Referenzen

	Haskeller einstellen
	Das zweischneidige Schwert
	Junioren und Senioren
	Einstellung von Senioren
	Juniors einstellen

	Bewertung von Beratungsfirmen
	Identifizierung des Ziels
	Well-Typed
	FP Complete

	Invertiere Deine Mocks!
	Effekte Dekomponieren
	Streaming-Zerlegung
	Einfachste Abstraktion
	Zerlegen!!!
	Was, wenn ich muss?

	Das Problem mit typisierten Fehlern
	Monolithische Fehlertypen sind schlecht
	Boilerplate ade!
	Typklassen zur Rettung!
	Die Tugend von ungetypten Fehlern

	Template Haskell ist nicht beängstigend
	Ein Anfängertutorial
	Moment mal, das ist nicht Haskell, was mache ich hier
	Konstruktion eines AST
	Boilerplate Ade!

