
PRINCIPLE-BASED

PROJECT LEADERSHIP
SIMPLICITY AND OUTCOMES IN

SOFTWARE-ENABLED PROJECTS

BY

ADAM C RUSSELL

BETA VERSION 0.90 - 31ST DECEMBER 2015

Principle-based Project Leadership – Beta Version

Copyright © 2015 by Adam C Russell.

All rights reserved. Printed in Australia. No part of this book may

be used or reproduced in any manner whatsoever without written

permission except in the case of brief quotations embodied in

critical articles or reviews.

This book is a work of non-fiction. Names, characters, businesses,

organizations, places, events and incidents have generally been

written to obfuscate the actual events. Any resemblance to actual

persons, living or dead, events, or locales is entirely regrettable.

For information contact; address www.adamonprojects.com

Book and Cover design by Adam Russell (temporary placeholder)

ISBN: (not yet applied for)

Beta Edition: 31
st
 December, 2015

10 9 8 7 6 5 4 3 2 1

TABLE OF CONTENTS

Chapter 1 – Introduction
Notes on the Beta Version

The Context to this Book
Defining a Project Manager
About this book

Chapter 2 – Why do Information Technology Projects Fail?

Introduction
Projects & Failure: A Long-Term Affair

Cobbs Paradox

Knowing the causes of your own destiny

Methodology Capture
Complicatedness
Making problems “Wicked”

Projects fail because we make them Fail
Why have organizations not resolved "Cobbs Paradox"?

Methodology Structure, Selection and Use
Discipline
Undermining the Role of Project Manager

So the Solution is another Methodology?
Conclusion

Chapter 3 – Why is Leading Software Development Projects So

Hard?

Introduction
Software Development is Hard
Managing Software Development is even harder

Fundamental Problems Elaborated

The Endless Search

Conclusion

Chapter 4 – The Failure of Methodologies

Introduction
What is a methodology?
Pre-Waterfall
Waterfall
Plan-based or Deterministic Methodologies

Alternative Approaches to Software Development
The Agile Movement

The Baby and the Bath Water

The Double-edged sword of Methodologies
Benefits of Methodologies

Problems with methodologies
The Great Methodological Paradox

Methodologies for Software Development Project Management
Using Methodologies

Who uses methodologies properly anyway?
The Agile Manifesto
Plan-based (“Waterfall”) vs Agile

The “Paradigm Trap”
How do we avoid the Paradigm Trap?
Zombie Processes

Don’t throw the baby out with the bathwater

Conclusion

Chapter 5 – A Bridge to the Future: Foundations of Principle-

based Management
Introduction

The Conflict between Technology and Art
Principle-Centered Management

Managing Complexity
Hard and Soft Management Approaches
Complex Adaptive Systems

Holacracy

Self-Organizing Teams
Trusting People to do their jobs
Thinking fast and slow

Nudge Theory
What does this have to do with project leadership?
Principles lead to models of behavior

Principle-Based Leadership

Genesis of Principle-based Project Management

Reject Methodologies; Embrace “Hacks”
What is a Hack

Checklists
Conclusion

Chapter 6 – Principle-based Project Leadership
Introduction

Principle-based Project Leadership
Guided by higher-order principles
How does Principle-based Project Leadership work?

Project Mindfulness
Stand Outside your project
Project Management: What are our Values?

Building a delivery framework from the inside out
Building your own principles

Conclusion
Chapter 7 – The Project Action Principles

Introduction
Project Action Principles
Structure of the Project Action Principles

Dealing with Complexity: The dynamics of PAP’s
Conclusion

Chapter 8 – Project Action Principle #1: Achieve Outcomes,

Rapidly

Introduction

Project outcomes
Outcome-less interactions
Work-based outcomes

Bringing an outcome focus to your project
Strategies for PAP #1

Introduction
Models for PAP #1
Techniques for PAP #1

Conclusion

Chapter 9 – Project Action Principle #2: Enable Customer Value,

Interactively
Introduction

Your customer is not your friend
A project delivery problem?
Definition of a customer

Definition of customer value

Customers decide the value that a product has: nobody else

Natural Customer Advocacy and the Badass User
Customer Value Perspective

What do customers want? It’s not features
Direct customer contact
Embedding a Customer Value perspective into your project
Strategies Summary for PAP #2

Models Summary for PAP #2
Techniques Summary for PAP #2
Conclusion

Chapter 10 – Project Action Principle #3: Build Shared Models,

Verifiably
Project Action Principle #3

What is the secret to ‘herding cats’?
But the secret is not to herd the cats!

What are shared mental models?
The power of shared mental models

Verification of mental models
Representations of models
Strategies Summary for PAP #3

Models Summary for PAP #3
Techniques Summary for PAP #3
Conclusion

Chapter 11 – Project Action Principle #4: Eliminate Teaming

Threats, Ruthlessly

Introduction
Why don’t we have better teaming?
Teaming threats

Removing teaming threats in your projects
Strategies Summary for PAP #4

Models Summary for PAP #4
Techniques Summary for PAP #4
Project Team Charter

Principle-based Self-Organizing Teamwork

Conclusion
Chapter 12 – Project Action Principle #5: Suppress Project

Entropy, Selectively

Introduction
Project Entropy
Manage or suppress?

Entropy Management Leverage

Strategies Summary for PAP #5

Models Summary for PAP #5
Techniques Summary for PAP #5

Conclusion
Chapter 13 – Using the Project Action Principles

Introduction
This is not a typical “How To” guide

Why do the 5 Project Action Principles work?
Working with existing methodologies
Simplicity, always Simplicity

The Leverage and Extension of Human Capabilities
Tools Techniques and Methods
How to Use

Developing Your Project Management Principles
Conclusion

Appendices
Introduction

Summary
Appendix 1: Errors Created by Team Misfocus

Introduction

How to Use The Observations
Team Imbalances

Appendix 2: Pursuing the Perfect Project Manager Revisited

Rethinking “The Perfect Project Manager” by Tom Peters

The original post

The Honey in the Lion
Conclusion

Appendix 3: Customer Advocacy and Understanding Customer

Value
Introduction

Customer Advocacy
A Taxonomy of Advocacy
Conclusion

Appendix 4: Are the Risk Management activities on your project a

WOFTAM?

Chapter 1 – Introduction

Notes on the Beta Version

I am publishing this book before it is 100% complete; to

participate in a process called “lean publishing”. From a lean

perspective, I am already way past the MVP for this book, but of

course I wanted to get this volume to its best position before I

pushed it out the door. Ah vanity! And now, of course, comes

hubris.

I’ve gotten it to the point where it says pretty much what I want

it to say, but perhaps not as cleanly, clearly and eloquently as

desired.

A modestly experienced person who works in and around the

cut and thrust of project delivery will be able to work through the

content, but I’m demanding much more tolerance and forgiveness

of my readers than I should.

Parts of the book have had some professional editing, but there

is quite a bit of polishing and cross-checking to do in order that the

points I want to make are clear and accessible. It needs a good

book-butcher to slice it up so that I can put it back together again.

It needs some illustrations and extensive formatting to make it

suitable for both e-book distribution via Kindle and also for printed

book production.

I have released it for paid sales on leanpub.org quite frankly

because sales and donations are how I’m going to fund the

completion of this volume and its successors. Anyone buying the

beta version will receive the final version in its e-book ready state,

and also get an optional cost-price deal on the printed version.

For those of you reading this after purchase or donation, thank

you very much.

I dearly want some feedback on this book so that I can continue

to improve its contents.

For updates, additional content and other resources, visit

http://www.adamonprojects.com/

http://www.adamonprojects.com/

Thank you again.

The Context to this Book

This book is based primarily on my own personal experience as

a project manager working on software-enabled projects.

As to the much troubled term ‘project manager’, we will

discuss what the term means later in the book, but for now just take

this term to mean anyone charged, at any level of the corporate

hierarchy, with any material part of orchestrating people in an

initiative to deliver a software-enabled solution to end-customers.

The term ‘software-enabled’ is used to mean any project where

software is the means to deliver primary capability to the end-

customer or consumer of the project, even if there is a substantial

component of computing infrastructure (e.g. hardware, networking

equipment and system software) that is delivered by the same

project. Examples of this type of project range from a stand-alone

Windows app or mobile app on an iPhone through to a greenfield

corporate website portal or email project.

I have been fortunate to have worked a very wide range of

roles in the information technology industry over a long period.

Starting as a software developer to managing the delivery of

solutions, I’ve spent nearly 40 years building software-based

solutions, starting with PC Kits in the 70’s moving to Distributed

PC & Mini-computer and mainframe systems in the 80’s, all of

which had very broad industry targets. Starting in the 90’s, I began

focus on industry verticals, starting with Telco solutions in the 90’s

and moving to Internet-enabled solutions and Digital Content

solutions since the 2000’s.

Although the bulk of my experience has been in Project

Management, I’ve also included roles in Software Development,

Professional Services Sales, Startups, Business Development,

Product Management, Solutions Lead and Resources Management,

and probably a few I don’t remember

The common thread of this experience has been my interest in

finding and delivering solution outcomes based primarily on

software technology. And it has been about building products

destined for use by an end-user, both consumers and enterprise

end-users.

The context to this experience and learning has been about

domains dominated by:

• High rates of change in the industry, either through

massive growth (e.g. PC and Internet applications) or

disruption (industry rationalization, strategic market

shifts, etc.); and

• Development and delivery of largely “soft” or

“intangible” deliverables, such as digital publishing,

online and mobile applications, software development,

and intellectual property development (e.g. content, IP

or knowledge management).

In a nutshell, the context in which I have worked has always

been “we need this product/project/thing developed in a ‘Big

Damn Hurry’”. No schedule or launch date that I’ve ever proposed

has been soon enough, the level of chaos has always been high,

and new or revised requirements have cascaded down like

hailstones on a tin roof.

Since I began my first attempt at programming (an old HP

calculator, and then an Intel 8085 SDK Kit), I’ve been fascinated

by the process of software development and the way in which

people interact with each other in such a domain of "hurry up":

when going slow is standing still or going backwards.

I’ve always been happy to use the mandated processes, e.g. the

corporate project management methodology, but I become

frustrated and unsatisfied in accepting ways of doing things that

don’t work: the “mandatory” corporate methodology that has gaps

and errors that have to be “filled in on the fly” (and I’ve seen my

share of those). Methodologies that work, and that are applicable to

the problem at hand can be a thing of beauty, but I admit to being

seduced at some points in my career, of being able to introduce

such perfect methodologies, and of pushing to implement a new

solution or “silver bullet” at work.

I’ve been thinking critically about approaches to project

management pretty much since my first “real” project with Wang

Labs in Australia, developing tools and reading extensively on

approaches to project management and software development.

The longer I work in this industry, the more it seems that the

answers are not in technologically derived processes but in how

people work together to produce outcomes. The more I learn about

Project Management, the more I’ve come to realize that it is much

more about ‘management’ than it is about ‘project’s.

And my view is that the endless debate about people vs

methodology: the debate about “hard” versus ‘soft’ skills debate in

many forums is not the right debate; the questions asked are not the

right questions. Nor do I see guidance being given to new project

managers coming through their project experiences as being much

more than a reconstitution of existing ways of doing things. The

same concepts promoted in different clothes, the same “rules”

being dished out as fact.

I believe that there are much simpler and much more natural

ways for people to work together to achieve great project

outcomes, even in the face of high technology and “chaotic”

environments. These ways may need changes of behavior or

attitudes, but none any greater than demanded by Agile

methodologies.

I think we can get projects delivered faster and cheaper, and

have more fun doing it, than most people do under current regimes.

 Hence the reason for this book to share my findings.

Defining a Project Manager

At the beginning of this introduction we touched on the

meaning of the term ‘project manager’ we haven’t yet agreed (in

this book) on a definition of who or what we mean by a Project

Manager

With all the changes and competition between methodologies

that has occurred, and particularly in terms of the elimination or

downgrading of the role, the question now becomes: “What is a

project manager?”

Is it someone who actually leads the project? Or a person who

executes project management processes?

The traditional methodological view (outside of Agile) is that a

“project manager” is someone who manages a “project” according

to the processes and practices of the methodology. And the

definition of project is “a unique initiative that …” – no need to

repeat it here.

The self-referential view from within the methodology is that a

Project Manager is someone who owns and exercises the

methodology. When I first read these definitions, I thought that it

seemed a pointless exercise, but later I realized it was the whole

point.

Tom Peters, back in 1999, described the “perfect” project

manager (see http://tompeters.com/columns/pursuing-the-perfect-

project-manager/).

Peters was an early proponent (at least to my ears) of the

“everything is a project” view of business operations, and his view

was that if you broke down the relatively narrow definition of a

project, the term ‘project manager’ was much harder to define in

terms of activities, or outside the context of a project management

methodology.

"But as ‘project’ and ‘network’ become the

norm, ‘who's in charge?’ becomes

problematic. Everyone needs to learn to work

in teams, ‘with’ multiple, independent experts,

often from multiple, independent companies;

each will be dependent upon all the others

voluntarily giving their best. The new lead

actor/’boss’—the project manager—must

learn to command and coach; that is, to deal

with paradox. Here are eight dilemmas she or

he must master" – Tom Peters in “Pursuing

the Perfect Project Manager”

Peters described 8 dilemmas that a ‘perfect’ project manager

needed to resolve:

1. Total ego/no ego

2. Autocrat/delegator

3. Leader/manager

4. Tolerate ambiguity/pursue perfection

5. Oral/written

http://tompeters.com/columns/pursuing-the-perfect-project-manager/
http://tompeters.com/columns/pursuing-the-perfect-project-manager/

6. Acknowledge complexity/champion simplicity

7. Think big/think small

8. Impatient/patient

We’ll come back to Peter’s dilemmas later in the book (see

Appendix 2), but for now the takeaway is that there is more, a lot

more, to being a ‘project manager’ than executing a methodology.

Steve Berkun addresses this in his book ‘Making Things

Happen: Mastering Project Management’ (2003) in the following

way:

“Refer to whoever is involved in project

leadership and management activity… leading

the team in figuring out what the project is

(planning, scheduling, and requirements

gathering), shepherding the project

through design and development work

(communication, decision making, and mid-

game strategy), and driving the project

through to completion (leadership, crisis

management, and end-game strategy)”.

Berkun also says, and I expect that it is your experience as it is

mine, that such a role may be the “person doing project

management tasks, even though it’s not her primary job” or

“person thinking about the project at large.” and says that it is less

about role or title than it is about the activity that they are

performing.

There has been much publicity about different organizations

who have done away with the role of Project Manager completely,

assigning whatever outcomes a PM is supposed to achieve, either

to the dustbin (as being too much nit-picking process) or to other

roles, such as the Scrum Master in Scrum. The Scrum

methodology uses the term “Scrum Master” for the role, but the

term “project management” to describe part of what the Scrum

Master actually does.

Other management approaches use different terminology but

with the same intent: the ‘person’ instantiation of a project

manager is not required, just the skillset and attitudes.

The concept of considering a PM in terms of the role not the

person does little to address the problems that the function of

project management has experienced in the progressive erosion of

its value.

We often joke that if everyone had the hustle to get things done

on or ahead of time – if everyone worked as their own project

manager – we PM’s wouldn’t have jobs. This is true to the extent

that in most teams the gaps are so large that it requires dedicated

effort from a single person (or even more) to achieve the desired

outcomes.

Even if the individual accountability and team drive reached its

maximum levels, the issues that face PM’s would just face other

people.

So bottom line: we need the outcomes that PM’s can provide

but we dispute the means with which they are delivered: a dilemma

that manifests itself every day in many development shops around

the world.

What we need, and what this book attempts to convey, is a way

to resolve this dilemma.

About this book

I like to think that this is the first real book on agile project

management, because it doesn’t include a single prescriptive step.

I’m sure that others would disagree, but, as we will cover later,

there are no degrees of prescriptiveness, even a little will trigger or

promote a style of thinking that is inimical to agile objectives.

The world is full of consultants, managers and others who talk

about non-prescriptive approaches but finish up by saying “do

this”, and even if they don’t, teams or individuals can easily adopt

prescriptive implementations of methodologies that were not

intended to be prescriptive.

Agile, for example, tells you that the best way to keep

communications going with the team is to have a daily “Stand-up”.

There are plenty of ways to keep communications going, but try to

run an agile project without having a standup, and you will most

likely find out how prescriptive this can be.

All humor aside, what this book does is to teach you how to

think flexibly and with discipline about how to tackle any project,

at least in the digital product and IT space.

I have discovered that in order to let people excel, you really

have to be non-prescriptive in terms of how they actually do

things. I mean really non-prescriptive.

The methodology “wars” between plan-driven and agile

promote the concept that plan-driven methodologies are

prescriptive and agile methodologies are not. The problem is that

this is not correct, at least not in practice.

Agile methodologies in practice seems to be just as prescriptive

as any other, and bad-agile practice even more so.

I have come to believe that what drives us to do excellent work

is not practices but values; and that set of values that works for one

team or organization may not work for another. Indeed, as teams

and organizations change rapidly, it is possible that no set of values

is in place for more than one, or at most a few, projects.

Principles seem to me to be values encoded as statements that

can be absorbed by people. Principles are powerful but simple

statements that build on the way people perceive the world around

them, and therefore drive behavioral outcomes.

The agile principles for software development are such values

encoded as statements. This book is about how principle-based

management works, and how to modulate those principles in the

quest for effective end-to-end project delivery.

This principle-based approach originates not only on my

experience but is also founded on extensive research performed by

the world’s leading writers and practitioners of project

management.

I’ve called this approach Principle-based Project Leadership

(PBPL)

Principle-based Project Leadership (PBPL) will give you the

intended agile perspective: that of the ability to work dynamically

with people on tasks of importance and mutual enjoyment,

knowing that you are not wasting your time or producing a dud.

PBPL can add value in any domain which enjoys high rates of

change, require quick time to complete, and has all (or at least the

majority) of the deliverable outcomes as intangible products such

as software, services or information.

And lastly, PBPL can be used as a supporting guide to any

existing methodology, or it can be simply used as the essential

guide on how to manage any project. There is no “either-or”

choice, just a graded evolution of how you approach and

understand your given methodology, and how you employ its

knowledge and apply it to your projects.

Even if you make no changes in how you run your projects,

this book spends some time looking at how methodologies work

(or don’t) in helping to manage projects and this will give you a

useful perspective on that whole relationship.

Amongst other things, Principle-based Project Leadership

(PBPL) will explain how you can make rapid starts to projects

when it counts the most, focus on the most important things ahead

of distractions and waste, deliver real value to enable customers,

and build up a harmonious team

How can this all work? By distilling everything that everyone

has ever told you that is right about how to manage software

projects and letting your brain do the rest. PBPL will free the

creative and powerful cognitive engines of you and your team to

do the right thing at the right time.

All in all it is about simplicity: adopting the simplest approach

and the simplest solution for any given project that will achieve the

project’s goals

PBPL absolutely does not reject methodology as its first

foundation to existence: if a given methodology is working for you

and you believe that it will continue to do so, then why change?

PBPL does not say you’ll never use another tool or pre-defined

process, but it does allow you to use whatever elements of those

existing stores of learning that are appropriate and productive.

It is not a silver bullet. It may well require you to exercise even

more discipline that you may be used to, but only that much that is

necessary for each particular project.

It will not be easy to open up this process and allow it to help

you work simpler, faster, but it is absolutely worth it, in my

opinion.

Good luck.

Chapter 2 – Why do Information
Technology Projects Fail?

Introduction

Information Technology (IT) projects generally have a very

high rate of under-performance, either a complete failure to

achieve any of the planned outcomes or only a partial delivery of

the stated outcomes. In addition we have to consider those projects

that suffer from a high-level of “Project Entropy” and that are late,

over budget and / or create an unreasonable level of stress in the

project participants (i.e. any of the project stakeholders).

There have been many studies that assess the failure rates of

software and technology projects. One, the “McKinsey Oxford

Reference Class Forecasting for IT Projects Study” indicated that

64% of projects experienced cost overruns and 78% experienced

schedule overruns. This study was probably the most

comprehensive, covering 3,607 projects worth a combined USD84

billon.

Standish Report cites 488 Major US Federal Government IT

Programs over the past decade of which only 4% were rated as

“successful”.

There is little point in enumerating these studies or statistics in

much more detail, the information is readily accessible and the

website points to resources as they are found. Most of these studies

identify reasons for the project failures and recommend actions to

be taken to avoid these problems in the future. Literally thousands

of books and online articles quote these studies and/or attempt to

identify the various factors that cause these failures.

Even if projects don't fail, as covered in these studies, many

projects still become “impaired” in some way. Even though they

deliver, projects may still suffer the impacts of “Project Entropy”,

my term for all the negative project impacts such as design

problems, technical defects, requirements changes, office

bureaucracy, risk events, and all those events that arise from the

human factor.

Impaired projects can still produce a result, but execute sub-

optimally and produce solutions that may be ill-suited to the

problem, be late or too expensive.

 “Impaired” projects may simply be an unpleasant place to

work. Unpleasant places to work produce unhappy people, which

over time decreases morale and engagement.

Projects & Failure: A Long-Term Affair

Experiencing serious problems with the delivery of IT projects

has a long-standing history. Endless reasons are given for project

failures at many different levels of practice: from bad strategic

choices to poor individual engagement, the post-fact explanation of

failure covers every reason that you could ever think of, and

probably a few more. All of us who have worked on IT or digital

projects would recognize a depressing share of these stated

problems.

Although we touch on the analyzed delivery problems and

recommendations, in this book I want to look at this issue from

another angle. I want to look, not at what caused the problems, but

why we let these problems impact our projects. The question

should not be “what are the causes of project failure”, rather the

question should be “why do we still let these causes occur and

generate project failures at these rates?”.

Quantitative industry studies on project failure have been

published since at least the late 1990’s if not earlier, not to mention

the individual and organizational learning of the last 50 years.

The landmark book on this issue is Fred Brooks “Mythical

Man Month” (actually series of essays) originally published in

1975, which was triggered primarily by issues that he encountered

whilst building large systems programming products at IBM as far

back as the 1960’s: the very early days of large-scale program

development.

“Large-system programming has over the past

decade been such a tar pit, and many great

and powerful beasts have thrashed violently in

it. Most have emerged with running systems—

few have met goals, schedules, and budgets.

Large and small, massive or wiry, team after

team has become entangled in the tar. No one

thing seems to cause the difficulty— any

particular paw can be pulled away. But the

accumulation of simultaneous and interacting

factors brings slower and slower motion.

Everyone seems to have been surprised by the

stickiness of the problem, and it is hard to

discern the nature of it. But we must try to

understand it if we are to solve it.” -- Fred

Brooks in ‘The Mythical Man-Month:

Essays on Software Engineering’

(Anniversary Edition - 2nd Edition)

Pearson Education

Brooks attributes the first edition of “Mythical Man Month” as

a ‘belated answer to Tom Watson's probing questions as to why

programming is hard to manage.’ There were many important

themes to take out of this book, but the most relevant one to our

narrative here is that there is no simple way to develop software.

The ‘werewolf’ of software development was never going to be

killed with a ‘silver bullet’.

It seems that from 1975 following “Mythical Man Month”

declaration that there was no ‘silver bullet’, software development

leadership has been trying to disprove Brooks in that assertion.

Certainly from an external or historical perspective, the primary

response has been to search for the “silver bullet” at least in part by

the development of various methodologies that attempt to codify

all or part of the end-to-end project development process.

Cobbs Paradox

With so much knowledge of past failure summarized so

clearly, we have so many reasons in place to not fail. Particularly

when we have so many methodologies, tools and techniques that

are designed to prevent that failure.

Martin Cobb, CIO for the Secretariat of the Treasury Board of

Canada in 1995, coined the so-called "Cobbs Paradox in this light,

saying:

“We know why projects fail; we know how to

prevent their failure – so why do they still

fail?” - Martin Cobb

The implication of Cobbs Paradox is that we know, right from

day one of any given project, the reasons why it may become

impaired, and that some form of impairment was a high

probability...

We know this and yet we still allow it to happen. Why? If we

already know the causes of your own destiny, why do we not

ameliorate them?

Knowing the causes of your own destiny

The domain of project management has a multiplicity of tools,

techniques and methodologies. Project managers have access to

numerous service offerings for training, certification and

consulting: there are courses of study in Project Management that

confer Masters and Doctoral-level degrees.

Industry organizations such as PMI marshal considerable

resources to analyze, define and propagate project management

skills, tools and methodologies to a wide constituency

Online, we have an endless number of blogs offering advice,

templates, “how-to” guides, analysis and discussions via social

media. And we’ve seen an explosion of a variety and change in

approach in the Agile era. There are some who have criticized

Agile as being a consulting-led industry. There is certainly no

shortage of Agile consultants.

Despite all this support and prescription on how to deliver

projects, our projects still fail.

Other industries (e.g. Transportation) and professions (e.g.

Medical) have semi-independent organizations that monitor

failures, regulate individual and organizational practice and

orchestrate initiatives to improve the profession, but in the IT

industry this approach is left to many individual groups, usually

who have vested interests in the outcomes. IT projects leave it to

individual organizations themselves to monitor these trends. The

problem with this is reporting bias. Anecdotally, it appears that

self-reported data on project success is materially higher than

relatively independent analyses and studies. [Reference needed]

Even though we know that these methodologies cannot be the

“silver bullet” that we want to believe them to be, we still use and

promote their use.

Methodology Capture

Project Management places a high level of reliance or faith in

the benefits of adopting and following a pre-existing methodology

to improve success. Some reports of project failures single out the

use of a formal methodology as a differentiator in terms of project

success rates.

We will cover methodologies in more detail in Chapter 4, what

is relevant at this point is that often the methodology chosen to

help solve the problem of failure or impairment is not the “silver

bullet” that everyone expects, but actually makes it harder to

execute the project effectively.

Many common groups of problems appearing in projects, and

event portfolios of projects, can be attributed back to the

methodology selected being inappropriately selected or employed

in the organization and/or on the project itself.

Organizations with larger portfolios typically have big

investments in any given methodological underpinning of their

product delivery processes, and so are reluctant to change, but in

so doing are “captured” by the methodology.

Chapter 4 will cover the issues of methodologies in more

detail.

Complicatedness

A focus on methodologies invariably results in a focus on

control; even Agile methodologies are in essence an attempt to

control the team members and stakeholders into certain kinds of

actions and behaviors.

This focus on control has been in contrast to expanding

variability and complexity in the project context. For example,

consider the market context for the project, the internal business

context of an organization and the rapidly evolving technology

context inside and outside the organization. There are multiple

degrees of freedom in the evolution of complexity.

Businesses have become significantly more complicated in the

past 15 years, and our problem domains have accelerated in their

complexity as the rate of solution change increases. Boston

Consulting Group researchers Yves Morieux and Peter Tollman

estimate that business complexity has multiplied six-fold since

1955.

“over the past 15 years, the number of

procedures, vertical layers, interface

structures, coordination bodies, scorecards

and decision approvals has increased

dramatically: between 50% and 350%

depending on the company” – Yves Morieux

and Peter Tollman in ‘Six Simple Rules:

How to Manage Complexity without Getting

Complicated’

As Tollman and Morieux found, our response to increased

market complexity has been an increase in operational

“complicatedness”: layers of process and governance which don’t

actually work very well in the IT environment.

The methodologies that PM’s look at have also become more

complicated. For example, “brand-name” traditional

methodologies such as APM or Prince 2 expand over time to deal

with more problematic scenarios. For example, APM now has 47

competency areas with a mass of detail. And PMI have continued

to expand and extend the PMBOK and related services, and have

added “Soft Skills” and specifications for Agile project delivery

processes

And at least a component of the additional organizational

complexity has been in the portfolio management domain, with

these organizations investing in more internal structures to support

wider and deeper use of these methodologies

So we have more complex environments butting up against

more complex methodologies, which produce more complexity in

implementation.

But does this expanded complexity in our methodologies, these

layers and layers of process and overhead, help us address complex

solutions? The answer partly lies in the nature of “wicked

problems”

Making problems “Wicked”

The term “wicked problem” has been used for more than 30

years in social planning, economics and government problem

solving. A “wicked problem” is a problem that isn’t tractable

using standardized linear approaches. As Wikipedia describes it, a

“wicked problem” is:

"difficult or impossible to solve because of

incomplete, contradictory, and changing

requirements that are often difficult to

recognize. Moreover, because of complex

interdependencies, the effort to solve one

aspect of a wicked problem may reveal or

create other problems" - Wikipedia

This term originated to describe societally complex problems

such as global climate change, the AIDS epidemic and similar

intractable problems.

But for me this definition could easily describe most of the

projects I have worked in for the past 20 years. Do you think that

problems have intrinsically become more complex? Or, have

organizations created or promoted the characteristics that lead to

normal problems exhibiting the characteristics of complexity in

projects, and therefore becoming more difficult to solve, more full

of “wickedness”?

Most of the “branded” methodologies have their roots in

practices that predate this rapid rise in complexity. They have roots

in Taylor scientific management practices which emphasize

process, structure, rules and controls. So at least in part applying

linear and Taylorian solutions to non-linear problems can create

solution issues.

The question is: why do we appear to be trying to solve

“wicked” problems? For example, if I’m just building a website or

a content publishing system or an app. How can this be so

complicated?

The answer is that the problems are not ‘wicked’ in and of

themselves. Instead we make them ‘wicked’ by how we go about

framing or/or delivering them.

Projects fail because we make them Fail

Anyone who has been involved in IT projects will have been

through the ritual of a Post Implementation Review (PIR): the

process or meeting that captures what happened in a project, and

tries to capture reasons behind success or failure.

Anyone who has been involved in more than 1 or 2 PIR's will

have witnessed their failings: the pained and complicated way in

which problems are phrased to avoid pointing the finger at anyone

or any group in particular; the way in which problems are

described as normal or inevitable or unavoidable. Whether it is to

protect a colleague's reputation, or to avoid criticizing more senior

management, or to avoid guilt, or even to avoid reliving the errors

or problems themselves, these statements lessen the impact of

these "learnings", and this most often, except in the most

disciplined of shops, reduces the PIR results to impotence.

Anyone who has been involved with IT projects will have most

likely witnessed very few times that PIR's from previous projects

are reviewed at the start of a new project. As well as the painful

nature of the process, the assumption that the result of the PIR will

not actually be used by anyone is a contributor to many project

teams trying to skate on having to conduct the process at all.

The problem with this, more than anything, is that we don't call

out what lawyers call "reckless disregard" of known contributors to

failure when setting up new projects: people are assigned to teams

more because they are available than their specific skills, risks are

disregarded or even actively suppressed, development tools and

components are selected because they are "new and cool" rather

than because they are known and reliable. We set schedules based

on arbitrary events or external milestones and we assume we know

the problems rather than go through the painful and messy process

of talking to users or customers and getting to the bottom of their

needs and problems.

And so it goes. We should not lose sight of the fact that

projects don't fail just because "shit happens", except in the most

extreme circumstances.

Projects fail because we make them fail. The answer to Cobbs

Paradox is not the methodologies that are available but the actions

of the people who run the projects.

Until we start thinking in these terms, we're likely to continue

to make them fail, because we downplay the well-established

causes of failure, and ignore the most obvious and well known

contributors of success.

It is actions that we actively take within the project team, or

within the broader group of stakeholders that make these problems

wicked, and therefore less tractable to the tools and skills that we

apply.

Why have organizations not resolved "Cobbs Paradox"?

As we said in the previous section, projects fail due to actions

by individuals: deliberate, specific and accountable actions that

result in project failure or impairment. The answer to “Cobbs

Paradox” is us. But there would be no paradox if we had

responded to this issue. Why?

Firstly, it seems that organizations do not recognize the core

problem, and so they haven’t taken the first step in trying to

resolve it

It’s not uncommon for project teams or even senior managers

to want to represent their systems development shops as great

successes, and to underplay “teething problems” that arise from

development or deployment of their initiatives.

As a side-thought, I must have interviewed hundreds of

candidates for roles as Project Managers in the various

organizations I’ve worked for, and not once has anyone claimed

other than to have delivered every project “on time, on budget and

according to the specifications”. Of course they include the

revised baseline that occurs after change requests, including the

implied revision that occurs when the project is launched.

As a salesperson I’ve very rarely sat in front of a CIO or senior

executive who will acknowledge much in the way of problems.

Perhaps that’s just me.

So, we should also be aware that the picture may not be so

“rosy” as is publicized. It is so rare for managers and executives to

say much other than “the project was a great success”. In current

business environment, no-one wants to admit failure unless it is as

obvious as a plane-crash.

So the real picture behind the survey results might actually be

much worse. How do we bring back the objectivity and honesty of

our assessments?

Methodology Structure, Selection and Use

If you look at selection criteria commonly published for

methodology use, a common driver for selecting Agile

methodologies is uncertain requirements. The question is: are the

requirements intrinsically uncertain? This would mean that we are

unable to capture the information and structure it to come to a

common set of requirements. Are the requirements intrinsically

uncertain so that we get contradictory requirements from different

groups or rapid changes in requirements?

Or are the requirements uncertain because the analysts are

approaching the elicitation incorrectly, or the stakeholders cannot

articulate their needs

The issues come primarily from how the teams apply the

methodologies, tools or techniques. Are the selected

methodologies, tools or techniques correct and appropriate for the

project’s technology and business domains? Do they meet timeline

and budget targets.

Projects have problems because the methodologies are focused

on the wrong thing: prescribed processes and controls.

We can make projects wicked by slavishly following a

methodology to the letter. And we certainly can make projects

“wicked” by being poorly trained or with a poor understanding of

the methods that we apply.

Discipline

The last section touched on uncertain or unstable requirements

and how that feeds into the methodology selection. My experience

is that the requirements are not particularly uncertain in and of

themselves: it is the participants who make them uncertain.

Often they are uncertain because the goal is wrong, so it is hard

to develop good requirements

Often the participants choose not to want to define

requirements in any persistent manner: it’s too hard or they’ve

been burned before, or perhaps they are just concerned. No small

number of times these have been vague because the product

managers intended product does not agree with some senior

executive’s view of the world.

We make projects “wicked” by being ill-disciplined and

gaming processes or methodologies.

Sometimes it is just that the product owner does not have the

time (in the sense of bandwidth) to investigate and analyze deeply.

Sometimes they do not have the skills.

It is very common for product owners or other influential

managers or executives to simply believe that they do not need to

define requirements because they know what is best for the market,

which is usually code-word for they know what is best for the

organization.

Lean development certainly has a place, but between agile,

lean and similar movements, there has emerged that nothing can be

defined up front.

• We need to understand why our requirements appear

“incomplete, contradictory, and changing”, or why the

interdependencies are complex.

• Is it because we are unable to capture and reconcile

requirements?

• Is it that we create complex interdependencies through

inappropriate design or implementation reasons?

• Do the requirements change because we take so long to

get the project complete?

• Do the requirements change because the idea is bad?

If you are trying to improve the effectiveness of project

delivery, the solution is not more tools and processes. It is also not

more emphasis on execution effectiveness at the tool or process

level.

One other way in which we make our projects “wicked” is the

effective reduction in the value and power of the role of Project

Manager.

Undermining the Role of Project Manager

Along with all the other problems of software projects, many

organizations seem also to have emasculated or at least

undermined the role and status of the “Project Manager”.

I keep asking myself the question “why is Project Management

becoming less and less relevant to its primary consumers?”

Have you noticed the reduction in value with which the project

management practice (and its practitioners) is viewed?

This has now got to the point where many modern shops have

almost completely removed the role from their organization

structure.

Will we be able to devise ways so that the role can regain that

relevance and become stronger voice in the end-to-end process of

software development, particularly in complex integrations?

These key stakeholders and service consumers are the sponsors

of projects, the teams of people who are engaged to deliver the

project and the teams of people who are going to be impacted by

the project, both during and after have.

In many organizations, these stakeholders have been sold the

story that the role is irrelevant and in fact damaging, due primarily

to the perception that project managers and their methodologies are

slowing things down, process focused over outcomes, and raising

difficulties unnecessarily.

So many of Project Management’s customers are no longer

buying what project managers have to offer, that is, if they ever

did.

Project management in many ways has itself to blame. The

practice is of course, not an end in itself, despite the high visibility

and ceremony upon which it seems to rely. Project Management is

only one of the means by which the sponsor or ultimate customer

gets what they want.

PMO organizations in many ways have promoted and

advanced those that adopt their processes and methodologies the

best, and those who have studied and obtained their certifications.

In some ways these processes have bubbled up those who are the

very worst people to be prosecuting complex, dynamic and fast-

paced project deliveries. There is so much pointless “makework”

in projects these days that people often feel that turning up and

turning the handle on an engine called “project management” is an

acceptable performance of one’s job.

Sponsors and other “consumers” of Project Management

services are looking to new ways that promise, often falsely,

quicker and faster ways of doing the same thing.

Software development teams and IT departments look at what

they perceive as Project Management interference, and seek ways

of removing that “interference”.

There is often conflict between managers and executives as to

whether these project management roles should exist, and claims

that these functions can be rolled into line managers within

development shops, without the need for these painful complainers

and naggers.

And yet as I write this, I am watching a complex program

stumble from one problem to another at the point of going live. It

is 3 months late, and cannot launch due to performance and

stability issues. The explanations of why this is the case are

dumbfounding: reasons given that are fundamental selection

criteria for the platform concerned, way back 9 months ago when

there was a competitive selection. The most basic of non-

functional requirements and vendor / product validations has been

failed. There is no performance model, and everyone mistakes the

need for calm with the minimizing of the embarrassment that these

issues should be surfacing now.

Predictions on my part that this situation could still be in place

in 6 weeks were seen as sensationalist troublemaking, and yet now

we look like being at least 6 weeks due to technical problems

(indeterminate really) plus additional delays due to the fact that the

schedule is now bumping into fixed environmental issues, like

football season and racing season events, key personnel holidays,

and the Christmas / new year shutdowns.

Traditional hierarchical scheduling is virtually pointless in a

bottom up environment driven by Kanban or scrum, particularly

any sprint-based delivery model. But executives still seem to want

these global schedules to show when the project will be complete.

Executives and mid-managers are still adjusting these schedules to

fit arbitrary end-dates, and then being (or feigning) anger or pained

surprise when they don’t work.

Project managers are reduced to naggers and hustlers who help

people do their own jobs, deal with basic lack of accountability and

bad teamwork, and doing basic menial work like organizing

meetings, because it is the only way that those sorts of things will

get done. Facilitating outcomes and basically “chewing people’s

food for them”.

And the primary reason I think that I’ve stayed in this business

for so long: the opportunity (some would say mandated

requirement) to be objective but brutally honest, is no taken as

being negative, critical and inappropriate.

So the Solution is another Methodology?

In order to achieve this book’s goal, it’s come down to

codifying my views on Project Management, established and

refined over my life as a practicing project manager.

My comments and views are not general: my experience has

largely been in a very specific kind of environment, which is

described in the next chapter. This environment is probably the

most challenging environment to get anything delivered, but it

seems also to be a growing one.

It has been suggested to me by various colleagues and friends

to present this as a new branded methodology: yet another “silver

bullet” solution to the problems facing project management. But

that’s not my style. This is a very personal exposition of my views

and practices. I believe it is applicable by many others, and I

believe strongly that it has been the basis of my successes as a

Project manager over the years. It may not to be everyone’s taste,

especially those personally invested in other branded Project

Management methodologies or practices.

In making this codification of Project Management principles

general it makes it available for everyone, at least the underlying

concept: I believe that people of all skill levels can apply this

approach, or their version of this approach, to both simplify and

make more effective they time that they spend facilitating and

driving outcomes for their customers.

Conclusion

Whilst there are many failures and impairments, there are very

obviously many successful software project outcomes. Over time,

far more successful ones than failures. So how we go about things

cannot be all wrong.

Someone (supposedly Einstein, but there’s no definite

attribution, and even he is quoted as having doubts that he said it)

said that insanity is defined by repeating the same process many

times, but expecting different results. Instead of continually

performing the same processes, we need to consider different

approaches to defining and executing projects.

At the end of the day, it’s about groups of people making

things. This has been a human practice for millennia. The situation

is not new. There has to be a better way.

My view: stop doing what doesn’t work.

