PRINCIPLE-BASED
PROJECT LEADERSHIP

SIMPLICITY AND OUTCOMES IN
SOFTWARE-ENABLED PROJECTS

ADAM C RUSSELL
BETA VERSION 0.90 - 31sT DECEMBER 2015

Principle-based Project Leadership — Beta Version
Copyright © 2015 by Adam C Russell.

All rights reserved. Printed in Australia. No part of this book may
be used or reproduced in any manner whatsoever without written
permission except in the case of brief quotations embodied in
critical articles or reviews.

This book is a work of non-fiction. Names, characters, businesses,
organizations, places, events and incidents have generally been
written to obfuscate the actual events. Any resemblance to actual
persons, living or dead, events, or locales is entirely regrettable.

For information contact; address www.adamonprojects.com

Book and Cover design by Adam Russell (temporary placeholder)

ISBN: (not yet applied for)

Beta Edition: 31% December, 2015

10987654321

TABLE OF CONTENTS

Chapter 1 — Introduction
Notes on the Beta Version
The Context to this Book
Defining a Project Manager
About this book
Chapter 2 — Why do Information Technology Projects Fail?
Introduction
Projects & Failure: A Long-Term Affair
Cobbs Paradox
Knowing the causes of your own destiny
Methodology Capture
Complicatedness
Making problems “Wicked”
Projects fail because we make them Fail
Why have organizations not resolved "Cobbs Paradox"?
Methodology Structure, Selection and Use
Discipline
Undermining the Role of Project Manager
So the Solution is another Methodology?
Conclusion
Chapter 3 — Why is Leading Software Development Projects So
Hard?
Introduction
Software Development is Hard
Managing Software Development is even harder
Fundamental Problems Elaborated
The Endless Search
Conclusion
Chapter 4 — The Failure of Methodologies
Introduction
What is a methodology?
Pre-Waterfall
Waterfall
Plan-based or Deterministic Methodologies
Alternative Approaches to Software Development
The Agile Movement
The Baby and the Bath Water
The Double-edged sword of Methodologies
Benefits of Methodologies

Problems with methodologies
The Great Methodological Paradox
Methodologies for Software Development Project Management
Using Methodologies
Who uses methodologies properly anyway?
The Agile Manifesto
Plan-based (“Waterfall”) vs Agile
The “Paradigm Trap”
How do we avoid the Paradigm Trap?
Zombie Processes
Don’t throw the baby out with the bathwater
Conclusion
Chapter 5 — A Bridge to the Future: Foundations of Principle-
based Management
Introduction
The Conflict between Technology and Art
Principle-Centered Management
Managing Complexity
Hard and Soft Management Approaches
Complex Adaptive Systems
Holacracy
Self-Organizing Teams
Trusting People to do their jobs
Thinking fast and slow
Nudge Theory
What does this have to do with project leadership?
Principles lead to models of behavior
Principle-Based Leadership
Genesis of Principle-based Project Management
Reject Methodologies; Embrace “Hacks”
What is a Hack
Checklists
Conclusion
Chapter 6 — Principle-based Project Leadership
Introduction
Principle-based Project Leadership
Guided by higher-order principles
How does Principle-based Project Leadership work?
Project Mindfulness
Stand Outside your project
Project Management: What are our Values?

Building a delivery framework from the inside out
Building your own principles
Conclusion
Chapter 7 — The Project Action Principles
Introduction
Project Action Principles
Structure of the Project Action Principles
Dealing with Complexity: The dynamics of PAP’s
Conclusion
Chapter 8 — Project Action Principle #1: Achieve Outcomes,
Rapidly
Introduction
Project outcomes
Outcome-less interactions
Work-based outcomes
Bringing an outcome focus to your project
Strategies for PAP #1
Introduction
Models for PAP #1
Techniques for PAP #1
Conclusion
Chapter 9 — Project Action Principle #2: Enable Customer Value,
Interactively
Introduction
Your customer is not your friend
A project delivery problem?
Definition of a customer
Definition of customer value
Customers decide the value that a product has: nobody else
Natural Customer Advocacy and the Badass User
Customer Value Perspective
What do customers want? It’s not features
Direct customer contact
Embedding a Customer Value perspective into your project
Strategies Summary for PAP #2
Models Summary for PAP #2
Techniques Summary for PAP #2
Conclusion
Chapter 10 — Project Action Principle #3: Build Shared Models,
Verifiably
Project Action Principle #3

What is the secret to ‘herding cats’?
But the secret is not to herd the cats!
What are shared mental models?
The power of shared mental models
Verification of mental models
Representations of models
Strategies Summary for PAP #3
Models Summary for PAP #3
Techniques Summary for PAP #3
Conclusion
Chapter 11 — Project Action Principle #4: Eliminate Teaming
Threats, Ruthlessly
Introduction
Why don’t we have better teaming?
Teaming threats
Removing teaming threats in your projects
Strategies Summary for PAP #4
Models Summary for PAP #4
Techniques Summary for PAP #4
Project Team Charter
Principle-based Self-Organizing Teamwork
Conclusion
Chapter 12 — Project Action Principle #5: Suppress Project
Entropy, Selectively
Introduction
Project Entropy
Manage or suppress?
Entropy Management Leverage
Strategies Summary for PAP #5
Models Summary for PAP #5
Techniques Summary for PAP #5
Conclusion
Chapter 13 — Using the Project Action Principles
Introduction
This is not a typical “How To” guide
Why do the 5 Project Action Principles work?
Working with existing methodologies
Simplicity, always Simplicity
The Leverage and Extension of Human Capabilities
Tools Techniques and Methods
How to Use

Developing Your Project Management Principles
Conclusion
Appendices
Introduction
Summary
Appendix 1: Errors Created by Team Misfocus
Introduction
How to Use The Observations
Team Imbalances
Appendix 2: Pursuing the Perfect Project Manager Revisited
Rethinking “The Perfect Project Manager” by Tom Peters
The original post
The Honey in the Lion
Conclusion
Appendix 3: Customer Advocacy and Understanding Customer
Value
Introduction
Customer Advocacy
A Taxonomy of Advocacy
Conclusion
Appendix 4: Are the Risk Management activities on your project a
WOFTAM?

Chapter 1 - Introduction

Notes on the Beta Version

| am publishing this book before it is 100% complete; to
participate in a process called “lean publishing”. From a lean
perspective, | am already way past the MVP for this book, but of
course | wanted to get this volume to its best position before |
pushed it out the door. Ah vanity! And now, of course, comes
hubris.

I’ve gotten it to the point where it says pretty much what I want
it to say, but perhaps not as cleanly, clearly and eloquently as
desired.

A modestly experienced person who works in and around the
cut and thrust of project delivery will be able to work through the
content, but I’'m demanding much more tolerance and forgiveness
of my readers than | should.

Parts of the book have had some professional editing, but there
is quite a bit of polishing and cross-checking to do in order that the
points | want to make are clear and accessible. It needs a good
book-butcher to slice it up so that | can put it back together again.

It needs some illustrations and extensive formatting to make it
suitable for both e-book distribution via Kindle and also for printed
book production.

| have released it for paid sales on leanpub.org quite frankly
because sales and donations are how I’m going to fund the
completion of this volume and its successors. Anyone buying the
beta version will receive the final version in its e-book ready state,
and also get an optional cost-price deal on the printed version.

For those of you reading this after purchase or donation, thank
you very much.

| dearly want some feedback on this book so that I can continue
to improve its contents.

For updates, additional content and other resources, visit
http://www.adamonprojects.com/

http://www.adamonprojects.com/

Thank you again.
The Context to this Book

This book is based primarily on my own personal experience as
a project manager working on software-enabled projects.

As to the much troubled term ‘project manager’, we will
discuss what the term means later in the book, but for now just take
this term to mean anyone charged, at any level of the corporate
hierarchy, with any material part of orchestrating people in an
initiative to deliver a software-enabled solution to end-customers.

The term ‘software-enabled’ is used to mean any project where
software is the means to deliver primary capability to the end-
customer or consumer of the project, even if there is a substantial
component of computing infrastructure (e.g. hardware, networking
equipment and system software) that is delivered by the same
project. Examples of this type of project range from a stand-alone
Windows app or mobile app on an iPhone through to a greenfield
corporate website portal or email project.

| have been fortunate to have worked a very wide range of
roles in the information technology industry over a long period.
Starting as a software developer to managing the delivery of
solutions, I’ve spent nearly 40 years building software-based
solutions, starting with PC Kits in the 70’s moving to Distributed
PC & Mini-computer and mainframe systems in the 80’s, all of
which had very broad industry targets. Starting in the 90’s, I began
focus on industry verticals, starting with Telco solutions in the 90°s
and moving to Internet-enabled solutions and Digital Content
solutions since the 2000’s.

Although the bulk of my experience has been in Project
Management, I’ve also included roles in Software Development,
Professional Services Sales, Startups, Business Development,
Product Management, Solutions Lead and Resources Management,
and probably a few I don’t remember

The common thread of this experience has been my interest in
finding and delivering solution outcomes based primarily on
software technology. And it has been about building products
destined for use by an end-user, both consumers and enterprise

end-users.

The context to this experience and learning has been about
domains dominated by:

» High rates of change in the industry, either through
massive growth (e.g. PC and Internet applications) or
disruption (industry rationalization, strategic market
shifts, etc.); and

* Development and delivery of largely “soft” or
“intangible” deliverables, such as digital publishing,
online and mobile applications, software development,
and intellectual property development (e.g. content, IP
or knowledge management).

In a nutshell, the context in which | have worked has always
been “we need this product/project/thing developed in a ‘Big
Damn Hurry’”. No schedule or launch date that I’ve ever proposed
has been soon enough, the level of chaos has always been high,
and new or revised requirements have cascaded down like
hailstones on a tin roof.

Since | began my first attempt at programming (an old HP
calculator, and then an Intel 8085 SDK Kit), I’ve been fascinated
by the process of software development and the way in which
people interact with each other in such a domain of "hurry up™:
when going slow is standing still or going backwards.

I’ve always been happy to use the mandated processes, e.g. the
corporate project management methodology, but | become
frustrated and unsatisfied in accepting ways of doing things that
don’t work: the “mandatory” corporate methodology that has gaps
and errors that have to be “filled in on the fly” (and I’ve seen my
share of those). Methodologies that work, and that are applicable to
the problem at hand can be a thing of beauty, but I admit to being
seduced at some points in my career, of being able to introduce
such perfect methodologies, and of pushing to implement a new
solution or “silver bullet” at work.

I’ve been thinking critically about approaches to project
management pretty much since my first “real” project with Wang
Labs in Australia, developing tools and reading extensively on
approaches to project management and software development.

The longer I work in this industry, the more it seems that the
answers are not in technologically derived processes but in how
people work together to produce outcomes. The more | learn about
Project Management, the more I’ve come to realize that it is much
more about ‘management’ than it is about ‘project’s.

And my view is that the endless debate about people vs
methodology: the debate about “hard” versus ‘soft’ skills debate in
many forums is not the right debate; the questions asked are not the
right questions. Nor do | see guidance being given to new project
managers coming through their project experiences as being much
more than a reconstitution of existing ways of doing things. The
same concepts promoted in different clothes, the same “rules”
being dished out as fact.

| believe that there are much simpler and much more natural
ways for people to work together to achieve great project
outcomes, even in the face of high technology and “chaotic”
environments. These ways may need changes of behavior or
attitudes, but none any greater than demanded by Agile
methodologies.

| think we can get projects delivered faster and cheaper, and
have more fun doing it, than most people do under current regimes.

Hence the reason for this book to share my findings.
Defining a Project Manager

At the beginning of this introduction we touched on the
meaning of the term ‘project manager’ we haven’t yet agreed (in
this book) on a definition of who or what we mean by a Project
Manager

With all the changes and competition between methodologies
that has occurred, and particularly in terms of the elimination or
downgrading of the role, the question now becomes: “What is a
project manager?”

Is it someone who actually leads the project? Or a person who
executes project management processes?

The traditional methodological view (outside of Agile) is that a
“project manager” is someone who manages a “project” according

to the processes and practices of the methodology. And the
definition of project is “a unique initiative that ...” — no need to
repeat it here.

The self-referential view from within the methodology is that a
Project Manager is someone who owns and exercises the
methodology. When | first read these definitions, | thought that it
seemed a pointless exercise, but later | realized it was the whole
point.

Tom Peters, back in 1999, described the “perfect” project
manager (see http://tompeters.com/columns/pursuing-the-perfect-
project-manager/).

Peters was an early proponent (at least to my ears) of the
“everything is a project” view of business operations, and his view
was that if you broke down the relatively narrow definition of a
project, the term ‘project manager’ was much harder to define in
terms of activities, or outside the context of a project management
methodology.

"But as ‘project’ and ‘network’ become the
norm, ‘who's in charge?’ becomes
problematic. Everyone needs to learn to work
in teams, ‘with’ multiple, independent experts,
often from multiple, independent companies;
each will be dependent upon all the others
voluntarily giving their best. The new lead
actor/’boss’—the project manager—must
learn to command and coach; that is, to deal
with paradox. Here are eight dilemmas she or
he must master’ — Tom Peters in “Pursuing
the Perfect Project Manager”

Peters described 8 dilemmas that a ‘perfect’ project manager
needed to resolve:

1. Total ego/no ego

2. Autocrat/delegator

3. Leader/manager

4. Tolerate ambiguity/pursue perfection
5. Oral/written

http://tompeters.com/columns/pursuing-the-perfect-project-manager/
http://tompeters.com/columns/pursuing-the-perfect-project-manager/

6. Acknowledge complexity/champion simplicity
7. Think big/think small
8. Impatient/patient

We’ll come back to Peter’s dilemmas later in the book (see
Appendix 2), but for now the takeaway is that there is more, a lot
more, to being a ‘project manager’ than executing a methodology.

Steve Berkun addresses this in his book ‘Making Things
Happen: Mastering Project Management’ (2003) in the following
way:

“Refer to whoever is involved in project
leadership and management activity... leading
the team in figuring out what the project is
(planning, scheduling, and requirements
gathering), shepherding the project

through design and development work
(communication, decision making, and mid-
game strategy), and driving the project
through to completion (leadership, crisis
management, and end-game strategy)”.

Berkun also says, and | expect that it is your experience as it is
mine, that such a role may be the “person doing project
management tasks, even though it’s not her primary job” or
“person thinking about the project at large.” and says that it is less
about role or title than it is about the activity that they are
performing.

There has been much publicity about different organizations
who have done away with the role of Project Manager completely,
assigning whatever outcomes a PM is supposed to achieve, either
to the dustbin (as being too much nit-picking process) or to other
roles, such as the Scrum Master in Scrum. The Scrum
methodology uses the term “Scrum Master” for the role, but the
term “project management” to describe part of what the Scrum
Master actually does.

Other management approaches use different terminology but
with the same intent: the ‘person’ instantiation of a project
manager is not required, just the skillset and attitudes.

The concept of considering a PM in terms of the role not the
person does little to address the problems that the function of
project management has experienced in the progressive erosion of
its value.

We often joke that if everyone had the hustle to get things done
on or ahead of time — if everyone worked as their own project
manager — we PM’s wouldn’t have jobs. This is true to the extent
that in most teams the gaps are so large that it requires dedicated
effort from a single person (or even more) to achieve the desired
outcomes.

Even if the individual accountability and team drive reached its
maximum levels, the issues that face PM’s would just face other
people.

So bottom line: we need the outcomes that PM’s can provide
but we dispute the means with which they are delivered: a dilemma
that manifests itself every day in many development shops around
the world.

What we need, and what this book attempts to convey, is a way
to resolve this dilemma.

About this book

I like to think that this is the first real book on agile project
management, because it doesn’t include a single prescriptive step.
I’m sure that others would disagree, but, as we will cover later,
there are no degrees of prescriptiveness, even a little will trigger or
promote a style of thinking that is inimical to agile objectives.

The world is full of consultants, managers and others who talk
about non-prescriptive approaches but finish up by saying “do
this”, and even if they don’t, teams or individuals can easily adopt
prescriptive implementations of methodologies that were not
intended to be prescriptive.

Agile, for example, tells you that the best way to keep
communications going with the team is to have a daily “Stand-up”.
There are plenty of ways to keep communications going, but try to
run an agile project without having a standup, and you will most
likely find out how prescriptive this can be.

All humor aside, what this book does is to teach you how to
think flexibly and with discipline about how to tackle any project,
at least in the digital product and IT space.

| have discovered that in order to let people excel, you really
have to be non-prescriptive in terms of how they actually do
things. | mean really non-prescriptive.

The methodology “wars” between plan-driven and agile
promote the concept that plan-driven methodologies are
prescriptive and agile methodologies are not. The problem is that
this is not correct, at least not in practice.

Agile methodologies in practice seems to be just as prescriptive
as any other, and bad-agile practice even more so.

| have come to believe that what drives us to do excellent work
is not practices but values; and that set of values that works for one
team or organization may not work for another. Indeed, as teams
and organizations change rapidly, it is possible that no set of values
is in place for more than one, or at most a few, projects.

Principles seem to me to be values encoded as statements that
can be absorbed by people. Principles are powerful but simple
statements that build on the way people perceive the world around
them, and therefore drive behavioral outcomes.

The agile principles for software development are such values
encoded as statements. This book is about how principle-based
management works, and how to modulate those principles in the
quest for effective end-to-end project delivery.

This principle-based approach originates not only on my
experience but is also founded on extensive research performed by
the world’s leading writers and practitioners of project
management.

I’ve called this approach Principle-based Project Leadership
(PBPL)

Principle-based Project Leadership (PBPL) will give you the
intended agile perspective: that of the ability to work dynamically
with people on tasks of importance and mutual enjoyment,
knowing that you are not wasting your time or producing a dud.

PBPL can add value in any domain which enjoys high rates of
change, require quick time to complete, and has all (or at least the
majority) of the deliverable outcomes as intangible products such
as software, services or information.

And lastly, PBPL can be used as a supporting guide to any
existing methodology, or it can be simply used as the essential
guide on how to manage any project. There is no “either-or”
choice, just a graded evolution of how you approach and
understand your given methodology, and how you employ its
knowledge and apply it to your projects.

Even if you make no changes in how you run your projects,
this book spends some time looking at how methodologies work
(or don’t) in helping to manage projects and this will give you a
useful perspective on that whole relationship.

Amongst other things, Principle-based Project Leadership
(PBPL) will explain how you can make rapid starts to projects
when it counts the most, focus on the most important things ahead
of distractions and waste, deliver real value to enable customers,
and build up a harmonious team

How can this all work? By distilling everything that everyone
has ever told you that is right about how to manage software
projects and letting your brain do the rest. PBPL will free the
creative and powerful cognitive engines of you and your team to
do the right thing at the right time.

All in all it is about simplicity: adopting the simplest approach
and the simplest solution for any given project that will achieve the
project’s goals

PBPL absolutely does not reject methodology as its first
foundation to existence: if a given methodology is working for you
and you believe that it will continue to do so, then why change?

PBPL does not say you’ll never use another tool or pre-defined
process, but it does allow you to use whatever elements of those
existing stores of learning that are appropriate and productive.

It is not a silver bullet. It may well require you to exercise even
more discipline that you may be used to, but only that much that is

necessary for each particular project.

It will not be easy to open up this process and allow it to help
you work simpler, faster, but it is absolutely worth it, in my
opinion.

Good luck.

Chapter 2 - Why do Information
Technology Projects Fail?

Introduction

Information Technology (IT) projects generally have a very
high rate of under-performance, either a complete failure to
achieve any of the planned outcomes or only a partial delivery of
the stated outcomes. In addition we have to consider those projects
that suffer from a high-level of “Project Entropy” and that are late,
over budget and / or create an unreasonable level of stress in the
project participants (i.e. any of the project stakeholders).

There have been many studies that assess the failure rates of
software and technology projects. One, the “McKinsey Oxford
Reference Class Forecasting for IT Projects Study” indicated that
64% of projects experienced cost overruns and 78% experienced
schedule overruns. This study was probably the most
comprehensive, covering 3,607 projects worth a combined USD84
billon.

Standish Report cites 488 Major US Federal Government IT
Programs over the past decade of which only 4% were rated as
“successful”.

There is little point in enumerating these studies or statistics in
much more detail, the information is readily accessible and the
website points to resources as they are found. Most of these studies
identify reasons for the project failures and recommend actions to
be taken to avoid these problems in the future. Literally thousands
of books and online articles quote these studies and/or attempt to
identify the various factors that cause these failures.

Even if projects don't fail, as covered in these studies, many
projects still become “impaired” in some way. Even though they
deliver, projects may still suffer the impacts of “Project Entropy”,
my term for all the negative project impacts such as design
problems, technical defects, requirements changes, office
bureaucracy, risk events, and all those events that arise from the
human factor.

Impaired projects can still produce a result, but execute sub-

optimally and produce solutions that may be ill-suited to the
problem, be late or too expensive.

“Impaired” projects may simply be an unpleasant place to
work. Unpleasant places to work produce unhappy people, which
over time decreases morale and engagement.

Projects & Failure: A Long-Term Affair

Experiencing serious problems with the delivery of IT projects
has a long-standing history. Endless reasons are given for project
failures at many different levels of practice: from bad strategic
choices to poor individual engagement, the post-fact explanation of
failure covers every reason that you could ever think of, and
probably a few more. All of us who have worked on IT or digital
projects would recognize a depressing share of these stated
problems.

Although we touch on the analyzed delivery problems and
recommendations, in this book | want to look at this issue from
another angle. | want to look, not at what caused the problems, but
why we let these problems impact our projects. The question
should not be “what are the causes of project failure”, rather the
question should be “why do we still let these causes occur and
generate project failures at these rates?”.

Quantitative industry studies on project failure have been
published since at least the late 1990’s if not earlier, not to mention
the individual and organizational learning of the last 50 years.

The landmark book on this issue is Fred Brooks “Mythical
Man Month” (actually series of essays) originally published in
1975, which was triggered primarily by issues that he encountered
whilst building large systems programming products at IBM as far
back as the 1960’s: the very early days of large-scale program
development.

“Large-system programming has over the past
decade been such a tar pit, and many great
and powerful beasts have thrashed violently in
it. Most have emerged with running systems—
few have met goals, schedules, and budgets.
Large and small, massive or wiry, team after

team has become entangled in the tar. No one
thing seems to cause the difficulty— any
particular paw can be pulled away. But the
accumulation of simultaneous and interacting
factors brings slower and slower motion.
Everyone seems to have been surprised by the
stickiness of the problem, and it is hard to
discern the nature of it. But we must try to
understand it if we are to solve it.” -- Fred
Brooks in ‘The Mythical Man-Month:
Essays on Software Engineering’
(Anniversary Edition - 2nd Edition)
Pearson Education

Brooks attributes the first edition of “Mythical Man Month” as
a ‘belated answer to Tom Watson's probing questions as to why
programming is hard to manage.” There were many important
themes to take out of this book, but the most relevant one to our
narrative here is that there is no simple way to develop software.
The ‘werewolf” of software development was never going to be
killed with a ‘silver bullet’.

It seems that from 1975 following “Mythical Man Month”
declaration that there was no ‘silver bullet’, software development
leadership has been trying to disprove Brooks in that assertion.
Certainly from an external or historical perspective, the primary
response has been to search for the “silver bullet” at least in part by
the development of various methodologies that attempt to codify
all or part of the end-to-end project development process.

Cobbs Paradox

With so much knowledge of past failure summarized so
clearly, we have so many reasons in place to not fail. Particularly
when we have so many methodologies, tools and techniques that
are designed to prevent that failure.

Martin Cobb, CIO for the Secretariat of the Treasury Board of
Canada in 1995, coined the so-called "Cobbs Paradox in this light,
saying:

“We know why projects fail; we know how to
prevent their failure — so why do they still
fail?” - Martin Cobb

The implication of Cobbs Paradox is that we know, right from
day one of any given project, the reasons why it may become
impaired, and that some form of impairment was a high
probability...

We know this and yet we still allow it to happen. Why? If we
already know the causes of your own destiny, why do we not
ameliorate them?

Knowing the causes of your own destiny

The domain of project management has a multiplicity of tools,
techniques and methodologies. Project managers have access to
numerous service offerings for training, certification and
consulting: there are courses of study in Project Management that
confer Masters and Doctoral-level degrees.

Industry organizations such as PMI marshal considerable
resources to analyze, define and propagate project management
skills, tools and methodologies to a wide constituency

Online, we have an endless number of blogs offering advice,
templates, “how-to” guides, analysis and discussions via social
media. And we’ve seen an explosion of a variety and change in
approach in the Agile era. There are some who have criticized
Agile as being a consulting-led industry. There is certainly no
shortage of Agile consultants.

Despite all this support and prescription on how to deliver
projects, our projects still fail.

Other industries (e.g. Transportation) and professions (e.g.
Medical) have semi-independent organizations that monitor
failures, regulate individual and organizational practice and
orchestrate initiatives to improve the profession, but in the IT
industry this approach is left to many individual groups, usually
who have vested interests in the outcomes. IT projects leave it to
individual organizations themselves to monitor these trends. The
problem with this is reporting bias. Anecdotally, it appears that

self-reported data on project success is materially higher than
relatively independent analyses and studies. [Reference needed]

Even though we know that these methodologies cannot be the
“silver bullet” that we want to believe them to be, we still use and
promote their use.

Methodology Capture

Project Management places a high level of reliance or faith in
the benefits of adopting and following a pre-existing methodology
to improve success. Some reports of project failures single out the
use of a formal methodology as a differentiator in terms of project
success rates.

We will cover methodologies in more detail in Chapter 4, what
is relevant at this point is that often the methodology chosen to
help solve the problem of failure or impairment is not the “silver
bullet” that everyone expects, but actually makes it harder to
execute the project effectively.

Many common groups of problems appearing in projects, and
event portfolios of projects, can be attributed back to the
methodology selected being inappropriately selected or employed
in the organization and/or on the project itself.

Organizations with larger portfolios typically have big
investments in any given methodological underpinning of their
product delivery processes, and so are reluctant to change, but in
so doing are “captured” by the methodology.

Chapter 4 will cover the issues of methodologies in more
detail.

Complicatedness

A focus on methodologies invariably results in a focus on
control; even Agile methodologies are in essence an attempt to
control the team members and stakeholders into certain kinds of
actions and behaviors.

This focus on control has been in contrast to expanding
variability and complexity in the project context. For example,
consider the market context for the project, the internal business

context of an organization and the rapidly evolving technology
context inside and outside the organization. There are multiple
degrees of freedom in the evolution of complexity.

Businesses have become significantly more complicated in the
past 15 years, and our problem domains have accelerated in their
complexity as the rate of solution change increases. Boston
Consulting Group researchers Yves Morieux and Peter Tollman
estimate that business complexity has multiplied six-fold since
1955.

“over the past 15 years, the number of
procedures, vertical layers, interface
structures, coordination bodies, scorecards
and decision approvals has increased
dramatically: between 50% and 350%
depending on the company” — Yves Morieux
and Peter Tollman in ‘Six Simple Rules:
How to Manage Complexity without Getting
Complicated’

As Tollman and Morieux found, our response to increased
market complexity has been an increase in operational
“complicatedness”: layers of process and governance which don’t
actually work very well in the IT environment.

The methodologies that PM’s look at have also become more
complicated. For example, “brand-name” traditional
methodologies such as APM or Prince 2 expand over time to deal
with more problematic scenarios. For example, APM now has 47
competency areas with a mass of detail. And PMI have continued
to expand and extend the PMBOK and related services, and have
added “Soft Skills” and specifications for Agile project delivery
processes

And at least a component of the additional organizational
complexity has been in the portfolio management domain, with
these organizations investing in more internal structures to support
wider and deeper use of these methodologies

So we have more complex environments butting up against
more complex methodologies, which produce more complexity in

implementation.

But does this expanded complexity in our methodologies, these
layers and layers of process and overhead, help us address complex
solutions? The answer partly lies in the nature of “wicked
problems”

Making problems “Wicked”

The term “wicked problem” has been used for more than 30
years in social planning, economics and government problem
solving. A “wicked problem” is a problem that isn’t tractable
using standardized linear approaches. As Wikipedia describes it, a
“wicked problem” is:

""difficult or impossible to solve because of
incomplete, contradictory, and changing
requirements that are often difficult to
recognize. Moreover, because of complex
interdependencies, the effort to solve one
aspect of a wicked problem may reveal or
create other problems' - Wikipedia

This term originated to describe societally complex problems
such as global climate change, the AIDS epidemic and similar
intractable problems.

But for me this definition could easily describe most of the
projects | have worked in for the past 20 years. Do you think that
problems have intrinsically become more complex? Or, have
organizations created or promoted the characteristics that lead to
normal problems exhibiting the characteristics of complexity in
projects, and therefore becoming more difficult to solve, more full
of “wickedness”?

Most of the “branded” methodologies have their roots in
practices that predate this rapid rise in complexity. They have roots
in Taylor scientific management practices which emphasize
process, structure, rules and controls. So at least in part applying
linear and Taylorian solutions to non-linear problems can create
solution issues.

The question is: why do we appear to be trying to solve

“wicked” problems? For example, if I’'m just building a website or
a content publishing system or an app. How can this be so
complicated?

The answer is that the problems are not ‘wicked’ in and of
themselves. Instead we make them ‘wicked’ by how we go about
framing or/or delivering them.

Projects fail because we make them Fail

Anyone who has been involved in IT projects will have been
through the ritual of a Post Implementation Review (PIR): the
process or meeting that captures what happened in a project, and
tries to capture reasons behind success or failure.

Anyone who has been involved in more than 1 or 2 PIR's will
have witnessed their failings: the pained and complicated way in
which problems are phrased to avoid pointing the finger at anyone
or any group in particular; the way in which problems are
described as normal or inevitable or unavoidable. Whether it is to
protect a colleague's reputation, or to avoid criticizing more senior
management, or to avoid guilt, or even to avoid reliving the errors
or problems themselves, these statements lessen the impact of
these "learnings”, and this most often, except in the most
disciplined of shops, reduces the PIR results to impotence.

Anyone who has been involved with IT projects will have most
likely witnessed very few times that PIR's from previous projects
are reviewed at the start of a new project. As well as the painful
nature of the process, the assumption that the result of the PIR will
not actually be used by anyone is a contributor to many project
teams trying to skate on having to conduct the process at all.

The problem with this, more than anything, is that we don't call
out what lawyers call "reckless disregard™ of known contributors to
failure when setting up new projects: people are assigned to teams
more because they are available than their specific skills, risks are
disregarded or even actively suppressed, development tools and
components are selected because they are "new and cool” rather
than because they are known and reliable. We set schedules based
on arbitrary events or external milestones and we assume we know
the problems rather than go through the painful and messy process
of talking to users or customers and getting to the bottom of their

needs and problems.

And so it goes. We should not lose sight of the fact that
projects don't fail just because "shit happens”, except in the most
extreme circumstances.

Projects fail because we make them fail. The answer to Cobbs
Paradox is not the methodologies that are available but the actions
of the people who run the projects.

Until we start thinking in these terms, we're likely to continue
to make them fail, because we downplay the well-established
causes of failure, and ignore the most obvious and well known
contributors of success.

It is actions that we actively take within the project team, or
within the broader group of stakeholders that make these problems
wicked, and therefore less tractable to the tools and skills that we

apply.
Why have organizations not resolved "Cobbs Paradox"?

As we said in the previous section, projects fail due to actions
by individuals: deliberate, specific and accountable actions that
result in project failure or impairment. The answer to “Cobbs
Paradox” is us. But there would be no paradox if we had
responded to this issue. Why?

Firstly, it seems that organizations do not recognize the core
problem, and so they haven’t taken the first step in trying to
resolve it

It’s not uncommon for project teams or even senior managers
to want to represent their systems development shops as great
successes, and to underplay “teething problems” that arise from
development or deployment of their initiatives.

As a side-thought, 1 must have interviewed hundreds of
candidates for roles as Project Managers in the various
organizations I’ve worked for, and not once has anyone claimed
other than to have delivered every project “on time, on budget and
according to the specifications”. Of course they include the
revised baseline that occurs after change requests, including the
implied revision that occurs when the project is launched.

As a salesperson I’ve very rarely sat in front of a CIO or senior
executive who will acknowledge much in the way of problems.
Perhaps that’s just me.

So, we should also be aware that the picture may not be so
“rosy” as is publicized. It is so rare for managers and executives to
say much other than “the project was a great success”. In current
business environment, no-one wants to admit failure unless it is as
obvious as a plane-crash.

So the real picture behind the survey results might actually be
much worse. How do we bring back the objectivity and honesty of
our assessments?

Methodology Structure, Selection and Use

If you look at selection criteria commonly published for
methodology use, a common driver for selecting Agile
methodologies is uncertain requirements. The question is: are the
requirements intrinsically uncertain? This would mean that we are
unable to capture the information and structure it to come to a
common set of requirements. Are the requirements intrinsically
uncertain so that we get contradictory requirements from different
groups or rapid changes in requirements?

Or are the requirements uncertain because the analysts are
approaching the elicitation incorrectly, or the stakeholders cannot
articulate their needs

The issues come primarily from how the teams apply the
methodologies, tools or techniques. Are the selected
methodologies, tools or techniques correct and appropriate for the
project’s technology and business domains? Do they meet timeline
and budget targets.

Projects have problems because the methodologies are focused
on the wrong thing: prescribed processes and controls.

We can make projects wicked by slavishly following a
methodology to the letter. And we certainly can make projects
“wicked” by being poorly trained or with a poor understanding of
the methods that we apply.

Discipline

The last section touched on uncertain or unstable requirements
and how that feeds into the methodology selection. My experience
is that the requirements are not particularly uncertain in and of
themselves: it is the participants who make them uncertain.

Often they are uncertain because the goal is wrong, so it is hard
to develop good requirements

Often the participants choose not to want to define
requirements in any persistent manner: it’s too hard or they’ve
been burned before, or perhaps they are just concerned. No small
number of times these have been vague because the product
managers intended product does not agree with some senior
executive’s view of the world.

We make projects “wicked” by being ill-disciplined and
gaming processes or methodologies.

Sometimes it is just that the product owner does not have the
time (in the sense of bandwidth) to investigate and analyze deeply.
Sometimes they do not have the skills.

It is very common for product owners or other influential
managers or executives to simply believe that they do not need to
define requirements because they know what is best for the market,
which is usually code-word for they know what is best for the
organization.

Lean development certainly has a place, but between agile,
lean and similar movements, there has emerged that nothing can be
defined up front.

» We need to understand why our requirements appear
“incomplete, contradictory, and changing”, or why the
interdependencies are complex.

« s it because we are unable to capture and reconcile
requirements?

« s it that we create complex interdependencies through
inappropriate design or implementation reasons?

» Do the requirements change because we take so long to
get the project complete?

» Do the requirements change because the idea is bad?

If you are trying to improve the effectiveness of project
delivery, the solution is not more tools and processes. It is also not
more emphasis on execution effectiveness at the tool or process
level.

One other way in which we make our projects “wicked” is the
effective reduction in the value and power of the role of Project
Manager.

Undermining the Role of Project Manager

Along with all the other problems of software projects, many
organizations seem also to have emasculated or at least
undermined the role and status of the “Project Manager”.

| keep asking myself the question “why is Project Management
becoming less and less relevant to its primary consumers?”

Have you noticed the reduction in value with which the project
management practice (and its practitioners) is viewed?

This has now got to the point where many modern shops have
almost completely removed the role from their organization
structure.

Will we be able to devise ways so that the role can regain that
relevance and become stronger voice in the end-to-end process of
software development, particularly in complex integrations?

These key stakeholders and service consumers are the sponsors
of projects, the teams of people who are engaged to deliver the
project and the teams of people who are going to be impacted by
the project, both during and after have.

In many organizations, these stakeholders have been sold the
story that the role is irrelevant and in fact damaging, due primarily
to the perception that project managers and their methodologies are
slowing things down, process focused over outcomes, and raising
difficulties unnecessarily.

So many of Project Management’s customers are no longer
buying what project managers have to offer, that is, if they ever
did.

Project management in many ways has itself to blame. The
practice is of course, not an end in itself, despite the high visibility
and ceremony upon which it seems to rely. Project Management is
only one of the means by which the sponsor or ultimate customer
gets what they want.

PMO organizations in many ways have promoted and
advanced those that adopt their processes and methodologies the
best, and those who have studied and obtained their certifications.
In some ways these processes have bubbled up those who are the
very worst people to be prosecuting complex, dynamic and fast-
paced project deliveries. There is so much pointless “makework”
in projects these days that people often feel that turning up and
turning the handle on an engine called “project management” is an
acceptable performance of one’s job.

Sponsors and other “consumers” of Project Management
services are looking to new ways that promise, often falsely,
quicker and faster ways of doing the same thing.

Software development teams and IT departments look at what
they perceive as Project Management interference, and seek ways
of removing that “interference”.

There is often conflict between managers and executives as to
whether these project management roles should exist, and claims
that these functions can be rolled into line managers within
development shops, without the need for these painful complainers
and naggers.

And yet as | write this, I am watching a complex program
stumble from one problem to another at the point of going live. It
is 3 months late, and cannot launch due to performance and
stability issues. The explanations of why this is the case are
dumbfounding: reasons given that are fundamental selection
criteria for the platform concerned, way back 9 months ago when
there was a competitive selection. The most basic of non-
functional requirements and vendor / product validations has been
failed. There is no performance model, and everyone mistakes the

need for calm with the minimizing of the embarrassment that these
issues should be surfacing now.

Predictions on my part that this situation could still be in place
in 6 weeks were seen as sensationalist troublemaking, and yet now
we look like being at least 6 weeks due to technical problems
(indeterminate really) plus additional delays due to the fact that the
schedule is now bumping into fixed environmental issues, like
football season and racing season events, key personnel holidays,
and the Christmas / new year shutdowns.

Traditional hierarchical scheduling is virtually pointless in a
bottom up environment driven by Kanban or scrum, particularly
any sprint-based delivery model. But executives still seem to want
these global schedules to show when the project will be complete.
Executives and mid-managers are still adjusting these schedules to
fit arbitrary end-dates, and then being (or feigning) anger or pained
surprise when they don’t work.

Project managers are reduced to naggers and hustlers who help
people do their own jobs, deal with basic lack of accountability and
bad teamwork, and doing basic menial work like organizing
meetings, because it is the only way that those sorts of things will
get done. Facilitating outcomes and basically “chewing people’s
food for them”.

And the primary reason | think that I’ve stayed in this business
for so long: the opportunity (some would say mandated
requirement) to be objective but brutally honest, is no taken as
being negative, critical and inappropriate.

So the Solution is another Methodology?

In order to achieve this book’s goal, it’s come down to
codifying my views on Project Management, established and
refined over my life as a practicing project manager.

My comments and views are not general: my experience has
largely been in a very specific kind of environment, which is
described in the next chapter. This environment is probably the
most challenging environment to get anything delivered, but it
seems also to be a growing one.

It has been suggested to me by various colleagues and friends
to present this as a new branded methodology: yet another “silver
bullet” solution to the problems facing project management. But
that’s not my style. This is a very personal exposition of my views
and practices. | believe it is applicable by many others, and |
believe strongly that it has been the basis of my successes as a
Project manager over the years. It may not to be everyone’s taste,
especially those personally invested in other branded Project
Management methodologies or practices.

In making this codification of Project Management principles
general it makes it available for everyone, at least the underlying
concept: | believe that people of all skill levels can apply this
approach, or their version of this approach, to both simplify and
make more effective they time that they spend facilitating and
driving outcomes for their customers.

Conclusion

Whilst there are many failures and impairments, there are very
obviously many successful software project outcomes. Over time,
far more successful ones than failures. So how we go about things
cannot be all wrong.

Someone (supposedly Einstein, but there’s no definite
attribution, and even he is quoted as having doubts that he said it)
said that insanity is defined by repeating the same process many
times, but expecting different results. Instead of continually
performing the same processes, we need to consider different
approaches to defining and executing projects.

At the end of the day, it’s about groups of people making
things. This has been a human practice for millennia. The situation
is not new. There has to be a better way.

My view: stop doing what doesn’t work.

