

Predicting the
Unpredictable
Pragmatic Approaches to
Estimating Project Schedule or Cost

Johanna Rothman

This book is for sale at
http://leanpub.com/predictingtheunpredictable

This version was published on 2015-07-20

ISBN 978-1-943487-03-5

No part of this book may be reproduced or transmitted in
any form or by any means, electronic or mechanical,
including photocopying, recording or by any information
storage and retrieval system, without written permission
from the author.

Every precaution was taken in the preparation of this book.
However, the author and publisher assumes no responsibility
for errors or omissions, or for damages that may result from
the use of information contained in this book.

http://leanpub.com/predictingtheunpredictable

Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Practical
Ink was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals.

©2015 Johanna Rothman

To everyone who was ever asked,

“How much will this project cost?” or

“How long will this project take?”

Contents

1. Introduction . 1
1.1 Estimates Are Guesses or Predictions 1
1.2 Estimates Change 2
1.3 Estimates Expire 3

2. What Estimates Are 5
2.1 Provide an Accurate but Not Precise Estimate . 6

3. Why Do We Estimate Anyway? 8
3.1 Why Do You Estimate? 9
3.2 Ask This Question Before You Estimate 11

4. Software is Learning, Not Construction 12
4.1 Inch-Pebbles or Small Stories Show Progress . 14
4.2 Learn With Spikes 14

5. Think About Estimation 15
5.1 Estimating the Unknown: Dates or Budgets . . 16
5.2 Determine Your Degrees of Freedom 17
5.3 Insist on a Ranked Backlog 19
5.4 The Team Doing the Work Provides the Estimate 20

6. More from Johanna 22

1. Introduction
One of the big questions in organizations is “How much
will this project cost?” The other question is “When will this
project be done?” In fact, the bigger the project, the more the
people in the organization want to know.

The problem with these questions is that they are predictions.
I don’t know about you, but my crystal ball is opaque. It’s
never been good at predictions.

On the other hand, I’ve had pretty good results with educated
guesses. I’ve had even better results with using data to update
my guesses as I’ve proceeded.

Estimation has been a common “problem” in software projects.
I have written about it in essays and blog posts for several
years. I decided if I created a book, I could share what has
worked for me, in real projects and programs. You could apply
these ideas in your projects and programs.

1.1 Estimates Are Guesses or
Predictions

We want accurate estimates. When I drive to a local appoint-
ment longer than 10 minutes away, I want to know how long
it will take me to get there. I can use a mapping application to
estimate my drive, given the current traffic.

I have driven to appointments only 14 miles away, and

Introduction 2

sometimes it takes me 20 minutes to drive. Sometimes, it takes
me about an hour. That’s a huge difference.

My general estimate is that I should givemyself 20-25minutes
of driving time. But if I always planned on 25minutes, I would
be late—substantially late—about half the time.

We don’t want that with our project estimates. And yet, we
are “late” with projects.

When I drive to an appointment, I don’t add features. We
often add or change requirements with projects and expect
the estimate to be the same as predicted.

I don’t change who is driving—it’s always me. Yet, we change
people on teams and expect the estimate to be the same.

I don’t multitask when I drive. Yet, we ask people to multitask
and expect the estimate to be the same.

An initial project estimate is your best guess at the time you
make the estimate. The accuracy of that estimate depends on
the people doing the estimation and what they know about
the project.

Your estimate is a guess, a prediction. It is not fact. If I
have trouble estimating my driving time, which has far fewer
variabilities than a project, how can you expect your project
estimate to be accurate? You can’t, not with the very first
estimate you create. You can iterate on the estimate and make
it better over time.

1.2 Estimates Change

As you proceed with your project, your estimate will change.
Your estimate might change because:

Introduction 3

• You know more about the project’s features/require-
ments.

• The people understand how to work together.
• You have history with these people working on this
project. That history will allow you to better your
prediction.

• The project itself changes: adding, subtracting, and
changing requirements as we learn more about what
we can provide and more about what the customer
desires.

Note that in my driving metaphor, my destination doesn’t
change—unless I abandon my drive! Because projects change,
our first estimate is a guess or prediction. That’s why it’s so
important to update your estimate as you proceed.

1.3 Estimates Expire

Not only can the project itself change, which changes the
estimate, but estimates have an expiration date.

On an agile project, as you finish features, you learn more
about the requirements. You learn what a Minimum Viable
Product, MVP, is. You might need a Minimum Indispensable
Feature Set first, enabling you to create short features in flow
or iterations.

If you work in a non-agile way, you will address risks—
technical, schedule, or quality risks—and learn from them.

Regardless of your type of project, the estimate you create at
the very beginning will expire. It is no longer valid.

http://brodzinski.com/2014/12/minimal-indispensable-feature-set.html
http://brodzinski.com/2014/12/minimal-indispensable-feature-set.html

Introduction 4

Keep these ideas in mind as you read this book. These ideas
are true regardless of your project’s life cycle.

I’ve collected here what I’ve written over the years to provide
guidance about estimation. I hope you use it and enjoy it.

2. What Estimates Are
Managers and sponsors ask a project team for estimates all
the time. Sometimes, managers use those estimates to plan
which project to do first—which is a terrible idea. More on
that later. Sometimes, managers use those estimates to predict
a target date. Sometimes, managers use those estimates as a
commitment.

None of those ways are the way we should use estimates.

Here is the problem with using estimates that way:

• Estimates expire.
• Estimates change.
• Estimates are guesses.

Yes, “guess” is the dictionary definition of estimate. The more
you know about the domain, the requirements, and how the
team works together, the more educated your guess will be.
But it will still be a guess.

Because estimates are guesses, you can’t use them for precise
prediction until you get close to the event you are estimating.

You can spiral in on more accurate estimates. You can provide
a percentage confidence on your estimate as you proceed
through your work. You can change your estimate as you
learn more about the necessary (and unnecessary) require-
ments.

What Estimates Are 6

2.1 Provide an Accurate but Not
Precise Estimate

Can you have an accurate estimate at the beginning of a
project? It depends. If the project is similar to what you
have done before, with a team that is accustomed to working
together, and the effort is short—say no longer than three
months—you have a good chance of providing an accurate
estimate.

For our purposes, an accurate estimate is one that is no more
or less than 5-10% off the final effort.

If you have a 12-week effort, and you finished inside of a week
either way, would you consider that a good estimate? I would.
That’s what I mean by an accurate estimate.

Instead, if you say, “We will finish on Wednesday, the 23rd
at 5pm,” would anyone believe you? They might, if you have
an important demo or release scheduled for Wednesday, the
23rd at 6pm! That’s a precise estimate.

Maybe, you use that precise date as a target, a predictive
estimate. You timebox the work so you can finish it by that
time. That’s useful to do with trade shows, demos, and other
events where you are not in charge of the date.

When someone asks you, “How long will the project take?” or
“How much will the project cost?” they are not talking about
a precise estimate. They want an accurate estimate. You need
to know the difference.

Tomanage people’s expectations, always report your estimate
with a percentage confidence, a date range (optimistic, likely,
pessimistic), or spiral in on a date.

What Estimates Are 7

Now that you know about the fallibility of estimates, let’s
consider why we estimate.

3. Why Do We Estimate
Anyway?

We estimate for these reasons:

• To provide an order-of-magnitude size/cost/date about
the project, so we have a rough idea of the size/cost/-
date for planning purposes. An order-of-magnitude size
means we want to invest just enough time in the esti-
mate that we believe in the accuracy of it for planning
purposes.

• We want to know when we will be done, because we
are close.

• We need to allocate money or teams of people for some
amount of time.

• Someone wants to know who to blame.

Creating a gross estimate can be useful. See Estimating the
Unknown: Dates or Budgets to learn how. You can iterate on
that estimate, especially as you get closer to completion.

A gross estimate with deliverable milestones can help the
organization allocate money or teams for a while. The deliv-
erable milestones help you know when you have completed
enough value. The value is a compilation of features, some-
thing you can demo.

In fact, back when phase-gate (serial) life cycles were devel-
oped, estimation was key to a project’s success.

Why Do We Estimate Anyway? 9

Role of Estimation in a Serial Life Cycle

After you completed a phase, you were supposed to re-
estimate, in order to change what you did with the project.

Now, if you are using an incremental approach or an agile
approach, you see completed work. And you don’t have to re-
estimate. However, you should be aware that many managers
may be thinking about a serial life cycle when they ask for
estimates.

3.1 Why Do You Estimate?

Whydo you estimate? If you’ve estimated because you always
have, think about it. If you estimate because your money
people want to do once-a-year money allocation, well, you
know that’s fiction. You can do it without detailed project
estimation.

For money allocation, decide how valuable the project is to
you. When does the project have to deliver the value? Now,
tell the project teamwhen the value has to be delivered. That’s
all.

Remember, you hired these people because they were smart,
responsible human beings. Stop with the phases and all that
nonsense. Tell them what you want. Remember, the phases

Why Do We Estimate Anyway? 10

exist because management wanted to be able to cancel the
project before it got too far along. You were supposed to
show a deliverable and re-estimate at each phase. If you don’t
cancel or deliver something and re-estimate at each phase,
your phases are not working for you.

Buy your team a copy of Manage It! Your Guide to Modern,
Pragmatic Project Management, (ROTPM), which explains
how to manage projects in any life cycle. Give them a ranked
backlog. Let them deliver. If they can’t deliver in the money or
date frame, they will tell you. They are responsible humans.

If you need an order-of-magnitude estimation, fine. That
doesn’t take days to determine. That takes hours. It will be
precise-wrong and order-of-magnitude-right. Timebox your
estimation effort. It’s an order of magnitude. Don’t hold
anyone to that estimate. (Remember, estimates are guesses.
They are not “The One and Only Truth.”)

If you want to know when you’ll be done because you
think you’re close to the end of the project, ask yourself this
question: Is it worth the time to estimate versus the time to
finish? It might be. But know you are taking time away from
finishing.

And if you want to play the blame game, remember that
management is the one who needs to shoulder the most
blame. Why? Because management set the constraints. Don’t
believe me? Read Estimating the Unknown: Dates or Budgets
now.

I can sympathize with management’s need for estimates. I
like order-of-magnitude estimates for many things. I even like
specific estimates as we get closer. But creating software is not
like driving somewhere or like constructing a building. When
I drive somewhere, I do want step-by-step instructions. When

Why Do We Estimate Anyway? 11

constructing a building, I do want an estimate. And even then,
I am pretty sure the estimate is optimistic.

When creating software, I want to see working software
as we create it, because with working software, we learn.
The learning is what’s most important. Because once we’ve
learned enough, we can stop. That’s what’s most valuable.
Not the estimate.

3.2 Ask This Question Before You
Estimate

When people ask you for your estimates, they are trying to
determine the value of the project to the organization.

You can ask them to articulate their desires with either of
these questions:

• How much do you want to invest before we stop?
• How much value is this project or program worth to
you?

Start a conversation with your sponsor, so you can under-
stand what is important to your sponsor. Once you do, you
can decide what to do next. You may want a gross estimate,
as in Estimating the Unknown: Dates or Budgets. You may
want to change your project approach, and do some up-front
work to generate a more detailed estimate. You have choices.

4. Software is Learning,
Not Construction

Here’s one problem I have with estimation. Software is not
construction. We can’t build software the same way we
construct or manufacture something. Software is all about
learning and innovating as a team. Some people think that
software is invention. Whatever you think about software, it
is not construction.

We can timebox our learning. We can choose to stop doing
something. We can put acceptance or release criteria around
it and say, “We have done enough for now.”

But, we cannot say, “We can build this software for $xx per
square foot.” We don’t know how to do that. Because we have
not built exactly this software before. If we had built software
like this before, we could estimate pretty darn close, because
we either have historical data with good estimation quality,
or we have small chunks of work we know about, or both.

(There are some tools, such as Cocomo, SLIM, and function
point counting that ask you many questions at the start of
your project to provide an estimate for the entire project.
If you are not agile, you may want to consider those tools.
Know that you will invest substantial time preparing for the
estimate, time that takes you away from helping the team
learn what to do or how to work together. The people who
sell these tools and services are convinced they work. I am
not.)

Software is Learning, Not Construction 13

When we estimate, other people think of our estimates the
way they think of estimates in other fields, especially con-
struction. Especially if you provide a single-point estimate.
Even if you provide assumptions, which no one hears.

Software is nothing like construction. Software is innovation.
Innovation is difficult—if not impossible—to predict.

Since software is about learning, and we rarely, if ever, do the
same project twice, we are always estimating the unknown.
That makes our estimates inaccurate.

There is an alternative to estimating.

Make your features small, as in something you can deliver in
a day or so. You can also swarm over the work, so the team
finishes a story every day. If you finish something each day,
people can see your work product. They trust you. They stop
asking you for estimates.

If you always have deliverable software—this includes all
tests, documentation, everything you need—you don’t need
to estimate anything. You also gain the benefit of learning, so
if someone asks, “How hard is this thing to do?” the entire
team can huddle together for a few minutes and say, “It’s this
story and that story and this story, too.”

They then say, “We know it’s at least these three stories,
and that’s off the top of our heads. Are those stories more
important than the ones at the top of our queue?”

Software is Learning, Not Construction 14

4.1 Inch-Pebbles or Small Stories
Show Progress

Because we learn when we write software, we need to show
progress to ourselves and to our customers. Small features or
small tasks show progress and build trust. It’s alsomuch easier
to estimate something small than it is something large.

If you create small stories or inch-pebbles, you can track how
long it took you to create those stories. Or, you can ask, “Is
this story similar in size to that one?”

You learn about how large one or two days of work is. You
want to know this. The smaller the granularity of stories or
work, the easier it is to count them. You will have a more
accurate estimate.

4.2 Learn With Spikes

Sometimes you have something you don’t even know how to
start estimating. You don’t even know how to start the work.
That’s when you need a spike. See Spike It!.

You timebox a short amount of time—say a day or less—and
work with your team to determine what the next steps are.
At the end of this timebox, you and the team probably know
enough about the work to break it down to estimate it.

Take every opportunity to learn as you estimate. Youwill have
a much more accurate estimate.

5. Think About
Estimation

First, remember that a project is a system. And, a system has
multiple aspects.

Project Pyramid

If you’ve been managing projects for a while, you know that
there is no iron triangle. Instead, there is a project pyramid.

Think About Estimation 16

On the outside, there are the typical corporate constraints:
Who will work on the project (the people and their capabil-
ities), the work environment, and the cost to release. Most
often, those are fixed by the organization. “Bud, we’ll give
you 50 people, 5 months, and this pile of money to go do that
project. OK?”

The inside edges are what the customer wants: A specific
feature set, at a reasonable level of quality by a certain date.

Whether or not it’s okay, you’re supposed to nod your head
like a bobble-headed doll. But, if your management has not
thought about the constraints, they may be asking you to
smush more features than your people can accomplish in
the allotted time, given the requested time to release, with
the expected number of low defects and the expected cost to
release.

The time to release is dependent on the number of people
and their capabilities as well as the project environment.
You can make anything work. You may have delays with
geographically distributed teams, and even life cycles that do
not include iteration with long lists of features.

This is why estimation of the budget or the time to release is
so difficult. You have to consider the entire context.

5.1 Estimating the Unknown:
Dates or Budgets

Almost every manager I know wants to know when a project
will be done. Some managers decree when a project will be
done. Some managers think they can decree both the date and

Think About Estimation 17

the feature set. There is one other tiny small subset, those
managers who ask, “When can you finish this set of ranked
features?”

And, some managers want you to estimate the budget as well
as the date. And now, you’re off into la-la land. Look, if you
had any predictive power, you’d be off somewhere gambling,
making a ton of money. But, you do have options. All of them
require iterating on the estimates and the project.

First, a couple of cautions:

1. Never, ever, ever provide a single date for a project
or a single point for a budget without a range or a
confidence level.

2. Expect to iterate on the release date and on the budget,
and train your managers to expect iterative, improved
estimates from you.

3. If you get a ranked feature set, you can provide working
product in the order in which your managers want the
work done, while you keep refining your estimates.
This has to be good for everyone.

4. If you can say this without being patronizing, practice
saying, “Remember, the definition of estimate is guess.”

So now that you know why it’s so difficult to estimate, what
do you do when someone asks you for an estimate?

5.2 Determine Your Degrees of
Freedom

First, you ask a question back: “What’s most important to
you? Imagine it’s three weeks before our desired release date.

Think About Estimation 18

We don’t have all the features done. We have more defects
than we wanted. What do you want to do?”

• If they say, “Features. Finish the features,” then you
need to optimize for finishing features. You have to
manage technical risk. Features are driving your project.

• If they say, “Date. If we don’t make the date, we are
toast,” then you know you have to timebox everything
so you meet the date with completed work. The release
date is driving the project.

• If they say, “Cost,” then you know to manage the run
rate. Make sure people aren’t multitasking. Cost-to-
release is the driver.

• If they say, “Low defects,” then you know you need the
team to complete one feature at a time before they start
anything else. Low defects is the driver.

If you review the Project Pyramid, you can see that everything
depends on everything else. However, in each project or
program, you only have one #1 priority. That priority is
either the release date, the feature set, the cost-to-release, or
a low defect count. Your management might want to contain
costs or use certain people, or somehow change or orient the
environment some way, but that’s not what you deliver to
your customers.

You deliver a set of features, on a release date, with a certain
level of defects, for a certain cost. One of those is your driver.
The rest are constraints or floats of some sort. See Manage
It! Your Guide to Modern, Project Management, (ROTPM)
for more information about how to determine your drivers,
constraints, and floats.

Think About Estimation 19

Remember, as you consider what’s driving your project, you
can have only one #1 priority. You might have a right-behind-
it #2 priority, and a right-behind-that #3 priority, but you need
to know where your constraints and degrees of freedom are.

This is your chance to rank each of the vectors in the pyramid.
If feature set is first, fine. If time-to-release is first, fine, if cost
is first, fine. If low defects is first, fine. Whatever is first, you
don’t really care, as long as you know and as long as you only
have one #1 priority. You run into trouble on estimates when
your management wants to fix two out of the six sides of the
pyramid–or worse–more than two sides.

When your managers say to you, “Here’s the team, here’s
the office space, here’s the budget, here’s the feature set, and
here’s the time,” you only have defects left to negotiate. And,
we all know what happens. The defects go sky high, and you
also de-scope at the end of the project because you run out of
time. That’s because you have too many fixed constraints.

5.3 Insist on a Ranked Backlog

If you really want to estimate a date or a budget, here is how
to do it. Make sure you meet these conditions:

1. You must have a ranked backlog. You don’t need a final
backlog. You can certainly accommodate a changing
backlog. But you need a ranked backlog. This way, if
the backlog changes, you know that you and the team
are working on the work in the correct order.

2. The teamwhowill do the work is the teamwho is doing
all the estimation. Only the teamwho is doing the work

Think About Estimation 20

can estimate the work. Otherwise the estimate is not
useful. Surrogate estimators are biased estimators.

3. You report all estimates with a confidence range. If
you report estimates as a single point in time, people
think your estimates are accurate and precise. If you
report them as a confidence range, people realize how
inaccurate and imprecise your estimates are, and you
have a shot of people treating them as real estimates.

You need a ranked backlog because the order of the features
matters. Let’s use dinner as an example. If you eat dessert
before dinner, you might not want dinner. Why bother es-
timating how long it will take to make dinner if you’re not
going to eat it? If you provide some features, and the customer
says, “Thanks, this is great. You can stop now,” you don’t
need the rest of the features. You don’t need to estimate them,
either.

Once you’ve met the conditions, you can estimate. The same
reasoning works for both project dates and budgets.

5.4 The Team Doing the Work
Provides the Estimate

Once you have a ranked backlog, make sure the team doing
the work estimates its own work. Otherwise the estimate is
not useful. Surrogate estimators are biased estimators.

Managers and senior architects tend to underestimate the
amount of work. They tend to think the work is easy to do,
especially if the requirements are clear.

Think About Estimation 21

Other teams might overestimate the amount of work. That’s
because they are not familiar with the domain, the require-
ments, the code base, or the tests.

You cannot depend on anyone’s estimates except for those of
the team doing the work.

6. More from Johanna
I consult, speak, and train about all aspects of managing
product development. I have a distinctly agile bent. I’m more
interested in helping you become more effective than I am
in sticking with some specific approach. There’s a reason my
newsletter is called the “Pragmatic Manager”—that’s because
I am!

If you liked this book, you might like the other books I’ve
written:

• Agile and Lean Program Management: Scaling Collab-
oration Across the Organization

• Diving for Hidden Treasures: Discovering the Value in
Your Project Portfolio (with Jutta Eckstein)

• Manage Your Job Search
• Hiring Geeks That Fit
• Manage Your Project Portfolio: Increase Your Capacity
and Finish More Projects

• Manage It! Your Guide to Modern, Pragmatic Project
Management

• Behind Closed Doors: Secrets of Great Management
(with Esther Derby)

In addition, I have essays in:

• Readings for Problem-Solving Leadership
• Center Enter Turn Sustain: Essays on Change Artistry

http://www.jrothman.com/books/agile-and-lean-program-management-scaling-collaboration-across-the-organization/
http://www.jrothman.com/books/agile-and-lean-program-management-scaling-collaboration-across-the-organization/
http://www.jrothman.com/books/diving-for-hidden-treasures-finding-the-real-value-in-your-project-portfolio/
http://www.jrothman.com/books/diving-for-hidden-treasures-finding-the-real-value-in-your-project-portfolio/
http://www.jrothman.com/books/manage-your-job-search/
http://www.jrothman.com/books/hiring-geeks-that-fit/
http://www.jrothman.com/books/manage-your-project-portfolio-increase-your-capacity-and-finish-more-projects/
http://www.jrothman.com/books/manage-your-project-portfolio-increase-your-capacity-and-finish-more-projects/
http://www.jrothman.com/books/manage-it-your-guide-to-modern-pragmatic-project-management/
http://www.jrothman.com/books/manage-it-your-guide-to-modern-pragmatic-project-management/
http://www.jrothman.com/books/behind-closed-doors-secrets-of-great-management/
https://leanpub.com/pslreader
https://leanpub.com/changeartistry

More from Johanna 23

I’d like to stay in touch with you. If you don’t already sub-
scribe, please sign up for my email newsletter, the Pragmatic
Manager, on my website. Please do invite me to connect with
you on LinkedIn, and follow me on Twitter, @johannaroth-
man.

I would love to knowwhat you think of this book. If you write
a review of it somewhere, please let me know. Thanks!

http://www.jrothman.com/pragmaticmanager/
http://www.jrothman.com/pragmaticmanager/
http://www.linkedin.com/in/johannarothman

	Table of Contents
	Introduction
	Estimates Are Guesses or Predictions
	Estimates Change
	Estimates Expire

	What Estimates Are
	Provide an Accurate but Not Precise Estimate

	Why Do We Estimate Anyway?
	Why Do You Estimate?
	Ask This Question Before You Estimate

	Software is Learning, Not Construction
	Inch-Pebbles or Small Stories Show Progress
	Learn With Spikes

	Think About Estimation
	Estimating the Unknown: Dates or Budgets
	Determine Your Degrees of Freedom
	Insist on a Ranked Backlog
	The Team Doing the Work Provides the Estimate

	More from Johanna

