


Introduction￼
How can we keep as many species as possible from going extinct, and for as 
long as possible?
This deceptively simple question lies at the heart of conservation biology. In 
practice, however, it must be broken into smaller, answerable questions. 
What is the chance that a particular population will vanish within the next 50 
years? How long is it likely to persist? If conservation funds are limited, 
should they be invested in fighting poaching or in expanding habitat? How 
should reintroductions be organized so they have the best chance of success?
Questions such as these ultimately come down to a familiar balance: births 
versus deaths. To protect species, we need to understand what affects these 
processes and how management actions can shift them in a favorable 
direction. Yet births and deaths are not simple counters ticking up and down. 
They emerge from a web of environmental pressures, behavioral choices, 
physiological constraints, and chance events. As a result, even experts often 
struggle to predict how a population will behave over decades, how 
vulnerable it truly is, or how particular interventions will influence its 
trajectory.
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One way to make sense of this complexity is to build mathematical models: 
formal, simplified representations of the processes that drive populations. In 
this book, models are not presented as finished equations or black boxes, but 
as constructions that emerge step by step as biological ideas are translated 
into explicit rules. This translation naturally leads to writing code. By 
expressing biological processes in a computer, assumptions must be stated 
clearly, randomness must be defined explicitly, and consequences can be 
explored systematically. Programming thus becomes a way of thinking more 
precisely about biology, rather than a separate technical goal.
This dual perspective means that the book is about biology as much as it is 
about programming. By building and exploring models, you will gain insight 
into how populations grow, fluctuate, and go extinct, often in ways that are 
difficult to grasp from verbal descriptions alone. At the same time, you will 
learn how to implement these ideas in R and use computation to explore 
their behavior. The aim is not to train you as a software developer, but to give 
you practical tools for understanding nature by recreating its processes on a 
computer.
Doing so raises two closely related questions: how detailed should a model 
be, and how should it be analyzed?
How detailed should a model be?
We might imagine tracking every individual animal: where it moves, when it 
grows, whom it mates with, and eventually when it dies. Although appealing, 
such a model would be so demanding, both in data and in computation, that 
it would quickly become impractical.
All models must simplify. In this sense, a model is like a map. No map 
captures an entire landscape. A map showing us how to get from Geneva to 
Paris need only show major roads; navigating the streets of Geneva requires 
more detail; competing in an orienteering race in the hills outside Geneva 
demands a finely textured view of footpaths, forest edges, and terrain. None 





of these maps is intrinsically better than the others. Each leaves out most 
information in order to highlight what matters for a particular task.
Mathematical models work the same way. The appropriate level of detail 
depends on the question being asked. Many conservation problems can, in 
principle, be addressed with very complex models, but simpler, well-chosen 
models are often easier to analyze and provide clearer insight. The central 
challenge is to identify which biological processes truly matter for the 
problem at hand.
In conservation biology, one such process is particularly important: chance. 
Births and deaths are inherently random events. Each year an individual may 
die or survive, may reproduce or fail to do so. Deterministic approaches, 
which focus on average growth rates and assume individuals behave 
identically, play an important role in ecology. They help clarify concepts such 
as the maximal sustainable yield (MSY), the highest harvest that can be 
maintained in the long run by keeping populations at the density of 
maximum growth.
However, deterministic models also allow populations to decline without ever 
disappearing. They do not allow extinction, which is precisely the outcome 
conservation biologists are most concerned about. Stochastic models, in 
contrast, reveal an uncomfortable but essential truth: in the long run, every 
finite population faces some risk of extinction. Some risks are negligible; 
others are substantial. But they are always present.
Deterministic models remain valuable for many ecological questions, just as 
road maps are indispensable for travel. They are simply not the right tool for 
tasks such as predicting extinction risk, much as a road map is not the best 
guide for an orienteering race. Choosing the right model for the right purpose 
is a core skill of conservation science.





How can we analyze these models?
Even relatively simple models can be difficult to solve analytically. This is 
where computers become essential. Throughout this book, models are 
explored using R, an open-source programming language originally developed 
for statistics but now widely used for scientific modeling. Writing code allows 
models to be simulated, modified, and extended in ways that are often 
impossible with pencil and paper.
I assume that readers have some prior experience with R, including vectors, 
loops, and functions. While some key ideas are revisited throughout the text, 
readers new to the language may find it helpful to work through an online 
tutorial alongside the book.
Overview
This book introduces mathematical models that clarify the complexity of 
conservation biology. Because many of these models rely on stochastic 
processes, the first chapter begins with a simple and intuitive example: a 
drunken man attempting to find his way home. From there, the book 
progresses from unstructured population models to age- and stage-structured 
models, to spatial models, and finally to models that integrate population 
dynamics and genetics.
The conceptual and computational complexity increases across chapters, but 
each chapter builds on the foundations laid by the previous ones. Random 
walks introduce stochasticity and simulation; population models explore 
extinction risk; structured models add biological realism; spatial models 
address fragmentation and dispersal; and genetic models reveal how 
stochasticity affects drift, inbreeding, and the loss of variation. Together, these 
chapters provide a stepwise introduction to understanding, simulating, and 
interpreting stochastic population dynamics in a conservation context.
Once you have worked through the book, you should be able to:
❖understand the fundamental ideas of population growth;





❖recognize how randomness influences extinction risk through both 
demography and genetics;
❖build and explore simple but powerful models in R.
While concepts and code are introduced throughout, most learning happens 
through hands-on exploration. Running, modifying, and experimenting with 
models is essential for developing intuition. Try each exercise on your own 
before consulting the solution. You may find that your approach differs from 
mine. If both approaches work, neither is wrong—but comparing them will 
help you judge which is clearer, more efficient, or easier to extend. This habit 
is one of the most reliable ways to become a stronger modeler.
A particularly effective way to deepen your skills is to reconstruct models 
from the scientific literature. The appendix includes references to 
conservation-related articles whose models are well within reach once you 
have mastered the material here.
I hope you enjoy exploring the ideas and models presented in this book. 
Conservation biology is a field marked by urgency, complexity, and beauty. 
Mathematical models offer one of the clearest ways to understand, and 
ultimately help protect, the living world.
 
***
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When you have worked through this chapter… 
… you will have some intuition about the properties of random walks and 
you will be familiar with basic features of R. In particular, you will understand 
the vector-structure of variables, you will be able to make simple plots, and 
you will be able to write basic R-programs using if-else-statements, using for- 
and while-loops and using your own functions.
In the probabilistic framework of this book, changes in population size are in 
many ways similar to random walks. Think of the drunk man in the figure 
above, meandering along the road after a night at the bar. Questions we might 
be interested in include:
❖Will the man eventually bump into the lamp post?
❖What is the probability that he bumps into the lamp post within a given 
time period?
❖How long will it take him to bump into the lamp post?
To explore random walks with R, we will simplify the situation by setting it in 
a one-dimensional world. We assume that our drunk man is trying to get 
home along a straight path, but instead of consistently walking towards his 
house, he takes a step towards or away from his house with equal probability. 
How likely is it that he will ever get home?
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[image: border-image-1.png]Let us write a program to answer this question. Whenever we write a 
program, it is worth thinking carefully about what the program has to do 
before we start coding.
In our example, we start with the man at a certain distance (a certain number 
of steps) from his house; we must give this initial condition to the program. 
Then we repeatedly let the man move forward or backward with probability 
50%. “Repeatedly” here means that we keep doing this until the man reaches 
his house, that is, until the distance is 0. Another way of saying the same 
thing (and that is how R works1) is that we keep doing it while the man is 
not yet at his house, so while the distance is greater than 0.
To ensure that the man arrives home in a reasonable time, let us assume that 
he cannot move beyond a fence situated behind him, at a given number of 
steps (which we call fence) from his house. Thus, if he tries to take a step that 
would take him further than the fence, he ends up not moving.
So, the program has to do the following:
Set the distance of the from the house to fence
Set initial distance
While the distance is greater than 0 {
    Sample with 50% probability whether the man takes 
                    a step forward or backward
    Calculate the new distance from the house
    If this distance is greater than fence {
        Set the new distance to fence
    }
}
This program does not yet have any output. To see what the program does, let 
us make it plot the man's path with a plot that looks similar to the following 


1 Although R includes a repeat statement, which can be used to model logic using until, I 
(and many programming experts) discourage you from using it. With repeat it is easy to 
forget to include the condition that makes the program exit the loop, and thus to write a 
loop that continues endlessly. In contrast, the syntax of while forces you to include an exit 
condition.






[image: border-image-2.png]one. As a function of the number of steps taken (the x-axis) we plot the 
distance of the man from the house (the y-axis).￼
To create this plot, the program needs to keep track of the number of steps 
taken and the distance from the house. It has to update the number of steps 
with each step the man takes, and it has to store the distances. Once the man 
has reached his house, we can plot the whole path. Our program will 
therefore look something like this:
Set the distance of the fence from the house to fence
Set initial distance
While the distance is greater than 0 {
    Sample with 50% probability whether the man takes
                    a step forward or backward
    Calculate the new distance from the house
    If this distance is greater than fence {
        Set the new distance to fence
    }
    Store the new distance
    Increase the number of steps by 1
}
Plot the path
Note that we can simplify this a bit, for he number of steps taken is equal to 
the number of stored distances minus one. (The “minus one” is necessary 
because the man has not yet taken any steps when the initial distance is 
recorded. Thus, if the man takes, say, three steps, the program has saved  four 
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The random walk of a drunk man trying to get home.





[image: border-image-2.png][image: border-image-3.png]distances, including the initial one.) Therefore, we do not need to update 
explicitly the number of steps; instead, we can calculate it from the number of 
distances that the program has stored.
Set the distance of the fence from the house to fence
Set initial distance
While the distance is greater than 0 {
    Sample with 50% probability whether the man takes
                    a step forward or backward
    Calculate the new distance from the house
    If this distance is greater than fence {
        Set the new distance to fence
    }
    Store the new distance
}
Set number of steps to number of stored distances - 1
Plot the path
In these programs I show the statements that “go together” with brackets and 
indentation. The brackets are an essential part of the syntax; they show which 
statements must be repeated within the while-loop. The indentation is not 
strictly necessary; indeed in R you could write a complete program on a single 
line. However, I strongly encourage you to use indentation to structure your 
programs and make the various loops clearly visible.
From pseudo-code to R code
So far, the program is written in “pseudo-code”: it shows the structure of the 
program in a way that is easy for us to understand, but that cannot be 
executed by a programming language. Let us translate the pseudo-code to R.
The set command in the pseudo-code is implemented with either = or <- in 
R. (Using one or the other is a matter of preference; I will usually use =.) We 
can therefore write the initialization step as
fence    = 40
distance = 5





[image: border-image-4.png]Next, let us move to the other end of the pseudo-code and think about how 
to plot the path. R has several packages and many functions that let us create 
many kinds of plots. For this book, I will almost always stick to the basic 
ones. (If you have experience with R, you might prefer to use more advanced 
plotting packages such as ggplot2.)
The function I used to draw the plot above is called plot(). Its basic input is a 
series of x-values (the numbers from 0 to the number of steps needed to get 
home) and a series of y-values (the distance from the house at each step). 
These series must be stored as vectors. In fact, vectors are the most basic data 
structure in R, and most R functions handle vectors (or some combination of 
vectors).
In R, vectors are simply series of elements of the same type: a series of 
numbers, a series of character strings, or a series of logical values (TRUE or 
FALSE).
There are several ways to create vectors:
❖c(1, 4, 2, 6) creates a vector with the four elements 1, 4, 2 and 6.
❖1:5 creates a vector with the five elements 1, 2, 3, 4 and 5.
❖seq(1, 5, by=2) creates a vector with elements ranging from 1 to 5 and 
and interval of 2, so 1, 3 and 5.
❖seq(0, 5, length=3) creates a vector of three elements ranging from 0 
to 5, so 0, 2.5 and 5.
❖rep(3, 10) creates a vector with ten 3s.
You can retrieve elements of a vector with square brackets []. In the vector

x=seq(0,10,by=2), for example, x[2] is 2, x[5] is 8, x[4:6] is (6, 8, 10), 
and x[c(1,5,6)] is (0, 8, 10). Note that vectors are indeed basic structures; 
what you enter in the square brackets is a vector of the elements you want to 
retrieve.
Two features of vectors in R are particularly useful:
❖You can concatenate (combine) vectors with c(). If, for example, a=1:3 and 
b=seq(5,9,by=2), then c(a,b) gives the vector containing the elements 
1, 2, 3, 5, 7 and 9.
❖Mathematical operations and functions applied to a vector are performed 
element-wise. For example, 2*c(2,5,10) gives (4, 10, 20); 





[image: border-image-5.png][image: border-image-6.png][image: border-image-6.png][image: border-image-7.png]c(1,2,3)*c(4,5,6) calculates 1*4, 2*5, and 3*6 to give (4, 10, 18); 
sqrt(c(4,16,36)) gives (2, 4, 6); and log10(c(1,10,100)) gives (0, 
1, 2). (Some functions, however, operate on the entire vector and return a 
single value: min(x) and max(x)return the minimal and maximal values 
of the vector x; mean(x) gives the average; sd(x) gives the standard 
deviation; and length(x) returns the number of elements in x.)
So, back to the problem at hand. To plot the path, we need a vector containing 
all of the distances, which I will call distance. We also need a vector containing 
all of the step numbers, which can be written as 0:steps, where steps is the 
total number of steps taken. As mentioned above, this is given by the number 
of elements in the vector distance minus 1, so we can calculate it as
steps = length(distance) - 1
To generate distance, we can use the concatenation technique just introduced. 
Suppose we have already stored the distances up to a given step. Once an 
additional step is taken and the new distance is calculated, we can 
concatenate it to the vector with:
distance = c(distance, newDistance)
To emphasize that distance is a vector, I will initialize it as distance=c(5), 
that is, a vector containing one element. (Indeed, the program would not 
work unless we explicitly tell R that a variable is a vector before using 
concatenation.)
Our code so far is:
fence    = 40
distance = c(5)
 
While the distance is greater than 0 {
    Sample with 50% probability whether the man takes
                    a step forward or backward
    Calculate the new distance from the house
    If this distance is greater than fence {
        Set the new distance to fence
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    distance = c(distance, newDistance) 
}
steps = length(distance) - 1
plot(0:steps, distance)
Let us now see how to simulate the new distance. Remember that the man 
moves 1 step forward or backward (so, decreases or increases his distance to 
the house)by chance, so with probabilities of 50%. We can thus choose either 
-1 or +1 randomly for each of the man's steps; in R-speak, we sample one 
element from a vector containing -1 and +1: sample(c(-1,1),1).
The function sample can be used in more complicated ways. First, if the 
probabilities of sampling the elements of the vector are not equal, we can 
specify the probability for each element, for example sample(c(-1,1),1, 
prob=c(0.7,0.3)) chooses -1 with probability 70% and +1 with 
probability 30%. Second, we can sample from the elements more than once. 
But R makes that a bit complicated for us. By default, each time we sample an 
element that element is lost from the vector. This means (i) that the 
probability changes each time we sample (once the -1 is sampled, the 
probability of sampling +1 becomes 100%) and (ii) that we cannot sample 
more times than there are elements in the vector (once we have sampled the -1 
and the +1 there is nothing left to sample). So, if we want to sample from 
c(-1,1), say, 100 times with the same probability, we must tell R to put the 
element we just sampled back into the hat. More formally, we replace the 
element in the vector: sample(c(-1,1),100,replace=T).
By sampling -1 or +1 we can calculate the new distance of the meandering 
man by adding the number to the previous distance, which is the last number 
in the distance vector. This is given by tail(distance,1). Thus at each 
step we can calculate the new distance with
newDistance = tail(distance, 1) + sample(c(-1, 1), 1)
Now we have to make sure that this distance is not beyond the fence. One 
way to do this is to follow the pseudocode, and to check if the distance is 
greater than fence.
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}
Being able to deal with conditions with if-else statements  is an important part of 
controlling the flow of programs. Suppose you want to calculate the square 
root of some number x. If x is negative, R will give you a warning message and 
return NaN. To avoid that, you check whether the number is positive before 
calculating its root:
if (x >= 0) {
  y = sqrt(x)
}
Alternatively, you could decide to interpret negative values as imaginary 
numbers, for which a square root exists. Thus, while sqrt(-4) returns NaN, 
sqrt(-4+0i) returns 0+2i,  (An imaginary number in R is written as realPart + 
imaginaryPart*i.) Thus:
if (x >= 0) {
  y = sqrt(x)
} else {
  Y = sqrt(x + 0i)
}
A simplified if–else statement is
y = ifelse(x >= 0, sqrt(x), sqrt(x + 0i))
In this statement, the first term gives the condition, the second term gives the 
value if the condition is met, and the third term gives the value if the condition 
is not met.
An alternative way to keep the man from moving beyond the fence is to take 
the minimal value of either newdistance or fence with min(newdistance, 
fence).
Once we have the new distance, we concatenate it to the previous distance 
vector. Our program has now become:
fence    = 40
distance = c(5)
While the distance is greater than 0 {
  newDistance = tail(distance, 1) + sample(c(-1, 1), 1)
  distance    = c(distance, min(newDistance, fence))
}
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plot(0:steps, distance)
Finally, we must translate the while-loop into actual R code
fence    = 40
distance = c(5)
while (tail(distance, 1) > 0) {
  newDistance = tail(distance, 1) + sample(c(-1, 1), 1)
  distance    = c(distance, min(newDistance, fence))
}
steps = length(distance) - 1
plot(0:steps, distance)
This code works, but the plot is not very attractive. Let us improve it by 
adding some options: we make the points blue with col="blue", connect 
them with type="o", and add axis labels with xlab and ylab. (There are 
many other options for plot, some of which we will explore later in the book.)
fence    = 40
distance = c(5)
while (tail(distance, 1) > 0) {
  newDistance = tail(distance, 1) + sample(c(-1,1), 1)
  distance    = c(distance, min(newDistance, fence))
}
steps = length(distance) - 1
plot(0:steps, distance,
     type = "o", col = "blue",
     xlab = "Number of steps taken",
     ylab = "Number of steps from house"))
This code gives the figure shown above.
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