

Introduction￼
How can we keep as many species as possible from going extinct, and for as
long as possible?
This deceptively simple question lies at the heart of conservation biology. In
practice, however, it must be broken into smaller, answerable questions.
What is the chance that a particular population will vanish within the next 50
years? How long is it likely to persist? If conservation funds are limited,
should they be invested in fighting poaching or in expanding habitat? How
should reintroductions be organized so they have the best chance of success?
Questions such as these ultimately come down to a familiar balance: births
versus deaths. To protect species, we need to understand what affects these
processes and how management actions can shift them in a favorable
direction. Yet births and deaths are not simple counters ticking up and down.
They emerge from a web of environmental pressures, behavioral choices,
physiological constraints, and chance events. As a result, even experts often
struggle to predict how a population will behave over decades, how
vulnerable it truly is, or how particular interventions will influence its
trajectory.

[image: rhinos.jpg]

One way to make sense of this complexity is to build mathematical models:
formal, simplified representations of the processes that drive populations. In
this book, models are not presented as finished equations or black boxes, but
as constructions that emerge step by step as biological ideas are translated
into explicit rules. This translation naturally leads to writing code. By
expressing biological processes in a computer, assumptions must be stated
clearly, randomness must be defined explicitly, and consequences can be
explored systematically. Programming thus becomes a way of thinking more
precisely about biology, rather than a separate technical goal.
This dual perspective means that the book is about biology as much as it is
about programming. By building and exploring models, you will gain insight
into how populations grow, fluctuate, and go extinct, often in ways that are
difficult to grasp from verbal descriptions alone. At the same time, you will
learn how to implement these ideas in R and use computation to explore
their behavior. The aim is not to train you as a software developer, but to give
you practical tools for understanding nature by recreating its processes on a
computer.
Doing so raises two closely related questions: how detailed should a model
be, and how should it be analyzed?
How detailed should a model be?
We might imagine tracking every individual animal: where it moves, when it
grows, whom it mates with, and eventually when it dies. Although appealing,
such a model would be so demanding, both in data and in computation, that
it would quickly become impractical.
All models must simplify. In this sense, a model is like a map. No map
captures an entire landscape. A map showing us how to get from Geneva to
Paris need only show major roads; navigating the streets of Geneva requires
more detail; competing in an orienteering race in the hills outside Geneva
demands a finely textured view of footpaths, forest edges, and terrain. None

of these maps is intrinsically better than the others. Each leaves out most
information in order to highlight what matters for a particular task.
Mathematical models work the same way. The appropriate level of detail
depends on the question being asked. Many conservation problems can, in
principle, be addressed with very complex models, but simpler, well-chosen
models are often easier to analyze and provide clearer insight. The central
challenge is to identify which biological processes truly matter for the
problem at hand.
In conservation biology, one such process is particularly important: chance.
Births and deaths are inherently random events. Each year an individual may
die or survive, may reproduce or fail to do so. Deterministic approaches,
which focus on average growth rates and assume individuals behave
identically, play an important role in ecology. They help clarify concepts such
as the maximal sustainable yield (MSY), the highest harvest that can be
maintained in the long run by keeping populations at the density of
maximum growth.
However, deterministic models also allow populations to decline without ever
disappearing. They do not allow extinction, which is precisely the outcome
conservation biologists are most concerned about. Stochastic models, in
contrast, reveal an uncomfortable but essential truth: in the long run, every
finite population faces some risk of extinction. Some risks are negligible;
others are substantial. But they are always present.
Deterministic models remain valuable for many ecological questions, just as
road maps are indispensable for travel. They are simply not the right tool for
tasks such as predicting extinction risk, much as a road map is not the best
guide for an orienteering race. Choosing the right model for the right purpose
is a core skill of conservation science.

How can we analyze these models?
Even relatively simple models can be difficult to solve analytically. This is
where computers become essential. Throughout this book, models are
explored using R, an open-source programming language originally developed
for statistics but now widely used for scientific modeling. Writing code allows
models to be simulated, modified, and extended in ways that are often
impossible with pencil and paper.
I assume that readers have some prior experience with R, including vectors,
loops, and functions. While some key ideas are revisited throughout the text,
readers new to the language may find it helpful to work through an online
tutorial alongside the book.
Overview
This book introduces mathematical models that clarify the complexity of
conservation biology. Because many of these models rely on stochastic
processes, the first chapter begins with a simple and intuitive example: a
drunken man attempting to find his way home. From there, the book
progresses from unstructured population models to age- and stage-structured
models, to spatial models, and finally to models that integrate population
dynamics and genetics.
The conceptual and computational complexity increases across chapters, but
each chapter builds on the foundations laid by the previous ones. Random
walks introduce stochasticity and simulation; population models explore
extinction risk; structured models add biological realism; spatial models
address fragmentation and dispersal; and genetic models reveal how
stochasticity affects drift, inbreeding, and the loss of variation. Together, these
chapters provide a stepwise introduction to understanding, simulating, and
interpreting stochastic population dynamics in a conservation context.
Once you have worked through the book, you should be able to:
❖understand the fundamental ideas of population growth;

❖recognize how randomness influences extinction risk through both
demography and genetics;
❖build and explore simple but powerful models in R.
While concepts and code are introduced throughout, most learning happens
through hands-on exploration. Running, modifying, and experimenting with
models is essential for developing intuition. Try each exercise on your own
before consulting the solution. You may find that your approach differs from
mine. If both approaches work, neither is wrong—but comparing them will
help you judge which is clearer, more efficient, or easier to extend. This habit
is one of the most reliable ways to become a stronger modeler.
A particularly effective way to deepen your skills is to reconstruct models
from the scientific literature. The appendix includes references to
conservation-related articles whose models are well within reach once you
have mastered the material here.
I hope you enjoy exploring the ideas and models presented in this book.
Conservation biology is a field marked by urgency, complexity, and beauty.
Mathematical models offer one of the clearest ways to understand, and
ultimately help protect, the living world.

[image: fill-image.png][image: border-image.png]Random walks￼
When you have worked through this chapter…
… you will have some intuition about the properties of random walks and
you will be familiar with basic features of R. In particular, you will understand
the vector-structure of variables, you will be able to make simple plots, and
you will be able to write basic R-programs using if-else-statements, using for-
and while-loops and using your own functions.
In the probabilistic framework of this book, changes in population size are in
many ways similar to random walks. Think of the drunk man in the figure
above, meandering along the road after a night at the bar. Questions we might
be interested in include:
❖Will the man eventually bump into the lamp post?
❖What is the probability that he bumps into the lamp post within a given
time period?
❖How long will it take him to bump into the lamp post?
To explore random walks with R, we will simplify the situation by setting it in
a one-dimensional world. We assume that our drunk man is trying to get
home along a straight path, but instead of consistently walking towards his
house, he takes a step towards or away from his house with equal probability.
How likely is it that he will ever get home?

[image: cartoon.jpg]

[image: border-image-1.png]Let us write a program to answer this question. Whenever we write a
program, it is worth thinking carefully about what the program has to do
before we start coding.
In our example, we start with the man at a certain distance (a certain number
of steps) from his house; we must give this initial condition to the program.
Then we repeatedly let the man move forward or backward with probability
50%. “Repeatedly” here means that we keep doing this until the man reaches
his house, that is, until the distance is 0. Another way of saying the same
thing (and that is how R works1) is that we keep doing it while the man is
not yet at his house, so while the distance is greater than 0.
To ensure that the man arrives home in a reasonable time, let us assume that
he cannot move beyond a fence situated behind him, at a given number of
steps (which we call fence) from his house. Thus, if he tries to take a step that
would take him further than the fence, he ends up not moving.
So, the program has to do the following:
Set the distance of the from the house to fence
Set initial distance
While the distance is greater than 0 {
 Sample with 50% probability whether the man takes
 a step forward or backward
 Calculate the new distance from the house
 If this distance is greater than fence {
 Set the new distance to fence
 }
}
This program does not yet have any output. To see what the program does, let
us make it plot the man's path with a plot that looks similar to the following

1 Although R includes a repeat statement, which can be used to model logic using until, I
(and many programming experts) discourage you from using it. With repeat it is easy to
forget to include the condition that makes the program exit the loop, and thus to write a
loop that continues endlessly. In contrast, the syntax of while forces you to include an exit
condition.

[image: border-image-2.png]one. As a function of the number of steps taken (the x-axis) we plot the
distance of the man from the house (the y-axis).￼
To create this plot, the program needs to keep track of the number of steps
taken and the distance from the house. It has to update the number of steps
with each step the man takes, and it has to store the distances. Once the man
has reached his house, we can plot the whole path. Our program will
therefore look something like this:
Set the distance of the fence from the house to fence
Set initial distance
While the distance is greater than 0 {
 Sample with 50% probability whether the man takes
 a step forward or backward
 Calculate the new distance from the house
 If this distance is greater than fence {
 Set the new distance to fence
 }
 Store the new distance
 Increase the number of steps by 1
}
Plot the path
Note that we can simplify this a bit, for he number of steps taken is equal to
the number of stored distances minus one. (The “minus one” is necessary
because the man has not yet taken any steps when the initial distance is
recorded. Thus, if the man takes, say, three steps, the program has saved four

[image: basic.png]
[image: The random walk of a drunk man trying to get home. The random walk of a drunk man trying to get home.]
The random walk of a drunk man trying to get home.

[image: border-image-2.png][image: border-image-3.png]distances, including the initial one.) Therefore, we do not need to update
explicitly the number of steps; instead, we can calculate it from the number of
distances that the program has stored.
Set the distance of the fence from the house to fence
Set initial distance
While the distance is greater than 0 {
 Sample with 50% probability whether the man takes
 a step forward or backward
 Calculate the new distance from the house
 If this distance is greater than fence {
 Set the new distance to fence
 }
 Store the new distance
}
Set number of steps to number of stored distances - 1
Plot the path
In these programs I show the statements that “go together” with brackets and
indentation. The brackets are an essential part of the syntax; they show which
statements must be repeated within the while-loop. The indentation is not
strictly necessary; indeed in R you could write a complete program on a single
line. However, I strongly encourage you to use indentation to structure your
programs and make the various loops clearly visible.
From pseudo-code to R code
So far, the program is written in “pseudo-code”: it shows the structure of the
program in a way that is easy for us to understand, but that cannot be
executed by a programming language. Let us translate the pseudo-code to R.
The set command in the pseudo-code is implemented with either = or <- in
R. (Using one or the other is a matter of preference; I will usually use =.) We
can therefore write the initialization step as
fence = 40
distance = 5

[image: border-image-4.png]Next, let us move to the other end of the pseudo-code and think about how
to plot the path. R has several packages and many functions that let us create
many kinds of plots. For this book, I will almost always stick to the basic
ones. (If you have experience with R, you might prefer to use more advanced
plotting packages such as ggplot2.)
The function I used to draw the plot above is called plot(). Its basic input is a
series of x-values (the numbers from 0 to the number of steps needed to get
home) and a series of y-values (the distance from the house at each step).
These series must be stored as vectors. In fact, vectors are the most basic data
structure in R, and most R functions handle vectors (or some combination of
vectors).
In R, vectors are simply series of elements of the same type: a series of
numbers, a series of character strings, or a series of logical values (TRUE or
FALSE).
There are several ways to create vectors:
❖c(1, 4, 2, 6) creates a vector with the four elements 1, 4, 2 and 6.
❖1:5 creates a vector with the five elements 1, 2, 3, 4 and 5.
❖seq(1, 5, by=2) creates a vector with elements ranging from 1 to 5 and
and interval of 2, so 1, 3 and 5.
❖seq(0, 5, length=3) creates a vector of three elements ranging from 0
to 5, so 0, 2.5 and 5.
❖rep(3, 10) creates a vector with ten 3s.
You can retrieve elements of a vector with square brackets []. In the vector

x=seq(0,10,by=2), for example, x[2] is 2, x[5] is 8, x[4:6] is (6, 8, 10),
and x[c(1,5,6)] is (0, 8, 10). Note that vectors are indeed basic structures;
what you enter in the square brackets is a vector of the elements you want to
retrieve.
Two features of vectors in R are particularly useful:
❖You can concatenate (combine) vectors with c(). If, for example, a=1:3 and
b=seq(5,9,by=2), then c(a,b) gives the vector containing the elements
1, 2, 3, 5, 7 and 9.
❖Mathematical operations and functions applied to a vector are performed
element-wise. For example, 2*c(2,5,10) gives (4, 10, 20);

[image: border-image-5.png][image: border-image-6.png][image: border-image-6.png][image: border-image-7.png]c(1,2,3)*c(4,5,6) calculates 1*4, 2*5, and 3*6 to give (4, 10, 18);
sqrt(c(4,16,36)) gives (2, 4, 6); and log10(c(1,10,100)) gives (0,
1, 2). (Some functions, however, operate on the entire vector and return a
single value: min(x) and max(x)return the minimal and maximal values
of the vector x; mean(x) gives the average; sd(x) gives the standard
deviation; and length(x) returns the number of elements in x.)
So, back to the problem at hand. To plot the path, we need a vector containing
all of the distances, which I will call distance. We also need a vector containing
all of the step numbers, which can be written as 0:steps, where steps is the
total number of steps taken. As mentioned above, this is given by the number
of elements in the vector distance minus 1, so we can calculate it as
steps = length(distance) - 1
To generate distance, we can use the concatenation technique just introduced.
Suppose we have already stored the distances up to a given step. Once an
additional step is taken and the new distance is calculated, we can
concatenate it to the vector with:
distance = c(distance, newDistance)
To emphasize that distance is a vector, I will initialize it as distance=c(5),
that is, a vector containing one element. (Indeed, the program would not
work unless we explicitly tell R that a variable is a vector before using
concatenation.)
Our code so far is:
fence = 40
distance = c(5)

While the distance is greater than 0 {
 Sample with 50% probability whether the man takes
 a step forward or backward
 Calculate the new distance from the house
 If this distance is greater than fence {
 Set the new distance to fence

[image: border-image-8.png][image: border-image-9.png][image: border-image-6.png] }
 distance = c(distance, newDistance)
}
steps = length(distance) - 1
plot(0:steps, distance)
Let us now see how to simulate the new distance. Remember that the man
moves 1 step forward or backward (so, decreases or increases his distance to
the house)by chance, so with probabilities of 50%. We can thus choose either
-1 or +1 randomly for each of the man's steps; in R-speak, we sample one
element from a vector containing -1 and +1: sample(c(-1,1),1).
The function sample can be used in more complicated ways. First, if the
probabilities of sampling the elements of the vector are not equal, we can
specify the probability for each element, for example sample(c(-1,1),1,
prob=c(0.7,0.3)) chooses -1 with probability 70% and +1 with
probability 30%. Second, we can sample from the elements more than once.
But R makes that a bit complicated for us. By default, each time we sample an
element that element is lost from the vector. This means (i) that the
probability changes each time we sample (once the -1 is sampled, the
probability of sampling +1 becomes 100%) and (ii) that we cannot sample
more times than there are elements in the vector (once we have sampled the -1
and the +1 there is nothing left to sample). So, if we want to sample from
c(-1,1), say, 100 times with the same probability, we must tell R to put the
element we just sampled back into the hat. More formally, we replace the
element in the vector: sample(c(-1,1),100,replace=T).
By sampling -1 or +1 we can calculate the new distance of the meandering
man by adding the number to the previous distance, which is the last number
in the distance vector. This is given by tail(distance,1). Thus at each
step we can calculate the new distance with
newDistance = tail(distance, 1) + sample(c(-1, 1), 1)
Now we have to make sure that this distance is not beyond the fence. One
way to do this is to follow the pseudocode, and to check if the distance is
greater than fence.

[image: border-image-10.png][image: border-image-11.png][image: border-image-12.png]if (newDistance > fence) {
 newdistance = fence
}
Being able to deal with conditions with if-else statements is an important part of
controlling the flow of programs. Suppose you want to calculate the square
root of some number x. If x is negative, R will give you a warning message and
return NaN. To avoid that, you check whether the number is positive before
calculating its root:
if (x >= 0) {
 y = sqrt(x)
}
Alternatively, you could decide to interpret negative values as imaginary
numbers, for which a square root exists. Thus, while sqrt(-4) returns NaN,
sqrt(-4+0i) returns 0+2i, (An imaginary number in R is written as realPart +
imaginaryPart*i.) Thus:
if (x >= 0) {
 y = sqrt(x)
} else {
 Y = sqrt(x + 0i)
}
A simplified if–else statement is
y = ifelse(x >= 0, sqrt(x), sqrt(x + 0i))
In this statement, the first term gives the condition, the second term gives the
value if the condition is met, and the third term gives the value if the condition
is not met.
An alternative way to keep the man from moving beyond the fence is to take
the minimal value of either newdistance or fence with min(newdistance,
fence).
Once we have the new distance, we concatenate it to the previous distance
vector. Our program has now become:
fence = 40
distance = c(5)
While the distance is greater than 0 {
 newDistance = tail(distance, 1) + sample(c(-1, 1), 1)
 distance = c(distance, min(newDistance, fence))
}

[image: border-image-3.png][image: border-image-13.png][image: border-image-14.png]steps = length(distance) - 1
plot(0:steps, distance)
Finally, we must translate the while-loop into actual R code
fence = 40
distance = c(5)
while (tail(distance, 1) > 0) {
 newDistance = tail(distance, 1) + sample(c(-1, 1), 1)
 distance = c(distance, min(newDistance, fence))
}
steps = length(distance) - 1
plot(0:steps, distance)
This code works, but the plot is not very attractive. Let us improve it by
adding some options: we make the points blue with col="blue", connect
them with type="o", and add axis labels with xlab and ylab. (There are
many other options for plot, some of which we will explore later in the book.)
fence = 40
distance = c(5)
while (tail(distance, 1) > 0) {
 newDistance = tail(distance, 1) + sample(c(-1,1), 1)
 distance = c(distance, min(newDistance, fence))
}
steps = length(distance) - 1
plot(0:steps, distance,
 type = "o", col = "blue",
 xlab = "Number of steps taken",
 ylab = "Number of steps from house"))
This code gives the figure shown above.

OPS/images/border-image-11.png

OPS/images/border-image-14.png

OPS/images/border-image-2.png

OPS/images/border-image-1.png

OPS/images/border-image.png

OPS/images/border-image-13.png

OPS/toc.xhtml
		Introduction		How detailed should a model be?

		How can we analyze these models?

		Overview

		Random walks		From pseudo-code to R code

		Page 1

OPS/images/border-image-5.png

OPS/images/border-image-8.png

OPS/images/cartoon.jpg

OPS/images/border-image-12.png

OPS/images/border-image-3.png

OPS/images/border-image-7.png

OPS/images/border-image-4.png

OPS/images/image-1.png

OPS/images/fill-image.png

OPS/images/border-image-6.png

OPS/js/book.js
function Body_onLoad() {
}

OPS/images/border-image-9.png

OPS/images/border-image-10.png

OPS/images/image.png
8 9 14 4 0

asnoy wou} sdals Jo JaquinN

40

30

20

10

Number of steps taken

OPS/images/rhinos.jpg

