
An Architecture for Microservices using Spring
Rohit Kelapure

1 Motivation
2 Characteristics of a microservice architecture [lewis-fowler, hughson]

2.1 What Microservices Architecture Is Not ?
3 Terms
4 Applicability

4.1 Social
4.2 Technical

5 Characteristics of Cloud Friendly applications
6 Development Methodology - Local Development, Cloud Production
7 Samples
8 Build - Separate build repository for each service
9 Configuration - Comes from the environment
10 Design Concerns

10.1 Modeling
10.1.1 Entity Modeling
10.1.2 Event Modeling
10.1.3 Modeling Tools

10.2 Granularity
10.3 Packaging
10.4 Partitioning

10.4.1 Domain Driven Design (DDD)
10.4.2 Breaking the monolith
10.4.3 Implementing Microservices from scratch

10.5 Inter-service/Inter-process communication
10.5.1 HTTP Synchronous Request/Response Style Interaction
10.5.2 Asynchronous Integration of Services with Events

10.5.2.1 Event Collaboration
10.5.2.2 Event Sourcing
10.5.2.3 Reactive Applications

10.5.3 Hybrid Mode
10.6 Binding Cloud Foundry Services to a Microservices Application
10.7 API Gateway aka Software Reverse Proxy for Microservices
10.8 Service discovery

10.8.1 User Managed Services
10.8.2 Spring Cloud - Netflix Eureka Integration
10.8.3 External Data Stores

10.9 Rest API
10.9.1 Granularity

1

10.9.2 Linked Data
10.9.3 Documentation
10.9.4 Design

10.10 Security
10.11 Persistence

11 Governance & Social Engineering
12 Testing
13 Deployment, Continuous Integration and Continuous Delivery
14 Monitoring - Is my System Healthy ?
15 Why Cloud Foundry ?
16 Conclusion
17 Videos and Articles
18 Credits

1 Motivation
We sincerely believe in the premise that, “On the back of software programming tools and
Internet-based services Software is Eating the World” [andreesen]. Software is disrupting and
eating much of the value chain of traditional major businesses and industries ranging from book
sellers, retail, defense, agriculture etc., Industry analyst Gartner predicts that in a Bimodal IT
world that has become ripe for digital disruption, by 2017, a significant disruptive digital
business will be launched that was conceived by a computer algorithm. Given these stressors it
is critical for enterprises to enable agile IT to iterate, prototype, develop and rapidly deliver
software. Implementing a rapid feedback and rapid release loop is critical for survival.
Microservices is a style of architecture that enables such an outcome for the digital business.

Microservices facilitate autonomy with responsibility. Microservices engender systems that
provide flexibility and composability in terms of architecture, scalability and operational
semantics. Microservices when done right increase the productivity of product teams by
reducing developer cognitive load and separating concerns. Microservices, unlike monolith
applications, decouple change cycles and enable frequent deploys of small well-tested cohesive
components to production leading to quicker turnaround of features and a data driven analytic
application.

A microservices based architecture for an application will allow large-scale architecture changes
with minimal external impact providing insurance against unforeseen problems.

2 Characteristics of a microservice architecture [lewis-fowler , hughson]

Microservices is the first architectural style developed in a post continuous delivery world
founded on the practices of continuous integration and continuous delivery. The key aspects of
a microservices based architecture are listed below -

2

http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460
http://www.gartner.com/newsroom/id/2866617
http://gartnernews.com/how-to-innovate-with-bimodal-it/
http://martinfowler.com/articles/microservices.html
http://genehughson.wordpress.com/2014/05/23/carving-it-up-microservices-monoliths-conways-law/

● Componentization via Services : Services are independently deployable,
encapsulated, out-of-process components that separate concerns and can be composed
into a system of systems with their interactions defined via service contracts (APIs).

● Organized around Business Capabilities : Services are vertical slices of technologies
dedicated to particular business capability, ideally with coinciding service and team
boundaries. Speed wins in the marketplace. Therefore leverage micros ervices for
speed and availability.

● Products not Projects : The team should own the service over its entire lifecycle, both
development and support. Establish a high trust low process culture where developers
are given freedom and responsibility. Remove friction from product development.

● Smart endpoints and dumb protocols : Logic should reside within the services rather
than the communications mechanisms that tie them together such as an HTTP request
response style interaction or lightweight messaging.

● Decentralized Governance : Because of the partitioning inherent in this style, teams are
not forced into one set of standards for their internal implementations.

● Decentralized Data Management : Because of the partitioning inherent in this style,
data will be distributed across multiple services across availability zones and regions
with a tendency towards eventual consistency.

● Infrastructure and Test Automation : Automated testing, automated deployment and
automation of infrastructure. Auto scaled capacity and deployment updates.

● Design for failure: The distributed, partitioned nature of microservice architectures
increases the need for system monitoring and resilience.

● Evolutionary Design : Smaller, modular services enable agile, controllable change.
Isolate business logic in stateless microservices. Microservices scale the development
process by reducing cognitive load.

● Hexagonal Architecture (aka Ports and Adapters): A way of structuring code for each
service that separates the core domain model (What to do) from the ports and adaptors
(How to do). Hexagonal architecture provides separation of concerns, ease of evolution
and testability. Each of the hexagon’s sides represents a different kind of port, for either
input or output conversation with an external component. Sides consist of a port and an
adaptor pair. By replacing the adaptors you can change how to the conversations
happen. A hexagon handles 6 different types of conversations. Organize the methods on
ports and adapters to reflect the conversations the core is trying to have. ports based on
what conversation the core is trying to have with the outside world. Think of a Port as
protocol endpoints like HTTP and the Adapter as a protocol handler like a Java Servlet
or JAX-RS annotated class that receives method invocations from a Java EE container
or framework (Spring, Jersey). [Skillcast & Implementing DDD].

2.1 What Microservices Architecture Is Not ?
Microservice architecture is not a layered architecture where presentation, business and data
handling is realized as separate tiers to scale presentation and compute processing
independently of the data tier. Microservices is also not an intelligently integrated architecture

3

http://alistair.cockburn.us/Hexagonal+architecture
https://skillsmatter.com/skillscasts/5280-hexagonal-microservices
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577

where dumb services are integrated via a smart ESB or a centrally integrated architecture
where anemic services are integrated with a central database. [thoughtworks-lessons-frontline]

3 Terms
Service is an extremely overloaded term in the cloud vocabulary. In the context of this document
a microservice is synonymous with service i.e. an application deployed as a war or a jar file/s
that exposes a REST API to provide a specific business capability. Cloud Foundry (CF) has its
own notion of managed and user based services. These services when referred to, are explicitly
called out as Cloud Foundry services.

A distinction is also made between Cloud Foundry and its commercial on premise distribution by
Pivotal called Pivotal CF . By default the treatment of microservices covered in this document
applies to the open source CF. Where applicable we explicitly call out Pivotal CF.

4 Applicability

4.1 Social
Before you embark on a microservices architecture for your enterprise you should establish a
DevOps culture of production monitoring, rapid application deployment and provisioning
implying close collaboration between developers and operations. This will often require a
reorganization of teams. DevOps cannot be added like salt and pepper to a product. The
CloudFoundry PaaS facilitates these baseline competencies enabling organizations to embrace
microservices; however without the organizational shift to product centered teams that invert
Conway’s law , the long term benefits of microservices are negated. [References]

4.2 Technical
There is a certain threshold beyond which microservice style applications make sense. Cloud
Foundry provides the baseline competencies to be successful with microservices i.e. 1. Rapid
Provisioning, 2. Basic Monitoring and 3. Rapid Application Development. For your average
enterprise application, a proven monolith architecture with clean component boundaries and the
ability to scale in a cookie-cutter fashion using existing transactional paradigms like 2-phase
commit makes sense. It is critical to balance speed of development/deployment while
minimizing the risk of introducing change to critical systems. Microservices is not a panacea for
architectural and scalability problems. In fact the same principles of SOLID design i.e. single
responsibility, loose coupling, high cohesion, DRY, rigid interfaces, tolerant readers apply to both
monolithic and microservices based systems. But a microservices architecture makes the
process separation explicit, making it easier to separate bounded contexts.

5 Characteristics of Cloud Friendly applications
● Shared State is evil

● Statelessness leads to scalability
● Coordination of shared state across peers impacts performance

4

http://www.thoughtworks.com/insights/blog/microservices-lessons-frontline
http://www.pivotal.io/platform-as-a-service/pivotal-cf
http://www.melconway.com/research/committees.html
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

● No filesystem access
● Local file system storage is short-lived
● Instances of the same application do not share a local file system

● Configuration via environment or via an external configuration server
(github/Zookeeper/etcd)

● Inject external dependency connection and credential information via services
● Console based logging
● Monitoring via services and frameworks
● Local development, cloud production
● All persistent data and state including HTTP sessions, caches etc., to be persisted and

replicated by services like MySQL, REDIS cloud, etc., in external data stores.
● Execute application as one or more stateless processes enabling scale-out via a

process model
● Explicitly declare and isolate dependencies
● One codebase tracked in revision control, multiple deploys
● Fast startup and graceful shutdown
● Make no distinction between local and third party services
● Treat logs as event streams
● Immutable code with instant rollback

6 Development Methodology - Local Development, Cloud
Production
Develop microservices applications using Spring Boot and Spring Cloud projects. Spring Boot
provides a nice abstraction layer for portability between local and cloud development. Spring
Boot takes an opinionated - convention over configuration view of the Spring platform and
third-party libraries so you can get started and deploy apps to production with minimum fuss.
Spring Boot enables development in java, groovy or scala and packages apps as self contained
jar and container deployable war files. Spring Boot tackles dependency hell via pre-packaging
and the smart use of spring-boot-starter projects. A detailed treatment of spring cloud can be
found in the following section .

1. Leverage the use of Spring programmatic configuration to configure the cloud and
default profiles. Spring Boot automatically extracts the Cloud Foundry services
connection and credential information from the VCAP_SERVICES environment variable
and flattens the data into properties that can be accessed through Spring’s Environment
abstraction. Once the application is running in the cloud it is a best practice to switch to
running with the “cloud” profile. Take a look at the SampleWebApplicationInitializer code
from the rapwikiapp that dynamically switches the profile at runtime to “cloud” when
running in CF.

2. Use the Spring Cloud local connector for local development and testing without mocking
up VCAP_SERVICES . The connector provides the ability to configure Spring Cloud
services locally for development or testing.

5

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/
http://projects.spring.io/spring-cloud/
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#cloud-deployment-cloud-foundry
https://github.com/bijukunjummen/rapwikiapp/blob/master/src/main/java/pso/rap/SampleWebApplicationInitializer.java
https://github.com/bijukunjummen/rapwikiapp
https://github.com/spring-cloud/spring-cloud-connectors/tree/master/spring-cloud-localconfig-connector

