

[image: Answer Factories]

 Answer Factories

 The Engineering of Useful Surprises

 William Tozier

 This book is for sale at http://leanpub.com/pragmaticGP

 This version was published on 2012-12-03

 This is a Leanpub book. Leanpub helps authors to self-publish in-progress ebooks. We call this idea Lean Publishing.

 To learn more about Lean Publishing, go to http://leanpub.com/manifesto.

 To learn more about Leanpub, go to http://leanpub.com.

 [image: publisher's logo]

 2012 Leanpub

Table of Contents

Table of Contents

 	Acknowledgments

	About this release

	About this book

	Why?

	Audience

	Subject matter

	Preface

	The Age of the “Invention Machine”

	Answer factories

	What to do

	I On Tools

	1 Technical toolkit

	Hardware

	Code

	Testing

	Refactor, but don’t optimize

	The Literature

	Analytical tools

	Project management tools

	2 Cognitive toolkit

	GP in one 3×5 card

	What actually happens in a GP project?

	3 Software Toolkit

	Three Languages

	The Answer Language: What?

	The Search Language: How?

	The Project Language: Why?

	II Cargo-bot

	4 Introduction

	Cargo-bot for iPad

	Prospectus

	5 Test-driven Design of a Cargo-bot Emulator

	Setting the stage

	Thinking about what’s needed

	Emergent design

	Done, mostly

	What just happened, and what’s next?

Acknowledgments

Acknowledgments

Cover photograph by Nic McPhee, used here under the Creative Commons 2.0 License.

Cover typefaces by Igino Marini.

Original research and almost all the original innovation comes primarily John Holland and John Koza, taken through the helpful filter of Bill Macready and David Wolpert.

Locally, many thanks to Bill Worzel, Michael Korns, Jason Daida, Trent McConaghy, Michael Korns, Stuart Card, Una-May O’Reilly, Lee Spector and all the other hosts, sponsors, attendees and contributors to the Genetic Programming in Theory and Practice workshops at the University of Michigan.

Special thanks to Mark Kotanchek, Guido Smits, Katya Vladislavleva, Arthur Kordon, Flor Castillo, who blazed the trail to show how Genetic Programming can and should be used in the active support of decision-making in generative projects.

Kudos to Brian Kerr, Bill Merrill, James P. Sweeney, Trek Glowacki and Jesse Sielaff for working with me on the recent projects that crystallized into the technical and philosophical approach outlined here. And also to Rick Riolo, whose measured advice always surfaces the contingent paths to success in complex systems work in a way no book or Institute ever could, and who set up and ran our GPTP workshops.

Ron Jeffries and Chet Hendrickson for nearly a decade of what sounded to them like meandering noodling, but ended up being an interrogation of how exploratory work can be made engaging, safe and fun.

I and all the rest of those folks are thanking Barbara Tozier.

About this release

About this release

I’m publishing this book early and often via LeanPub. As LeanPub note in their insightful manifesto, Lean Publishing is the act of self-publishing an in-progress book.

 Some folks call this a “beta” version. I’m feeling it’s a lot closer to “alpha”, if those old-fashionedy terms still mean anything in this high-paced iterative agile world we live in. I’ve written most of this material before as blog entries and course materials, but this is really the first time it’s been assembled.

 By buying and reading along while the whole is still being written, you’re not only helping me fund completion, but also helping direct the book. I hope that you’re moved to be part of the conversation beyond just reading and coding along with the projects I present: please join the free Google group I’ve set up where you can make suggestions, start arguments, and point out corrections and extensions I’ve missed.

 Everything from the outline structure to the wording will shift and improve as that conversation unfolds. It will also get simpler: more coherent and useful. If you take them by themselves, the earliest releases will almost certainly feel a bit like an unfulfilled promise. Just keep in mind that there’s more on the way.

 My plan is to work on a weekly release schedule, with each iteration including big chunks of useful functionality and edits of earlier sections. The first project is technically complete, and as I transcribe and edit that into shape I’m already working on the second project.

 If you’re left hanging by an unfinished project or “TBD” marker, send an email to the Google group or spend a bit of time reading through The Field Guide to Genetic Programming, and Essentials of Metaheuristics. Both are free electronic downloads, and they will be useful in their own way for your work. Not prerequisites, but more or less the state of the art in GP.

About this book

About this book

Why?

I want you to have a warranted sense of confidence when using GP to accelerate generative projects.

Some explanations:

	GP is the suite of techniques and habits this book is about. You might think I mean “genetic programming”, and to some extent that’s true. But what we’ll do is a qualitatively different process from what you’d learn in a genetic programming textbook.

 	Generative projects are those technical projects that arise in science, engineering, public service and the humanities, in which your goal is the discovery of a novel design, plan, algorithm, method, recipe, model or other explanatory framework. Put simply, they’re projects in which you want to be surprised, where you don’t know the “right” answer and are willing to consider just about any possibility. They’re not optimization problems of existing designs.

 	Warranted sense of confidence means…
 	…when you envision a project in which GP can be useful, you personally can launch that project and expect it to succeed.

 	…when you join a project that’s already underway, you should expect to be able to support and improve it.

 	…when you run across results from somebody else’s generative project, you are able to reproduce it—and expect to improve on that result.

The book does not include comprehensive training, review or discussion of

	…programming languages and operating systems. We’re going to invent and write some programming languages, but we’re not going to be using more than basic string handling to do it.

 	…the history and research literature of Genetic Programming, Artificial Life, Machine Learning, Statistics or even Computer Science. We’re going to build systems that rely on those fields’ advances, but we’re not going to be talking about who invented them or even why.

 	…the typology of problem-solving techniques and abstract reasoning. We’re going to be doing a bunch of abstract reasoning to solve problems, but this isn’t a philosophy text.

Audience

You should be comfortable writing and releasing computer programs that work.

By phrasing it that way, I’ve tried to constrain almost nothing about your profession, formal education or hobbies, and only a bit about your skills. It’s much more a statement about the technical communities you participate in.

If you have experience launching, managing and finishing moderately ambitious projects, I think you’ll be fine. You’ll have to decide for yourself what “moderately ambitious” and “finishing” really mean.

If you’ve released or improved open-source software, the kind that gets shared out from a public repository—and somebody else has used that codebase successfully—I’m pretty sure you’ll be fine.

If you’re part of a collaborative team creating and maintaining a single project with a shared codebase, I think you’ll be fine.

If it’s your habit to work alone and far ahead of everybody else on technically advanced stuff, you may be fine. But realize that success with GP calls on habits and techniques that are strikingly similar to those people use when they collaborate successfully with one another on a team.

This Ain’t Computer Science

We’ll build systems that would be considered “advanced” to people who are used to the academic fields of Genetic Programming, Machine Learning, theoretical Computer Science and Applied Mathematics. I don’t think of them as “advanced”, and I’m not presenting them that way, because we’re not working within those fields’ contexts.

Fair warning: we’ll also be ignoring some “simple” and “basic” practices and habits folks would know who have been brought up exclusively within those professions. By pointing this out now, I’m hopeful you will not imagine I’m ignoring them out of ignorance.

This is not a textbook

If your instructors try to use it as one, make sure they’re also using something more traditional. Banzhaf et al, or the Field Guide. If they argue, send them to me.

To be honest, what you’re reading has grown into something of an anti-textbook. My friend Nic McPhee suggests that’s a problem with what people have come to expect from textbooks, but I’m not optimistic about pedagogic reform.

I aim to teach. But this book will not improve your performance on standardized tests or qualifying exams. We’ll use “advanced” techniques before we discuss “basic” ones, ignore common practices to focus on more appropriate contingent solutions for specific problems. We won’t even touch on techniques your instructors insist you ought to know.

My goal is to support and extend your existing skills so you know where to go from here. Seek comprehensive knowledge of the field and historical grounding in the culture from other books—they’re full of it.

Subject matter

“GP”

The algorithmic toolkit I focus on features algorithms and concepts drawn from the lively field of artificial intelligence research called Genetic Programming. The way we’ll apply those algorithms and concepts is substantively different from the approach taken by most Genetic Programming theorists and practitioners.

To avoid confusion, I’ll refer to what we’re doing as “GP”, and the academic field of computer science as “Genetic Programming”. You can think of “GP” as implying “Genetic Programming”, but if you’re not careful about it you’ll have an awkward conversation someday with somebody who has lived and worked entirely in that field.

[image: warning]The problem-solving approach we use here is not broadly congruent with the history, culture, goals or assumptions of most Genetic Programming theorists and practitioners.

It may be better if you think of “GP” as meaning something else. Maybe “Generative Practice”. We’ll be building generative GP projects, so that’s a bit redundant, but it’ll do. If you have a better phrase or name to suggest for this approach, please let me know.

Projects

I want you to learn by doing. You will be writing and running code, on your own computer.

You should write this code yourself. Reading along and nodding is not writing code. Copying and pasting it into an editor and then running it is not writing code. Even if you’re pair programming (which is good!), having a colleague completely write it so you can run it is not writing code.

Some of the systems we’ll build are intended to run for days at a time. You should have long-term intimate access to the computer you expect to use.

Each project I’ve planned is the size of several “research papers’ worth” of material. Every one is a “blue sky” project. Except as noted in the background descriptions, nobody has worked on these projects before—including me. That’s part of the fun of this whole endeavor, as far as I’m concerned.

The projects I’ve chosen all surface the same core of useful principles and habits. But as far as I can tell from here, they’re not self-contained. The first one should be done first, and the last one last.

In the first project I’ll build the basic project framework that I use in almost all my generative GP projects—a design pattern I call the “Answer Factory”. Some you can build on your own, from my specifications; other parts I’ll build first, with you watching and following along afterwards. But in either case, you should write the code. That includes the problem-specific code that every interesting GP project calls for, not just the algorithmic stuff that technically counts makes it “GP”. I want to surface some important comparisons between hand-programmed code and GP’s “development”, so to begin with I’ll work through the code at a very small scale. Later, as we build variations on the first project and start other projects from completely different domains, I’ll spend less time on the detail of code and more on GP’s numerous design patterns.

Along the way there will surely be side-projects and open questions, and I’ll point out gaps that you’re encouraged to fill in. You’ll undoubtedly think of even more. Work on those too, as your time and interest permits. Talk about them, publish them, patent your unique results for all I care.

GP is easy at least after you’ve done it a few times. Our point here is the doing.

Preface

Preface

The Age of the “Invention Machine”

[Brief but inspirational overview of foundational ideas and recent excitement about the use of Genetic Programming to build “invention machines”. TBD]

What’s all this about “Genetic Programming”?

The Invention Machines I just described all use Genetic Programming. What’s that?

Well, I’ve worked with Genetic Programming systems for most of twenty years. I’m not sure I know. I use the name, of course.

I can even define it for you:

“Genetic Programming” is the collective body of research and application work done by a growing number of very smart engineers, mathematicians and scientists in communities around the world. It is fundamentally defined by the use of algorithms inspired by biological evolution, as applied to Artificial Intelligence applications in engineering design and optimization.

Except I wrote that off the cuff. We should try to line up something a bit more canonical.

It seems likely you have an Internet where you are, and that your copy of Wikipedia isn’t broken. Go see what they say about Genetic Programming there.

As of this writing, it seems Genetic Programming is a sort of programmatic process for creating and optimizing computer programs and other complex software structures “using evolution” instead of writing them in the traditional ways. There are tree-shaped “genomes” that connect + signs to make Lisp programs. If you do a closer reading, there’s definitely a sense that a core goal is something very like computer programs that write themselves automatically.

Core goal notwithstanding, it’s also clear there are a lot of different approaches and techniques, and that several people invented and popularized different “schools” of Genetic Programming-like things more or less at the same time. Based on the Talk page it sounds as though some ways of doing Genetic Programming are well-known to be intrinsically better than others (though perhaps they are just more popular). And mostly there’s mutation and crossover, like in Genetic Algorithms.

You may feel as though a lot is missing from this account.

OK. Here’s a very good book I recommend highly: The Field Guide to Genetic Programming by Riccardo Poli, William B. Langdon and Nic McPhee. It’s available electronically. It provides an insider’s history and overview of Genetic Programming, it’s wide-ranging and not too technical, and it’s reasonably up to date. Go look at it now, and see what you think.

Based on my re-reading of the Field Guide, a few things become apparent:

	Genetic Programming doesn’t have to be about evolving little trees. Sometimes there are linear programs that look like assembly code in a system called Linear Genetic Programming. Sometimes little networked lego-block programs are used in a system called Cartesian Genetic Programming. Sometimes you can evolve code that looks like regular old computer programs (in a sort of indirect way) using something called Grammatical Evolution. And there are odd little programs in special programming languages designed especially for Genetic Programming, like PushGP.

 	It seems as if “evolving” code doesn’t just include “crossover”, where you take parts of two programs and mix them together, and “mutation” where you take one part of a program and replace it with something new. There are things called “deletion”, “inversion”, “insertion”, and “duplication”. Plus a lot of others.

 	There have been a lot of people with a lot of ideas, a lot of papers and names, and some subset of ideas that “made it” into the canon, but many more just didn’t make the Top 40 charts.

You know, somehow it doesn’t feel like we’re narrowing things down compared to the couple of sentences I wrote in my off-the-cuff definition. In fact, it feels like the possibilities and alternatives branch and ramify into some vast network of contingent practices and inward-facing theories and assumptions.

Maybe the trick is to look at Genetic Programming in the context of the broader technical fields in which it arose? In at least a few places I’ve seen it described as a metaheuristic used for machine learning. Now it happens that I also know of an excellent book about metaheuristics: Sean Luke’s Essentials of Metaheuristics. I vouch for it wholeheartedly. It’s full of inspiring machine learning things, all explained simply. And like the Field Guide, it’s also available electronically.

Look over that now. I’ll wait here.

Wow; you thought there were a lot of Genetic Programming techniques? Now we’ve already established that evolutionary algorithms form the basis of most Genetic Programming—that’s where we get the thing with mutation and crossover. But now it feels as though that evolutionary algorithm is just one of dozens of metaheuristic algorithms you might consider for your Machine Learning project. Assuming there’s as much diversity of detail among the people using Reinforcement Learning, Tabu Search, Ant Colony Optimization and Particle Swarms, there must be a bajillion variations floating around out there!

And so there are.

Here’s one interesting thing I noticed: Comparing the Field Guide with Essentials, it’s clear there are “official” Genetic Programming approaches that use other metaheuristics besides evolutionary algorithms. So is Genetic Programming a variety of metaheuristic, or vice versa? Maybe the other professional contexts in which Genetic Programming arose would help explain it more succinctly? That is, Machine Learning, Artificial Intelligence or Computer Science more broadly?

I suspect you know already what will happen when I make you go look for simpler answers there.

It’s about what you want

Go back to my off-the-cuff definition, and you’ll see that what we refer to by the phrase “Genetic Programming” seems to be the cumulative work of a huge number of very smart and innovative people, using algorithms inspired by biological evolution for Artificial Intelligence. It’s being used and extended by thousands of researchers and practitioners around the world. They have almost all been passionate visionaries, and have all done amazing things to….

I hesitate. Maybe that should finish, “…to achieve whatever Genetic Programming turned out to be for, in their diverse individual cases.” And they’ve done whatever that was knowing that their work was in the tradition of Artificial Intelligence.

Recently, Andrew Abbott’s enjoyable 1988 book The System of Professions: An Essay on the Division of Expert Labor has helped me understand what Genetic Programming actually is. In System of Professions, Abbott builds a broad sociological model of the dynamics of professionalization. To paraphrase (too broadly), professionalization is the social process in which people with overlapping interests and practices gradually come to consolidate their shared approach to work into a self-recognizing community. As they discuss and refine that shared approach, sometimes the community may coalesce further into a recognizable field, and a more broadly acknowledged profession.

This is a narrative pattern of course, not a rule. But it can be useful in discussing what is and isn’t Genetic Programming, because of course this arc doesn’t happen in isolation. Fields and professions constantly interact with one another, jockeying for position and prestige, recognizing and restructuring boundaries around themselves. Think of the way the many fields and professions in “medicine” have historically partitioned their separate and overlapping roles, restricted one another’s access to particular cases and conditions, and how they warrant and undermine one another’s authority.

I think Genetic Programming as a field is still positioned very early in this narrative arc of ecological self-definition—it’s surrounded by much more mature professions, and they all have a stake in what Genetic Programming becomes. We have a Field Guide because it’s still a loose and relatively informal pattern of shared beliefs, goals, habits and technology, shared across disciplinary and geographical boundaries. As my old colleague Rick Riolo has said several times, Genetic Programming is “an art trying to become a craft”.

It is tempting to think that the biologically-inspired algorithms with crossover and mutation, and the goal of Artificial Intelligence, those are what give “Genetic Programming” its cohesion.

But here’s the thing. As the field has coalesced around the use of those tools, it’s done so in the context of its “neighbors’” beliefs, goals, and habits. There are “parent” professions like Computer Science, Artificial Intelligence and Machine Learning; “outside” professions like Operations Research, Generative Art, and Statistics; “domain” professions like Bioinformatics and Mechanical Engineering. And they’re all vying for the same turf, in one way or another.

It’s rather confusing, as I hope I’ve pointed out.

But I have a cunning plan: let’s you and me walk away and let them all work out amongst themselves what’s “artificial intelligence” and all.

Answer factories

The projects you and I work through in this book will sound a bit like Genetic Programming to my old colleagues in the field. But as I said earlier, I’m going to carefully use “GP” to describe what we do here.

By saying we’re “not doing Genetic Programming” I’m not making any claim of novelty or originality. Heck, as far as I know nothing we do will be original. Full credit to the inventors.

The reason is simpler: it’s because Genetic Programming is commonly defined as being a kind of Artificial Intelligence. We are not doing artificial intelligence in this book. We won’t be building software to do “automatic” creativity, invention, or design.

 We’ll be building and managing software systems in support of creativity, invention and design.

Unlike some Computer Science and Artificial Intelligence projects you may have been involved in, you and I are here to learn how to write and deliver working software. We’ll focus on methods for representing technical knowledge, and surface the implicit goals of domain experts, and usefully adapt their expertise over the course of a project. Yes, we’ll use some tools from AI research. But above all we’ll be exploring and building habits for coping with the inevitable confusion that arises when one engineers emergent systems.

That’s not Artificial Intelligence. It’s project management.

The field of Genetic Programming provides much of our toolkit. But because our focus is not the “embodiment” of discovery, creativity or invention in an artificial system, the work we undertake together will owe at least as much to Agile software development, Information Science, and the Pragmatist philosophical tradition.

Again: Our goal in these “GP” projects is the delivery of value by massively accelerating design, discovery, invention, and creativity. That’s human design, discovery, invention and creativity. Specifically yours.

The cost of generative projects

You and I both want there to be invention machines someday. But there are inventors already, so let’s start now with what we have on hand.

A generative project is one in which the central goal is the production of novelty. I’m talking about things people already do like engineering design, explanatory modeling and data mining, technical trading and web startups, mathematical proofs and game design, generative art and city planning. Big, ambitious projects, maybe not with a lot at stake but large in the sense of possibilities to explore.

I’m not talking about “optimization”, or any other project where you’ve already got a strong idea and just want to fill in the best numbers (for some definition of “best”). There is no “best” answer in any generative project: the substrate is you, and the goal is inspiration. Put another way, “useful surprise”.

Whether they involve GP systems or not, generative projects can entail massive commitments of technical skill, time, and infrastructure. You may think design or invention is “done” when an artist sketches a layout, an engineer draws on a napkin, or a trader intuits a pattern among some indicators. But I’m counting all the work, and as far as I’m concerned a useful result hasn’t been delivered until that initial inspiration has been considered, refined, executed and tested—often through many iterations and restarts.

There’s a little in-joke that’s popular among my friends. A lot of us seem to run into entrepreneurs that “have a great idea, but are looking for technical cofounders”, and when we do we say, “Every million-dollar idea is born costing $50000.”

Of course it’s not a joke; that $50000 is the infrastructure cost, the setup cost, the test and revision and build-out. If you’ve ever worked on a generative project, you know already that results tend to be incremental, and that “finishing” usually means running out of resources. Game-changing inspired blue-sky innovations are not a thing you start with; you need to work your way towards them over many iterations of carefully-considered incremental change.

Most architects’ houses are only slightly different from other people’s, most drug designs are variations on known compounds, most circuits are combinations of well-studied examples. Even successful generative projects rarely produce really “weird” stuff.

I don’t think this bias crops because blue-sky inventions and designs are “failures” more often than incremental ones. And I don’t think it’s because a domain is “getting used up”—that there’s nothing new left to do. I think we see incremental progress because the infrastructure needed to realize an idea is expensive. Consideration, refinement, execution and testing require people, experience, time, attention and other resources. Especially in technical fields, those chunks of infrastructure can be so complicated that they spawn their own “sub-projects”: to test new circuit designs you may need to write a new simulator; to check a novel structural model you need to hire a civil engineer to stare at your ingenious floor plans. Or you may just have a perfectly reasonable and awesome new idea that’s so different from the norms that there’s no standard by which it can be evaluated.

Incremental generative projects are the norm because they let us re-use expensive cognitive infrastructure. It may not even be affordable to begin work on a blue-sky project, unless your new idea is mostly like an old idea. One you’re already equipped to deal with.

And that’s how GP accelerates generative projects. It embodies and automates that expensive infrastructure, and speeds up the rate at which useful surprises can be practically realized.

GP is a prosthesis

So what about “invention machines”?

One of the delights of my career has been the time I’ve spent with engineers and scientists who’ve built and used Genetic Programming and “invention machines”. Several have won the Human-Competitive Machine Intelligence award. They’re not smug people. Rather, they tell anybody who’ll listen how surprised they were by what they were shown when the results started pouring in.

There’s that word again: surprised.

Over the same decade I’ve worked with teams who were trying to replicate and extend published “invention machine” approaches in new domains. These are folks charged with duplicating and re-mapping successful Genetic Programming projects from the original project to address a new problem in some other domain. That’s the promise and the real focus of artificial intelligence work, after all: generalization.

Most fail. Trust me, it’s challenging. “Automated invention” is hard. Making a computer do what a human inventor or programmer or artist does is hard. I deeply admire the Genetic Programming trailblazers whose goal has been to capture human creativity and intelligence in machines.

It’s so hard, I’m happy to leave Genetic Programming with its goal of artificial intelligence to my colleagues. That way, we can move along in another direction.

The work I’m calling “GP” isn’t artificial intelligence, it’s a prosthesis for accelerating your work. Yes, we’re talking about the same kind of projects my friends with invention machines work on: lens design, puzzle solving, game playing, artistic inspiration, software repair, and esoteric mathematics. We’re just not trying to put “invention” into our computers.

You and I will do the same sort of thinking, drawing, calculating, implementing, checking and trying-stuff-out that we would have done drawing on a blackboard or scribbling on a beer mat in a “traditional” people-only design project.

But much faster. Surprisingly fast. Instead of launching and watching an autonomous “invention machine”, you and I are going to build and manage Answer Factories.

What’s an “Answer Factory”?

I use the phrase to refer to a design pattern, an abstract way of structuring useful GP software and the habits its use entails.

The point of this metaphor is not to surface the detailed engineering work that goes into designing, setting up, and maintaining a real-world factory, but rather to suggest a fresh way of working. In modern computational work we have a tendency to think of the versions of the programs we write as drafts leading towards an eventual “final” thing, and treat each run of those programs as a sort of acceptance test. That’s a perfectly reasonable way to work under some circumstances, not least because it lets the programmer keep everything about the project in their heads all at once.

You see this “draft-running” process in many computer science projects, and indeed in almost all the computational fields. One develops a project goal, then writes and runs some code that may work, and then enters a cycle of several (or many) iterations in which one re-writes and then re-runs one’s code with the goals of making it faster, more efficient, and so on. This is a time-honored approach to engineering, and a good one in many circumstances.

But not in this work. I think the habit of “draft-running” is single biggest reason Genetic Programming is so confoundedly frustrating. Consider for a moment that you’re developing software that is supposed to learn what it is you want. In developing it, you write a bit, test it by watching it learn from scratch… and when it proves unsatisfactory (which it will), you shut it off and make changes, and then start it up again. From scratch, from “infancy”, quite possibly from random initial conditions. If your goal is in any real sense answering the damned question, you will have spent the vast majority of your time collecting substandard results produced in the beginning of each “draft” run… over and over again.

We will not be doing that.

In designing, building, and maintaining Answer Factories, I take a very different approach to GP projects. Just like a real-world mill or factory, an Answer Factory has a very simple abstract structure in which raw materials are continuously transformed incrementally into “product”. They are conveyed from one workstation to another, and the overarching goal is to increase the “final” production of useful and interesting variations.

An Answer Factory is a software process that produces what amounts to a continuous feed of Answers. As we build and improve such a process, we try to avoid “shutting it off and starting from scratch”. Rather, we’ll build the simplest possible Answer Factory that could work for our problem of interest: it will sit there, guessing forever.

As it happens, guesses aren’t usually very good Answers to interesting problems. Our goal thereafter is to append to that flow of guesses certain software processes that “refine”, and “polish”, and in general improve the quality of the Answers our factory produces. Being able to do so requires process monitoring infrastructure, and we’ll be forced to make decisions about what makes one Answer better or worse than another. And because “guessing” tends to be a faster process than the more detail-oriented Machine Learning and Genetic Programming techniques we’ll be using, we’ll need to pay attention to balance between the rate at which raw guesses are made, and the outputs of “workstations” in which “learning” and “insight” are brought to bear.

Most interesting: as we become used to Answers of increasing “quality” coming out of this long-running process we’ve built, perhaps we will begin to learn what it means for us to be “done”. Every interesting problem permits not just generalization, but serious thought about goals, trade-offs, and the narrative framework in which it arose. The real utility found in building and running an Answer Factory lies not so much in the particular Answers obtained, as in the changes the work can make in the nature of the problems you explore. Sometimes the best “answer” to a problem of interest is a refinement of the way we phrase the problem itself.

To summarize: An Answer Factory is a long-running software process that “serves” a continuous stream of Answers to your problem, and which is afforded certain controls and sensors that allow you to usefully (and sometimes predictably) change certain qualities of the Answers being produced over time.

What to do

Work is practice

As I said in “About This Book”, my goal is to instill a “warranted sense of confidence” when you use GP in generative projects. All the people I’ve met who have that same (warranted) sense of confidence have written the code themselves.

So first of all, you and I are going to write code.

Also, we won’t be working on toy problems. “Toy problems” in this context are those little self-contained examples you find in most textbooks and introductory papers, which are designed to surface special cases in which some theoretically tractable approach can be easily applied. They can be extremely useful, especially as benchmarks, or for showing how algorithms work in an “ideal” situation without all the messy junk that a real-world problem throws in to make stuff intractable.

But it’s that real-world mess that is the focus of our work. The mess that makes “invention machines” hard. The “mess” is what we’re going to pay the most attention to as we implement our answer factories, not the algorithms.

I’ll be right there with you, working through the projects slightly ahead of your schedule. Fair warning: they’ll be messy and full of dead ends and surprises and maybe even a couple of useful disappointments.

That may sound ambitious. Or maybe arrogant: who am I after all to think my work process is useful to you? But there’s a useful trick in the midst of it all: GP is simple when you don’t ask it to be intelligent.

For example, I shouldn’t really need to teach you any new programming skills. Just software design patterns that I’ve found helpful when building software in support of the things people do in their heads when they design. You may not have thought about these particular things before, but the code we’ll write isn’t difficult to describe or implement.

Just remember: we’re not trying to capture a Muse in a box of software, just speed up the hard parts of exploratory programming and design. Mostly we’ll be thinking about what normally happens, and trying to identify places where we can speed things up (or remove them if they’re bad).

Small steps, and frequent review

We’ll be working incrementally. Each project is broken down into a series of large-scale stages, and each of those stages is broken down further into a lot of little incremental steps. At the end of each increment you’ll still have a working system that does something useful.

This lets you focus more on the project than the theory or the algorithms. Which is the point. If you want to focus more on the underlying theory or the advanced algorithms, by all means crack open the technical literature in the appropriate field and knock yourself out.

Familiar tools

I want you to use your favorite programming language, and run your code on your own computer. The results you get should be independent of the language you pick to work in, and none of these projects will strain the resources of a modern laptop or desktop machine. Try to pick a programming language you’re comfortable with. You’ll spend plenty of time scratching your head and writing tests to explain why your code does what it’s doing; it doesn’t help if you’re learning a new programming language at the same time you’re dealing with emergent behavior.

When I talk about the code I’m writing myself, I might pick a language that isn’t the one you’ve chosen. Even if we do both pick the same language, I won’t be surprised if I start writing code for specifications you’d rather do last, or use testing tools or idioms that you find unfamiliar or off-putting.

Remember: you’ll be writing your own codebase. Your goal is to reproduce the behavior and features of my codebase with your own. The way we keep your work and mine coordinated is not by you copying my code, but by diligent use of the acceptance tests and specifications we both use. By all means come to the book’s Google group and show off your work, or go to GitHub and post the source code for other people to admire.

Again: almost nothing in GP requires “advanced programming skills”. Some algorithms be a bit esoteric, and we may use libraries that neither of us really understands, but really GP is just looping and string-handling, arrays (or collections or lists or whatever your language calls them) and a lot of random number stuff.

Less rocket surgery, more mindfulness

One thing I’ve noticed about stepping back from “invention machines” and Genetic Programming to “answer factories” and GP: the work won’t feel like advanced or exotic Computer Science or Machine Learning. It’s quite different from academic computer programming in many ways. Indeed, folks who have grown up in an academic programming culture will probably find the habits and techniques we use here as “advanced” or “exotic”, not the algorithms.

If you’ve learned anything about software development as it’s done out in the world, you’ll sense similarities between those habits and the practices of agile software developers. That’s no accident.

I feel obliged to point out that I’m not trying to “evangelize” you or force you to adopt agile software development methodologies in your daily programming work. I’m trying to keep your GP projects from failing because you think being a smart coder is all you need to cope with the accelerated pace of discovery that GP can induce.

It isn’t.

When GP accelerates the rate at which surprises arise from your generative projects, it doesn’t differentiate between “useful” surprises and “nasty” surprises. The habits we’ll be learning are reminiscent of those of a good agile team because the agile practices address clarity of goal-setting and the reduction of project risks.

In a generative project without GP, success usually depends on how well you frame the problem, think about your goals and problem constraints, and adapt in response to insights you learn as you explore alternatives. In a generative GP process, alternative designs arrive a thousand or a million times faster; you’re under far more pressure to think and adapt.

GP is simple, but that doesn’t mean that accelerating an interesting generative project is easy.

The work part

In addition to the habits and design patterns we’ll cover together, there are four or five pieces of project infrastructure that every GP project seems to require. You may not have seen them mentioned elsewhere; most Genetic Programming papers and tutorials pick problems where most of this infrastructure is built into the programming language, or is available as an external library somebody else has written, or is so simplified that it becomes trivial.

Nonetheless, by the time you finish a generative project that uses GP, you’ll have developed each of these components:

	a reasonable and interesting question that spells out what you’ll be looking for;

 	a domain-specific scripting language that describes the set of possible answers; this may include an “interpreter” that transforms the scripts into some other representation that can be evaluated in the appropriate context;

 	a problem-specific context in which the scripts are made meaningful; it may be as simple as an arithmetic function evaluator and some input data, or as complex as an actual real-life physical helicopter that runs your scripts trying to navigate an obstacle course;

 	a method for scoring the performance of answers in a meaningful way.

We’re going revisit this list in every project. More than once, since these items will be the primary focus of our attention, not the GP code itself.

Note I said “by the time you finish”. There’s no particular order implied, and indeed it’s more likely that you’ll come up with a reasonably interesting question after you’ve started developing the domain-specific language and started scoring some random “answers”. We’ll visit all these points more than once in each project, refining and reconfiguring them in relation to one another.

Now let’s briefly discuss how.

I On Tools

I On Tools

1 Technical toolkit

1 Technical toolkit

Hardware

The computer you have now will be just fine.

All the projects should work on any modern laptop or desktop machine. You should be in no hurry for most generative GP projects: there’s a tendency folks have to get impatient, and want to run their GP code on big clusters and fast clouds and stuff. If you ever find you’re inventing on a tight schedule, the problem may not be the algorithms you’re using.

But for the purposes of our work here: if you can play a fun game on your computer, it should be powerful enough for most work we’ll do.

Code

You, personally, should write code. With a partner if you’re pair-programming, or by yourself if you aren’t able to find one.

In most of the projects I’ll also be writing the code. That’s so I can show what it does and discuss why I’ve chosen one path over another. The expectation is that even then, with my code right in front of you, you will still write your own code. Not by copying my code, but by designing your own libraries that make the same acceptance tests pass.

Both of us will have the acceptance tests: they’re the only way we’ll know our code does the same thing in the same situations.

So pick your favorite programming language. Pick a language you know best already, or maybe one you want to learn a bit better. Try to choose one that makes the basic tools of software development—string handling, simple math, arrays and stuff, and most important of all test automation—easiest for you. It can be compiled or interpretive, interactive or batched. Almost any language you want to work in will be just fine. This isn’t a book about writing Ruby or Java or Julia or Dart or Closure or Javascript code, it’s about algorithms and the amazing things they can do, practices for setting up and managing generative GP projects, and GP design patterns that simplify the process.

You can even choose to work in a “kept” programming language, the kind that only runs within a particular software framework, like R, Octave, Matlab or Mathematica. As long as you also install one of the test automation libraries that exist for those languages.

The algorithms we write will actually be relatively simple, unless you make them more complicated than I ask, or find a way to improve them. I hope you do, and that you’ll share and show off those improvements. Maybe via the Google group I’ve set up, maybe on GitHub.

Testing

I’ll always present acceptance tests for everything I build. Make sure all the acceptance tests all pass for your code before you think of yourself as “done” with a particular stage of a project.

Most of the tests I’ll include are written in the Gherkin language, used in the Cucumber automated testing framework. They’re plain text, and very readable.

You may not have seen them before, but if you’ve chosen to work in Ruby, Java, .NET, Flex, or any of several other common languages, you should be able to download and run the .feature files I provide. Even if you don’t use a platform or language that’s immediately compatible with the Cucumber testing framework, you can use the feature files to drive your acceptance tests. At the very least, use the Gherkin lines as comments for automated tests in your language.

For example, suppose I say your code should do this:

 ...
 Scenario: multiplication pushes the product of 2 stack items
 Given the Pile script "1.2 3.4 *"
 When I execute it
 Then there should be 1 item on the stack
 And the top stack item should be 4.08
 ...

By saying I want an acceptance test, I mean that I want you to write a “check routine” in your language of choice that demonstrates your library does exactly what that specification describes. Each line of code in Gherkin is a step, and within a particular scenario the steps are executed in the order they appear.

	[line 2, Given] Invoke your library to make a “Pile script” (whatever that is; you’ll know when it’s time), with "1.2 3.4 *" as its initial value;

 	[line 3, When] your library is invoked and the Pile script is “executed” (whatever that means);

 	[line 4, Then] as a result of executing the script, I assert that there is some kind of “stack”, and that it has one “item” in it;

 	[line 5, And] and I assert that the item on the stack “is” 4.08.

The point of an acceptance test like this is that it frees you from needing to copy my code, and indeed it lets you write your own code however you want in whatever language you want. As long as your code does what my tests specify, we can both assume your library and my library behave in the same way. I don’t really think you’ll learn what you need to do by simply copying and running code, so as soon as I can I’m going to stop including my own material here, and just include the acceptance tests.

If you’re able to install and run Cucumber (or one of its close functional analogs in some other language) the process of writing and running the code to make these acceptance tests pass is surprisingly straightforward. There’s a lot of useful infrastructure built in that handles namespace clashes between tests, and simplifies the use of regular expressions in the steps so you can reuse steps.

Even if you’re not using a Cucumber-compatible system, that’s fine. You should still write acceptance tests that exercise your code to ensure it does the same thing as mine. The structure and meaning of the test I want you to run should be obvious from the series of steps.

If you can’t find an acceptance testing framework for your language, at least fake one: take the .feature file, make it into comments in your editor, and in between each comment insert the code that does what the comment calls for. Something like this, maybe:

 ...
 # Scenario: multiplication pushes the product of 2 stack items
 ^testname`set('multiplying stack items')

 # Given the Pile script "1.2 3.4 *"
 ^pilescript`set('1.2 3.4 *')

 # When I execute it
 ^interpreter`set(PileInterpreter`new)
 ^interpreter`setscript(^pilescript)
 ^result`set(^interpreter`run)

 # Then there should be 1 item on the stack
 Global`assert(^testname, ^result(stacklen), ==, #1)

 # And the top stack item should be 4.08
 Global`assert(^testname, ^result(stackpop), ==, #4.08)
 ...

What awful language is that? No idea; I just made it up. But you can see how I’ve inserted the Gherkin code lines as comments right there between the code that does those specific things.

In any case, I really mean it:

[image: warning]Find a way to put your codebase through its paces. Use the acceptance tests I provide in the text, downloading them from the support site as needed. Code you write cannot be considered “done” until you’ve demonstrated that all the requisite acceptance tests pass. There’s a very good reason for this insistence. We’ll talk about it a lot as we work.

Refactor, but don’t optimize

I find that smart folks can’t wait to make their programs more efficient. They’ve learned all the best ways to do that in their computing classes or their work experience, and they feel it’s their duty to apply all that skill whenever something comes along that might take some extra milliseconds or bytes.

Of course I think you should refactor your code. You always do that, right? That’s not what I’m talking about.

No, I’m talking about the Computational Complexity Fetish. There will be times when I ask you to write and execute an algorithm that is in fact inefficient. Code we write will be sub-optimal in terms of speed or storage or memory.

I promise I have checked in every case: you will not run out of time, or disk space, or memory. Cross my heart. So do not fiddle with the algorithms. At least not until I tell you to. Especially if you’re an experienced software developer, there’s going to be a strong temptation to improve things as we go so you “get the right answer faster” or “avoid wasting memory”.

I’ll tell you when you can try. It’s an object lesson everybody ought to have. And when you come back after trying it, I won’t even smile when we discuss what happened.

The Literature

I mentioned the The Field Guide to Genetic Programming, and Essentials of Metaheuristics. You may also find inspiration in an older book called Genetic Programming: An Introduction by Wolfgang Banzhaf, Peter Nordin, Robert E. Keller and Frank D. Francone. And of course the foundational documents of the field of Genetic Programming are John Koza’s several large tomes, affectionately called “Jaws I” (Genetic Programming: On the Programming of Computers by Means of Natural Selection) through “Jaws IV” (Genetic Programming IV: Routine Human-Competitive Machine Intelligence).

All are in their ways excellent and inspiring.

But there won’t be any wide-ranging history lessons or lists of smart people and their Genetic Programming ideas in this book. I’ll include links to online documents that aren’t behind paywalls, and mention books and papers that may be useful.

I’m not going to “pull a Wolfram” here: The ideas I’m exposing you to are (as far as I know) all other people’s ideas, and a vast portion of those people are academic. If any appear to be original to me, I can quickly point out they must still be my immediate responses to other people’s books or papers or talks.

Look, I can lean over in my chair and see bookcase full of volumes talking about fancy techniques like Grammatical Evolution, Cartesian Genetic Programming, Linear Genetic Programming, and Evolvable Hardware. Plus an easy three dozen conference proceedings volumes and tutorials and workshop thingies. And those sit right next to the special-topic books covering GP applications in Financial Engineering, Quantum Computing, Bioinformatics, Robotics, and Operations Research.

They’re all the same thing as far as we’re concerned: design patterns. I’ve read most of them several times, so will pick whatever seems appropriate for the project we’re working on at the moment. By picking, I’m not implying that any one method is “righter” than another, no more than a programmer implies that a paired arrays are “righter” than key-value pairs in a given context.

Treat that literature as a source of boundless inspiration. Make sure you take a look at the sprawling GP bibliography Bill Langdon keeps.

And one more thing: Do not cite me in your academic papers. If you’re the kind of person who feels obliged to cite things, go find the papers published by the people who should be cited, and refer to those. The academics need your support. I have no horse in that race.

Analytical tools

You’ll need to be able to plot charts easily. A spreadsheet won’t work, since these will be really big plots of hundreds of thousands of points.

The simplest approach, and the one I recommend, is to download and install the (free) open-source R package on your computer. I’ll provide all the R code you need to produce the minimal plots. But to be frank, something like R will be a useful helper when you start working on your own GP projects.

That said, you can almost certainly do the same sorts of things using Mathematica, Matlab, Octave, or even a special-purpose numerical computing or plotting library in Java, Python or Your Favorite Language.

Project management tools

You should use version control to manage your project files. Don’t depend on your file system’s hierarchy and your own memory to keep track of changes, experiments and variations.

I use git, and if you use it too you’ll also be able to download the most current versions of the project specifications directly from GitHub.

I find it necessary to use an issue tracking system and kanban board in all my work too. You can use paper and pencil, a simple spreadsheet, or an online tool, but I recommend you set something up.

2 Cognitive toolkit

2 Cognitive toolkit

GP in one 3×5 card

As I said several times in the Preface, one core premise of this book is that GP is simple.

If you have a technical problem you can model with software (whether it’s part of a generative project or not), then applying GP to find answers to that problem entails looping over these three steps until you’re done:

	Randomly create one or more Answers to your problem, biased according to what you’ve learned so far about what makes a “good” answer.

 	Assign scores to each Answer, one number for each goal, indicating how well that Answer satisfies you regarding that particular goal, in the context of your problem.

 	Manage your GP system based on what you’ve learned. Management decisions may include any or all of
 	updating the data and algorithms you use to bias the selection of new random Answers,

 	reconsidering the evaluation criteria you use to compare Answers,

 	modifying the language you use to represent Answers

in order to create ever more satisfying answers…

That is all.

They say a user story like this one represents a conversation. Think of the rest of this book as a conversation exploring this one little user story.

This loop should be familiar. It’s reminiscent of many simplified diagrams of iterated workflows. It may sound a lot like an OODA loop, or the Agile development cycle. Or just about anything Herb Simon ever said about decision-making.

Not a coincidence.

What actually happens in a GP project?

While there’s no counting all the methods and techniques available for you to use when managing your GP project, as I said in the Preface there are four things you will always develop in due course:

	a reasonable and interesting question that spells out what you’re exploring;

 	a domain-specific scripting language that describes the set of possible answers you’re willing to consider; this may include an “interpreter” that transforms the scripts into some other representation that can be evaluated in the appropriate context;

 	a problem-specific context in which the scripts are made meaningful; it may be as simple as an arithmetic function evaluator and some input data, or as complex as an actual real-life physical helicopter that runs your scripts trying to navigate an obstacle course;

 	a method for scoring the performance of answers in a meaningful way.

Unlike the sort of list you’ll find in George Pólya’s (excellent) book How to Solve It for solving a mathematical problem, there’s no order implied by my list. I don’t mean that first you need to frame a reasonably interesting question, then write a domain-specific language. Indeed, in practice we’ll start working without much of anything in hand, and revisit each of these several times and revise and reconsider before we’re done.

That said, they do feel like inevitabilities in a way. I suppose they’re tied up in the definition if GP somehow, or maybe the definition of generative problem-solving more broadly. But let’s leave the philosophy aside for the moment.

We’re going to be focused on generative projects. I mean those projects where the core goal is a solution to a puzzle, the unveiling of some new explanatory vision, even some sort of wish or need. It can be driven by a specific sense you have that there’s a missing invention in a particular domain, or it can be as vague as a need to summarize a head-scratchingly complicated pile of unexplained data. It can be your research, your business, your life’s work or your homework assignment. It can be as simple and self-referential as a well-studied “toy system” you explore to understand GP better, or as ambitious as the quest for a patentable engineering design or a novel work of art.

At its core, each generative project is just a perceived lack. Some sense of missing value.

A reasonable and interesting question

Every problem evokes a cloud of questions. Each one of those can inform the little steps we take as we address the larger problem. They’re the sub-projects that carry us forward a bit before we need to check where we’re going next. Some questions are interesting, some are reasonable… but the most satisfying are reasonable and interesting.

Pólya would have told you that you should understand your problem first, determine what you’re being asked, and then formulate a plan. But the projects he was describing were not generative in the same sense as ours. We’re not looking for the right answer, we’re looking for a usefully surprising answer.

So you may have a reasonably interesting question already about some project you have in mind. In our first work here, we’ll be looking at a puzzle game called Cargo-bot, and the obvious question I’m forced to ask is, “Can we solve a Cargo-bot puzzle using GP?” That’s enough to start with, but it will change many times as the project unfolds.

Expect to improve and change and expand it frequently as you work, until you’re satisfied the project is complete. Remember, we’re not looking for the answer, we’re on an open-ended search for value. That will always change as you move forward, in any project.

A domain-specific scripting language for Answers

In generative GP projects, we’ll treat an Answer as a single potential solution to your problem: one model, one design, or one plan. Not the final result, but rather any possible result you might consider, good or bad.

We’ll build our Answers in this book using a simple two-component structure: a script plus a context.

I’ve already said that GP can help you consider a million alternative Answers in the time you’d traditionally have explored one. To do that, it needs to be able to make Answers up in a reliable way. The easiest (but not the only) approach to this is to build a formal Answer Language. This formal language implicitly defines the set of alternative structures you’re willing to consider and which you’re not: any semantically and syntactically valid script in the language is a potential Answer by definition.

If you want an optical design, scripts in your Answer Language should represent arrangements and sizes of constituent parts: lenses and irises, gratings and glues, distances and diameters.

If you want a circuit design, scripts in your Answer Language should represent arrangements and types of those constituent parts: wires, capacitors, transistors, logical gates and batteries, RAM and LEDs… whatever your question suggests will be reasonable and interesting.

If you want a mathematical proof, your Answer Language might represent simple formal mathematical statements, capable of being arranged in the ways you’d expect to see them used in a correct proof.

If you want a song, your Answer Language should be able to mean many different songs.

If you want an explanation of demographic data, your Answer Language should include the variables and functions you’re willing to consider as explanatory: averages and extremes, formal terms for time and space and money (as appropriate), ways of counting and comparing, and of course a way of relating what you see already in your data to what you imagine may be true.

If you want to find useful shift rosters for a given set of nurses at a hospital, your Answer Language should be able to talk about many different schedules, people and times, and the fact that one person can’t be in two places at the same time. But if you want to find algorithms to write good shift rosters for many situations, then your Answer Language should include the components of scheduling algorithms themselves, including the Language that talked about schedules and also the tools you or I might use to arrange or think up or improve one: swapping, counting, moving and filling, deciding and looping.

Writing an Answer Language can be challenging; the more ambitious the project, the more effort will go into it. This is a good time to be reminded: We will start small and expand it to fit.

“Answers” are of course called that because they’re the answers to the questions our project has led us to ask. But I told you that we might not frame the reasonably interesting questions until after we’ve started composing our Answer Language. How, you should be wondering, could one possibly design a language for Answers without first settling on a particular question?

 Let me tell you a story.

 Once I was working on a generative project in which we were looking for engineering designs. Say they were lenses, for the sake of nondisclosure agreements. The multinational company I was working with was in the high-end optics business, so already we knew that whatever we decided to “ask” it was already pretty clear we’d be generating lens designs as part of the project.

 So we started to compose our Answer Language for lenses: we wrote some stuff about glass and air and oil and water, and some ray-tracing, and some things involved in irises and such. We constructed our Answer Language so it was general enough to cope with all the possible shapes optical components might be, and all the typical materials those parts might be made from—not just the ones you could buy from the catalog.

 During one meeting, the manufacturing engineer from one of the company’s assembly facilities was watching our discussion, and he interrupted when we squiggled a lens on the whiteboard that had a big bubble of oil in the middle of it. We’d drawn it that way just to make the point that it was possible for that kind of weirdness to happen in the Answer Language we’d built, and we wanted to make sure with the engineers that it wasn’t going to be misleading later on. “Hang on! What the bleep is that!?” he said, and so we wiped off the bubble and kept chatting while he frowned and scribbled on a notepad.

 During lunch we simplified the Answer Language we’d developed so that it wouldn’t put bubbles in the lenses, so the allowed Answers would be more “normal” catalog-variety affairs. But after lunch the manufacturing engineer was grinning, and he quietly said he’d filed a provisional patent on “something very nice”, and then he quietly made us put the bubble thing back in. And it was about then that the clients decided on their first reasonably interesting question: In what sorts of situations might it be useful to have a weird bubble in the middle of a lens?

 And that’s how you can design an Answer Language before you’ve settled on a particular question. A language is a lovely broad and general thing, and sometimes a particular turn of phrase will suggest something remarkable. You may even find your ultimate goals right there in the starting questions you ask when framing your problem.

A context for interpreting Answer scripts

Every Answer script, even if you imagine in your head that it “represents” a circuit or a scheduling algorithm, is just a string of characters until it’s placed in a context where the meaning becomes apparent.

A circuit design script will only reveal its function in the context of a circuit simulator. A mathematical proof script needs a solver or a prover or a “math engine” of some sort.

Some scripts, especially those for explanation and the design of algorithms, end up looking a lot like regular old computer programs. But remember that the context here is not just the interpreter or compiler that runs those scripts, but also the problem-specific details: the data, the inputs, the arguments, and the other material that gives it functional meaning.

Some scripts will call for something in the physical world as a part of this context. In aesthetic projects, for example: it may be that a “song script” is translated into sound or musical notation, and then reviewed by a person. The reviewer is a part of the context. Or a control script for a robot helicopter may have to be uploaded to an actual helicopter to run an obstacle course before its function becomes entirely apparent. The helicopter and obstacle course are part of the context.

Context design is often obvious from the question you ask. But before settling on the context too quickly, take into account that you should expect a GP project to execute a hundred thousand Answer scripts, maybe running each script many of times. Better to expect a million or a billion Answers over the lifetime of an interesting generative project.

As with the scripting language itself, the presence of a context may be what drives your project. It need not follow.

Assigning scores

In the 3×5 card I used the phrase “one number for each goal”. Let’s speak briefly about that now, and much more in the projects themselves.

How “good” is a circuit design? Clearly one that comes closer to the target input:output mapping is better than one that makes random lights flash. But at the same time, one that uses 50 components to do the same work is somehow “better” than one that uses 35000. And one that won’t blow up or even smoke a little when you turn it on, that’s better than one that goes “pop!” and turns off the lights in the house.

How “good” is a stock-trading algorithm? Clearly one that makes more money over six months is better than one that loses money over the same six months. But also, one that makes a little money every day is better than one that loses money almost every day, but wins big now and then to compensate. And maybe—for you—one that trades five thousand times a second isn’t as good as one that trades five times a day, all else being constant.

There are multiple goals for any interesting engineering project. Moreso for generative projects. You want the thing that works well, but also a simple and cheap one. You want the drug that’s effective and nontoxic, the algorithm that finds a good solution in a reasonable length of time.

Your GP system doesn’t know about “performance” or “simple” or “cheap” until you tell it about all of them. Those are intangible consequences of arbitrary design decisions. Scores and scoring mechanisms are the way you talk to GP about these intangibles.

For historical reasons, most of us are trained early in life into thinking of “better” and “worse” as a single score on a single axis. A big part of success with GP depends on you getting over that habit, and realizing that the fastest isn’t always the best, the safest isn’t always the cheapest, and that conflating goals isn’t helpful.

Do you want the faster, more expensive car? The slower, cheaper one? Or the one that’s pretty much in the middle for both? You can’t answer (or at least you shouldn’t, until the last moment), and so you shouldn’t be adding things together or boiling them down.

The other habit we’ll need to work through is crucial for defining a score usefully.

In the first project, we’ll start by searching for a solution to a puzzle-game. You might imagine we’ll use a test to determine whether a given Answer solves the puzzle setup or not: something that returns true if it’s right and false if it’s wrong. As a software developer, one is (usefully!) trained to think of software we’ve written as being either working or broken. The best software developers I know always take the time to write automated pass/fail tests before they write even one line of code in the program they’re working on.

In many of the domains GP can be used—simple-sounding things like exploring the structure of puzzles and games, abstract ones like mathematical proofs or the discovery of new algorithms, eminently practical ones like the discovery of treatments for diseases or controlling a robot—there is also a tendency to think of answers as either working or broken. After all, what’s a “half-solved” puzzle? A “half-complete” proof? A “half-cured” patient? A “half-functioning” patrol bot? Makes no sense.

Yes, but: You’ve got a better chance of finding a needle in a haystack if you have a magnet.

In GP we’re randomly generating Answers, and evaluating those. Then, based on what we observe about the scores we assign to certain structures, we learn how to bias the subsequent random generation of new answers. GP depends on random generation1 of answers, no matter what; the important part is the learning, and the adaptive changes and biases we introduce over time in how randomly generate new answers.

Now think how that works if we’re looking for a solution we treat as being a black-and-white do-or-die absolute. We’re going to be looking for the solution to a puzzle. Imagine we’ve done the work building our scripting language, and also a puzzle-solution checker, and so we start off with a few random scripts that represent potential solutions to a given Cargo-bot puzzle… and we evaluate them.

If we evaluate them the way we think of them, as black-and-white solved/unsolved pass/fail pairs, then here’s what the sequence of evaluations will look like: no, no, no, no, no, no,…

And so on, for a very long time. A long time, because if we could guess the answer right away we wouldn’t have bothered using GP in the first place, would we?

This is hard to learn from. We call it a “needle-in-a-haystack” problem, because you can glean almost no information about the structure:function relationships in this problem, except “not that, or that, or that…” and so you may as well guess forever, or at least until you get a yes. Consider this process:

 Me: “What number am I thinking of?”

 GP: “91?”

 Me: “Nope.”

 GP: “–7121?”

 Me: “Nope.”

 GP: … [continues forever]

Now compare with this other process:

 Me: “What number am I thinking of?”

 GP: “Oh, I don’t know, how about 91?”

 Me: “You’re off by 71.”

 GP: “Hmm… 20?”

 Me: “You’re off by 142.”

 GP: “162?”

 Me: “Very good!”

GP, like most metaheuristic approaches to problem-solving, won’t work very well at all if you don’t give the learning parts some sort of access to information about those weird “half-done” solutions. Even if there is nothing interesting to you besides absolutely correct ones.

If you’re searching for general-purpose problem-solvers, then you can count the proportion of various training and test puzzles a given Answer script manages to solve. You have a binary yes/no question for one puzzle transformed into a much more useful monotonic measure.

If your Answer Language has any randomness cooked in, you might consider running the scripts a bunch of times (from the same starting conditions), and then reporting the proportion of hits to misses for any given answer.

If the process by which an Answer is evaluated involves some sort of dynamical process (like folding a protein or running a robot), or any sort of measurable structural regularity (like targets locations in a simulation, or sequences of letters in a protein sequence, or even the arrangement of parts) you might consider some sort of “distance” as a score. If you can assign a meaningful number of some sort to the question of how different any two outcomes are, then you can talk about how “close” one answer is to a given goal.

Exploration and Exploitation

Looking over all that infrastructure, it may strike you that we’ve talked very little about crossover and mutation, populations and stuff that sounds more like Genetic Programming.

And you’d be right. What I’ve described in the loop is equally applicable to traditional modes of design or invention, whether you sit in front of a whiteboard and pace like a movie professor, or draw on the back of a dozen napkins. There is no “right” or “universal” GP structure, any more than there’s a “right” or “universal” way to solve a problem or concoct an invention “by hand”.

Look for a moment at the cycle I’ve sketched on the 3×5 card: In Step 1 you start from random guesses, in Step 2 you evaluate the Answers you have, and in Step 3 you manage the system to improve the chance that future will be more satisfying, based on what you’ve learned about the structure:function relationships in your project so far.

Let’s do a thought experiment.

Suppose you don’t update the biases you use to guess new Answers. You keep guessing forever. Assume for the sake of argument that there are so many Answers that you’ll never guess the same one twice. You watch what happens, and evaluate every Answer you randomly generate, and keep track of the scores you assign. But you don’t adapt at all; just keep guessing by sampling from the same distribution over Answer scripts you started with.

Imagine that process is happening on a computer in the room you’re sitting in right now. Say there are a thousand new Answers created and evaluated every second, and that every time a new “overall best” score appears, a musical note is played.

If the score is bad, the note has a low pitch; if the score is better, the pitch is higher. The first guess is always a new record, so you start with a beep. And there are probably a lot of new records set soon after that—just by random chance—and the notes’ pitch rises depending on how much better they are than where you started at random. But eventually the notes start to slow down, and soon I expect you’re waiting a few seconds between tones. A few minutes. Hours.

This may sound like wasteful torture, but realize: No matter how long you’ve managed to wait, the last Answer, which played the highest note, was better than any other Answer in the huge pile of others you guessed. A thousand a second, no repeats? That’s a lot of Answers for which there were no beeps, and the proportion must inevitably slow down.

You’d be right to expect that last best guess probably won’t be very good. At least compared to the best possible alternative. But it will also be a lot better than the worst possible alternative.

Now let’s throw some GP stuff into the mix. To improve this awful random guessing system, you might want to reduce the time between notes. Or you might want to increase the speed at which the notes’ pitches rise. Which is better? Can you do both?

One way we can reduce the wait between notes, especially later on when they’re starting to get boring, by taking one of those latter random guesses and just polishing it a bit. Exploiting the luck we’ve had at finding a pretty-good Answer by just plain guessing, and focusing on it for a while by adjusting constants, cleaning up the mess that random programs always have in them, maybe just thinking about how it works and fixing it up by hand. Every time we make one of those exploitative “polishing” steps that helps, we’ll get a new note as the record scores improve.

But there’s an interesting thing that happens, once we start this “polishing” process: there’s only so much we can do to optimize a poor or even a so-so design through incremental improvements. As a result, the notes we are generating as we “polish” this recent record-holder are themselves getting closer and closer together in tone, and farther and farther apart in time. Eventually—as long as this is an interesting project, with no clear path to the obvious Best Answer—we may be straining to get any improvement at all from the record-holder we’re polishing.

You can think of this slowdown in the improvements as we “polish” a particular Answer as a sort of local optimization.

And at some point the boring random guesser, which is still exploring all the possible Answers in its mindless way while we work on polishing the one we’ve picked out, emits a note that indicates a random guess is better than what we’ve been polishing.

It may even be that the random guesser is still generating new records faster than the new records your polishing effort can produce.

This balance between exploration and exploitation is a dynamic tension in every project, and it’s an old and important idea in complex systems research and evolutionary search in particular. It’s especially important in generative projects, for reasons we’ll discuss at length as we bump into them. But notice one important thing: the decision to intervene and start “polishing” depends on listening to the notes we’re already hearing. Once you start “polishing”, it may be that you’ve barely managed to find an incremental improvement before some new random guess comes along that makes your careful polishing obsolete.

The “GP stuff” is composed of tools and algorithms that collect data—as simple as our “notes” seem, or as complex as the intelligence you use to design or refine an Answer by hand—use that data to make inferences about the unexplored parts of the problem, and as produce reasonable-seeming changes in the biases you use to sample new Answers. These biases are what we call exploration and exploitation (“guessing” and “polishing”).

In a practical sense, when the sampling becomes less biased towards any particular Answer scripts we’re spending time and attention on exploration, and when the sampling becomes more biased (or perhaps “focused”) on a special subset of Answers we’re spending time and attention on exploitation.

But there’s no best course.

No Free Lunches

There’s a worst course, though.

Think of the process I’ve just glibly labeled “random guessing” as the worst you can do in a generative GP system. But notice that it’s something, because it gives you a chance to sample and learn and infer biases that might reduce the time between notes, or speed up the rate at which the tones rise.

It’s a baseline performance you can always fall back to. It’s a place you can always start, and it’s obviously better than nothing.

What might happen if you know nothing about the situation for your particular Answer Language and goals, not even the baseline performance of random guessing? Do you think you should start with “standard Genetic Programming” right away, with crossover and mutation already biasing the Answers you generate as the iterative handle is cranked?

Or might those algorithmic biases slow down the “time between notes”, or reduce the “increase in pitch” compared to unbiased guessing?

With no data, you literally can’t know. And this is why we’ll spend so much time developing some habits for success. Not habits of tool use, but habits of observation and incremental change.

Think of it this way: when you’re able to randomly generate meaningful Answers and evaluate them in a way that addresses your question, you’ve already automated a lot of your generative project. The “GP stuff”—the crossover and mutation, hillclimbing and particle swarms, age-layered population structures and coevolutionary training selection methods—that’s all about incremental improvement over the gains you can already see.

3 Software Toolkit

3 Software Toolkit

Three Languages

I like to say that successful GP projects always end up working in three languages. Look again at the 3×5 card, and you’ll see hints of them all there. I call them the Answer Language, the Search Language, and the Project Language.

The first is a language proper, a set of tokens and a syntax you design and implement in such a way that it describes the set of Answers you’re willing to consider. The Answer Language is a programmer’s language, a close cousin of the code you write yourself by hand.

The second is less formal, and consists of all the many ways we manipulate and expand the set of Answers we consider over the course of the project. It consists of tools and techniques, tricks and habits not just from Genetic Programming but Statistics, Machine Learning, Operations Research, Software Engineering, Data Science, and all kinds of other fields. As a result it’s light on syntax and semantics, and full of tokens that we can cobble together in many ways to run projects more effectively. The Search Language is something like the language of cookery: a suite of ingredients and small steps, to be built into recipes in a reasonable way.

The last feels far more abstract when we speak of it explicitly, though this is perhaps because it’s taken so much for granted that it’s often ignored. We don’t often take time in many traditional projects to introspect and adapt the project itself, because the time-scale of our thoughts is well-matched to the time-scale of technical progress, and we’re able to tacitly adapt and introspect while we work. In GP projects, technical progress can far outpace our capacity as researchers, and as a result we’re at serious risk of being lost before we take two steps. The more effectively the “search parts” of GP accelerate the technical progress you make in your projects, the greater the risk that you’ll be swamped, not with “data” or “results” but rather with emergent dynamics arising within the system you’ve built. The Project Language is youngest of all, and is something like the practices and habits of Agile Software Developers: a suite of practices, patterns and habits that can help you respond effectively to change.

In traditional engineering and science projects we don’t often make all three of these things explicit. Generative GP projects always demand the first. Interesting and productive generative GP projects usually require a lot of attention to the second. Ambitious and surprising generative GP projects—the sort you and I are really interested in, Answer Factories that collapse into days the work that would have taken months or years in traditional generative settings—will only succeed when we’ve taken the time to make the third explicit.

The Answer Language: What?

A GP system itself doesn’t “think”. It’s a system for accelerating the exploration of alternative answers to a formally-stated question. A single project will often shift to explore several different questions: matters of whimsical open-ended curiosity or earnestly dedicated purposive science. But you should pay attention to only one at a time.

In my experience, the majority of your coding effort will be in designing and implementing a domain-specific language. It doesn’t have to be very complicated, but it will need the flexibility and capacity to describe any interesting answer to your project’s question of the moment—the “smart” answers, and also the “dumb” ones. After all: your problem is interesting because you don’t know which answers are smart and which dumb….

I prefer to call the scripts you write in this domain-specific language—as interpreted in the context of your problem—”Answers”. In the GP literature you’ll see them called “individuals” and “genomes”; those are historically important terms, but they carry a lot of potentially misleading metaphorical baggage. Here we’ll stick with the term Answers, to remind us that they are contingent on the problem you’re considering.

You’ll have seen folks listing some of the potential application of GP, talking about evolving “programs” and “strategies” and “puzzle solutions” and “molecules” and “controllers” and “robots”… all kinds of complex actual things. As language-using humans, sometimes we mistake our representations of concepts for the concepts themselves. Remember: a script doesn’t do anything until we run it on a particular interpreter or compiler, and even then only with certain variables bound to meaningful values.

A strategy is a meaningless poem until you invoke it in the context in which it was conceived; we cannot meaningfully read a “pure strategy” without knowing what war or game or business it was meant for. A real molecule is not a string of “ACGT”, or even a pretty colored picture of little candy balls on sticks, but nonetheless when we “evolve molecules” we’re evolving balls on sticks or strings of letters… then interpreting those in some molecular simulation. A controller for a robot is only a string until you upload it to a physical robot or a simulation so you can see what might happen when it runs. A plan for trading stocks is meaningless—and risky—without also considering the particular historical context and the specific trade execution system for which it was developed. And so on. An Answer needs both pieces of infrastructure: a statement or script written in a domain-specific language (often one you design), and also a formal setting in which the function embodied in a script can be expressed and explored meaningfully.

If the Answers in your project are simple DNA sequence strings like ACGTCTAGCA..., you’ll also need to obtain (or write) a simulator that translates those strings into proteins, or folds them, or tests them for toxicity, or does whatever a computer needs to do in order to determine the salient aspects of their function. If you want to evolve robot controller scripts, you’ll need a real or a simulated robot that can execute your controller scripts and reveal their function.

This is true even for the simplest and most common application of GP2, symbolic regression—fitting mathematical functions to training data. The most common approach is to represent these mathematical equations as S-expressions, a form familiar to many Computer Scientists who learned to program in Lisp. For example, (+ x (/ 2 9)) is an S-expression representing the function [image: y=x+\frac{2}{9}].

But notice that the S-expression script (+ x (/ 2 9)) is not in itself the mathematical function (unless you happen to be running a Clojure interpreter in your head or something). Even though it’s very close to the runnable code, it’s not fully an Answer until you express it by parsing and evaluating its output value in an interpreter—one in which [image: x] has a number assigned to it.3

Even when there’s a “general-purpose” GP-ready full-featured language available—something like Clojush or even a human-readable language like Java—you’ll usually need to expand it with libraries or custom code to include domain-specific vocabulary. And for reasons we’ll discover in the first project, sometimes when you use a full-featured language, you’ll also need to trim back its capacity.

Focus for a moment on the phrase “domain-specific” and how it needs to cut both ways: You don’t typically find for...next loops or set-theoretic operations in symbolic regression projects, because people are asking for arithmetic Answers, and those people rarely see for...next loops in arithmetic. You can fit data algorithmically using loops and Boolean operators and bit-shifting—after all, that’s how computers themselves do it. But you won’t find a shift_right operator in most off-the-shelf symbolic regression packages, because the Answers that arise which use it to explore the problem would “feel weird”.

If you’re working on a project where you want to explore string-matching algorithms to classify DNA into genes and introns, your Answer Language will probably include something about regular expressions. Not a lot about sin() and cos().

If you’re working on a project where you want to explore game-playing algorithms for a text-based dungeon crawl, your Answer Language will probably include primitives like look and if and fight. And maybe if you’re fancy, you’ll roll in a library for creating decision trees so your adventurer can learn. But again, not a lot of sin() or cos() happening in the ol’ Crypt of Creatures.

And just to prove I’ve got nothing against trigonometry as such: If you’re working on a project where you want to explore the set of plane geometry diagrams which can be constructed using a straight-edge and compass, you will almost certainly want some sin() and cos() floating around in the mix.

Avoiding over-thinking

No escaping it: In almost every GP project, you will need to either hand-code or carefully review this Answer Language. Both parts; not just the “scripts”, but also the contextualizing system used to interpret scripts and express their functions meaningfully.

Does this seem like a lot of effort? It can be, but in fact the amount of effort depends on the path you take as you implement and adapt your codebase.

On the one hand, the Answer Language (and context) needs to be robust and “complete” in the sense that it covers a broad range of possible Answers you can’t think up by hand. When you explore a problem with GP, always expect to examine millions of alternative Answers. In traditional approaches to problem-solving, you might (if you’re Ever So Smart), be able to consider a few dozen—just the ones you can keep in your head and notebooks. Even when you use algorithmic tools like linear programming, realize they are simply parametric explorations of different constant assignments, and that each is “looking” only the most minor variations of one Answer at a time.

So in some sense GP’s capacity to surprise arises from the breadth of unexpected variations your Answer Language can represent. When we want access to the millions instead of the dozens of qualitatively different alternatives, often we need to put in some up-front work to programmatically represent the structure of all those diverse Answers, and also hook up the mechanisms needed to express them functionally. That’s the investment we make.

But on the other hand, everybody with any technical experience (especially human nerds like us) knows that it’s often tempting to over-design when that design happens up-front, before anything ships. This tendency to get things right “before work begins” isn’t just wasteful of our time and attention, it’s often a serious risk factor that can lead to eventual project failure. In Answer Languages design, these risks can include

	the temptation to be over-general, concocting an Answer Language that could be used for designing both dessert toppings and floor waxes;

 	the temptation to prematurely optimize, by carefully polishing the fancy computer-sciencey algorithms your scripts invoke, without knowing whether they will ever appear in useful Answers;

 	the temptation to mimic languages you write yourself, consciously or unconsciously carrying over the syntactic or semantic baggage used in human-writable programming languages without needing them.

These may seem like admirable outcomes rather than “risks”, and they are when they become honest goals of your project. But when we start a GP project to explore (for instance) solutions for the game Cargo-bot, taking the time to include features in the Answer Language that might be useful wen building solvers (as opposed to mere solutions) keeps us from experiencing what the much simpler solutions can tell us.

All this to say: we need to develop an Answer Language, but we should only ever write the minimum useful Answer Language to address the question at hand, and as quickly as possible start working with it. Further design—whether more general tools for its toolkit, or speed-ups to make it run faster, or sugar to make it more readable—will suggest themselves much more usefully after you’ve looked at a few hundred thousand random answers.

The Search Language: How?

“Search Language” is my catch-all for the innumerable tricks of the GP trade. I count anything that changes the subset of Answers you’re considering, including random guessing and assigning them a score based on their performance in context.

There’s all the familiar biologically-inspired Genetic Programming stuff like crossover, mutation, selection, and the more fanciful manipulations. And also the idiomatic tools we use to implement learning or evolving or improving: populations, back-propagation, selection, statistical analysis, 1+1 Evolutionsstrategie…. Basically anything and everything that reduces the amount of personal attention you need to pay to all those alternative Answers.

There is no particular “right way” to use or combine these components. They’re really all Design Patterns, and they will all be used differently in different geographical regions and schools. On the ground of Academia, they’re most like the mythic martial arts styles you see in movies, and the particular special “unbeatable” moves one school or Master will teach to students. But just as the martial arts share a purpose (if not an attitude), the many parts of the Search Language address one question: Based on what you have discovered already, how do you identify new Answers that will be more satisfying?

Every GP project uses selection in one form or another, so let’s look at that more closely. Say we’ve built a GP system with a population of 100 Answers, and we want to design a process to pick “parents” in order to breed a new generation. There are literally hundreds of approaches to transform one collection of Answers into a new one. You might:

	pick two parents with equal probability and remove them from the population; breed them to produce two or more offspring; keep the two best-performing family-members (including, possibly, the parents), and replace those winning family members back into the population.

 	pick two parents randomly from the population, using a bias towards better-scoring ones; breed those two parents to produce one offspring, and set it aside in a new “generation”; continue (with replacement of parents) until you have as many in the next generation as you did in the last.

 	pick two parents at random from the population, with uniform probability; breed them, and return the parents and the offspring to the population; continue until the population size is doubled; destroy half the population, culling it back down to the size where it started.

 	pick ten different individuals from the population with uniform probability; choose the best one of that tournament to be the first parent; repeat for the second parent; breed, and then… (&c &c)

These are all perfectly reasonable and practical ways of choosing answers to breed and cull from a population. Three of them have formal names, even (check the Field Guide and you’ll find them there). Occasionally one may feel “better” than another for a given project, but none is intrinsically better in all situations.

My point in listing them is to highlight the obvious fact that they’re all just recipes in a formal language: the language I’m referring to as the Search Language. The “primitives” in this language are things you can surely see in my verbal descriptions: evaluation, subsetting and sampling, breeding (itself a whole blanket process that usually refers to “mixing up Answer scripts with one another”)… and of course the basic programming infrastructure of iteration and conditional execution and sorting.

All normal computer programming stuff, though maybe a bit more stochastic than you’re used to. But note that the Search Language isn’t limited to code: There’s an important class of GP systems known as “user-centric” or “interactive”, in which a real live human being makes conscious decisions as part of the algorithm. This is a valuable tool for exploring matters of aesthetics and subjective judgement. (And we’ll build something like that in a later project.)

The Emergent Design of GP

The Search Language is huge, but it’s not onerous. While you will almost always need to design and implement your project’s Answer Language, even the most “advanced” tools in the Search Language toolkit are simple in comparison. Things like “chop up a string and mix up the parts” or “change a token in a script to a random value” or “assign a score to an Answer by running it in context, given specific input conditions”.

The interesting thing—and troubling, if you tend towards Rationalism—is that there are such strong and wide-ranging opinions among the Genetic Programming community about the “right” ways to do stuff. You won’t see individual chunks of the Search Language discussed, but rather entire algorithms as a whole, perhaps with one or more substitutions. “First make a population at random (by method X), then select parents (by method Y), then breed them (by method Z), then evaluate them, and repeat.” “First pick one at random, then vary it, then keep the better of the two with some probability, then repeat.”

This is one of the most important ways the GP work we do here differs from Genetic Programming. As with the Answer Language we develop, we will be building our GP system iteratively, in response to the results we see as it expands. We’re not designing and implementing an algorithm to see what it does, we’re answering questions.

So we’ll start from random guessing. Always. And add components from the Search Language in iterative attempts to improve on that.

When I keep saying GP is simple, that’s what I mean: the Search Language is ultimately simple. It’s really just a big catalog of very small parts you cobble together. There’s absolutely no reason you should try to learn all the tools anybody has ever tried. There’s definitely no reason to learn the oldest tools first, unless your interest is history rather than problem-solving.

And in the end, there’s rarely a reason to invoke more than a half-dozen of these components in any given project. Each pattern—selection algorithm, breeding algorithm, parametric variation method, population structure, and so on—contributes value towards some particular goals in some contexts, and undermines the value contributed by others. We’ll be much better off learning (first hand) what happens when we try them incrementally, than throwing them all down in an over-designed whole to be left scratching our heads about the “theory” after the fact.

“GP is simple” because all we really need to do is enhance your meat brain’s inbuilt capacity to solve the problems with the “traditional” tools you already have.

And that should be your cue to ask: Why then does Genetic Programming have such a reputation for being so hard?

I’m glad you asked….

The Project Language: Why?

Almost all Genetic Programming writing focuses on the Search Language. The main genres seem to be announcements of new tools and algorithms, and anecdotal accounts of how particular problems were more easily addressed after changes of particular Search methods.

A few start to touch on what I call the “Project Language”, comparing in a gross way between methods and algorithms by staging benchmarking contests between variations of Search Language structures. A few have made the jump to what’s being called “hyper-heuristics”: metaheuristics applied recursively to metaheuristics, for instance in projects where Genetic Programming is used to “automatically” design “better” Genetic Algorithms out of components in the broader Search Language chunks you might use to design one.

Yet I think the Project Language is the most important and the least explored of the three languages I’ve pointed out. Most important because it’s the deciding factor in determining whether a project has succeeded or failed. Least explored because even Hyperheuristics try to “automate” something that is rarely (if ever) discussed explicitly in the engineering literature, though it forms the core of engineering practice.

We use the Project Language to talk about ourselves, and to describe our roles as part of the project.

It’s the framing we use to express what we want, and why. It’s our expression of the reasons one Answer is more satisfying than another, and our consideration of the possibility that no satisfying Answer exists. It’s the language we use to identify and usefully respond to the surprises GP inevitably throws our way.

Big chunks of my Project Language fall in the realm of well-studied disciplines from many fields: “user experience”, “mechanism design”, “project management” and “domain modeling”. Why do I feel it’s important to concoct a catch-all neologism just to lump together those esteemed fields for this special GP junk? Worse: why is a technical computing book about “artificial intelligence” getting all touchy-feely and psychological?

Simple answer: Because people don’t like being surprised.

You and your habits

It’s been broadly decided that Genetic Programming is “automatic”; that it’s used for “automatic search”, or “automatic programming”, or building “invention machines” that spit out inventions that are of “human-competitive” quality. Those folks won’t think my third Language is worth their attention. That’s a valid demarcation of the field.

As I said, we’re doing “GP”. So we will discuss it and focus on it.

I wonder sometimes whether folks have only read post hoc reports of successful projects and their results, without considering the dynamics of the actual project. What happens in an actual project is a lot of non-artificial human thinking, typing, compiling, swearing, whiteboard-scribbling, and conversation… filtered through a series of iterative programming attempts and arguments and writing, until eventually an encouraging result can be published.

If you don’t count that as a valid part of a project, then of course you shouldn’t think a GP system includes the project team rewriting the algorithms, or the discarded planning sketches, or the conversations and reading, or the re-starts with different settings to try to get more consistent results, or the statistical analyses trying to “tune” or “speed up” the thing. If you’re willing to draw the boundary around the system that way, then it makes perfect sense to think of AI as a sort of self-contained magic box of thinking stuff that people stand in front of and pat and hug and eventually coax intelligence out of.

I simply suggest you set that notion aside for the time being. Try it my way for a little while, and go back if it ends up being unhelpful.

Sitting inside the magic box

Recall I said that the Answer Language is something you will almost always need to build from scratch, or at least revise extensively from some external library. As the project unfolds, you’ll find it’s not just domain-specific, it will become problem-specific in a real way. In practice, it seems the only times one can get away with using a pre-cooked Answer Language is when you’re making a small jump between two very closely related problems (as in stages of a single project), or (more traditionally) when you’ve reduced all the domain-specific qualities of the project domain down to raw numbers and true/false decisions.

Given that reminder: How do you design the constants, variables and operators to use in your project’s Answer Language? Which particular instructions will be more helpful in making interesting Answers? Which will be too weird? How do you ensure every Answer will be syntactically correct, or semantically consistent? Or do you have to? How do you know whether your Answer Language is capable of representing any feasible Answers at all, let alone a “satisfying” or “optimal” one? How do you tell (and what do you do) when your GP system is running, but it’s ignoring important tools you want to see it use?

Those are questions from the Project Language. No matter where you draw your system lines—whether you want to be an externality or a component of the project—a person needs to ask and answer these questions. Every time, for every project, for every problem. And a person needs to design and implement the software responses to these questions, using the tools at their disposal.

I also said that the Search Language is a bulging toolkit, full of literally thousands of design patterns and rules of thumb for manipulating answers in context-dependent useful ways. I can describe sixteen mutation algorithms without breaking a sweat; then you’ve got crossover, and simulated annealing, and steady-state population dynamics, and demes, trivial geography, hill-climbing, initialization biasing, multi-objective sorting, particle swarms, automatically-defined functions, vertical slicing, age-layered populations…. Any riffle through any GP book will give you fifty more.

Given that reminder: How do you pick the mechanisms for search and learning in your project? How do you know which combination may be best or even useful for your problem? What do you even watch in order to decide whether a GP search is “working” or not? Should you let your current search run longer, or start it over again? If you start it over, should you change the parameters a bit, or try a different design pattern? What do you do when it gives you an answer that “solves the problem” in a totally “stupid” way?4

A person needs to mindfully adapt the structure of the project to fit the dynamic context of their wants and knowledge, and manage the system into giving them the answers they will find satisfying.

My “Project Language” isn’t identical with user experience, or project management, or domain modeling, or even their union. Those disciplines are admirable, but they are designed for unaccelerated human-powered projects.

Forget reproducibility

You write software. I know this, or you wouldn’t bother reading this far. If a project isn’t giving you satisfying answers—whether it involves GP or not—then you (personally) need to check that it’s implemented correctly. And when you’re convinced it is running as intended, you then (personally) need to reflect and decide whether it’s doing what you want it to. And if you decide that it isn’t, then you (personally) need to either change how it’s written, or change what you think it’s for.

In non-GP projects—software development or financial decisionmaking or home improvement or medical research projects—there’s a reasonable sense that one can “re-start”. But of course in the context of human-powered projects, “re-starting” is never misunderstood to mean “from the same initial conditions”. You (personally, with all the other human beings on your team) “re-start” having learned something useful and helpful. You intend to do something differently the second time around, and you don’t have to concentrate very hard on remembering to change stuff.

This difference between you-before-the-first-try and you-after-the-first-try doesn’t get mentioned, because it’s such a fundamental fact of life that it goes without saying. But notice that you (personally) are implicitly assumed to be the part of the problem-solving system which has changed before and after the “re-start”.

Just the other day I was working on the code for a later section of this book: an exercise in which we’ll re-evolve Conway’s Game of Life. I found that the GP system I started with was having a lot of trouble producing interesting answers. I worked a few days on this, trying to get it to do what I expected.

But then I realized that it had been working the whole time. And by that I mean totally working: it gave me the best possible answer, every time. I thought a bit on how this could be unexpected, and eventually I realized that the question I was exploring had been reasonable but uninteresting. There was only one right answer, and the GP system I’d built kept giving me that very answer. Immediately.

Now if you are one of the folks who want to think of GP as a self-contained box of magic thinking stuff, this might seem like a good outcome. Definitely not a problem. Who wouldn’t want an “optimization algorithm” to give them The One Right Answer?

Well, me. And you, I expect.

Think how it would sound. “Ladies and Gentlemen, I am thinking of a special algorithm! I have provided this Box of Magic Thinking Stuff with 512 carefully-chosen examples and a collection of useful tools, none of which in itself is the algorithm. By recombining those tools in a very complicated way while I stand over here, The Box will now guess the function I’m thinking of in a matter of mere moments….” A card trick. Boring.

So I revised my notion of the project’s goals. I “re-started”, but in doing so I changed the story I’d been telling, and the questions I was asking, and I made some minor changes to the Answer Language to bring it in line with my new state.

Even though it was so consistent, the answer my GP system kept giving me came as a surprise. One I wasn’t mentally prepared to understand, not least because it happened in a matter of seconds where I was expecting it to take some time. When I finally parsed what it meant, the consequence was a second surprise: the realization that the question I had asked was boring. If I had been working in a traditional unaccelerated way—with a whiteboard or a yellow legal pad, chewing on the end of a pen and pacing with my hands behind my back like a think-tank caricature—I might have frowned and erased some stuff, or crumpled up a page or two and made a cup of tea.

I wouldn’t have been surprised if it weren’t for the accelerated results from GP.

Mixed blessings

Introspection is hard. Most people, for whatever reason, don’t like to question their assumptions. They like certainties and provable correctness, familiar models and known best practices, mathematical rigor presented on a buoyant comfort-cushion of assumptions.

That’s what I mean when I say we don’t like to be surprised. Surprises aren’t just pleasant eureka moments, they’re also the oh shit moments.

GP can be useful as an “innovation prosthesis” because it shortens the time between those eureka surprises. GP feels complicated and difficult and annoying because it also shortens the time between oh shit surprises. And it can’t tell the difference.

GP projects often fail because participants run into oh shit surprises well before they see any eureka ones. Traditional software experiences are not emergent, and as a result we’re culturally maladapted to cope with the disorder GP’s accelerated results can provoke. We’re typically Very Smart Computer Scientists and early-adopter domain experts, and we can pick up a few books and start dabbling in what I’ve called the Languages of Answers and Search very quickly. The “simple” stuff.

But nobody ever tells us about these inevitable oh shits. I’ve watched dozens of Very Smart engineery people dive in and (metaphorically) drown in GP.

So we need to erase the traditional boundary between what you think of as “the project” and you (personally), the “researcher”. Your best and most useful habits as a Very Smart Person are usually based on your experiences thinking very hard and hand-coding (non-emergent) solutions to problems one at a time, and considering a few dozens of alternatives.

Without any thousand-fold enhancement.

I see it often: Smart person downloads some package; writes some code; follows along with a tutorial and builds a GP system and—boom—it starts spitting out ten thousand reasonable-sounding solutions every hour. Already they’re way outside the range of what their habits prepare them for. But they’re Very Smart, and so they look at the answers they have so far, and they fiddle with some things and change some parameters… and—boom—in an hour they have ten thousand completely different answers.

In a traditional project with a big research or development team, you never want to be put in a position where you’re forced to ask, “What just happened?” The tools we use to avoid those situations are essentially social, even when we use them to adjust our own private expectations. Same here.

Unfolding Projects

Here’s one of the core questions in AI research, a deep and troubling one that many man-hours of research addresses: How do you know whether you should (a) keep a GP system running, on the off chance it will get better soon and give you new unexpected answers, or (b) stop it and start over from different initial conditions?

If you think GP (and AI) is a self-contained magic box of thinking stuff: You don’t.

If you realize you’re a core component in the GP system: Pick the one that is more satisfying to you at the moment, use it for a while, and try the other if that doesn’t work out.

And here is a deep-rooted problem affecting all of search and optimization, not just in AI but all computational approaches: How do you know a priori which search technique will provide reliably better answers for a given problem?

If you think of the program as a self-contained box of optimization tools (and magic thinking stuff), the proven5 answer is: You can’t.

GP is simple. Regular old human-scale problem-solving is hard enough that people will tell you you’re a Very Smart Person if you demonstrate even occasional competence. But coping with a thousand-fold acceleration will break your model of yourself, and what you think you’re doing.

II Cargo-bot

II Cargo-bot

4 Introduction

4 Introduction

Mathematical games and puzzles have a deep allure and important history. They’re easy to describe, but tricky to address; to solve one you often need to discover an unsuspected trick, or frame the task in an unintuitive language. The best are fun because they’re entertaining, but they also surface useful problem-solving techniques in a “safe” and cleanly abstract setting. There are puzzles proper, games, and of course puzzle games: simple frameworks like Sudoku or peg-jumping games in which particular “setups” exercise the same simple set of rules to produce easy or hard variations.

I think we should start learning about GP projects by exploring a puzzle game called Cargo-Bot.

Cargo-bot came as something of a surprise to me. Not “surprise” in the sense of being unexpected or unique, but rather in the way it works so well as an example.

One day in April 2012, when I was finishing up what used to be the first project in this collection, I noticed my wife Barbara muttering at her iPad in the office. It was a good sort of muttering, the kind you do when you’re intrigued and thinking about a puzzle in a deeply engaged way. She was playing Cargo-bot a day or two after it was released.

I needed a break, so I gave it a try. To make a long story short: Within a few hours of first seeing the game, I contacted the author Rui Viana and the folks at TwoLivesLeft who published it, and they’ve been kind enough to let us play with it. Just to see what happens.

Before we go any farther, I should clarify: Even though the original inspiration for this project is an iPad game, you will not need access to an iPad to do the work. We’re going to be working with the abstract puzzle game Rui invented and implemented on the iPad, but not his actual software implementation. You and I will begin by writing an emulator for the game, something we can run quickly from a command line prompt and invoke from our GP codebase.

Cargo-bot for iPad

Cargo-Bot is an inspired hybrid of two large classes of puzzle-game: “constrained rearrangement” games like the Towers of Hanoi and the famous Sliding puzzle, and what I’ll call “scripted planning” games like RoboZZle or RoboRally.

I assume you’ve run across Towers of Hanoi or a Sliding Puzzle before. In scripted planning games you’re presented with a starting state and a goal composed of some abstract parts, at least one of which is an agent of some sort. By making game moves within some sort of programming metaphor, you compose an (offline) solution that takes the form of a “script” to be executed by one or more components of the game setting. When this script is executed in the context of the starting state, a series of state changes result that—hopefully—results in the goal state. A script that transforms the starting state into the goal state is a winning solution; other scripts don’t win.

Components

The main iPad interface for Cargo-bot includes

	a static pane displaying the goal state,

 	a simulator pane showing the starting state of the factory, which will animate when you press “play” and interpret your script as movements of the game objects (and the consequences of those movements),

 	a program pane, holding 29 “instruction slots” in four subroutines where script tokens are placed by the player,

 	a palette of prototypes from which instruction tokens and conditional flags can be dragged to the subroutines,

 	a “play” button,

 	(some other things we don’t need to worry about)

 [image: A Cargo-bot Puzzle (used by permission)]
A Cargo-bot Puzzle (used by permission)

The core of Cargo-Bot is the simple little simulated world I’ll call “the factory”. The factory consists of several discrete pallet locations, arranged in a line and limited on the left and right by walls.

Colored crates are stacked on the pallets (this example puzzle only uses yellow; red, blue and green crates also crop up in other situations).

The overhead claw is positioned over one of the pallet locations; the specific location is defined as part of each puzzle’s starting state. The claw can move left and right between the discrete pallet positions, within the limits of the factory walls. The claw can also activate, dropping down towards the pallet below it and rising up again immediately. If the claw is empty when it activates, it drops down to grab the top crate on the pallet directly below it (if any), carrying it back up to the ceiling. If the claw is holding a crate when it activates, it places the crate it’s holding on the top of the stack below it, and rises empty to the ceiling.

As I said, each puzzle in the game has a fixed starting state and goal state. The starting state specifies how many pallets there are, what crates are stacked where, and the starting position of the claw. The goal state of a puzzle is some different arrangement of the crates on the pallets.

The player’s script is written by placing instructions in the 29 available token slots, which are arranged in four subroutines. These instructions move the claw left and right, activate it, and control branching of the script. Any instruction token can (optionally) carry one of the conditional flags, which make that instruction’s execution depend on the state of the factory simulation when it’s interpreted.

There are also a couple of physical constraints in play. For one thing, the claw is fragile: it will shatter if a script runs it into either the left or right wall of the factory. Also, stacks of more than six crates are unstable, and tip over. Whenever the claw crashes or a stack of crates topples, the script stops running and the solution is counted as a failure.

Game play involves placing script tokens in the subroutines and pushing “play”. The factory simulator then activates, and begins interpreting the player’s script (according to simple rules we’ll cover below). The simulator runs until the script terminates (also see below), the claw crashes or a stack topples, the player presses “stop”, or the goal state is constructed.

Finally, a winning solution—one that produces the goal state—is also scored by awarding one to three points. A three-star solution is one that uses the minimum (known) number of tokens in its script; two- and three-star solutions are those that use more tokens.

Claw scripting

The player builds a controller script by placing instruction tokens and conditional flags in the open slots of the four subroutines. There is room for 8 instructions in the first three subroutines, and 5 in the fourth, so a maximum of 29 tokens appear in any Cargo-bot solution.

Because you and I will be typing instead of drawing, I’m going to give the visual icons used in the iPad game some obvious textual names so we can refer to them here and in our codebase. Having seen the game’s interface (even in these still screencaps), I trust you’ll be able to figure out that the token I call L is represented in the game as a leftward-facing arrow, that what I call call2_none is a little red token labeled “PROG 2” with an extra annotation flag labeled “none”, and so forth. Here’s a proposed solution (admittedly a very strange one) to the puzzle called “Come Together”, with my textual transcription of the visual code at the right:

 [image: A Rather Weird Script]
A Rather Weird Script

There are seven instruction tokens: L, R, claw and the four I’ll refer to as call1, call2, call3 and call4. That’s the complete set of instructions in the Cargo-bot world. They do more or less what you’d expect:

	When an L or R token is executed, the claw will move one pallet position to the left or right of its current position.

 	When a claw token is executed, the claw drops down and lifts up again immediately. If it is holding a crate at the start of this maneuver, it will deposit that crate on top of the stack below; if it is empty at the start of the maneuver, it will pick up the top crate below it (if any).

 	When a call[N] token is executed, subroutine N will immediately begin running, starting from its first token.

As you can (hopefully) tell from this quick description, call[N] tokens are useful for building modules that capture reusable behaviors. Things like “pick a crate up and put it down one pallet to the right”. They’re also useful for recursion in various simple (and a few mind-bending) forms, including looping: if your script includes a call1 anywhere in subroutine 1, your program will immediately start that subroutine over, proceed from the beginning until it runs into the same call1 token, start subroutine 1 over again, immediately… and so on. Forever, I hasten to stress; Cargo-bot has no magic Halting Problem Checker built into it….

Any basic instruction can also be made conditional by attaching a single flag to it. The only information about of the simulator’s dynamic state that is made available to the interpreter is the color of the crate held in the claw at the moment. Since there are four possible colors of crates (yellow, red, green, and blue), flags can be used to make any standard instruction (including call[N]) conditional in one of six ways:

	[inst]_yellow, [inst]_blue, [inst]_green and [inst]_red: the instruction [inst] is only executed if the claw is holding a crate of that particular color at the moment the token is interpreted. So for example, R_red means “move the claw right one step only if it is holding a red crate”

 	[inst]_any: instruction [inst] is only executed if the claw is holding some crate—that is, it’s not empty

 	[inst]_none: instruction [inst] is only executed if the claw is not holding any crate

That’s the entire programming language. All sorts of puzzle-specific programming structures are possible, even with this simple framework of seven instruction tokens and six conditional flags. With a few conditional call[N] tokens and some well-factored subroutines, you’re able to tell the claw to behave in all sorts of useful ways. You can have it do things like, “If it’s red, put it over there, and if it’s green, put it over there, and then come back here.”

You can also do some stupid things, as I mentioned above: If your script tries to move the claw outside the bounds of the factory walls, it crashes and your script fails immediately. If your script tries to stack crates more than six high, the stack topples and your script fails immediately.

Script execution always starts with subroutine 1, and need not ever invoke the other subroutines. Regardless of how you end up writing your Cargo-bot emulator, the original works more or less this way: The interpreter has an execution stack. The entire contents of Subroutine 1 are initially pushed onto this execution stack, and then one token at a time is popped and interpreted. If the token being interpreted is any of the four call[N] instructions (and its conditional requirement, if any, is met) then the entire contents of Subroutine N is immediately pushed onto the execution stack. The other instructions (if their conditional requirements are met) move the claw immediately. Execution terminates when the execution stack is empty, or the goal state is achieved, or the claw crashes, or a stack topples, or you get bored and press “Stop”.

See one running

I’ve captured a video of the rather strange script shown above, as executed in the iPad game. Note the “execution pointer” flashing along the script tokens, indicating which token is currently being interpreted.

 [image: Watch the Rather Weird Script Run]← watch the YouTube video

If you look closely at the listing, and think about my description of how Cargo-bot works, you may notice a couple of odd decisions have been made in this particular solution. The sequence “R_yellow R_none” is exactly equivalent to just a single “R”, since the claw can only ever be empty or have a yellow crate. And the second call1 at the end of subroutine 1 can never be executed: the prior call1 will always redirect the interpreter back to the start.

I used GP to solve the puzzle, and I wasn’t worried yet about being “reasonable” yet. Keep that in mind for later.

And that’s it

That’s the entire world of Cargo-bot. The game ships with a relatively small number of entertaining puzzles, categorized from ridiculously simple Tutorials (intended to just teach you the basics of writing solutions), on through classes labeled Easy, Medium, Hard, Crazy and Impossible. Which are by the way not literally impossible, just extremely hard for a puzzle-solving human being to address.

It should be obvious to you, nerd that you are, that you could probably solve at least a simple Cargo-bot puzzles by brute force. Just by enumerating all the possible programs. There are seven instructions (or eight, if you count the empty slots), and there are six conditional flags (plus ‘no flag’), resulting in a “language” with a net count of 56 possible words. Ignoring the fact that subroutines aren’t executed unless they’re called, that’s a measly 498256282230823722187324267943936643753714170986496 combinations, many of which are surely equivalent to one another, or full of unexecuted code because of missing or extra call statements, or non-functional because of conditions that never fire or which are attached to empty slots. So chop that in half or something. (What? You think that’s a lot? Just wait and see….)

But as with many “trivial” mathematical recreations, solving this one will lead to thinking about it, and thinking about it leads to expanding on it, and ultimately that chain will help you uncover some deep truths not only about mathematics and problem-solving, but also how we think and search.

Prospectus

We’ve talked about Answer Languages already, and I hope you can see what the Answer Language in this first project will be like—at least for our starting point of “Can we evolve solutions to specific Cargo-bot puzzles?” The scripting language of Cargo-bot itself is surprisingly close to “done”. There are a few useful surprises waiting for us when we shift from programming by dragging to generating random scripts, but those are common to most GP projects.

That said, I see a lot of potential. Here are some points I think are notable about this project:

	answer language design

 	Cargo-bot is already a programming game. The whole of our Answer language (at least for the first phase of our project, “Can we solve puzzles with GP?”) is basically written for us already. We can easily map a puzzle answer in the iPad game into a script answer in our GP representations. But note that it’s a small jump from a “programming game” to writing an Answer Language to represent a strategy in a more traditional game or puzzle. Later, when we consider what an Answer to “What would a general Cargo-bot solver program look like?”, the transition from talking about an instance to talking about a strategy will surface some of the most challenging aspects of GP-driven design.

 	quantitative evaluation

 	The game is a puzzle. You and I tend to treat prospective puzzle solutions as either “right” or “wrong”, but as I mentioned in the Preface it’ll be necessary for us to change that habit and assign meaningful quantitative scores to “partially solved” puzzles. It turns out there are several reasonable approaches one can take, and instructive (though fundamentally arbitrary) design decisions will come up quickly.

 	setting and using goals

 	Here’s the thing Barbara was actually muttering about when I first heard her playing the game: The goal of Cargo-bot (as written by Rui Viana, a Computer Scientist) is to solve the puzzle using the shortest program possible. But as an Manufacturing Engineer Barbara actually worked in a factory, with real robots. So she started muttering when she realized the “shortest” program made the robot move around more, in a way that would wear it out if it were a physical robot. To her, there should be more points for solutions taking fewer moves; to Rui, there should be more points for solutions with fewer program steps. To me, this is a golden opportunity to explore how we discover and work with simultaneous multiple goals.

 	exploratory heuristics

 	The puzzles included with the game are already sorted into categories of “hardness”. There are trivial “Tutorials”, “Easy”, “Medium” and onward up to “Impossible” problems. GP gives us a sort of “reality check” on this sort of classification, and it will be interesting to see whether GP “thinks” the puzzles are sorted the same way. From there we’ll make a few heuristic leaps to rather deep questions: Can you tell from looking at a puzzle (solved or unsolved) whether it’s “Easy” or “Hard”—or even if it’s literally impossible? Are there changes we can make to a given puzzle to change its difficulty, or changes we can make to the search we do or the puzzle-solving language that change the rankings? It’s rather trivial to write a puzzle-designer by hand, but is there a way to drive it towards easier or harder puzzle designs? And of course like any entertaining game, Cargo-bot’s rules are practically begging to be extended, amended, constrained and otherwise messed around with.

 	coping with emergent design

 	The solutions GP suggests for puzzles may not feel “done” to a human programmer; there will almost certainly be poorly factored code, and some weird head-scratching decisions can be made along the way. It’s of interest and of use to see what (and why) GP decides to do this “crazy” or “stupid” stuff, especially when we think about whether they’re “bugs” or “features”. And the Answers GP will produce as puzzle-solving algorithms are even weirder. We’ll watch as the running GP process “gets” certain “concepts” of the problem, at the same time it fails to “understand” others that are obvious to you. But GP will also “get” things you don’t—which is of course why we’re undertaking this exercise. The resulting “dialog” is what this is really all about….

Roadmap

	Can we solve Cargo-bot puzzles with GP?
 	Writing a Cargo-bot emulator

 	A minimal Answer language for puzzle solutions

 	Random Cargo-bot solutions

 	Evaluating puzzle solutions

 	A minimal Answer Factory

 	Improving on random guessing

 	Multiple goals: smaller is better

 	A (possibly) better Answer Language

 	Different ways of comparing solutions

 	Relaxing and tightening constraints

 	Exploring Cargo-bot itself
 	“Easy” and “Hard” puzzles

 	Random puzzles

 	Solution performance as a “trait” of puzzles

 	Does every program solve some puzzle?

 	Organizing puzzles by their solutions

 	How “useful” are the various instructions?

 	Are there qualitatively different solutions for one puzzle?

 	Extending Cargo-bot
 	What might it mean to “scale”?

 	Mistakes were made: errors and robustness

 	Multi-stage puzzles

 	Desert Island Instructions: add one method

 	Da Bomb

 	Teach a man to fish: Discovering solvers
 	Classical approaches

 	What does it take to “solve” a puzzle?

 	Adding state and memory

 	Introspection

 	Recognizing “Easy” and “Hard” puzzles

 	Recognizing infeasible puzzles

 	General-purpose Cargo-bot solvers

 	The weird stuff
 	Modular solutions and collaborative re-use

 	Ants! Everywhere!

5 Test-driven Design of a Cargo-bot Emulator

5 Test-driven Design of a Cargo-bot Emulator

Setting the stage

In this chapter we’ll build infrastructure that wecan use to explore the relatively simple-sounding question “Can we use GP to solve Cargo-bot puzzles?”

Spoiler Alert: yes

Why do we need an emulator at all?

Approach every GP project expecting to evaluate millions of alternative Answers. In this case I suspect we’ll be able to solve some specific Cargo-bot puzzles using a few hundred thousand Answers—after all, they’re not all very hard problems. But there are a few dozen standard puzzles included with the game, and an unlimited number of others that are as yet unexplored. And we’ll be testing our code in multiple trials, and comparing the behavior of different GP techniques and patterns on the same puzzles.

Are you starting to see where the tally of “millions” comes from?

Now Cargo-bot itself is an interactive game, where you drag little icons around and then push “play” to see how your solution performs. Fun and challenging, but it can get tiring after about ten puzzles—let alone millions.

So the first thing I’d like to do is write a more convenient emulator of the iPad game. This will be a little library we can call from our GP code. Something that does all the important stuff Cargo-bot does in its iPad incarnation. Just a lot faster and more conveniently.

Our Cargo-bot emulator is the context in which we’ll express and evaluate Answer scripts. It’s one of the four core components of a GP project that I identified earlier, along with the Answer Language we use for those scripts, the mechanisms we build for quantitative evaluation, and the reasonably interesting questions we use GP to explore. We’ve already asked the first question (though we may want to confirm that it’s reasonable and interesting).

Before we start the Deluxe Tour

There are several things I’d like to surface in this first project. Some are technical and inward-facing—the algorithms and design patterns we’ll use to implement GP. But a few are more thematic, like the comparison I want to highlight between “regular human design” and the way GP “designs” on your behalf.

After a few drafts and responses from friends and colleagues, I’m doing something in this chapter you don’t often see in programming books: I’ve made this chapter into a painstakingly detailed account of the process by which I’ve written this relatively simple library. It’s not reduced to pseudocode and admonitions to do this and that, it’s more like a diary of the specific code I’ve typed, and my reasons for those changes.

This is not out of a misguided sense that I have deep messages or insights to impart about how to write code “properly”. I’m not advocating one software development methodology over another here.

Rather, I’m setting the stage for an analogy between emergent design as humans practice it, and emergent design you’ll see happening in your GP system. I’ve found some programmers have heard of emergent design, maybe when it’s mentioned in passing in unit testing classes. But surprisingly few have any first- or even second-hand experience with the sort of emergent design happens in a test-driven design setting.6

Now I can’t make claims to TDD expertise, but it is actually how I write code. So I’m going to develop and “design” this emulator code using an intentionally arch TDD approach, making sure to explicitly note the decisions I make and the dynamics of the TDD cycle. I’m not “dumbing it down” to make this point; I’m just going to be more explicit than most people about the human aspects of coding, and the tools TDD provides for managing that human mess.

Here’s why: Shortly we’ll build a large, complex software system with the explicit objective that it self-organize and produce emergent designs. We want GP to show us things we haven’t planned out in detail. There are some deep differences between TDD and GP system dynamics, not least the fact that in TDD you personally make all the decisions and in GP “decision” is a fudamentally random process.

But the similarities are worth noting. Test-driven design depends on a simple suite of habits, and aims at ameliorating the worst habits of Very Smart Programmers. The GP approach this book develps also dependson a simple suite of habits (for you) and design patterns (for GP) that aim at ameliorating the “self-organizational tendencies” of an undirected GP system.

After I’ve made my point in this first chapter, I’ll stop explainaing every line-by-line change I’ve made, and graduallt fall back into the “first do this, then do that” instructional mode. By the end of the first project, I’ll simply include the Cucumber acceptance tests you should use to develop your codebase.

In the meantime, consider this chapter as a detailed introduction to high-resolution iterative development process, and context-focused design dynamics. By “context-focused” I mean test-driven, behavior-driven, or selection-driven design (like GP uses) as opposed to “rational” and “complrehensive” design processes like Being Very Smart, Architecting to Best Practices, or even Code-Then-Debug. Those are definitely not anything like what GP does when it helps you discover novelty.

Thinking about what’s needed

I’m going to spend a bit of time thinking about the emulator I’m about to build, collecting some informal stories that capture the behavior I’m aiming to produce. These aren’t formal specifications or even design “documents”, just notes regarding the various independent facets of behavior I expect. They’re not even “tasks”; much more like “notes” or “wishes” at this point.

[image: tip]When should you write your code? In this chapter I’m working through the entire software development process: pausing to discuss my initial thoughts, designing and revising my acceptance tests, and showing the details of my work as I write this library myself. You can write your emulator library either as you’re reading, or afterwards. In either case, download a complete copy of my Cucumber features from the book’s Github repository, and use those for your acceptance tests.

 I’ve decided to use Ruby in the first project. It’s available on my laptop, it’s flexible, and it’s the language I used in the last project before this one; no other reasons. In later projects I think I’ll try Clojure or Objective-C, languages I don’t know quite so well, just to demonstrate that GP is essentially language-agnostic.

 You should write your own code in a language you’re comfortable with. Write it however you want. You don’t need to use the same test-driven approach I do. But do please make sure the acceptance tests pass when you’re done. And take some time to note the test-driven process I have used, even though you may not be moved to try it yourself.

Here are transcripts of the cards I made, plus some notes and reflections. There’s no implied order; I’ve just listed them as they occurred to me. I notice there are already a few aspects of the original game I think I might change, or at least relax. But even if I do implement some of those changes, I want to be careful to leave in place everything I need to validate that my code “acts like Cargo-bot would”.

	Moving Left and Right:

 	When an L or R instruction is executed, the claw should move one position left or right, respectively.

This already gives me a sense there will be some sort of ordered collection structure I use to represent the factory. It’ll have an ordered set of pallet positions, probably an Array, with each element representing a pallet.

Also, I’ve also mentioned the claw, which I suppose has a position… but which doesn’t sound as though it needs to be in the factory Array. Maybe I can get away with just representing the claw as an integer-valued position, corresponding to the pallet it’s above. That way I can just subtract or add 1 when it moves left or right.

I make a mental note that there may be some confusion switching between Ruby’s 0-based and the more natural counting number base, but I’ve stumbled over that often enough to learn my lesson.

	Crashes:

 	When an L instruction is executed and the claw is in the leftmost position, it should crash. Same when an R is executed and the claw is in the rightmost position.

This “crashing” thing raises a red flag for me. It seems too final or abrupt.

I imagine there could be a GP system that has an almost right solution, something that would work except that it takes a wrong turn near the end. I want to give GP time to “discover” that “don’t take that extra step to the right when you’re over near the wall” pattern. But when the claw crashes in the original iPad game, the whole simulation dies and the game is immediately over, so whatever elegant dance that near-perfect plan might have implemented is gone for good.

Sure, that’s life. But GP isn’t life; it’s a mechanism for exploration and thinking about life.

Sometimes we need to nurture those almost-maybe solutions, give them a chance to mix up together for a while, and let almost-solved become an ancestor for all-the-way-solved.

That to say: I hesitate to call a simulation off immediately whenever there’s a crash. I wonder if I might be able to let crashes happen, noting them without stopping the simulation.

How about: I’ll count the times the claw tries to move left from the leftmost pallet, or right from the rightmost pallet. Then we’ll have a count of “mistakes” we can “hold against” the hapless stumblebum later, instead than killing it outright immediatey. That way maybe we’ll be able to reward Answers that find ways to reduce the number of “bumps” until we get crashless ones… without throwing away the baby with the bathwater.

Rule of thumb: Avoid premature optimization. Not just “premature optimization” in the sense of your own code-writing, but also situations in which you’re asking GP to get some little constraint thing right (like not bumping into walls) before addressing the big things (solving puzzles).

	Activating the Claw

 	When a claw instruction is executed and the claw is holding a crate, that crate should end up on top of the stack under the claw. If the claw is empty and there’s a crate beneath it, then that top crate should end up being held by the claw.

This reminds me that the claw can only hold one crate at a time. So it will want some sort of held_item attribute in addition to a position indicator, I guess. I can use Ruby’s nil when nothing is held, and a… well a “crate”, whatever that is, when it’s been removed from one of the factory stacks.

One problem is that I don’t quite know yet what a “crate” is. It has a color, and in the context of the factory it has a horizontal and vertical position. Maybe if I do the accounting right with the stacks on the pallets, and keep careful track of the claw’s contents, then the crates can just be place-holders that have a color and nothing else. It’s not like boxes have a lot of behavior; they’re not actively “being in” or “going to” a given location or position, so those aren’t methods they should own.

Aha, though. I make a note of that for future use: What if they do have a bit more diversity? What if some crates are heavier, or they explode on a timer, or are marked “fragile” and have to be stacked on top of piles? Already there are several obvious ways the game might be extended.

	Conditional Flags:

 	Any instruction with a conditional flag will only execute if the flag’s condition is met. The flags are _yellow, _red, _green, _blue, _any, and _none. An instruction that has no flag will always execute.

Here are the crate colors again, plus those two wildcards. Still nothing seems to argue that a “crate” should be anything but a color-in-a-place, as long as I count “in the claw” as a place. I can use Ruby Symbols like :yellow, :red to represent them.

Alternately I suppose I could also use Strings for the stacks of crates on pallets, and single characters to represent the crates. One String could store the entire factory state; maybe "bbr,rrg,(),,y" would be a 5-pallet factory with seven crates in it: a red crate on the top of two blue ones on pallet 1, a green on two reds in the stack on pallet 2, the claw over pallet 3, and a yellow on pallet 5. It seems succinct, and I might try that instead of Arrays of Symbols.7 Or at least it might make a good visualization technique.

You know, that makes me realize that I don’t really need the whole color word (yellow or green). It would certainly be simpler to use y for “yellow” and so on. But how would I be sure the abbreviations all mapped correctly to their respective colors?

I wonder if I can get away with treating conditional flags as simple match strings, rather than explicit items from an accepted list. The conditional flag could be more like “if the crate held by the claw matches the right-hand flag part of the instruction, execute the instruction”. So claw_foo would trigger if the crate held by the claw was the token foo (it’s “color”).

But I shouldn’t rush ahead. Just notes here. This sort of musing smacks of premature optimization and over-design.

In any case case, regardless of the fact that there are 56 or 49 or however many flagged instructions, at least now I think I can avoid having to treat each combination as an individual case. There’s some order in there I can take advantage of: it’s a small set of instructions and a small set of flags.

	Subroutines:

 	When a call[N] instruction is executed, the entire contents of subroutine [N] starts executing immediately. When that called subroutine is done, program flow returns to the instruction immediately after the originating call. If a running subroutine itself issues another call, flow will return from the sub-subroutine to the next instruction after the second-order call, and so on.

This seems to imply a lot of infrastructure. I haven’t really thought about there being a “program” yet. Seems as though there are several things I could call the “program”: There’s the script we will create for our Answer Language, which is not necessarily the same thing as the program stored in a given Cargo-bot emulator instance. And there’s the dynamic flow of execution, which is not the same as the stored instructions and flags.

I think I’m presuming that “script” has been used in some way to fill in the 29 little slots we see in the iPad interface. The “program” is that product of loading the script: emulator-specific instructions stored in the emulator.

At the same time it feels as if there may be some other thing, something that more like “running code”. That’s what manages the control of flow, using some sort of “pointer”, while the “program” remains static so the pointer thing can loop over it.

I think what happens when subroutine 1 is R call1: an infinite loop that moves the claw right “forever” (until it crashes), without “using up” the stored program itself. The program is static; the state is updated constantly in some way to permit recursion.

I don’t really know yet how to deal with this. Is it better to use a “pointer” of some sort? I note the little flashing execution indicator we see in the iPad game interface, and I think that’s what it’s doing. Or is it better to use something more computer-sciencey, like an execution stack? Or maybe some other kind of thing?

Again: it can be a bad idea to decide this sort of thing too quickly. I’m just thinking about it now to explore possible variations.

Setting that aside, the specific numbers I see in this story—the “29” tokens in “4” subroutines—those raise a red flag. I would feel more comfortable saying there are “one or more” subroutines in the program, and each of those contains “one or more” instructions. As with the “crashing” story, it seems reasonable to think that this sort of hard constraint might limit GP’s options too quickly. What if there were a reasonable solution that doesn’t quite fit into 29 slots, some cumbersome poorly-factored thing that solves the puzzle but doesn’t make the cut when it comes to size? I’d much rather get the problem solved first, then use some sort of GP-based coaxing to shrink that down and refactor it into something better. Like a elephants trapped on an island.

So I think instead of “29” and “4” I’ll probably relax these explicit constraints. The emulator’s “program” will have ordered subroutines (1, 2, and so on). Each subroutine is made up of tokens like L, R_red (or R_r I guess), claw_any and call3_green. So subroutines themselves sound like they’ll end up being Arrays of token strings.

	Winning:

 	As soon as the factory arrangement matches the goal, the game is won.

I almost forgot there was a goal! I suppose this implies that after every “step” of the interpreter I also need to check to see if the factory state is “the same as” a stored goal. A “step” is probably one token evaluated, since that’s the smallest time-scale at which the factory state changes.

The “stored goal” must be the same sort of thing as the factory itself: an Array of Arrays of Symbols, or an Array of Strings, or whatever I end up with. It’s a “snapshot” of the factory.

	Timing out (aka “not winning”):

 	The simulation stops after interpreting a specified number of tokens, maybe with 500 as a default.

Having that story about “noticing that I’ve won” reminds me that the iPad game has no termination condition besides crashing, toppling, or winning. If your program is “designed to” run forever (like R L call1 would be, as subroutine 1), the game will happily run forever… or until you press the “stop” button.

I don’t have a “stop” button, since I’m writing a non-interactive emulator. So maybe there ought to be a “not making progress” cutoff of some sort that brings the potential infinity back down to a few seconds (and hopefully less). In picking 500 steps as a default, I ran the most complicated solution I’ve found to date, and ball-parked that.

A quick back-of-the-envelope check could also be “the number of steps it would take to execute every one of the 29 tokens about 20 times each”. That seems more than fair to me for a few stacks of crates. Then again, it may need to be bigger for some more complicated puzzles. We’ll see.

Emergent design

Those are all the stories I’ve come up with. There may be several I’ve missed; hopefully they’ll become apparent after I start work on these.

Even if I miss them here during implementing the emulator software, I have a back-up: There’s no better stress-testing procedure I know of for finding edge cases than running few million random examples. Some of the stories I’ve missed may not arise in my limited mental model of what might happen, but even the most trivial GP system will usually stumble across some complex set of unlikely parameters you’ve forgotten.

I don’t have any sense which stories are more “important”. To be fair, none of them seems especially challenging except perhaps the Subroutines one. That seems like it will entail deciding on interpreter architecture.

I’ll just work on the first story that catches my eye, and move forward from there until I decide I’m done.

As I explained earlier, I’ll provide acceptance tests in the Gherkin language. Gherkin reads like stilted English (or any of 40 other languages). It spells out the setup, change of state and expectations of outcome for each of my scenarios clearly.

 Even if Cucumber isn’t directly compatible with the language you’re using, you should at least use the steps—the lines that begin with the tokens Given, When, Then, And and But—to drive the tests you’re writing in Your Favorite Programming Language. You can download copies of my feature files from the GitHub repository associated with this chapter.

The first thing I’ll do is set up some config files so that Cucumber loads my library (cargo_bot.rb). Once it knows how to find my code, it will parse all the .feature files it can find in the working directory.

Feature files are read top-to-bottom, step by step. Cucumber will point out the first step it finds in each feature file that (a) isn’t recognized by a step definition file, or (b) raises an exception when the step definition is run. Cucumber .feature files define the tests. Step definition files establish the needed connection between those tests and my library. The library itself provides the classes and methods I invoke in those step definitions.

My basic workflow runs like this:

	Add a new Scenario block to a feature file.

 	Invoke Cucumber to run all feature files.

 	If there is a failing step anywhere, modify my library until no steps fail.

 	If there is a pending step (but none fail), create or modify an existing step definition so that it recognizes the pending step text8, and add code that invokes my library. The added code is “code I wish I had”. By design it should result in that pending being recognized, but failing when I next invoke Cucumber.

 	Add only enough code to my library to make the failing step pass, without breaking any others.

 	Refactor.

I may also need a secondary layer of “expectation testing” (also known as unit testing). These proceed in a loop, much like the acceptance testing level, but occurring entirely within the last two steps of that loop. The goal is to add “only enough code to my library” in an incremental way, when the code needed is more complicated than a line or two. Here I state my expectations of internal state changes before I write any code. At the acceptance level, I’m speaking of behavior visible at the gross level of “the software”; at the expectation level, I’m speaking of the internal work that’s needed to realize those gross behaviors.

For example, in another project we might have an acceptance test that has a step When I trade the selected stock. Almost certainly the code I’ll need to write to implement this single step will involve a lot of infrastructure and design in its own right. To support that design, I would state a set of intermediate expectations (in the context of the library I was building). Maybe the first would set an expectation about creating an Order object, and confirm that the size and ticker symbol were the same as the “selected stock”. I’d write the code to make that pass, then maybe have to state a new expectation involving how the Order is placed… and so on. It’s only after I’ve built this trail of interior increments, and made them all work, that the acceptance test step will pass.

In writing simple emulator library, I’ve needed to do very little expectation testing. For clarity I’ve used Cucumber for expectation tests as well as acceptance tests, though in practice there are specific libraries with strengths in one or the other of these practices.

Moving Left and Right

This is my first target. I pick it for no particular reason. “Moving the claw around” seems simple, but it also entails some important-sounding infrastructure. I could have picked any of the stories to start with.

I first write a Gherkin Scenario block in a new feature file. I think it captures “moving left and right”, while avoiding any concerns about crashing. Crashing is a different story, and I shouldn’t confound it with this one. I use a space-delimited string to represent the tokens stored in subroutine 1, and an Array of Arrays to represent the state of the (empty) factory with its five pallets.

claw.feature
Feature: Cargo-bot emulator claw

Background: a bot exists
 Given I have a new cargobot

Scenario: Claw moves left and right
 Given subroutine 1 is "L R R R"
 And the pallets are [[], [], [], [], []]
 And the claw is over pallet 2
 When I activate the cargobot
 Then the claw should be over pallet 4

I invoke Cucumber… and I get a failure immediately, because I forgot the configure it correctly. I always seem to forget that. Once it’s fully informed, Cucumber is much happier; it points out that the Background step is the first pending one.

I write a new step called Given I have a new cargobot, saving it in a stepfile I call emulator_steps.rb. Remember that my cargobot.rb library is still totally empty. This step definition invokes a method method (CargoBot#new) that hasn’t been written; the class hasn’t even been defined.

To quote the authors of Cucumber, it’s the code I wish I had.

emulator_steps.rb
Given /^I have a new cargobot$/ do
 @bot = CargoBot.new
end

When I invoke Cucumber now, this step is failing instead of pending. I add the class definition for CargoBot to my library file. My CargoBot class inherits a #new method automatically in Ruby, so this is enough to work with.

cargobot.rb
class CargoBot
end

I invoke Cucumber again, and the first step Given I have a new cargobot now passes.

The next pending step is Given subroutine 1 is "L R R R". Using the helpful hint Cucumber provides, I create a step definition for that, and fill it in with more code “I wish I had”.

emulator_steps.rb
…
Given /^subroutine (\d+) is "(.*?)"$/ do |which, code|
 subroutine = which.to_i-1
 tokens = code.split
 @bot.program[subroutine] = tokens
end

I’ve remembered the Ruby 0-based indexing of Arrays, so I’m subtracting 1 from the indicated pallet number. I’ve also split the string of tokens up into an Array by separating on whitespace, and stuck that in the program.

I invoke Cucumber again, and of course this step now fails, since my empty CargoBot class doesn’t have a #program attribute to set. I just add the attribute, but I decide to add a bit of trivial initialization code.

cargobot.rb
class CargoBot
 attr_accessor :program

 def initialize
 @program = []
 end
end

This step passes.

And the pallets are [[], [], [], [], []] is now pending. Since I know that other scenarios will be using different arrangements of pallets and crates, I’m going to generalize Cucumber’s suggested literal transcription and write a step definition so it recognizes everything in the square brackets, then use Ruby’s eval to parse that string an Array object.

emulator_steps.rb
…
Given /^the pallets are (\[.+\])/ do |setup|
 @bot.pallets = eval(setup)
end

Of course nobody knows nothin’ about no stinkin’ pallets yet.

I add an attribute, and because I feel a bit overconfident I throw it in as an argument of the initialization method as well, thinking that someday I can create new CargoBot instances with calls like CargoBot.new([[:red],[],[:green]]).

cargobot.rb
class CargoBot
 attr_accessor :program
 attr_accessor :pallets

 def initialize(setup=[])
 @program = []
 @pallets = setup
 end
end

Starting to see the rhythm? I invoke Cucumber. I add the step definition that’s missing. I modify the library just until no step fails (including ones I may have broken). I repeat.

The next pending step is And the claw is over pallet 2.

emulator_steps.rb
…
Given /^the claw is over pallet (\d+)$/ do |which|
 position = which.to_i-1
 @bot.claw_position = position
end

That wants a CargoBot#claw_position, so I add that.

cargobot.rb
class CargoBot
 attr_accessor :program
 attr_accessor :pallets
 attr_accessor :claw_position

 def initialize(setup=[],claw_position=0)
 @program = []
 @pallets = setup
 @claw_position = claw_position
 end
end

When I activate the cargobot is next.

emulator_steps.rb
…
When /^I activate the cargobot$/ do
 @bot.run
end

I could write the big method that interprets the stored program and moves the claw around now. But notice that this particular step in itself doesn’t demand any particular functionality. All I really need at this stage is to be able to invoke CargoBot#run.

cargobot.rb
class CargoBot
 attr_accessor :program
 attr_accessor :pallets
 attr_accessor :claw_position

 def initialize(setup=[],claw_position=0)
 @program = []
 @pallets = setup
 @claw_position = claw_position
 end

 def run
 end
end

Then the claw should be over pallet 4 is pending now.

Finally we’ve arrived at the actual “behavior” step. This is where the scenario tests my library’s functionality. Notice how much of the class’s infrastructure has already appeared, just by our incremental crawl through the steps, line by line. It has all kinds of state, and even some trivial behavior. And while the story of how we got here might look like a lot of words, it took about three (3) minutes on my end.

What exactly should it mean to “run” a program, assuming it has already loaded into the subroutines of Cargobot#program? I recall in one of the other stories—the one about the subroutines, maybe?—wondering whether we should use some sort of “program pointer” that moves in a reasonable way among the program’s elements, or whether instead we should use an “execution stack” sort of thing in which a subroutine is pushed onto a stack when called, and tokens are popped off of that.

For some reason I like the second version. It’s entirely possible that one could write it with an explicit “pointer”, recording where the pointer would “return to” as soon as it finishes a subroutine.9

So I guess I need an execution stack. When I run the program I’ll push the entire contents of subroutine 1 onto that, and then run by removing one token at a time until it’s empty….

But this feels like an awful lot of things to do at once. Too many things. Experience tells me I shouldn’t be taking all this on in one step. The acceptance test really only wants the claw to be in position 4 when we’re done. So I am happy to oblige.

cargobot.rb
class CargoBot
 attr_accessor :program
 attr_accessor :pallets
 attr_accessor :claw_position

 def initialize(setup=[],claw_position=0)
 @program = []
 @pallets = setup
 @claw_position = claw_position
 end

 def run
 @claw_position = 3
 end
end

At first I made claw_position “4”, and the test failed. Then I remembered to take into account the difference between my internal 0-based counting and the Scenario’s 1-based scheme. So: success!

The first scenario passes completely.

Aside: The Simplest Thing That Could Possibly Work

Do I hear somebody saying “Whoa, whoa, whoa—”?

When I’m demonstrating test-driven design, I find this is usually the point where some folks begin to produce a worrying sort of huffing sound. This is how test-driven design works. It’s not just writing the tests first and then copying over the code you thought up on the whiteboard. It’s only adding the code required to make the current tests pass. (And then refactoring.)

I find these habits are helpful for reducing my tendency to premature optimization and over-design, and for improving maintainability of the resulting code. But in the context of this book, I’m going through test-driven design in detail because I also want to point out its similarities to the “design approach” GP embodies.

Sometimes I’m asked: Isn’t it inefficient when you hard-code responses like [the one I just wrote]? Won’t you just have to go back and change it to make it “right” shortly?

Yes, I will have to change it. But this test passes now. There are other tests I haven’t looked at yet, and they won’t pass until I change it. In any interesting project there are always more tests, because there are always more tasks I haven’t completed yet. In this case I’m willing to bet that the very next scenario will lead me to add the generalization that this first example lacked. But for the moment: Every test I’ve addressed so far passes. I’ve spent very little time or attention designing the inevitable logic of generalization ahead of time.

This highlights something important not just about GP dynamics, but problem-solving in general.

I think as humans we have an inbuilt preference for storytelling. We like to imagine there are self-consistent comprehensive solutions developed by smart people and executed according to Accepted Best Practices. We want to see a believable plan before we expend energy on the “real work” of building. And when we see something that appears to be done, we assume it took a lot of thought and effort for somebody to think it all through before they began work.

Yet at the same time, we know that breaking complex tasks into small non-overlapping units is a viable work strategy. Otherwise we wouldn’t have steps, we’d give instructions like “prepare and bake the cake in the usual way”. Firther, witness all the ways the Getting Things Done gurus and Pomodorists admonish you to spend as little time as possible on any given thing—and if something looks too complicated, we should break it down into smaller chunks.

“Inefficiency” doesn’t apply at the level of these small, incremental steps. The term only takes on meaning in the context of the long-term plan we’re following: the picture of our progress measured against a pre-existing vision of the final product. I know of no quantitative data that compares the time we spend inventing a whole-cloth “complete design” before we code, as opposed to the time “wasted” in undoing small fixes like this one. But I suspect they might be closer in scale than most people think, but I don’t know either way.

Moreover, I want you to think for a moment about a software process you and I are undertaking:

We’re here to build a large, random software system that will try millions of times to produce code that meets your expectations. How do you think that software system will come to “know” those expectations? And how will you know if it’s managed to meet your expectations, even part way?

A GP system can only “talk” or “listen” to you through tests just like these little steps I’m making in my coding. You’ll score Answers based on how well they match your expectations, in the form of input:output training data, or samples you rate, or some other multitude of “tests” you establish on some small scale. You don’t tell your GP system “solve the puzzle”, you measure how many points it earns, or how many puzzles it solves from a set you develop. And the choices you make in selecting those tests are the only communication medium you have for explaining what the “big picture” is.

GP will almost certainly solve the simplest tests first, just by chance. And when that low-hanging fruit has been grabbed, GP will need to “generalize” to get more points—in much the same way I’m about to generalize here.

In the next chapter we’ll watch a GP system fiddling and failing, wrestling to “discern” that case A and case B are just variations of a basic pattern. Recognizing when and understanding why GP “gets stuck” is not just about crossover and mutation, though. It’s far more about what it is you’re asking for, and your ability to see new ways to break that down into manageable pieces. Tests, training cases, increments.

Activating the Claw

I have one passing scenario. I pick this story to work on next. It feels as though it should be next after “Moving Left and Right”.

I start by adding a couple of additional features to claw.feature.

claw.feature
…
Scenario: Empty claw picks up crates
 Given subroutine 1 is "claw R"
 And the pallets are [[blue, red],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should be over pallet 2
 And the claw should hold a red crate
 And the pallets should be [[blue],[]]

Scenario: Claw with crate sets it down
 Given subroutine 1 is "claw R claw"
 And the pallets are [[blue, red],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should be over pallet 2
 And the claw should be empty
 And the pallets should be [[blue],[red]]

It turns out I’ve already written code that handles Given subroutine 1 is "claw R" and Given the pallets are [...]. The next bit of work Cucumber identifies is a failing step: my code doesn’t parse the string [[blue, red],[]] as a Ruby Array.

It’s clearly time to decide whether I want to use an Array of Symbols for a single stack (e.g., [:red, :blue, :blue]), or a String-of-character-codes (e.g., "rbb").

I think for the time being I’ll use an Array of Symbols. As far as I can tell (without having done it yet), it would be perfectly reasonable to use Strings too. But translating [[blue],[red]] into the Ruby Array [[:blue],[:red]] feels like less work, compared to munging it into the Ruby String "br".

I have a sense that I’d need to maintain a dictionary of color-to-character associations and so on if I used Strings. Or write a more complicated method that doesn’t just use Ruby’s built-in string substitution and eval method. You have to pick something. I’m just trying to pick the simpler one.

So let me revise the existing step definition a bit so that it parses the string into the Array of Symbols, munging it in place and inserting colon characters that make it a syntactically correct Ruby statement that eval can recognize.

Inelegant? Maybe!

emulator_steps.rb
…
Given /^the pallets are (\[.+\])/ do |setup|
 symbolized_stacks = setup.gsub(/(\w+)/,':\1')
 @bot.pallets = eval(symbolized_stacks)
end

But it works.

Now the work I did on the previous feature pays off. We get all the way down to Then the claw should be over pallet 2 before there’s an error. We get that error because of course the library has hard-coded the claw to always be over pallet 4 (aka “index 3”).

See? I told you so. There’s more pressure to generalize here. I have to do a couple of things to get this to pass without making the prior feature fail.

To clarify things a bit for myself, I reach in and shift the steps around. Postpone thinking about the position thing for the moment. There should be no negative consequences of changing the order of the three Then clauses; they’re all supposed to be true at the same time.

claw.feature
…
Scenario: Empty claw picks up crates
 Given subroutine 1 is "claw R"
 And the pallets are [[blue, red],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should hold a red crate
 And the pallets should be [[blue],[]]
 And the claw should be over pallet 2

Scenario: Claw with crate sets it down
 Given subroutine 1 is "claw R claw"
 And the pallets are [[blue, red],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should be empty
 And the pallets should be [[blue],[red]]
 And the claw should be over pallet 2

Now instead of a failing step, my next work is Then the claw should hold a red crate. This suggests a step definition in which I convert the color string into a Symbol so it can be checked against the factory layout.

emulator_steps.rb
…
Then /^the claw should hold a (.*?) crate$/ do |color|
 crate = color.intern
 @bot.claw_holding.should == crate
end

Of course there is no CargoBot#claw_holding yet, so I add that attribute. Now the step fails because the assertion fails, not because it has no idea what I’m talking about.

So (grit your teeth) I add the code required make it pass.

cargobot.rb
class CargoBot
 attr_accessor :program
 attr_accessor :pallets
 attr_accessor :claw_position,:claw_holding

 def initialize(setup=[],claw_position=0)
 @program = []
 @pallets = setup
 @claw_position = claw_position
 end

 def run
 @claw_position = 3
 @claw_holding = :red
 end
end

Surely you saw that coming? No steps fail.

The last step of this Scenario actually checks the current factory arrangement against the expected one. I think I should re-use the step code I wrote for the equivalent Given step, to compare the observed versus expected arrangements of crates:

emulator_steps.rb
…
Then /^the pallets should be (\[.+\])$/ do |factory_layout|
 symbolized_stacks = factory_layout.gsub(/(\w+)/,':\1')
 @bot.pallets.should == eval(symbolized_stacks)
end

Now I’ve arrived at a failing Then step, one which produces the following error summary:

expected: [[:blue], []]
 got: [[:blue, :red], []] (using ==)

I have no temptation at this point to add code that modifies the value of CargoBot#pallets. It was explicitly set by a preceding step.

I’ve more than halfway decided to use a call-stack approach to manage the flow of control through our script’s subroutines, rather than an explicit pointer. The “subroutines” so far contain an Array of token strings, like "L_yellow" and so on, sorted in the order in which they appear in the iPad game, to be executed in a left-to-right order.

I have a feeling I should maintain that left-to-right order. Ruby uses Array#push and Array#pop to work with the right-hand end of Arrays, but offers the convenient Array#shift and Array#unshift methods for the equivalent left-end manipulation. So technically the management of an execution stack with new items being “pushed” to the front end appears feasible.

The real difficulty here is that while I have a failing test step, there’s still far too much for me to do before that test passes. Essentially I’m left wanting the entire infrastructure that initializes the emulator, runs the program, changes the state of the factory accordingly, and stops when it’s done (for one of several possible reasons).

You may have noticed that acceptance tests don’t specify how the “guts” of the emulator should work. They don’t really have the right to do so: an acceptance test surfaces desired behavior, not mechanism.

But now I have to make a bigger change than I find comfortable. I want tests of my expectations. These will be help me unfold the mechanisms by which the higher-order behavior is incrementally realized. They give me access to internal state.

In the Ruby world, there are several libraries for testing, and each uses its own modes and idioms. Cucumber, the framework I’ve started using here for acceptance tests, is most often used alongside one of the other frameworks at the unit-testing/expectation level. I personally the flexible rSpec framework for expectations, but I have a sense that introducing a new idiom at this point may be unhelpful. So what I’m about to is unusual: I’ll stick with Cucumber and use it to write my low-level structural expectations as well.

To differentiate my “expectations” from the standard acceptance tests, I make sure they’re in a separate file I call internal.feature.

First, I want to get at the state of the emulator just after I activate it, but before any tokens are interpreted. Surprisingly enough, I already have a hook for that in another story card: the “step limit” feature. By setting it to 0, it seems I should be able to say “start, but don’t proceed”.

internal.feature
Feature: Execution internals

Background: a bot exists
 Given I have a new cargobot

Scenario: subroutine 1 is copied to execution stack first
 Given subroutine 1 is "R L claw"
 And the pallets are [[], []]
 And the claw is over pallet 1
 And the step limit is 0
 When I activate the cargobot
 Then the execution stack should be "R L claw"

I initially set up the subroutine to an asymmetric sequence so I can better watch execution order; I want R to happen first. I leave the pallets empty. Because of infrastructure I already have, the first failing step is now Given the step limit is 0.

emulator_steps.rb
…
Given /^the step limit is (\d+)$/ do |limit|
 @bot.step_limit = limit.to_i
end

I add the attribute CargoBot#step_limit and initialize it to the default value.

cargobot.rb
class CargoBot
 attr_accessor :program
 attr_accessor :pallets
 attr_accessor :claw_position,:claw_holding
 attr_accessor :step_limit

 def initialize(setup=[],claw_position=0)
 @program = []
 @pallets = setup
 @claw_position = claw_position
 @step_limit = 500
 end
…

The next pending step is Then the execution stack should be "R L claw".

emulator_steps.rb
…
Then /^the call stack should be "(.*?)"$/ do |stack_as_string|
 @bot.call_stack.join(" ").should == stack_as_string
end

This fails for the obvious and useful reason: I have no such attribute. I add the CargoBot#call_stack attribute, defaulting to an empty Array (not shown), and run Cucumber again.

features/step_definitions/emulator_steps.rb:50
expected: "R L claw"
 got: "" (using ==)…

What I want to make this failing test pass is exactly the piece of infrastructure I’ve been musing about. The contents of the first subroutine should be copied over onto the call_stack as soon as Cargobot#run is called.

cargobot.rb
…
def run
 @call_stack = @program[0]
 @claw_holding = :red
end

Rather unexpectedly all the steps now pass in this scenario. A moment of reflection, and I see what’s happened: in this scenario it’s actually the case that Then the execution stack should be "R L claw". I’m comfortable with this, since I’m about to add a complementary scenario that moves the claw.

internal.feature
…
Scenario: call_stack contents are consumed as the interpreter runs
 Given subroutine 1 is "R L claw"
 And the pallets are [[], []]
 And the claw is over pallet 1
 And the step limit is 1
 When I activate the cargobot
 Then the call stack should be "L claw"
 And the claw should be over pallet 2

The benefit of having written all those other step definitions is becoming obvious: the only failing steps in this scenario are the last two. Finally I’m in a position for a bit of warranted design. I add a loop that pops one token off the call stack, counting tokens popped as it goes, and terminating when it’s reached the limit.

cargobot.rb
class CargoBot
 attr_accessor :program
 attr_accessor :pallets
 attr_accessor :claw_position,:claw_holding
 attr_accessor :call_stack
 attr_accessor :step_limit, :steps

 def initialize(setup=[],claw_position=0)
 @program = []
 @pallets = setup
 @claw_position = claw_position
 @call_stack=[]
 @step_limit = 500
 @steps = 0
 end

 def run
 @call_stack = @program[0]
 until @call_stack.empty? || @steps >= @step_limit
 @steps += 1
 token = @call_stack.shift
 end
 @claw_holding = :red
 end
end

Now only the last step fails, and now it feels like I can make it pass intentionally, rather than by fiat. My method has a token in hand inside this loop; so I can “hook up” the R behavior now.

cargobot.rb
…
 def run
 @call_stack = @program[0]
 until @call_stack.empty? || @steps >= @step_limit
 @steps += 1
 token = @call_stack.shift
 @claw_position += 1 if token == 'R'
 end
 @claw_holding = :red
 end

All expectations pass within this file, but several acceptance test steps are broken. The first failure is in Scenario: Claw moves left and right, since I’ve no longer got a hard-coded position. But what I do have is infrastructure that can handle movement properly, so I can now add L token handling.

cargobot.rb
…
 def run
 @call_stack = @program[0]
 until @call_stack.empty? || @steps >= @step_limit
 @steps += 1
 token = @call_stack.shift
 @claw_position += 1 if token == 'R'
 @claw_position -= 1 if token == 'L'
 end
 @claw_holding = :red
 end

Fixed.

The next failing step is in Scenario: Empty claw picks up crates, since of course this isn’t true; I have that “ancestral” code remnant that sets CargoBot#claw_holding to :red, and nothing to actually handle claw action yet. There are starting to be too many conditionals in this method, but first me get rid of these failing steps before I refactor.

cargobot.rb
…
 def run
 @call_stack = @program[0]
 until @call_stack.empty? || @steps >= @step_limit
 @steps += 1
 token = @call_stack.shift
 @claw_position += 1 if token == 'R'
 @claw_position -= 1 if token == 'L'
 @claw_holding = @pallets[@claw_position].pop if token == 'claw'
 end
 @claw_holding = :red
 end

At the moment there are no failing steps. I refactor the token-handling code.

cargobot.rb
…
 def interpret(token)
 case token
 when 'R'
 @claw_position += 1
 when 'L'
 @claw_position -= 1
 when 'claw'
 @claw_holding = @pallets[@claw_position].pop
 end
 end

 def run
 @call_stack = @program[0]
 until @call_stack.empty? || @steps >= @step_limit
 @steps += 1
 token = @call_stack.shift
 self.interpret(token)
 end
 @claw_holding = :red
 end

I’ve pulled the token-interpreting method out, hopefully improving the readability and extensibility of the library.

The next pending step is over in Scenario: Claw with crate sets it down, so I add a step definition to handle the expected empty claw in that context.

emulator_steps.rb
…
Then /^the claw should be empty$/ do
 @bot.claw_holding.should be_nil
end

The claw isn’t empty; it’s still holding a red crate I specifically stick there at the end of CargoBot#run!

I remove that explicit @claw_holding = :red (not shown), and now the step fails because the claw can only pick up crates, not put them down again.

cargobot.rb
…
 def interpret(token)
 case token
 when 'R'
 @claw_position += 1
 when 'L'
 @claw_position -= 1
 when 'claw'
 if @claw_holding.nil?
 @claw_holding = @pallets[@claw_position].pop
 else
 @pallets[@claw_position].push @claw_holding
 @claw_holding = nil
 end
 end
 end
 …

There are no pending or failing steps, so I do a bit more refactoring to clean this up.

cargobot.rb
 …
 def interpret(token)
 case token
 when 'R'
 @claw_position += 1
 when 'L'
 @claw_position -= 1
 when 'claw'
 activate_claw
 end
 end

 def activate_claw
 if @claw_holding.nil?
 @claw_holding = @pallets[@claw_position].pop
 else
 @pallets[@claw_position].push @claw_holding
 @claw_holding = nil
 end
 end
 …

Subroutines

Given the minimal infrastructure I’ve already built, the pace will speed up quite a bit. I think I’ll work on the Subroutines story next.

	Subroutines

 	When a call[N] instruction is executed, the entire contents of subroutine [N] starts executing immediately. When that called subroutine is done, program flow returns to the instruction immediately after the originating call. If a running subroutine itself issues another call, flow will return from the sub-subroutine to the next instruction after the second-order call, and so on.

I write a scenario that uses two subroutine calls to pick up, move, then put down a crate one step to the left. If control passes through this incorrectly, the crates and the claw will end up being in the wrong positions.

subroutines.feature
Feature: Subroutines

Background: a bot exists
 Given I have a new cargobot

Scenario: "call" tokens immediately branch, then return from subroutines
 Given subroutine 1 is "R call2 R R call2"
 And subroutine 2 is "claw L claw"
 And the pallets are [[],[red],[blue]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the pallets should be [[red],[blue],[]]
 And the claw should be over pallet 2
 And the claw should be empty

My first failing step is Then the pallets should be [[red],[blue],[]]. Looking at the library, I think I can get away with just adding a new behavior to handle these tokens. I capture the numeric part of the call token, and then prepend that subroutine (in toto) to the front of the call_stack.

cargobot.rb
 …
 def interpret(token)
 case token
 when 'R'
 @claw_position += 1
 when 'L'
 @claw_position -= 1
 when 'claw'
 activate_claw
 when /call(\d+)/
 subroutine = $1.to_i-1
 @call_stack = @program[subroutine] + @call_stack
 end
 end
 …

All extant tests pass.

I think I’d like to push a little further though; after all, that first scenario just tested a simple call-and-return structure. There’s also that recursion/infinite loop thing that led me to add step-counting in the first place, and the notion of nested calls. How about a more complicated setup, with a mutual calling loop, just to make things interesting?

An interesting problem arises, though. I don’t really want to be bothered to do the math to determine what the actual position of the claw will be on the 500th step, nor whether it will be empty or holding a block. So I start with failing steps—intentionally impossible conditions—and replace them when I discover the proper values.

subroutines.feature
 …
 Scenario: recursive calls form loops (and time out)
 Given subroutine 1 is "claw R claw R call2"
 And subroutine 2 is "claw L L claw R call3"
 And subroutine 3 is "claw R claw L L call1"
 And the pallets are [[red],[],[blue]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the step count should be 500
 And the pallets should be [[red],[blue],[]]
 And the claw should be over pallet 7
 And the claw should hold a purple crate

I’ll need a new step definition.

emulator_steps.rb
…
Then /^the step count should be (\d+)$/ do |steps|
 @bot.steps.should == steps.to_i
end

I run Cucumber and… perhaps I’ve made the situation a too interesting. The failing step is the assertion; it only counts 6 steps, not the expected 500.

I peer a while, and then I see a mistake I’ve made before: Ruby refers to Array objects by reference, not by value. So in the current implementation, I add the actual contents of subroutine 1 to the call_stack, and proceed to shift items off of that and throw them away. What’s wanted is a copy of the subroutines, rather than the objects themselves. As I mentioned in my musings about the story card, it “felt” as if there was a difference between the stored program and the code being executed, and this may have been what I was intuiting.

I make two minor changes to fix that bug: I invoke Array#clone when I initially load subroutine 1 into the call stack, and also when I prepend a called subroutine’s contents.

cargobot.rb
 …
 def interpret(token)
 case token
 when 'R'
 @claw_position += 1
 when 'L'
 @claw_position -= 1
 when 'claw'
 activate_claw
 when /call(\d+)/
 subroutine = $1.to_i-1
 @call_stack = @program[subroutine].clone + @call_stack
 end
 end
 …
 def run
 @call_stack = @program[0].clone
 until @call_stack.empty? || @steps >= @step_limit
 @steps += 1
 token = @call_stack.shift
 self.interpret(token)
 end
 end

Much better now. The failing step is now the state of the system when it times out; can I just assume that the 500 modulo 17th step is something like the claw holding the red crate in the air, and the blue crate in the middle? That’s what my failed assertion tells me is the case.

That’s too risky to assume, and I doubt I can work out where everything is in my head. 500 steps, with 17 tokens in each cycle through the program… that means I’ve ended up on the 500 mod 17 or 7th step. But the :blue crate is moved, so I must have already cycled through once, so it’s equivalent to the 24th step in the loop.

24 steps is much closer to the sort of thing I can work out in my head. I do a little dance with pieces of colored paper moving around on my desk, and more or less confirm that the factory state I should expect (for some definition of “expect”) is what my new scenario asserts.

subroutines.feature
 …
 Scenario: recursive calls form loops (and time out)
 Given subroutine 1 is "claw R claw R call2"
 And subroutine 2 is "claw L L claw R call3"
 And subroutine 3 is "claw R claw L L call1"
 And the pallets are [[red],[],[blue]]
 And the step limit is 24
 And the claw is over pallet 1
 When I activate the cargobot
 Then the step count should be 24
 And the pallets should be [[],[blue],[]]
 And the claw should be over pallet 2
 And the claw should hold a red crate

That scenario passes, as do all the rest. And I’ve also (as a side-effect) that the time-out acts as expected, even in an “infinite loop” situation. I’m pleased enough to move on, though I may need to add more scenarios later for edge cases I can’t see yet.

It’s interesting, don’t you think, that even a “trivial” test like this one implies enough complexity that I have to step it down before I can work it out in my head. The total wall-clock time I’ve expended writing this code, not counting the accompanying written record, is about fifteen minutes so far. Also noteworthy is the fact that my Array#clone bug was only a bug after I had a test that exercised it. That is, it only “surfaced” once I started addressing a scenario that needed to re-use a subroutine; if none of my code was ever recursive, it wouldn’t have mattered.

Conditional Flags

Since I’m already fiddling with the token-handling control code, it seems reasonable to work on this story next.

	Conditional Flags

 	Any instruction with a conditional flag will only execute if the flag’s condition is met. The flags are _yellow, _red, _green, _blue, _any, and _none. An instruction that has no flag will always execute.

There are a few items tucked together in this single story, but they’re similar enough to one another that I think I can do them all more or less at once. Actually the hardest part may be writing Scenarios that actually test them in an incontrovertible way. I expect there will be several scenarios here.

I start by looking at conditional subroutine calls, since I’ve just been working on those. If I understand Cargo-bot well enough, this setup should pick up the top three crates from the middle pallet, and move the red ones to the pallet 1 and the blue ones to pallet 3, leaving the middle one with a green one.

conditional.feature
Feature: Conditional tokens

Background: a bot exists
 Given I have a new cargobot

 Scenario: conditional branching
 Given subroutine 1 is "call2 call2 call2"
 And subroutine 2 is "claw call3_red call4_blue"
 And subroutine 3 is "L claw R"
 And subroutine 4 is "R claw L"
 And the pallets are [[],[green,red,blue,blue],[]]
 And the claw is over pallet 2
 When I activate the cargobot
 Then the pallets should be [[red],[green],[blue,blue]]

This fails, though in a way I don’t expect: it picks up three crates, but it moves them to pallet 1. I expected something that didn’t recognize the conditional flagged tokens at all….

Aha! I’ve written the code for call[N] handing so that it always recognizes those tokens, ignoring all the following stuff! This is simply the result I would expect if none of the conditional flags were noticed.

I add a nasty bit of regular expression magic to split the token string into two parts, the instruction token itself, and the conditional flag (if any).

It’s best if you don’t ask me what I did to come up with this regular expression—remember the old joke-which-is-not-a-joke. Your language (and solution) will almost certainly work in a different confusing way, so in this case I am going to skip the expectation testing I used to get this. Note that I wrote it in a test-driven way; I didn’t use Pure Cunning and then fiddle around until it worked.

cargobot.rb
 …
 def interpret(token)
 token,flag = token.match(/(\p{Alnum}+)_?(.+)?/)[1..2]
 case token
 …

Now if there is no flag, or if the condition is met, I want to execute the instruction token. Otherwise, I want to skip it.

cargobot.rb
 …
 def condition_met?(flag)
 flag.nil? || flag.intern == @claw_holding
 end

 def interpret(token)
 token,flag = token.match(/(\p{Alnum}+)_?(.+)?/)[1..2]
 return unless condition_met?(flag)
 case token
 when 'R'
 @claw_position += 1
 when 'L'
 @claw_position -= 1
 when 'claw'
 activate_claw
 when /call(\d+)/
 subroutine = $1.to_i-1
 @call_stack = @program[subroutine].clone + @call_stack
 end
 end
 …

All scenarios pass.

How about we work on the _any flag next? In playing with the Cargo-bot game, I’ve solved a couple of puzzles that have used _any (and _none) to break out of otherwise infinite loops. Let’s try that approach.

conditional.feature
 …
 Scenario: "_any" flag
 Given subroutine 1 is "claw call2_any"
 And subroutine 2 is "R claw L claw call2_any"
 And the pallets are [[r,g,b],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the pallets should be [[],[b,g,r]]
 And the step count should be 17

Notice that I’ve gotten lazy, and started using single letters for the crate colors, and it still works. Actually I’m not being “lazy”, I’m killing two birds with one stone. The implicit test is good enough for me to trust the string matching works.

There’s a failing step: as expected, the final arrangement of crates looks nothing like I asserted. This makes sense; the logic I’ve written so far will only call2 if it’s holding a crate whose color is :any. I modify CargoBot#condition_met? to work for unflagged, _any flags, or color matches.

cargobot.rb
 …
 def condition_met?(flag)
 flag.nil? ||
 flag == "any" && !@claw_holding.nil? ||
 flag.intern == @claw_holding
 end
 …

That step passes, and it turns out I counted right when I predicted that the program would execute 17 tokens. All scenarios pass again.

The _none flag is wanting, so let’s do something similar to exercise that behavior. Here’s a little program that should move b to pallet 1, and everything else on pallet 3.

conditional.feature
 …
 Scenario: "_none" flag
 Given subroutine 1 is "claw_none call2_any"
 And subroutine 2 is "call3_b R claw L call1_none"
 And subroutine 3 is "L claw R call1_none"
 And the pallets are [[],[r,g,b,b],[]]
 And the claw is over pallet 2
 When I activate the cargobot
 Then the pallets should be [[b,b], [], [g,r]]
 And the step count should be 40

I add a bit of logic for the _none flag, and I think we’ve got all the conditions we’re trying for.

cargobot.rb
 …
 def condition_met?(flag)
 flag.nil? ||
 flag == "none" && @claw_holding.nil? ||
 flag == "any" && !@claw_holding.nil? ||
 flag.intern == @claw_holding
 end
 …

All 84 steps in 10 scenarios pass. Notice that we’re speeding up?

Crashes

Earlier I was wondering aloud whether I really “need” to terminate the simulation when the claw crashes into the walls, or let it bounce and keep count of how many times it makes that mistake. I suspect we ought to permit both behaviors, so we can check against the iPad game behavior and also permit GP to gradually reduce the number of “bumps” as needed.

	Crashes

 	When an L instruction is executed and the claw is in the leftmost position, it should crash. Same when an R is executed and the claw is in the rightmost position.

To date I’ve been careful not to let the claw get too close to the walls. Let’s change that now.

I add a “crashing” scenario to claw.feature, since that seems to be related. My sense is that the default behavior for my Cargo-bot emulator will be “relaxed”, with “strict” as an optional setting I can invoke later.

claw.feature
…
Scenario: crashing into the wall
 Given subroutine 1 is "R R R R R R"
 And the pallets are [[],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should be over pallet 2
 And the number of bumps should be 5

The resulting failure is not unexpected: the claw is over “pallet 6” instead of pallet 2.

I modify cargobot.rb to keep the claw from leaving the factory that way—the least code I need to add to make this step pass.

cargobot.rb
 …
 def interpret(token)
 token,flag = token.match(/(\p{Alnum}+)_?(.+)?/)[1..2]
 return unless condition_met?(flag)
 case token
 when 'R'
 @claw_position += 1 if @claw_position < @pallets.length-1
 when 'L'
 …

Now I have a pending step, so I add the appropriate definition.

emulator_steps.rb
…
Then /^the number of bumps should be (\d+)$/ do |bumps|
 @bot.wall_bumps.should == bumps.to_i
end

I add the code to make this pass, using a ternary operator for succinctness.

cargobot.rb
 …
 def interpret(token)
 token,flag = token.match(/(\p{Alnum}+)_?(.+)?/)[1..2]
 return unless condition_met?(flag)
 case token
 when 'R'
 @claw_position < @pallets.length-1 ?
 @claw_position += 1 :
 @wall_bumps += 1
 when 'L'
 …

All steps pass, so I’ll refactor a bit now. CargoBot#interpret is getting awfully convoluted for my tastes.

cargobot.rb
 …
 def handle_R
 @claw_position < @pallets.length-1 ?
 @claw_position += 1 :
 @wall_bumps += 1
 end

 def interpret(token)
 token,flag = token.match(/(\p{Alnum}+)_?(.+)?/)[1..2]
 return unless condition_met?(flag)
 case token
 when 'R'
 handle_R
 when 'L'
 …

I don’t think I really need to add a completely separate scenario just to handle the left wall crashes. I modify the one I already have, so it rattles the cage in both directions at once.

claw.feature
…
Scenario: crashing into the wall
 Given subroutine 1 is "R R R L L L R R"
 And the pallets are [[],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should be over pallet 2
 And the number of bumps should be 5

I go through the same motions I used in R crashes. All the scenarios pass, and I do the same refactoring for CargoBot#handle_L as I did for #handle_R.

This is fine for my modified behavior, but I should take the time now to build in behavior that matches the iPad game. After all, at some point we should be checking known game solutions against our new emulator’s performance. I think I’ll use a similar scenario, but add a new flag called “fragile” that triggers the original behavior.

claw.feature
…
Scenario: crashing when "fragile" immediately stops the simulation
 Given subroutine 1 is "R R R L L L"
 And the claw is fragile
 And the pallets are [[],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should be over pallet 2
 And the number of bumps should be 1
 And the step count should be 999

I add step definition for the next pending step.

emulator_steps.rb
…
Given /^the claw is fragile$/ do
 @bot.fragile = true
end

I add the missing CargoBot#fragile attribute, and set it as a default to false. The next failing step is the count of the number of bumps, since the emulator isn’t quitting as soon as the claw crashes. I modify CargoBot#run to keep an eye on the number of bumps and the #fragile flag.

cargobot.rb
 …
 def run
 @call_stack = @program[0].clone
 until @call_stack.empty? ||
 @steps >= @step_limit ||
 (@fragile && @wall_bumps > 0)
 @steps += 1
 token = @call_stack.shift
 self.interpret(token)
 end
 end

The failing step is now And the step count should be 999, which I had intentionally made incorrect just to ensure I was paying attention. I correct the assertion to 2, and all scenarios pass.

claw.feature
…
Scenario: crashing when "fragile" immediately stops the simulation
 Given subroutine 1 is "R R R L L L R R"
 And the claw is fragile
 And the pallets are [[],[]]
 And the claw is over pallet 1
 When I activate the cargobot
 Then the claw should be over pallet 2
 And the number of bumps should be 1
 And the step count should be 2

I don’t like the way CargoBot#run is starting to creak under the weight of all those conditions, so I refactor it a bit as well.

cargobot.rb
 …
 def finished?
 @call_stack.empty? ||
 @steps >= @step_limit ||
 (@fragile && @wall_bumps > 0)
 end

 def run
 @call_stack = @program[0].clone
 until finished?
 @steps += 1
 token = @call_stack.shift
 self.interpret(token)
 end
 end

Winning

It seems to me that the only thing we have to deal with now is winning. It does seem like a bit of an afterthought, doesn’t it?

winning.feature
Feature: Solving the puzzle

Background: a bot exists
 Given I have a new cargobot

 Scenario: The emulator halts as soon as the factory state matches the goa\
l
 Given subroutine 1 is "claw R claw L claw R claw L"
 And the pallets are [[b],[]]
 And the claw is over pallet 1
 And the goal is [[],[b]]
 When I activate the cargobot
 Then the step count should be 3
 And the claw should be over pallet 2
 And the pallets should be [[],[b]]

I add the missing step definition.

emulator_steps.rb
…
Given /^the goal is (\[.+\])$/ do |goal|
 symbolized_stacks = goal.gsub(/(\w+)/,':\1')
 @bot.goal = eval(symbolized_stacks)
end

I add a #goal attribute to the CargoBot class (not shown), and the assertions are failing as expected: because there’s no termination condition to detect a match. I have a good idea where that should go:

cargobot.rb
 …
 def finished?
 @call_stack.empty? ||
 @steps >= @step_limit ||
 (@fragile && @wall_bumps > 0) ||
 @pallets == @goal
 end

All steps pass. That wasn’t so bad after all: most of the work was already completed.

Refactoring one more time

It’s always good to look over the code one has “finished” and see how it reads. I look at my library, and I realize something’s still there that I was worried about even when I put it in: there are still a couple of initialization arguments, even though I never invoke them.

Which of my tests needs initialization code that isn’t ever invoked? None of them. I remove the extra code.

 …
 def initialize
 @program = []
 @claw_position = 0
 @call_stack = []
 @step_limit = 500
 @steps = 0
 @wall_bumps = 0
 @fragile = false
 @goal = []
 end
 …

All scenarios pass.

I think there’s more refactoring I will do in this class. Almost every attribute I set in this method should probably have a default value, for example. And I’m going to go off and do that.

But I think maybe we’ve done enough TDD together; and besides, your code is probably not as rough as mine turned out. In the meantime, I want to give you something to think about on the subject of refactoring.

Refactoring doesn’t usually call for more tests to be written, it depends on existing tests to ensure that the changes we make don’t break anything or change the behavior of the code. We don’t ever write an explicit specification that “code must be well-factored”; we assume that refactoring is happening all the time, and the programmers are learning to catch these idiomatic and aesthetic problems from one another.

I personally wrote this code. All known tests pass. Yet when I see the “end” product, there are still a few things I want: It lacks a certain idiomatic Ruby style I would to prefer. It lacks clarity. It doesn’t feel clean enough yet.

There aren’t tests for refactoring. Sure, there are metrics that attempt to estimate how much refactoring a codebase might need, but there are always counterexamples: programs that are much clearer because of that little bit of repeated code, are easier to modify because they use a huge if-then tree, are more maintainable because this one method has 45 lines. In a real sense refactoring habits are inherently cultural and local, like other coding standards. Look at Wikipedia’s page-refactoring guidelines, and I suspect you’ll similar cultural and essentially subjective goals.

Refactoring is highly contextual, yet it’s also a great contributor of value.

So how will we “convince” GP to refactor? Or can we?

That’s what I want you to consider. Think about it while you’re writing your own code. In particular, think about how to reconcile

	my observation that there aren’t general quantitative “refactoring tests”

 	my argument that the only way you can “talk with” your GP system is through tests of various kinds;

 	the fact I’ve pointed out many times already, that GP will produce an awful lot of really weird stuff very quickly.

We’ll come back to this in a later chapter.

Done, mostly

I have a sense that I’m done. I’ll clean up my libraries. But aside from the atomic, low-level increments I’ve worked through, how do I really know my code works like the original Cargo-bot?

I check, of course. I create a set of scenarios that check publicly-available solutions against the outcome of the emulator. Here’s an example of one of the scenarios I created, based on a game walk-through site I found online:

Background: a bot exists
 Given I have a new cargobot

Scenario: A known solution to 'Go the Distance' (Easy) works
 Given subroutine 1 is "R_none claw claw_y L_r call1"
 And the pallets are [[y],[y],[y],[y],[y],[y],[],[r,r,r,r]]
 And the goal is [[y],[y],[y],[y],[y],[y],[r,r,r,r],[]]
 And the step limit is 2000
 When I activate the cargobot
 Then the pallets should be [[y],[y],[y],[y],[y],[y],[r,r,r,r],[]]
 And the number of bumps should be 0
 …

I don’t think there’s any reason for me to show you all those here, is there? After all, you have your own library to validate.

[image: warning]Check Your Work

 Since by now you have built an emulator of your own, at least as good as this one, take ten minutes and find a dozen Cargo-bot solutions, build the appropriate acceptance tests that exercise your emulator library, and confirm that the results your code produces matches the expected outcome. Try looking at YouTube for a wide variety of saved solution videos from the original game, or search for spoiler sites of your own. Make sure that you add some “ticks” to your step_limit, since some of the more complicated programs take several thousand steps to solve the puzzle.

What just happened, and what’s next?

Well, hopefully you wrote code, and it passes all the same acceptance tests mine does. Visit http://github.com/Vaguery/Answer-Factories-theBook and look in project_1/emulator/features/ for the feature files, and project_1/emulator/features/step_definitions if you want to see those.

Since I went to the trouble of walking through its development in such excruciating detail, I’ve even included my Ruby code in the repository. If you have access to Ruby 1.9 and the cucumber gem on your system, you should be able to invoke cucumber --format progress from within project_1/emulator and see all the tests pass.

Once your code is done, we’ve both gained the capability of running arbitrary Cargo-bot solutions to see what happens. This is a major improvement in efficiency (if not fun) over dragging little iPad icons around and waiting to watch the animation play out every time.

In building this emulator using a test-driven approach, I’ve tried to make that process clearer for those who may not be familiar with it. You don’t need to adopt a test-driven approach in your own work. The reason I’ve given it this much space is that I find it’s surprisingly analogous to the way GP “designs” code.

In the next chapter, we’ll develop a simple Answer Language we can use to represent arbitrary Cargo-bot solutions. We’ll generate a few hundred thousand random solutions to a puzzle, load them into the emulator, and run them all. And we’ll develop a number of quantitative methods for evaluating how “close” a given Cargo-bot state is to being a solution.

 	OK, maybe not “random” (because there are perfectly reasonable deterministic search operators we’ll look at). But “arbitrary” in any case, in the sense that one cannot easily know what is best to examine next—by the very definition of an interesting project!↩

 	So common that the old Wikipedia page for Symbolic Regression now redirects to the one for Genetic Programming. Am I allowed to put a “facepalm” in a book?↩

 	I worry there’s a bit too much subtlety here: In some projects, an Answer may well be a formal function that is not evaluated with variable assignments—a project involving algebraic transformations, for example. It’s the goal of symbolic regression to fit particular training and test data; assigning those particular values is part of interpreting an Answer in that context.↩

 	Let me share a symbolic regression result I was given by a system I was testing. I was just putting it through its paces, and so I was looking for functions that fit ten sampled data points from [image: y=x+6]. It came up with the perfectly reasonable answer that started with [image: y=(2x - \frac{72x}{32x^2\div4x+\dots}] and went on for four more lines after that. When I simplified it, it meant the same thing as [image: y=x+6], although along the way it added seventeen constants together, multiplied them by 166, and divided by a huge number to multiply some extra terms by 0. This was the sort of surprise I mean.↩

 	This is an important result, and it pisses people off because it challenges some of the same models of self and project that I’m calling into question. It’s called the No Free Lunch Problem for Search and Optimization. Among other things, it demonstrates that for any performance criterion you can develop, the average performance of any search algorithm—over all problems—is no different from the average performance of any other algorithm.↩

 	Heck, a lot of people still don’t seem to know the difference between “test-first coding” with “test-driven design”.↩

 	Even if I don’t try it this way, you can. You could even use the same string to keep track of what the claw is holding. A later situation in the same factory might have the claw holding the red crate from pallet 1 over pallet 2: "bb,rrg(r),,,y"↩

 	Scenarios are composed of steps. Each step is a line of Gherkin code starting with the stage keyword Given (to establish context), When (to trigger the important change of state), or Then (to assert the expected outcome has occurred). Given steps shared across several scenarios can be placed in special Background blocks, which invoked anew before each Scenario block is evaluated. Steps beginning with And or But are assumed to share the same stage as the previous step (Given, When or Then). Step definitions include code that is triggered when the definition’s regular expression argument matches a line of the feature file. I won’t spend time explaining the matching in detail; the regular expression syntax is relatively standard, and you’ll get the gist of the process when you see it.↩

 	Indeed, I actually wrote it that way the first time… and it worked, but unsatisfactorily. Visualize one of those training montage scenes at this point if you have to have some kind of realistic continuity in your stories.↩

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_error.png

OEBPS/images/CargoBotScreenCap11800x1600_300ppi.jpg
Smaw Come Together

program

I~ instructions
conditionals
subroutines

OEBPS/images/ComeTogetherProgram1800x1600_300ppi.jpg
=L Come Together

GOAL

PROG PROG — pn% PROG PROG. TOOLBOX
1 ﬂ 2 Dn 2 11

amms | OO0
;onoB0Ta] rwy

&
3

W CLEAR

progl:

L yellow
callz

R none

R yellow
call2 none
calll
calll

prog2:

Cclaw

R

Cclaw
Claw_yellow
claw_none
call2 none
L

OEBPS/images/ComeTogetherVideoLink.jpg
YOU GOT IT
* &

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg

OEBPS/images/leanpub_equation_3.png
2z

y=(2z—;

OEBPS/images/leanpub_eq