

[image: Practical Performance and Load Testing]



  Practical Performance and Load Testing


   


  Zhimin Zhan

   

  This book is available at https://leanpub.com/practical-performance-and-load-testing

  This version was published on 2025-06-20

  [image: publisher's logo]

    *   *   *   *   *

  This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

  *   *   *   *   *


  

© 2020 - 2025 Zhimin Zhan


      
        Table of Contents


         
           
  	
    Preface
    
      	
        What makes this book unique?
      

      	
        Who should read this book?
      

      	
        How to read this book?
      

      	
        Send me feedback
      

    

  

  	
    1 Introduction
    
      	
        1.1 Performance Testing vs Load Testing
      

      	
        1.2 Benefits of Load Testing for web apps
      

      	
        1.3 Why effective load testing is more necessary than ever?
      

      	
        1.4 Reality Check
      

      	
        1.5 Why do most projects do load testing poorly?
      

      	
        1.6 Load Testing Approaches
        
          	
            1.6.1 HTTP Protocol-based load testing
          

          	
            1.6.2 Real browser-based load testing
          

        

      

      	
        1.7 Review
      

    

  

  	
    2 Practical Load Testing
    
      	
        2.1 Load Testing Trends
        
          	
            2.1.1 Approach: Protocol-based ⇒ Browser-based
          

          	
            2.1.2 Who is doing load testing: one performance testing team ⇒ individual projects
          

          	
            2.1.3 Tools: Expensive commercial proprietary ⇒ Free and open-source scripting
          

          	
            2.1.4 Execution frequency:  A few times ⇒  Early and frequently
          

          	
            2.1.5 Execution mindset:  Long and Regid  ⇒  Short and Relax
          

        

      

      	
        2.2 Success Factors
      

      	
        2.3 Practical Load Testing
        
          	
            2.3.1 The Team Owns it
          

          	
            2.3.2 Starting small, Starting today
          

          	
            2.3.3 Do it often as a part of CT
          

          	
            2.3.4 Make every load testing short, less stringent
          

          	
            2.3.5 Focus on the main, then the rest load testing targets
          

          	
            2.3.6 The Process
          

        

      

      	
        2.4 Case Study: How will I load test Census Australia?
        
          	
            2.4.1 Prerequisite
          

          	
            2.4.2 Process
          

          	
            2.4.3 The Cost
          

          	
            2.4.4 Why does it work?
          

          	
            2.4.5 FAQ
          

        

      

      	
        2.5 Review
      

    

  

  	
    3 Protocol-based Performance and Load Testing
    
      	
        3.1 How does Protocol-based testing works?
      

      	
        3.2 Simple Performance/Load Testing Exercise
      

      	
        3.3 Scripting with Mechanize
        
          	
            3.3.1 Preparation
          

          	
            3.3.2 Performance Testing
          

          	
            3.3.3 Simple Load Testing
          

          	
            3.3.4 Compare load results
          

          	
            3.3.5 Failure to load test AJAX
          

        

      

      	
        3.4 Load testing with JMeter
        
          	
            3.4.1 Performance Testing
          

          	
            3.4.2 Load Testing
          

        

      

      	
        3.5 Handcrafted scripts vs GUI tools
      

      	
        3.6 Review
      

    

  

  	
    4 Test Syntax Framework
    
      	
        4.1 RSpec
        
          	
            4.1.1 Install and Run RSpec tests
          

          	
            4.1.2 A performance test in RSpec
          

        

      

      	
        4.2 Avoid Gherkin
      

      	
        4.3 Review
      

    

  

  	
    5 First Functional Performance Test
    
      	
        5.1 Test Design
      

      	
        5.2 Install Testing Tool
      

      	
        5.3 New Performance Test Project
      

      	
        5.4 Run the blank test
      

      	
        5.5 Create test steps
        
          	
            5.5.1 Create test steps manually
          

          	
            5.5.2 Using TestWise Recorder
          

          	
            5.5.3 Test case
          

        

      

      	
        5.6 Add measurements
        
          	
            5.6.1 Measure timings in Ruby
          

        

      

      	
        5.7 Headless browser mode
      

      	
        5.8 Compare performance testing results
      

      	
        5.9 Measure AJAX operations
      

      	
        5.10 Functional Test vs Functional Performance Test
      

      	
        5.11 Review
      

    

  

  	
    6 Performance Test Plan
    
      	
        6.1 Scope of work
      

      	
        6.2 Testing execution approach
      

      	
        6.3 Automation framework
        
          	
            6.3.1 Protocol based frameworks
          

          	
            6.3.2 Browser based frameworks
          

        

      

      	
        6.4 Scripting language
      

      	
        6.5 Test Syntax framework
      

      	
        6.6 Test Creation: Recording vs Handcrafting
      

      	
        6.7 Automation Tools
        
          	
            6.7.1 Be efficient
          

          	
            6.7.2 Preview browser-based tests
          

        

      

      	
        6.8 Measurements
        
          	
            6.8.1 Operation types for measurements
          

          	
            6.8.2 Determine operations for timing
          

        

      

      	
        6.9 Test executions and Reporting
      

      	
        6.10 Review
      

    

  

  	
    7 Continuous Performance Testing
    
      	
        7.1 Why run performance tests in CT server
      

      	
        7.2 Set up BuildWise Server
      

      	
        7.3 Execute performance tests in a CT server
        
          	
            7.3.1 Prerequisite
          

          	
            7.3.2 Set a CT build project
          

          	
            7.3.3 Trigger a CT run
          

          	
            7.3.4 View Build result
          

          	
            7.3.5 Continuous Execution
          

        

      

      	
        7.4 Case Study - Performance Testing WhenWise’s Reset
      

      	
        7.5 Review
      

    

  

  	
    8 Load Test Plan
    
      	
        8.1 Load Testing Scenarios
      

      	
        8.2 Determine the number of VUs required
      

      	
        8.3 Generate Load
      

      	
        8.4 Load Testing Metrics
      

      	
        8.5 Define Success Criteria
      

      	
        8.6 Parallel Execution in a CT server
      

      	
        8.7 Execution Control
        
          	
            8.7.1 Testing What?
          

          	
            8.7.2 With how much load?
          

        

      

      	
        8.8 Review
      

    

  

  	
    9 Continuous Load Testing
    
      	
        9.1 Generate Load from the command line
      

      	
        9.2 How does Continuous Load Testing work?
        
          	
            9.2.1 Benefits
          

          	
            9.2.2 How can this approach handle a large load, e.g. 10000 concurrent users?
          

        

      

      	
        9.3 Build Agents
        
          	
            9.3.1 Build Agent Machines
          

          	
            9.3.2 Install BuildWise agent software
          

          	
            9.3.3 Configure first build agent
          

          	
            9.3.4 Verify software on an Agent machine
          

          	
            9.3.5 Verify Test Execution in an Agent
          

          	
            9.3.6 Configure - Pre Execution (optional)
          

          	
            9.3.7 Clone multiple build agents
          

        

      

      	
        9.4 Set up Load Testing project
      

      	
        9.5 Review
      

    

  

  	
    10 Custom Load Testing Execution
    
      	
        10.1 Control which tests to run
        
          	
            10.1.1 Focused Scenario(s)
          

          	
            10.1.2 Mix  Scenarios
          

        

      

      	
        10.2 Prepare Execution
      

      	
        10.3 A Quick Test Run with one Build Agent
        
          	
            10.3.1 Build Agent Specifiction Affects Performance
          

        

      

      	
        10.4 Control the Load
        
          	
            10.4.1 Set VU count
          

          	
            10.4.2 Set test execution time
          

          	
            10.4.3 Increase the load gradually
          

        

      

      	
        10.5 Set Success Criteria
        
          	
            10.5.1 Overall failure rate
          

          	
            10.5.2 Indvidual Operation Timings
          

        

      

      	
        10.6 Monitor Execution
      

      	
        10.7 Case Study: Load Testing User Login
        
          	
            10.7.1 1 VU
          

          	
            10.7.2 3 VUs
          

          	
            10.7.3 6 VUs
          

          	
            10.7.4 9 VUs
          

          	
            10.7.5 12 VUs
          

          	
            10.7.6 Report
          

          	
            10.7.7 Analyse
          

          	
            10.7.8 What’s next?
          

          	
            10.7.9 Review
          

        

      

      	
        10.8 Case Study: Mixed Scenarios
        
          	
            10.8.1 Create a new Build Project by Clone
          

          	
            10.8.2 Test Scripts
          

          	
            10.8.3 Debug Operation Failure
          

          	
            10.8.4 Report
          

        

      

    

  

  	
    11 Identifying Flaws and Performance issues
    
      	
        11.1 Functional Flaws
        
          	
            11.1.1 Design Flaw
          

          	
            11.1.2 Race conditions
          

        

      

      	
        11.2 Non-Functional
        
          	
            11.2.1 Website Crash
          

          	
            11.2.2 Software Inefficient
          

          	
            11.2.3 Deployment/Infrastructure Flaw
          

        

      

      	
        11.3 Feedback Time is Critical
      

      	
        11.4 Performance/Load Improvement Suggestions
      

      	
        11.5 Review
      

    

  

  	
    12 Continuous Testing Lab
    
      	
        12.1 Costing Factor
      

      	
        12.2 Start Small, Start Today
      

      	
        12.3 Reliable
      

      	
        12.4 Ongoing Mainteance
        
          	
            12.4.1 Execution Environment
          

          	
            12.4.2 BuildWise Agent
          

          	
            12.4.3 App related
          

        

      

      	
        12.5 Optimize For Speed
        
          	
            12.5.1 Recommendations
          

        

      

      	
        12.6 Review
      

    

  

  	
    13 Maintaining Load Test Scripts
    
      	
        13.1 Reusable functions and Page Objects
        
          	
            13.1.1 Page Object Models
          

          	
            13.1.2 Reusable Helper Functions
          

        

      

      	
        13.2 Test Refactoring
      

      	
        13.3 Coding conventions
      

      	
        13.4 AJAX in Load Tests
      

      	
        13.5 Review
      

    

  

  	
    14 Best Practices
    
      	
        14.1 Run a warm-up script first
      

      	
        14.2 Using faster Selenium operations
        
          	
            14.2.1 Prefer a faster locator
          

          	
            14.2.2 Avoid Selecting an option by Index
          

          	
            14.2.3 Reuse already located element
          

          	
            14.2.4 Submit form instead of clicking a submit button
          

          	
            14.2.5 Asserting page content using source
          

        

      

      	
        14.3 Speed up non-operational steps
        
          	
            14.3.1 Mimimize test data
          

          	
            14.3.2 Using JavaScript to enter text data
          

        

      

      	
        14.4 Avoid Conflicts
        
          	
            14.4.1 Stabilise load scripts with randomization
          

          	
            14.4.2 Leave no side effects
          

        

      

      	
        14.5 Review
      

    

  

  	
    Appendix: TestWisely
    
      	
        Test Scripts on Github
        
          	
            Verify: Run tests on TestWise
          

        

      

      	
        Set up a CT Lab on TestWisely and Run Performance/Load Tests
        
          	
            Sign up TestWisely
          

          	
            Set up Wizard
          

          	
            Set up Build Projects
          

        

      

      	
        Performance Testing
        
          	
            Protocol-based
          

          	
            Browser-based
          

          	
            Execution
          

        

      

      	
        Load Testing
        
          	
            Allocate Build Agents
          

          	
            A Run of Load Testing on TestWisely’s BuildWise
          

        

      

      	
        How do Build Agents support different Apps?
        
          	
            Test Scripts on Build Agents
          

          	
            Update BuildWise Agent Configuration
          

        

      

      	
        FAQ
      

    

  

  	
    Resources
    
      	
        Books
      

      	
        Tools
      

      	
        Online Resource
      

    

  

  	
    References
  




         

         
            Guide

            
               	
                  Begin Reading
               

            

         



Preface


Load testing is usually neglected in software development. As a result, we often see websites crash due to high traffic. Here are two news headlines: 



  	2007-11 “Beijing Olympic ticketing system crashes on the first day”
    “Ticket sales for the Beijing Olympics have been suspended after overwhelming demand crashed the computer ticketing system”.
 

  

  	2012-01 “More (London) Olympic ticket chaos as website crashes causing re-sale to be suspended”
    “In another ticketing embarrassment for organizers, the system was suspended only a few hours after being launched this morning.”

  





There must have been a dedicated load testing team for these two high profile websites. Yet, the system still failed. Why? The common excuse of ‘load testing tools are too expensive’ did not apply here, as money was not the problem for the Olympic Games.  London Olympic Ticketing system failed four years after the failure of Beijing’s for the same reason, which was embarrassing. 


In most projects I involved over the last 20 years, load testing was either not performed or lightly conducted towards the end of the development phase (usually a few weeks before the ‘go-live’ date). Even performance/load issues were detected, the team usually had no time to make changes.


With more and more end-users accessing websites using various devices anytime, anywhere, the load demand for web apps grows exponentially. While awareness of the need for load testing is widely acknowledged, there has been little improvement in load testing in software development. That is why we see so many ‘XXX site crashed on the first day’ news.


Here are the common challenges that software projects are now facing on load testing: 



  	load testing tools are expensive

  	unable to load-test dynamic websites (using AJAX)

  	load testing is conducted rarely and often too late

  	lack of skills in load testing

  	fragile load test scripts, unable to maintain them along with application changes




This book will show you a practical approach to address the above. 



  	
Support modern websites
    All operations, including AJAX, can be load tested in an easy way.
 

  

  	
Free (as in freedom as well as free in ‘free beer’)
    The load test (and build) scripts are all in open-source and popular frameworks, with no vendor-locking. Load testing is no longer a luxury that only large software companies can afford.  
 

  

  	
Immediate Result
    Set up and running can be done within one day!

  





  	
Continuous Performance and Load Testing in a DevOps process
    Detect performance or load issues early.

  




In this book, I will not bore you with a list of acronyms and definitions. In real life, project owners do not give a damn about the differences between performance testing, load testing and stress testing (all of which can be easily googled anyway). They care how their application performs under various loads, such as: 



  	average time to open the home page for half-million users in an hour

  	average time to log in for 50 concurrent users

  	at what load my web site will ‘crash’




What makes this book unique?


The load testing approach featured in this book is from my years of experience in automated functional testing and Continuous Testing(CT). While I was no stranger to performance and load testing while working as a contract programmer, my interest in load testing started in 2012, when I started developing my own web apps. By then, I realized the need for efficient load testing. Once I began to work on it, I found out that many of the clients from my functional test automation consultancy had similar needs. Back then, the common solutions were LoadRunner and JMeter, which I found either too expensive or too complex, and both were not flexible.


In 2014, I created LoadWise, a load testing tool based on standard protocol-based scripting. LoadWise did get some commercial interests. However, not long after, I found its use is limited as it could not test AJAX, which has been becoming widely used in modern web apps. So I decided to pull LoadWise out of the shelf (my rule: I use my own software on a daily basis).


Searching for an effective load testing solution remains on my TODO list. I noticed the following trends.



  	
Modern web apps are dynamic
    Such as AJAX.
 

  

  	
Web Test Automation
    Execution of automated functional tests in Chrome browser is very stable and fast!
 

  

  	
Continuous Testing
    Managing execution of automated tests (including load tests) in CT is much easier, with reports (including history) that easily accessible to the team.
 

  

  	
Infrastructure as a service
    It is now easy and quite cheap to engage a large number of machines into executing automated tests.

  




I came up with the idea of running browser-based load tests in BuildWise, the award-winning CT server I created for executing automated functional tests. It was unconventional when I shared this idea with a few Performance Testing Engineer colleagues; they expressed their doubts. 


I continued pursuing this approach by adding the performance/load testing support in BuildWise. Then I used it for performance/load testing my web apps, with good results. A couple of years later, I started noticing some commercial browser-based load testing tools in the market, such as SmartBear’s LoadNinja. I tried a couple of them and found that their solutions were too complex and inflexible. Above all, my approach uses all free and open frameworks and provide visible results quickly.


Who should read this book?


Everyone working on a software team (including testers, programmers, architects, and managers) to build a web application and don’t want the site to crash under load on the first day. Prior experience with load testing is not necessary. Basic programming concepts and previous automated functional testing expereince will help, but again, not required.


How to read this book?


I recommend readers read this book from cover to cover. Inpatient readers, like me, may skip the first two introductory chapters to learn to script a performance test in Chapter 3.  That is fine, as long as you come back to read the two chapters. Some chapters contain hands-on exercises (with step by step guides). Typically it will take about 10-30 minutes to complete an exercise. Readers can choose to follow the exercises while or after reading a chapter. The main point is: to master load testing, you have to do it.


Send me feedback


I’d appreciate hearing from you. Comments, suggestions, errors in the book, and test scripts are all welcome. You can submit your feedback via the book website.


 


Zhimin Zhan  
Brisbane, Australia










1 Introduction


Website load testing is the process of putting demand on a web application (by simulating multiple users working with the website) and measuring its response. For example, ‘100 Virtual Users (VUs) sign in, add items to their shopping cart, check out and then sign off’.


Load testing is only practical with automation. Oh well, I did hear a story of a project manager gathering hundreds of employees with stopwatches, hitting the key on a flag fall. Of course, this is an extreme case.



  Note: if you cannot wait to learn to write some tests, please feel free to skip to Chapter 3. Come back to this later.




1.1 Performance Testing vs Load Testing


This book is about performance and load testing against software, in particular, web apps, the most common type. Let me clarify Performance and Load Testing first. 


There are many similar terminologies in software testing. One example of that is performance testing and load testing. Some think performance testing is the same as load testing. The more I heard (from talks) and lookup (online), the more I became more confused. I am not alone. 



    Google uses  small, medium, and large to classify the types of tests.  
 - [Source: “How Google Tests Software” book, page 12]




Inspired by Google’s approach, I decided to use a simple way to distinguish these two terminologies.



  	Performance testing: web app response time with just one user.

  	Load testing: web app response time under a number of concurrent users.




  


For example, here are the response times of new user sign-ups for a web app.



  	
0.51 seconds when there is only one active user ⇒ Performance testing

  	
2.45 seconds when there are ten active users ⇒ Load testing

  	
10.2 seconds when there are 25 active users ⇒ Load testing




Based on the above test results, we can conclude that the web app performs well (for the user-signup), but poorly under load. 


Suppose a programmer optimized the database query, which reduced the sign-up time to 0.4 seconds. We can say 20% improvement on the performance of this particular operation. However, the impact of load testing is yet to be verified.


With the advancement of computer hardware, the performance of modern web apps is mostly satisfactory. Hence, performance testing nowadays usually means measuring a website’s performance under load, i.e., load testing, which is the main focus of this book. Yet, there is still merit to measure individual operations (performance testing, without the load), which I will cover in Chapters 3–6.


When I refer ‘load testing’ in this book, it often includes performance testing as well. 



1.2 Benefits of Load Testing for web apps


The primary benefit of conducting load testing is to avoid web app crashes on load. When that happens, quite often it does, senior executives lose their jobs. This single benefit alone is enough to convince the CXOs to invest resources in load testing. Besides, there are many benefits of conducting load testing:



  	
Improve the software’s performance, in an engineering way
    
            “If you can not measure it, you can not improve it.”

      
        	Lord Kelvin

      


    

    Performance testing provides the base for engineers to refine and improve the software’s performance. It is worth mentioning that you do need automated regression testing to prevent introducing functional regression errors.
 

  

  	
Save money on infrastructure
    Nowadays, most software is deployed on the cloud. Many IT engineers know that the total AWS or Azure bill can be a quite big amount. It makes financial sense to select good-enough plans (and machines). The decision shall be based on solid load testing.


    Quite often, with improved performance, your software requires fewer infrastructure resources. Please note we are not just talking about the one production environment; there are pre-production, integration, test and dev environments.
 

  

  	
Detect race-condition defects
    A race condition in software means whether  a computer program operates properly depends on the sequence or timing of the program’s processes or threads. A race condition is intermittent and can only be detected when multiple processes (or users, in the context of web apps) are involved. When a programmer writes code for a feature in a web app, checking for race conditions is out of consideration. As he tests the software on his local machine, it is a single-user mode. I have detected many race conditions with load testing for different projects over the years, by running load tests in a parallel testing lab.
 

  

  	
Tricky flaws in software design
    There are rare cases that the software behaviours differently under the load. The reason is usually due to a design flaw. Chapter 11 has one example of mine.

  





1.3 Why effective load testing is more necessary than ever?




  	
More traffic from more devices
    For many public-facing websites, the majority of visitors nowadays are from mobile platforms, i.e., smartphones and iPads. From the load testing’s perspective, this means a lot more potential users. 
 

  

  	
Usage spikes
    With the wide use of social media, one celebrity’s tweet might generate thousands of hits to your website in a matter of seconds. Is your system is ready for this good news?
 

  

  	
Website visitors nowadays are getting less impatient. 
    According to this NY Times’ article, “People will visit a web site less often if it is slower than a close competitor by more than 250 milliseconds”. The purpose of most public-facing websites is to attract more visitors, for those sites, performance and load testing are critical.
 

  

  	
Cost saving for software development
    Most software teams nowadays adopt Agile development methodologies; This means less upfront design and more frequent build-test-release cycles. As a result, more testing effort is required, i.e., all team members (including testers, business analysts and programmers) will use the application a lot more. In other words, if the engineers improve the app performance by 10%, that will translate quite a significant saving on the project budget. Moreover, team members will work happier; no one likes waiting.
 

  

  	
“Release Early, Release Often”
    CXOs love the slogan “Release Early, Release Often”, and I am sure that you all have heard of DevOps. While Continuous Testing (CT), a key process of DevOps, does not explicitly list which type of automated testing, most will not be against including load testing.

  





1.4 Reality Check



In the preface, I listed two Olympic websites crashed due to demand. There are common, the below just a few that made in the news headlines in Australia: 



  	2010-01 “My School site crashes one hour after launch”
“Demand caused site crash” said Julia Gillard (Australian Prime Minister)


  	2016-12 “IBM blamed for Australian census website crash”


  	2020-05 MyGov website crashes as thousands seek Centrelink help amid coronavirus pandemic





The requirement for load testing for the above websites is clearly obvious.  Especially for the Census 2016, a simple data collection website, the most important piece of IT work for the whole project was to ensure the website can handle the load, yet it failed badly. (note: Australia has only 24 million people in 2016). 


  


This article “Census website collapses despite millions spent on IT contracts” revealed these:



  	$325,000 for “licences for Census load testing”

  	$280,000 on licences for Hewlett Packard Performance Centre

  	a $9.6 million contract to IBM in 2014 to host the eCensus.

  	and various testing related contracts  (over a million) to software testing specialist consultancy company




We see big names, expensive tools and specialised testing consultancy services, money and time are not the problem. It was clear to everyone that load testing is critical for this kind of one-night-use web application. What Australian Bureau of Statistics management did not know was that these companies lack knowledge in proper load testing web applications, especially dynamic ones.




1.5 Why do most projects do load testing poorly?


To the members of most software teams, load testing is just a distant concept. They understand the concept and know it will be handled by a dedicated team to conduct this activity before the production release. Usually, software engineers care little about performance when coding, DevOps engineers do not take it into consideration when working on deployment scripts. Yet, their work (code or script) have a direct impact on the software’s performance. For example, I once fixed one bad SQL join in code for a client project, reduced the operation time from 120 seconds to 2 seconds.


To be fair, software engineers had excuses, such as “I did not have access to a big production-like database” and “we did not have the infrastructure to simulate the load”.  However, the fact is, after those technical debt is in, even issues were discovered in the later performance testing phase, the team were unable to rectify most of the time. It is often too late for the team to make code changes, unless the team has a comprehensive automated regression testing process in place. Typically, a software company will bet its hope on getting more and fast machines. 


As you can see, the root of the problem is that load testing is so detached from daily software development activities. Why? 



  	
The team is struggling with functional testing
    Let’s face it. If there are many outstanding functional defects, the project manager surely won’t care about how well the app performs with 100 active users. With the exception of certain apps, such as census, doing proper load testing is a luxury activity that many project manager put into the “worry-later” category.


    Refer to my other book, “Practical Web Test Automation” on automated functional testing.  
 

  

  	
Underestimate the efforts
    To do basic load testing, such as hitting the home page with 100 concurrent users, is very easy, maybe just one command line with some open-source frameworks. However, effectively testing the load on end-to-end scenarios, such as online payment, is a lot more challenging.
 

  

  	
Hard to maintain
    Application changes frequently, this will not only affect functional test scripts, but also load tests. The effort of test maintenance is often neglected.
 

  

  	
Lack of knowledge
    Few software engineers have good knowledge in automated testing, functional or load, even unit testing. That shall be no surprise, I have yet met anyone who learned a course on test automation (functional or load) at university. I taught and worked at university in my early career, it is my understanding that the purpose of a 4-year study of Bachelor of Software Engineering is to equip the students with sound engineering knowledge, mindset and practices that will help them at work.  Clearly, testing as the vital of engineering lacks in our university education system.
 

  

  	
Lack of training
    With the failure of university education, it is up to the software companies to train young software engineers. Unfortunately, that is failing too. Have you been to a hands-on test automation training (those abstract talks do not count)? Test automation is practical, objective and measurable. To put it simply, after engineers attended a good test automation training session, they shall be able to use it for work on the next day. 


    Worse still, it is easy to come up with a ‘cool’ demo of automated testing (functional or load). The middle-management and tech leads are prone to fall in those sales pitches. They tend to think, “just buy an expensive tool, the test automation is covered”. This sounds naive and has been repeatedly proved wrong. The so-called “industry-leading” test automation tools such as QTP and LoadRunner have fallen out of favour, even HP could not prevent that.  
 

  

  	
It is done too late
    Performance/load testing usually is put into low priority and is often conducted at a later stage. A common excuse is “implementing the business features first, then optimize the performance/load”. In theory, it seems not wrong. However, it is based on a false assumption: “they can optimize the app to meet the performance target. If necessary, spend more money on a big server with faster CPU and more RAM”.  
 


    
      	The limit of the software architecture
        Nowadays, software development is often heavily based on a product or framework, such as SAP or BizTalk, which might have certain limitations. For example, I worked on a large software project based on a workflow product. The nature of business required quick response time. However, for a typical web service call, 90% of the time reside in the workflow engine, the total of communication to and from the external party’s service (using simple XML over HTTP) is rapid.  The answer for the architect team: “Too late, we are already past the point of the return”.  
 

      

      	Doing performance/load testing takes a long time
        It is not uncommon that a software project needs to wait a few weeks to get performance testing results from a separate performance testing team.   If load testing may be performed within 4 hours (including test scripting creation/update and execution), then the limitation of the architecture or bad check-ins can be detected earlier. 
 

      

      	Slow infrastructure 
        We shall be all familiar with “Infrastructure as Code” (IaaS) now. Early detecting a badly implemented IAAS solution, which I often witnessed, would prevent a lot issues. This can be only done with solid and repeated load testing. 
 

      

    

  

  	
Not often
    Load testing shall be done regularly, at least once per iteration (or sprint in Scrum).  In the sprite of true Agile, every iteraction is a full release (to production) cycle, surely load testing shall be included. Now recall how often load testing is performed in your past projects.

  





1.6 Load Testing Approaches


Different from functional testing, meaningful load testing can be only conducted via automation. There are no manual load testers. In other words, we use load test scripts to simulate a number of users using the web app. There are two simulation approaches Protocol-based and Browser-based load testing.



1.6.1 HTTP Protocol-based load testing


The protocol-based simulation has dominated load testing since the last century, until a few years ago. To put it simply, protocol-based load test scripts send request data, based on HTTP protocol, to the server in multiple programming threads. There are some techniques are involved, including request correlation, session handling, and cookie stores. This approach is suitable for:



  	Non-UI based services, e.g. SOAP/REST web services, Microservices

  	Websites not using AJAX or modern client-side JavaScript frameworks




Pros:



  	Fast

  	Can generate a large number of virtual users without much investment on resources




Cons:



  	Require extensive knowledge in protocol and programming skills

  	Test scripts are hard to read and maintain

  	Unable or difficult to capture user behaviour and flows




It is quite clear that, for most new web applications, the protocol-based load testing approach struggles. 



1.6.2 Real browser-based load testing


Load test scripts drive real browsers to generate load on the server. This is suitable for all web apps, especially modern ones using dynamic JavaScript.


Pros:



  	Easy to develop load test scripts

  	Leverage functional testing (skills and infrastructure)




Cons:



  	Slower compared to protocol-based

  	Dependency on the automation framework and browser driver, and the browser

  	Requires a number of machines




Because the matureness of functional testing (i.e. Selenium WebDriver) and accessible Cloud-based VMs, these Cons can now be overcome. This book focuses on browser-based load testing mainly.



1.7 Review


This is a long non-hands-on chapter, by my standard. There are quite a lot confusion over performance and loading, I am trying to provide readers a complete picture here. In Chapter 2, I will reveal the strategy to address all the challenges. If you cannot wait to do some hands-on testing, feel free to go to Chapter 3. 










2 Practical Load Testing


In the previous chapter, I covered the basics of load testing and its challenge. This chapter will present a practical strategy to address those challenges in load testing. The strategy and practices have been proven, I have used them in my clients and own projects with success. I used the erm ‘Practical’ here, which I mean that by following the steps, you can achieve noticeable results in a matter of hours. 



2.1 Load Testing Trends


The main reason of load testing failures are everywhere, in my opinion, the mindset of many those load testing engineers are still stay in the two decades ago. The Web 2.0, Agile methodologies, DevOps, Continuous Testing, and Infrastructure as a service have a huge impact on how we develop and ship software, certainly on load testing as well.



  	Web app: static → dynamic 

  	Who conduct load testing? the dedicated central team → within each individual team

  	Tools: expensive proprietary tool → free and open-source framework

  	Execution: a few times per year → a few times per sprint




Hence, we need take load testing from a new perspective. 



2.1.1 Approach: Protocol-based ⇒ Browser-based


  


Modern websites are dynamic, the old protocol-based approach only can load test simple static pages such as visiting home page or user login. 


“Virtual User” is a term used by traditional load testing tools to set the load. In fact, a ‘virtual user’ in those tools is a thread, a programming term, to simulate traffic with HTTP requests. A big problem with these ‘virtual users’ is that it does not work with modern dynamic web apps which use AJAX and other technologies. (I will show an example in the next chapter)


To effectively test modern webapps, functionally and non-functionally, we need to do it in real browsers. 



  I dropped LoadWise, my own protocol-based load testing tool


  LoadWise is a protocol-based load testing tool I created in 2012. LoadWise is short-lived, I dropped it in 2014 for one simple reason:  the protocol-based load testing tool does not support AJAX operations, which were becoming widely adopted in modern web apps. 


    




Not long ago, it is hard to imagine performing load testing in real browsers (such as IE) on dozens of physical machines. However, now it is feasible thanks to advancement in the following areas:



  	
Software (Browser)
    We cannot talk about web testing without mentioning the web browser. About 20 years ago, Microsoft IE6 dominated the browser market (attaining a peak of 90% in mid-2004, source: Wikipedia) for a long time. IE6 is slow and rendered dynamic content poorly (not conforming to the standard), no one could imagine loading testing with IE6.


    Now, Google Chrome (and its variants such as Microsoft Edge Chromium) replaced IE6 as the dominant browser. Chrome is fast and reliable, real browser-based load testing is actually possible.
 

  

  	
Hardware
    Computers nowadays are much faster than the ones 5 years ago. Launching a browser on a new Mac with M1 Chip (based on TSMC’s 5nm process) is almost instant. With more intense competition among CPU vendors (Intel, AMD and Apple), and TSMC plans to start production of 3nm process in 2022 *, we have the reasons to believe that we are about to see another rapid cycle of advancement of hardware. 
 

  

  	
Virtual Infrastructure
    Virtual Machines (VMs) are commonly used in medium and large organizations. It is easy to build a parallel testing lab to simulate VUs with virtual machines. In fact, it is even possible to set up a dozen of VMs on a single Desktop PC (Apple’s compact Mac Studio offers 20 CPU cores). Here is a blog post on setting a VM test lab of 13 VMs using Unraid on a single PC with an AMD Ryzen 12-core CPU.
 

  

  	
Cloud VMs
    If you don’t want to manage your own infrastructure (which requires a sizeable initial investment), going for a cloud-based provider such as AWS and Azure is becoming the new normal. Setting up a set of Cloud-based instances to run browser tests is relatively easy and affordable. Furthermore, you may set up hundreds of build agent machines as needed and destroy them when the testing is done. This will significantly reduce the cost.

  




With the combination of the above, software companies, big or small, can afford load testing with real browsers on multiple computers.



2.1.2 Who is doing load testing: one performance testing team ⇒ individual projects


  


At many organizations, there is just one special performance testing team for all the projects. Project managers need to book their time weeks ahead for perform performance/load testing. One main reason for only-one-performance-team is due to the ultra-expensive load testing tool and its exclusive access to the performance testing environment. 


There are many issues with one central performance testing team model:



  	
Lacking app knowledge
    The performance testers in the performance testing team often work with multiple teams. Thus, they do not (and has no desire) understand (your app well. 
 

  

  	
Limited engagement
    The performance testers usually not co-sit with the team, they lack interaction with the software team members. 
 

  

  	
Easily distracted by other work
    Automated testing work requires high concentration.

  




Besides, if a software team adopts Agile or DevOps, i.e., “release early release often” (if not fake), frequently engaging the only one performance testing team is simply not practical. 


All the above come to one conclusion: performance testing shall be conducted by the team members themselves. Don’t be shocked, it is not only feasible, and in my opinion, but also natural too.  Some readers might be doubtful, this book’s objective is to convince you that you will be able to achieve that. 




2.1.3 Tools: Expensive commercial proprietary ⇒ Free and open-source scripting


  


Commercial load test tools have existed for decades, Micro Focus’ LoadRunner (previously branded under Hewlett-Packard) probably was the most well-known one.  However, Load Runner is very expensive with complex licensing terms. Over my 20 years career, only a handful of large organisations could afford one LoadRunner license. A real agile project that releases software weekly or daily, this means performance/load testing will be conducted within the team, and preferably to be used by several engineers. Putting aside LoadRunner’s technical limitations, which I will cover in a later chapter, its high price makes it unsuitable for most software projects. 


There are free alternatives, Apache JMeter is probably the most well-known free load testing tool. Like LoadRunner, JMeter is GUI savvy, lacks flexible text-based scripting in a programming language. This means it will be hard to integrate with CI/CT or DevOps processes.  


In the field of automated functional testing, Selenium WebDriver defeated many long-existed automated functional testing tools such as HP QTP, for the reasons below:



  	Free (freedom and price)

  	Open-source

  	Stable and well-supported

  	Scripting in a popular language (i.e. flexible)




I think the same formula that makes Selenium successful for functional testing applies to load testing well. That formula is: scripting in  a free and stable automation framework.



    All automation and syntax frameworks introduced in this book are 100% free and open-source. Moreover, they are all widely used. 






2.1.4 Execution frequency:  A few times ⇒  Early and frequently


  


In most software companies, a long performance testing cycle usually took a few weeks. Nowadays, CIOs like “Release Early Release Often”. In the spirit of proper software release process, performance testing is mandatory before a production release. In other words, load testing needs to run quickly and frequently.  


While few achieve daily production releases like FaceBook, LinkedIn and Google (lack of solid automated functional testing, See Practical Web Test Automation. Still, averagely speaking, software projects nowadays have more frequent releases. As a result, the change affects load testing. Load testers no longer have full two weeks to develop, modify and perform load testing. Instead, they shall get it done in a matter of hours. 




2.1.5 Execution mindset:  Long and Regid  ⇒  Short and Relax


Usually, performance testing teams take load testing too seriously: all sorts of reports and charts after weeks of execution. It is wrong! This is more like a mindset borrowed from functional testing. In functional testing, a critical defect will prevent the app from working at all. Let me illustrate with an example.


I had one colleague who is a hardcore music fan. Every time the concert tickets of his favourite bands are on sale on a ticket-booking website, usually starting on midnights. He would log into three computers and be prepared to click the “Book” button. Why? He told me that the website usually crashed on load.


Back to the load testing. Most users of a booking website, like my colleague, only cared that they could make one successful booking; they do not mind a long waiting or a few failed attempts. Please note this is different from functional defects, which could cause no bookings for all. 


After understanding that, it is logical to take a more relaxed mindset on load testing.
Instead of one loading testing round for weeks, we do it in minutes and only care about a small set of metrics such as Hits per second, average time (for operations), error rates, …, etc. For example, a 2% error rate (timed out after 60 seconds) on an estimated peak load of 100 concurrent users, for most websites, is not a big deal as long as the website holds up. Those two unlucky users most likely would try again and succeed.


By running load testing quickly and frequently, we are more likely to detect serious performance issues introduced by the bad code check-ins or infrastructure changes.



2.2 Success Factors


To meet the demands for load testing for modern web apps, a successful load testing shall meet the following criteria: 



  	
Support dynamic websites  
    Support dynamic web operations such as AJAX. This means load test scripts shall drive real browsers such as Chrome.
 

  

  	
Free (as in freedom) and affordable  
    The test scripts are in free and open-source frameworks. Vendor locking is bad.
   

  

  	
Easy to set up
    Load testing is an easy-to-neglect activity, so, make it simple to set up and easy to run. 
 

  

  	
Run Early  
    Load testing is an ongoing project activity that starts early, e.g Sprint #1. This is, in my opinion, particularly important as it might detect a faulty architecture, which will be impossible or very costly to rectify. 
   

  

  	
Run Often  
    Target at least once per iteration. Also, every team member can trigger a run to verify the impact of his/her changes.  
 

  

  	
Visible (results)  
    The team members shall be able to view load testing results, including historical ones, with ease. 
 

  

  	
Quick feedback and Reporting  
    The feedback of load testing execution, ideally, is instant. The team shall be able to compare the current run against the previous ones easily. 
 

  

  	
Limited Scope
    For most app development, functional testing weights far more important than load testing. Be realistic, focus load testing on key areas.
 

  

  	
Easy to learn (scripts)  
    Load test scripts (extended on reliable functional tests) shall be easy to learn, and the tool is easy to use (for all team members).
 

  

  	
Easy to maintain (scripts)  
    When applications changes, which is constant in a software being developed, the automated test scripts need to updated accordingly. 
 

  

  	
Generally applicable
    The loading testing practices and techniques are generally applicable to most (if not all) web apps, regardless how the app was developed. 


    
            Be aware of “Frameworks/Tools juggling”


      It is common that automated testers use different frameworks or tools in different companies, or even in the same project. I think it is sign of incompetence. I am not against new idea, frameworks or tools. The new ‘stuff’ must provide instant benefits, as web apps (our target) have changed little in the last decade. For example, in functional testing, I have been using raw Selenium WebDriver + RSpec since 2011. I rescued a number failed test automation attempts with various frameworks.


      My advice: master one framework/tool well. 


    
  





2.3 Practical Load Testing


In my view, the new load testing approach (I name it Practical Load Testing)



  	The team owns it

  	Starting small, Starting Today

  	Do it often as a part of Continuous Testing

  	Don’t be too serious





2.3.1 The Team Owns it


Don’t make load testing a separate activity. If it is not convenient to do, people will naturally do it less often. With the technology advancements that I listed earlier, it is actually not hard and quite cheap to set up your performance testing lab.



2.3.2 Starting small, Starting today


A common mistake in load testing is over-planing. From my memory, those plans out of a few months’ meeting were always wrong. Some might quote budget or resources to justify the excessive planning. It is wrong because proper load testing can get results in hours and cost virtually nothing (compared to the meeting cost).


Some might argue that the “starting small, starting today” approach won’t test the actual required load before the release, I admit that. My question: how many projects conducted load testing religiously beyond the meeting rooms (Beijing and London Olympic systems seemed not)? The truth is that unless you are building another FaceBook or Twitter, 100 virtual users actively visiting your site simultaneously is quite a big load. Note: a virtual user perform operations much faster than a human user, i.e., generates far more loads. Even FaceBook started with a $85/month server, but doing it often.



2.3.3 Do it often as a part of CT


The №1 purpose, in my opinion, of software testing is to provide feedback. To support a fast-paced development (e.g. Agile), fast testing feedback is mandatory. In the context of load testing, late feedback is mostly useless. Therefore, don’t try to perform a nearly-perfect coverage of functional or performance testing for three months, instead, do them daily. Start with a small number of tests, and scale up.



2.3.4 Make every load testing short, less stringent


Some performance tests I met are too serious, they followed a long list of planned actions and took a long time to finish one round of testing. Those testers, from my observation, are usually not good ones. Performance testers shall be more relaxed, unlike functional issues, most performance issues are not critical. The critical one, of course, is crashing on load. That’s can be easily detected if following Practical Load Testing. If that is handled, shall be less of a worry, isn’t it? Therefore, I think performance testers focus on conducting testing frequently instead of big planning.



2.3.5 Focus on the main, then the rest load testing targets


An IT Executive biggest fear after the website went on live, was that the website crashed on load on the first day. If it was just slow, that’s acceptable because there are no-code-change solutions, such as bumping up the server specifications. In that situation, several hundred or even thousands of dollars per month is really nothing. Furthermore, customers are generally quite understanding (the slowness initially), and traffic will be less and less anyway.


Therefore, I think the main effort of load testing is focusing on the main load. Once that is covered by regular execution (multiple times a day), the rest load testing targets will be handled in gradual and calm manner.



2.3.6 The Process



  	
Create a functional test for loading testing purposes 
    A load test script, taking out the load part, is a functional test, such as “user login”.  Create automated UI test scripts in Selenium WebDriver. Generally speaking, creating an automated functional test, especially in a wonderful Selenium WebDriver, is a lot easier than scripting a protocol-based one. 
 

  

  	
Preview: run it in a browser
    Verify the test works by viewing the test execution in a real browser, which gives the maximum assurance that the test script is correct.   
 

  

  	
Measure response time for operations  
    Run the test in your testing tool/IDE, or from the command line to get response times in a single-user mode.
 

  

  	
Plan the load required
    Based on requirements, decide how many virtual users are needed. Please note, it is very easy to over-estimate.
   

  

  	
Set up a build project in CT server
    The purpose is to manage load test execution a lot easier. The set up is an once-off effort. With CT knowledge, it can be done in minutes. 
   

  

  	
Generate load: Trigger a CT run of load tests on multiple build agents
    If you already have a parallel execution, 
 

  

  	
Add checks against success criteria
    Add the check, e.g. ‘average user login response time for 50 concurrent users must be under 3 seconds”, to the load testing. 
 

  

  	
Analyse Metrics and generate reports
    Monitor the metrics during the running of load tests. 
 

  

  	
Refine and rerun tests with a different set of load conditions
       

  

  	
On-going test script maintenance
    With application changes, so will load test scripts. 

  





2.4 Case Study: How will I load test Census Australia?


Earlier, I shared the news of the disastrous Census 2016 collapse due to the load, despite the government paying IBM millions for the load testing task. Here is what I would do the load testing for Census 2016:



2.4.1 Prerequisite



  	
Set up BuildWise CT server
    Very easy to do, and can be done under 30 minutes or less. Check out my book Practical Continuous Testing or articles on my Medium blog. BuildWise Server is free and open-source.
 

  

  	
Set up 500 virtual machines
    There were about 9.2 million households in Australia (2016). Assume 7.5 million households lodge form online between 6 PM to 11 PM, that is 1.5 million per hour, i.e. 416 per second. 500 virtual machines that submit one lodgement per second shall roughly cover the load. Many techniques can be applied here. For example, to test final submissions, pre-created ready-to-submit applications may be used. (see my API Testing Recipes in Ruby for unique data generation).


    I will use these machines to simulate real users, Chrome browsers will be installed on them. Either on-premise (one MacMini costs under A$1000) or Cloud-based, such as AWS, Azure or Vultr. I will use Vultr as an example, as its pricing scheme is much simpler. A reasonable fast instance (2vCPU + 4GB) costs $0.036 per hour, that is,  $18/hr for 500 instances.   
 

  

  	
Set up BuildWise Agents on the above virtual machines 
    BuildWise agents invoke executions of automated load tests and send the results back to the server. BuildWise Agent can be used in free mode for 40 minutes (a bit like Zoom video conferencing tool), after that, simply restart it to continue. The licensed version, without that minor inconvenience, costs $30/month.
 

  

  	
Load Test Script Creation 
    Very easy task, probably would only take me one hour or less to get the first working version out. The Census is a simple stateless web app, just submitting data. I will write a functional test first and then convert it to a load test script (see later chapters for detail).

  





2.4.2 Process


Once a change is made (checked in to the Git repository), I will preform



  	
Trigger a run of automated regression testing in the BuildWise CT server
    You have an automated functional testing suite for regression testing, don’t you? For a simple website like Census, it is quite trivial anyway.   
 

  

  	
Fix the build if it is broken
    There is no point in performing load testing if not functioning properly.
 

  

  	
Trigger a run of load testing in BuildWise CT server
    Initially, I would just run the target load to see whether the server can handle the load or not. After that, adding more measures such as Hits per second, Max response time, …, etc.
 

  

  	
Monitoring and Comparing the measurements
    After every run, the measurements are saved in BuildWise. We can easily compare the timings of each user operation. If there is a noticeable performance issue introduced by the new change, I can alert the team quickly.

  





2.4.3 The Cost


Only a small fraction of failed IBM’s work.



2.4.4 Why does it work?


First of all, this loading test execution is as real as it can be, and drives real browsers.


Any web framework, either React (JS), Spring (Java), MVC (.NET) or Ruby on Rails, can handle the much higher load. By the same token, PAAS such as AWS and Azure can handle big traffic. The performance issues are either wrong Infrastructure configuration or bad code. More importantly, by running load testing early (after code/infrastructure changes) and frequently (multiple times a day), the team can find out functional or performance issues a lot quicker.



2.4.5 FAQ


1. Your estimation of the load is not right, using the average, not taking into account the peak load?


Yes, I just use it to explain my point about using virtual machines. I would start with a small number of virtual machines first, once the builds are stable (surpass the average load constantly), and increase the VM count to cater for the peak load (e.g. 3 times). In this case, maybe just from $18/hr to $54/hr.


2. You seem to lack a load testing plan?


I assume you compare it to traditional load testing, Yes, it may be so. I am sure IBM and Census Australia staff spent countless hours planning the load testing, with all sorts of targets. Did it matter? Could they explain that to the frustrated users and the angry Prime Minister? They every claimed “we have load tested 150% of the volume”, which might not be a lie, but just testing conducted at one early build of the software.


3. Have you done it successfully in large IT companies?


Yes, I did it by accident. One software architect, after seeing my demo of running automated tests in parallel, asked me about the possibility of solving the №1 challenge. The large (500+ IT staff) company needs to get 5000 units (don’t want to disclose the business type) of load, however, the performance team was unable to achieve that. So I accomplished less than a week (while still working on other duties). It turned out only 10 BuildWise Agents were required (this company purchased 10 BuildWise Agent licenses).



2.5 Review


In a chapter, I showed the trend of web load testing, and introduced a new way: Practical Load Testing to conduct performance and load testing in a flexible, relaxing and practical manner.









3 Protocol-based Performance and Load Testing


Protocol-based Performance/Load Testing has been dominating software load testing for decades. In my opinion, the trend of moving towards browser-based load testing has started a few years ago, nevertheless, protocol-based load testing will still be around. In the chapter, I will provide a quick introduction to protocol-based performance/load testing, followed by two exercises using:



  	Mechanize

  	JMeter




If the test scripts or procedures are too complex for you, don’t worry, I will introduce a much easier and more intuitive approach in Chapter 5. In the meantime, just get an idea of protocol-based load testing.



3.1 How does Protocol-based testing works?


In simple words, a test script sends an HTTP request to the web app to get the response page (in HTML) back. Based on the returning HTML, test scripts perform the next operation (another request) or assertions. The script below gets the raw HTML of a website, in a very basic form.




  
  require 'net/http'
require "uri"
url ="https://travel.agileway.net"
puts Net::HTTP.get_response(URI.parse(url)).body







Of course, there is more to it for real use. For example, the output of the below script




  
  puts Net::HTTP.get_response(URI.parse("https://travel.agileway.net")).body







is




  
  <html><body>
You are being <a href="http://travel.agileway.net/login">redirected</a>.
</body></html>







The actual home page is not returned, because there is a redirection. Here is a solution:




  
  url ="http://travel.agileway.net"
begin
  response = Net::HTTP.get_response(URI.parse(url))
  url = response['location']
end while response.is_a?(Net::HTTPRedirection)







This is just one of many tasks you need to do if you want to code protocol-based scripts from the scratch. The more challenging yet common task is keeping the session going, as we want to simulate a set of user operations in a session (i.e. stateful). However, each of raw HTTP request is stateless. That’s why we need to use load testing tools and frameworks. 



3.2 Simple Performance/Load Testing Exercise


Let’s do some real performance/load testing.


Objectives 



  	Performance testing
    Measure timings of “Visit home page” and “User login” with one active user
 

  

  	Load testing
    Measure timings of “Visit home page” and “User login” under 5, 10, 20, 50 and 100 concurrent users.

  




Test site    https://whenwise.agileway.net


Please feel free to change to your site, and please do not hit my test site too hard, it will crash (this app runs on a US$10/month Virtual Private Server and shares with my other 5 sandbox web apps).



  Tasks



Use Mechanize and  JMeter to accomplish the objectives, respectively. 


Please don’t worry about load testing strategies such as constant and incrementing load, just generate some load (with concurrent users) and do some measuring.



  Be aware of JavaScript load testing frameworks


  There are some load testing JavaScript-based frameworks that claim “easy load testing”, such as loadtest and Artillery. I won’t link them here, because I think their approaches are wrong. Like many functional test frameworks/tools (such as Cypress, TestCafe, …, etc), they appear too easy to be true (impressive for demonstrations). For over 14 years in test automation, every project I have seen using a JavaScript-based automation framework failed. In my opinion, JavaScript is good for client-side web development, but not for test automation. 


  For example, the script (using a JS load testing framework) below sends 60 requests with 30 concurrent users.  




  
  loadtest -n 60 -c 30 https://blank.org







  If functional and load testing are as simple as some JS-based frameworks claimed, the software industry will be completely different, and you wouldn’t be reading this book now. 


  
    “This low level (14-18%) of automation is the number-one bottleneck for maturing testing in enterprises” - 2018-19 World Quality Report.


  





3.3 Scripting with Mechanize


Mechanize is a library for automating interactions with websites, without a browser involved. In this exercise, we will use it for load testing. If you are new to Ruby, don’t need to worry about learning Mechanize syntax, just run the sample scripts. The purpose here is to get you a feel of scripting a load test.



3.3.1 Preparation


Mechanize is a Ruby library, besides Ruby, you will need to install the Mechanize gem as well.  




  
  gem install mechanize









3.3.1.1 Login


Below is a Mechanize script that logs in to a website. 




  
  require 'mechanize'
@browser = ::Mechanize.new
@browser.get("https://whenwise.agileway.net")
@browser.get("https://whenwise.agileway.net/sign-in")
login_form = @browser.page.forms.first
login_form.fields_with(:name => "session[email]").first.value = "driving@biz.com"
login_form.field_with(:name => "session[password]").value = "test01"
@browser.submit(login_form, login_form.button_with(:id => "sign-in-btn"))







When you run it, the program ends after about 1 second. Did it actually work?



3.3.1.2 Add assertion


We can add an assertion to verify that our Virtual User actually landed on the dashboard page.




  
  # verify the specific text only shown to logged in user
raise "Not logged in" unless @browser.page.body.include?("Current Plan")








3.3.1.3 Debugging


Still not sure, we can save the current page to a file and open it in a browser to inspect.




  
   File.open("/tmp/a.html", "w").write(@browser.page.body)
 # then open /tmp/a.html in Chrome







It looks like this. 


  


The page is rendered without CSS and JavaScript, we could modify this off-line HTML to use the site’s web resources (such as CSS, images and JavaScript). But it is not necessary, we only care about the actual page content in load testing. 



    This is a common debugging technique for headless automation.





3.3.1.4 Add measurements


The above automated script works functionally. To make it a performance test, we need to add some measurements.   


In functional testing, the measurement of execution time is simple: end_time minus start_time. For performance/load testing, the measurement is on the time took on the server to handle individual user operations. For a typical web request



  	User initiates an action, e.g. click a link

  	The request arrives at the server

  	The server sends the response (HTML) back

  	The response arrives at the client’s browser

  	The browser finishes the rendering of the page




  


The correcting timing for performance/load testing is B→C. However, the network transferring times (A→B and C→D) are negligible (and hard to measure consistently) nowadays. Therefore, we normally just take the timings of A→D.


Below is a quite basic operation-timing in Ruby. 




  
    start_time = Time.now
  # opreation here ..
  duration = Time.now - start_time 
  puts("took #{duration} seconds")      







As the above is going to be used often, I extract them into a reusable function:  




  
  def log_time(msg, &block)
  start_time = Time.now
  begin
   yield
  ensure
    end_time = Time.now - start_time
    puts("#{msg} | #{end_time}")    
  end
end







A sample usage:




  
  log_time("Visit home page") { @browser.get("https://whenwise.agileway.net") }








3.3.2 Performance Testing


Record the timings of each operation, then we get a performance test script.




  
  require 'mechanize'
site_url = "https://whenwise.agileway.net"
@browser = ::Mechanize.new
log_time("Visit home page") { @browser.get(site_url) }
log_time("Visit login page") { @browser.get(site_url + "/sign-in") }
login_form =  @browser.page.forms.first
log_time("enter data") {
  login_form.field_with(name:"session[email]").value = "driving@biz.com"
  login_form.field_with(:name=> "session[password]").value = "test01"
}
log_time("Login") {
  @browser.submit(login_form, login_form.button_with(:id=> "sign-in-btn"))
}







The log_time function is predefined. Here is what an output looks like.




  
  |Visit home page  |1.088529|
|Visit login page |0.208664|
|enter data       |0.000036|
|Login            |1.043211|







These timings are true performance testing results (compared to when you do these operations in Chrome), as no browser rendering is required. 



    The logging time of “enter data” in the above example is unnecessary, as there is no interactions with the server. Those two steps simply prepare the form data for submission. 





3.3.3 Simple Load Testing


Next, we will generate a load with a number of concurrent users. Running the command multiple times such as  


  ruby load_test.rb &; ruby load_test.rb &; ruby load_test.rb &  


Of course, this way of generating load is no good, as it is hard to manage and unable to aggregate the timings. However, this gives engineers a quick taste of load testing. 



3.3.3.1 Generate load


In protocol-based testing, concurrency is typically implemented using threads.



    Threads, in software programming, are a way for a program to split itself into two or more simultaneously running tasks. 






  
  require 'mechanize'
@browser = ::Mechanize.new
virtual_user_count = 5 # may change concurrent users count here
threads = []
virtual_user_count.times do |idx|
  threads[idx] = Thread.new do
    Thread.current[:id] = idx + 1
    @browser.get("https://whenwise.agileway.net")
    @browser.get("https://whenwise.agileway.net/sign-in") 
    login_form =  @browser.page.forms.first
    login_form.field_with(:name => "session[email]").value = "driving@biz.com"
    login_form.field_with(:name=> "session[password]").value = "test01"
    @browser.submit(login_form, login_form.button_with(:id=> "sign-in-btn"))
    raise "Not logged in " unless @browser.page.body.include?("Current Plan")
  end
end

threads.each {|t| t.join; } # wait all threads to complete







There will be no output from executing the above script (because I did not time it), however, if you monitor the log of your app, you will see a lot more activities there.



3.3.3.2 Measure timings


By combining the performance test script and load generation, we get a basic load testing script.




  
  # ...
threads[idx] = Thread.new do
 Thread.current[:id] = idx + 1
  log_time("Visit home page") { @browser.get("https://whenwise.agileway.net") }
  log_time("Visit login page") { @browser.get("https://whenwise.agileway.net/sign\
-in") }
  login_form =  @browser.page.forms.first
  log_time("enter_data") {
    login_form.field_with(:name => "session[email]").value = "driving@biz.com"
    login_form.field_with(:name=> "session[password]").value = "test01"
  } 
  log_time("Login") {
    @browser.submit(login_form, login_form.button_with(:id=> "sign-in-btn"))
  }
  raise "Not logged in " unless @browser.page.body.include?("Current Plan")
end
threads.each {|t| t.join; }

print_out_timings()  # the hash @vu_reports stores the timings of each operation







Output:




  
  1|Visit home page|1.069316
3|Visit home page|1.031282
2|Visit home page|1.088884
1|Visit login page|0.232194
1|enter_data|3.5e-05
3|Visit login page|0.247188
3|enter_data|3.1e-05
2|Visit login page|0.248053
2|enter_data|0.000107
1|Login|3.244234
3|Login|3.417211
2|Login|3.5701







Here are the individual timings (in seconds) of 10 Virtual Users.



  
    
      	VU#
      	Visit Home page
      	Visit Login page
      	Login
    

  
  
    
      	1
      	1.11
      	0.21
      	5.44
    

    
      	2
      	1.40
      	0.2
      	5.43
    

    
      	3
      	1.10
      	0.23
      	5.28
    

    
      	4
      	1.30
      	1.21
      	5.42
    

    
      	5
      	1.16
      	0.21
      	4.81
    

    
      	6
      	1.19
      	0.21
      	5.12
    

    
      	7
      	1.33
      	2.87
      	5.51
    

    
      	8
      	1.10
      	0.21
      	4.99
    

    
      	9
      	1.28
      	2.05
      	5.09
    

    
      	10
      	1.19
      	0.21
      	5.36
    

  





3.3.4 Compare load results


Change the virtual_user_count in the load script to 1, 5, 10, 20, 50 and 100, then run the test respectively and get the average timings of the operations. We get a simple yet meaningful load test report. 



  
    
      	VUs
      	Visit Home page
      	Visit Login page
      	Login
      	Notes
    

  
  
    
      	1
      	0.97
      	0.2
      	1.05
      	 
    

    
      	5
      	0.99
      	0.2
      	3.46
      	 
    

    
      	10
      	1.12
      	0.44
      	5.88
      	 
    

    
      	20
      	1.32
      	0.96
      	9.68
      	 
    

    
      	50
      	1.78
      	0.97
      	21.95
      	 
    

    
      	100
      	 
      	 
      	~ 40
      	3 failed
    

  





3.3.5 Failure to load test AJAX


Protocol-based load scripts can handle standard HTTP Requests, but not AJAX, like the one below.


  


From the testing perspective, an AJAX operation immediately ‘completes’ after the mouse/keyboard action (such as clicking the ‘Pay now’ button), and no page reload is observed. After the server finishes processing the request, seconds or even minutes later, some part of the web page may be updated.


The below is an attempt to invoke a typical AJAX operation in Mechanize.   




  
  # ...
@browser.get("https://travel.agileway.net/flights/passenger/1")
passenger_form = @browser.page.forms.first
passenger_form.field_with(:name => "passengerLastName").value = "Wise"
@browser.submit(passenger_form)  # standard HTTP request, OK 

payment_form =  @browser.page.forms.first    
File.write("/tmp/a.html", @browser.page.body)    
@browser.submit(payment_form)    # a AJAX operation
#...    







It will fail with an error. 




  
  502 => Net::HTTPBadGateway for https://travel.agileway.net/payment/confirm -- 
unhandled response (Mechanize::ResponseCodeError)    







Some will say this is not useful then, as AJAX is commonly used in modern web apps. That’s correct. Some vendors came up with some workarounds for testing AJAX with protocol-based test scripts, but they are either not reliable or too complicated. Using real browsers is a practical and intuitive way to load testing modern web apps. 


Having said that, Protocol-based performance/load testing can still be useful. Because even in many modern web apps, protocol-based scripts can test the following mostly visited pages or features: 



  	Home Page

  	Sign in and sign off

  	Sign up

  	Password reset 

  	…




Performance/load testing is often done lightly in software projects, effectively testing the above might just be enough. The objective of this book is more than “just enough”, we want to load testing a webapp’s core features, whether they are AJAX or not.



3.4 Load testing with JMeter


JMeter is a free and open-source Java-based load testing tool. For a 23-year-old software, JMeter is still very relevant today (you still can find JMeter in many job ads), it is a rare software success. I have used JMeter since its first version in 1998, it is powerful, and I managed to get the job done. However, personally, I find it hard to use. Every time I worked with JMeter (load testing is not my main task), it felt like learning a new tool.


There are many JMeter tutorials (including video ones), but I will be brief here. Still, it is a bit long. Good news is that you may skip this part as the load testing approach in this book will be much easier and intuitive. 


The final JMeter project files can be downloaded at the book site.



  	
In the new plan, include ‘HTTP Cookie Manager’ and ‘HTTP Header Manager’

  
    [image: ]
    
  




    This is for handling sessions.
 

  

  	
Add “HTTP Request Defaults” to share the target server URL
    The common data for all the HTTP requests (in the test plan). Set our target server URL there: https://whenwise.agileway.net.


      

  

  	
Add a new “Thread Group”
    A ‘thread group’, based on my understanding, is a load test case. I named it “User Login”.



  
    [image: ]
    
  



     

  

  	
Add a test step (HTTP Request): Visit the Homepage
    Right-click the “User Login” Thread Group → Add → Sampler → HTTP Request.



  
    [image: ]
    
  




    Name it “Visit the Homepage” and set the PATH /.



  
    [image: ]
    
  



     

  

  	
Add “View Results Tree”
    Right-click the “User Login” Thread Group → Add → Listener →View Results Tree.



  
    [image: ]
    
  




    This is to view the captured test results, in the case, HTTP request and response data.
 

  

  	
Run the test plan
    Click the green triangle button on the toolbar to run the test plan.



  
    [image: ]
    
  




    Click the ‘Response data” tab to view the HTML returned.


    I also added “ Listener →View Results in Table”, which provides a more concise view.
 

  

  	
Add an assertion, “Response Assertion”

  
    [image: ]
    
  




    I named it “Home Page Slogan Assertion”, and added the check: “Text Response” Contains “Discover quality services near you”.



  
    [image: ]
    
  



  

  	
Rerun the test plan
    After one run, I suggest changing to the invalid assertion text (see above). The test results will display like below.



  
    [image: ]
    
  




    Next, I added  two more steps (HTTP Request): “Visit Login Page” and “Login”. 
 

  

  	
Use ‘Regular Expression Extractor’ to extract the CSRF token on the Login page
    Add another HTTP Get Request with the path /sign-in .


    WhenWise is a Ruby on Rails app, which comes with CSRF token protection.




  
  <meta name="csrf-token" content="EcuR9ZHJ1KBs0MKuVjD6k9OLe6mZ........" />







    One way is to extract the token on the Login page using a regular expression and save it to a JMeter variable.



  
    [image: ]
    
  




    Specify the regular expression.


      

  

  	
Submit the Login form
    This is an HTTP Post request to /sessions, with three parameters (login info can be found on the test site):


    
      	
session[email], driving@.biz.com


      	
session[password], test01


      	
authenticity_token, ${authenticity_token}
the value is extracted from the previous step.
 

    


      


    Add a “Response Assertion” to verify this step: check the text “Dashboard” on the returned page.

  





3.4.1 Performance Testing


Running the test with one virtual user, “Number of Threads (users)” (under Thread Group) is set to 1 (default anyway),  is effectively a performance testing.



  
    
      	Operation
      	Time (s)
    

  
  
    
      	Visit home page
      	1.003
    

    
      	Visit login page
      	0.205
    

    
      	Login
      	1.035
    

  





3.4.2 Load Testing


Change the Number of Threads (users) to 1, 5, 10, 20, 50 and 100, then run the test and get the average timings of the operations. Here are the results: 



  
    
      	VUs
      	Visit Home page
      	Visit Login page
      	Login
      	Notes
    

  
  
    
      	1
      	1.04
      	0.22
      	1.27
      	 
    

    
      	5
      	1.06
      	0.68
      	2.65
      	 
    

    
      	10
      	1.22
      	1.03
      	4.12
      	 
    

    
      	20
      	1.64
      	1.82
      	6.28
      	 
    

    
      	50
      	2.63
      	6.50
      	18.4
      	 
    

    
      	100
      	1.79
      	4.17
      	35.7
      	1 failed
    

  





  Comparing the results of Mechanize and JMeter


  Because my test server is running on a shared VPS, the server’s performance cannot be guaranteed. Taking this factor into account, the results are quite similar between Mechanize and JMeter for both performance testing and load testing. Slight better timings with JMeter on load testing is expected, as Mechanize add handlings of the responses.


  Comparing to Mechanize, more work are needed with JMeter, such as extracting CSRF tokens. This is because Mechanize emulates a browser to a certain degree, while JMeter is on the pure HTTP request level. 





3.5 Handcrafted scripts vs GUI tools



  “Everybody in this country should learn how to program a computer… because it teaches you how to think.” - Steve Jobs




With the above two approaches: handcrafted scripts (in a common programming language) vs GUI tools, which one do you prefer? I like the handcrafted scripts for the reasons below:



  	Test scripts shall be in a scripting language
    We call test scripts for a good reason, they are better written in a scripting language, such as Ruby.  
   

  

  	
Flexible
    We get the ultimate flexibility in software automation with programming languages. This shall be obvious to everyone works in the software industry. While there were some attempts, such as Microsoft BizTalk and other BMPL tools, to ‘develop’ software applications weighing more on configuration than programming, they all failed. The core reason is that the tool-based approach is not flexible. In my opinion, test automation demands even more flexibility to keep up with with frequent application changes.  
   

  

  	
Efficient
    Scripting with raw programming language will achive top effiency, as fewer layers exists.  
 

  

  	
Reliable
    The GUI testing tool is a software, it will have defects and may introduce regression issues in a new release. Generally speaking, a widely used open-source test framework is better maintained, i.e, more reliable.
 

  

  	
Free (as in ‘freedom’, and maybe ‘free beer’)
    Most script-based test frameworks are free, and most GUI-based test tools are not (JMeter is an exception). If a team does test automation well, most of its team members may run automated tests. It would be more cumbersome for a project manager say: “Sorry Tony, you cannot run these automated tests because we run out of the licenses.”  
 

  

  	
No vendor-locking
    Vendor-locking is bad, we all know that.  
 

  

  	
Easy to get external help
    Most software teams lack skills/experiences in test automation. If you using a commercial testing tool with test scripts in a proprietary syntax, then you will be hard to find help.  On the contrary, if you are using a free and open-source test framework, besides Google and Stack Overflow, you may get help from professional test automation coaches. For software teams never had success in test automation, seeking help from a good test automation coach is the most economical, for the reasons below:  
   


    
      	Test automation skills and practices are directly applicable to most software projects
        There is little differences in developing automated functional and load tests web apps. Whether it is a banking or an insurance web app, to the for test scripts, they are largely the same: HTML. By leveraging a test automation coach experiences (gained from testing other web apps), the team members can learn quickly.  
 

      

      	The benefit (if getting a good mentor) is immediately visible
        Different from consultation on software architecture, which may take a few weeks or months, the actual benefits of test automation mentoring are realized in hour or even minutes, in visible form. If not, you got a fake one. 


        When I start on a new project, I usually is able to develop a few automated tests for a key business secnario on the first day, and execute them in a CT server. When coaching software engineers/manual testers who started writing real automated tests (usually after my one-day training workshop), for most questions, I can answer them and provide working solutions in minutes. 

      

    


     

  

  	“The Power of Plain Text”
    “Keep Knowledge in Plain Text” is a tip (#25) in the classic “The Pragmatic Programmer” book. There are many benefits with test scripts in plain text, such as easier version control. With modern programming editors such as Visual Studio Code and testing IDE such as TestWise, editing/developing/debugging test scripts can be very efficient.  
 

  

  	
Easy to integrate with CI/CD and CT processes
    Execution of automation tests shall be included in a part of CT process, i.e, running in a CI/CT server. Text-based scripts in an open-source test framework are very easy to integrate with CI/CT servers.



      I have seen the DevOps team in a large company failed to set up executing Micro Focus UFT (a commercial functional testing tool) tests in Bamboo (a commercial CI server) for 9 months.  Of course, individual incompetence can be the main reason. However, as a comparison, in the training session, I delivered (in the same company), all attendants (most are manual testers) set up a Continuous testing server running automated UI tests, under an hour. The reason: we were using a standard raw Selenium WebDriver scripts in a widely-used RSpec test framework.



  




The above reasons also apply for other test automation types, including API testing.  For example, while GUI-tools-based functional testings tools (such as QuickTest Pro) existed for decades, it is Selenium WebDriver, a text-based automation library with bindings in five programming languages, dominates web testing.



    Add “Sign off” step to your Mechanize load test script


  Make user login scenario complete. Measure the timings for ‘Sign off’. 





3.6 Review


I hope you have a better understanding of protocol-based performance/load testing after doing the exercise.



  	Compare GUI load testing tool and text-based scripts

  	Compare performance and load testing

  	Compare the operation timings under different user loads.

  	There is not much magic with some ‘cool’ load testing frameworks
    You can create one that will look good on demo. However, real load testing is not easy.

  

  	Protocol-based load testing tools/frameworks don’t work well AJAX or client-side dynamic web pages




Protocol-based performance/load testing, which probably is still the mainstream. There are many tools and frameworks in various forms, if not running in a real browser, the fundamental concept is the same. One big drawback with protocol-based performance/load testing is its poor support for dynamic web apps, which most web apps nowadays are.  


From Chapter 5, I will focus on a new and better way to conduct performance/load testing with real browsers.










4 Test Syntax Framework


An automated test consists of two types of test steps: driving and assertion steps.




  
    # ...
  @browser.submit(login_form, login_form.button_with(:id=> "sign-in-btn"))
  raise "Not logged in" unless @browser.page.body.include?("Current Plan")







The above appears a valid automated test. However, it is not quite yet. The last step raises a programming exception (error) for an assertion failure. Moreover, there are missing features such as:



  	Test case name

  	Include multiple related test cases in one test script file.

  	Common test steps before and after each test case.

  	More assertion type, e.g. equals 

  	Execute a specific test case

  	Test results in different formats, e.g. JUnit XML




The above is what a test syntax framework can help with. 


Automation framework drives the app; Test Syntax framework defines test structures and provides assertions (performing checks in test scripts). For example, JUnit is a test framework for unit testing in Java.


It is important to note that automation frameworks and syntax framework are independent. Traditional automation tool vendors intentionally blurred that. For example, people call HP QTP tests or LoadRunner tests, its proprietary scripts may be seen as a whole unit. With open-source and standard-based automation framework, such as Selenium WebDriver (the one we are going to use in this book), automation and test frameworks are separate.  For examples,



  	Selenium WebDriver + RSpec syntax framework in Ruby language

  	Selenium WebDriver + Pytest syntax framework in Python

  	Selenium WebDriver + Mocha syntax framework in JavaScript




With options, choosing becomes a problem. I recommend Selenium WebDriver + RSpec. You may choose others, the techniques and most practices will still be applicable.  



4.1 RSpec


Test syntax frameworks that are used for system testing are also known as Behaviour Driven Development (BDD) frameworks. RSpec is a popular BDD framework in Ruby, its version 3.8.0 alone has over 205 millon downloads (source: RubyGems). 



  More expressive



Compared to JUnit, RSpec tests are easier to read. For example, for the JUnit test below:




  
  class UserAuthenticationTest {
  public void testCanLoginWithValidUsernameAndPassword {
    // ...		
  }
  public void testAccessDeniedForInvalidPassword() {
    // ...
  }
}







Its RSpec version will be like this:




  
  describe "User Authentication" do
  it "User can login with valid login and password" do
    #   ...
  end

  it "Access denied for invalid password" do
    #...
  end
end








  Execution Hooks



Execution hooks are similar to setUp() and tearDown() functions in JUnit. Test steps inside a execution hook are run before or after test cases depending on the nature of the hook. The example below shows the order of execution in RSpec:




  
  describe "Execution Order Demo" do

  before(:all) do
    puts "Calling before(:all)"
  end

  before(:each) do
    puts "  Calling before(:each)"
  end

  after(:each) do
    puts "  Calling after(:each)"
  end

  after(:all) do
    puts "Calling after(:all)"
  end

  it "First Test Case" do
    puts "    In First Test Case"
  end
   
  it "Second Test Case" do
    puts "    In Second Test Case"
  end

end







Output:




  
  Calling before(:all)
  Calling before(:each)
    In First Test Case
  Calling after(:each)
  Calling before(:each)
    In Second Test Case
  Calling after(:each)
Calling after(:all)








    Can I do Practical Load Testing in another language other than Ruby?


  Yes. The Practical Load Testing approach is generic, not locked on a specific language or tool. While all test scripts in this book are in Ruby, the concept and approach can work for other popular scripting languages such as Python and JavaScript. The equivalent test syntax framework of RSpec in Python and JavaScript are PyTest and Mocha respectively. 


  Having said that, I strongly recommend using Ruby for automated End-to-End testing. It is easy to learn and fun to use.





4.1.1 Install and Run RSpec tests


RSpec is a ruby gem (a library in in Ruby), installing a Ruby gem is easy (run in a terminal).




  
  > gem install rspec







To run test cases in a test script file, enter the command below.




  
  > rspec demo_spec.rb







Run multiple test script files in one go:




  
  > rspec first_spec.rb  second_spec.rb







Run individual test case in a test script file, supply a line number in the chosen test case range.




  
  > rspec demo_spec.rb:27







To generate a HTML test report after test execution:




  
  > rspec -fh demo_spec.rb > test_report.html







The command syntax is the same for Windows and Linux platforms.



4.1.2 A performance test in RSpec


Here is a performance test script in RSpec (named: login_performance_spec.rb).




  
  require 'mechanize'
require "rspec"

describe "Performance Testing - Login" do

  before(:all) do
    @vu_reports = {}
    @browser = ::Mechanize.new
  end

  it "Sign in and sign off" do
    log_time("Visit home page") { @browser.get("https://travel.agileway.net") }
    login_form = @browser.page.forms.first
    login_form.field_with(name: "username").value = "agileway"
    login_form.field_with(:name => "password").value = "testwise"
    time_login_operation = log_time("Login") {
      @browser.submit(login_form, login_form.button_with(name: "commit"))
    }
    expect(@browser.page.body).to include("Signed in!")
    log_time("Sign off") { @browser.page.link_with(:text => "Sign off").click }
    fail("Took too long for login") if time_login_operation > 0.3    
  end
end







Don’t worry about the detail, just pay attention to the test structure and assertions. 


Here is my one-minute guide to RSpec syntax. 



  	
describe groups related test cases.

  	
it is a test case, do ... end marks the scope of a test case. (same for describe)

  	
before(:all), before(:each), after(:each) and after(:all), as they suggest, execute the test steps inside in a certain order (relative to test cases).

  	
expect(XXX).to YYY performs assertions.






  
  > rspec login_performance_spec.rb







Output:




  
  |Visit home page |0.135565| 
|Login |0.220169| 
|Sign off |0.080805| 
.

Finished in 2.25 seconds (files took 1.24 seconds to load)
1 example, 0 failures







The example in the output means “test”.



4.2 Avoid Gherkin


You might have heard of Cucumber or its variants such as SpecFlow. Cucumber is known as a BDD framework in Gherkin (Given..When..Then) syntax. I discourage using Gherkin for any test automation (functional or non-functional), the reason is simple: This will add an extra layer, hence, a lot more maintenance overhead.



    “Cucumber makes no sense to me unless you have clients reading the tests. Why would you build a test-specific parser for English?”


  - tweet by DHH, Creator of Ruby on Rails, Founder & CTO at Basecamp & HEY, and NYT best-selling author




From my 16 years+ experience in test automation, I spent far more time on test maintenance than test creation. If you want a figure, I would say 70% on maintenance. This is decided by the nature of software development, as change is constant. A minor change to code, deployment script, infrastructure, or test data might break one or many automated tests. Gherkin tests, in my opinion, is adding a lot of work with little value. 



4.3 Review


A test syntax framework in test automation shall be simple. Don’t overcomplicate it, just choose RSpec or its variants, such as Mocha in JavaScript.









5 First Functional Performance Test


Let’s write a Selenium WebDriver automated test for performance testing purposes. I call it ‘Functional Performance Test’. 


Some readers might question the validity of ‘Functional Performance Test’. In terms of raw performance, request-based is the most accurate as there is little overhead. However, performance testing is not a competition on raw timing for the fastest time (such as a 100m sprint), rather it is for self-comparison between different internal builds. In other words, if we are using the same measurement mechanism, then performance test results are valid.


If you are new to Selenium WebDriver, don’t feel intimidated. With TestWise, a functional testing IDE, you are going to see your first automated test running in a Chrome browser in under 10 minutes, and that includes installing the test tool!



5.1 Test Design


A test starts with a requirement (called User Story in agile projects). Quite commonly, the first simple requirement to test is: User Authentication.  We will use this requirement for our first test in this exercise.



  Measure the time for Users log in and log off	




Here are the test data:


Site URL: http://travel.agileway.net  
  User Login/Password: agileway/testwise


and design the test steps:



  	Enter username "agileway"


  	Enter password “testwise”

  	Click the button “Sign in”

  	Verify: “Signed in!” appears

  	Click the link “Sign off”




The test steps are the same for functional, performance and load testing scripts. The purpose of this exercise is performance testing, we need to capture the timings for:



  	Visiting the home page

  	Visiting the login page

  	Login (from the clicking the the ‘Sign in’ button to see the ‘Signed in!’ text)


  	Logout 






5.2 Install Testing Tool


TestWise is a functional testing IDE for developing/debugging functional tests in open-source test frameworks such as Selenium-WebDriver. We will use TestWise for this exercise.



  Prerequisite




  	A desktop computer with MS Windows 10, Linux or macOS

  	Chrome browser





  Install TestWise IDE



TestWise IDE are available on Windows, macOS and Linux. Installation of TestWise is quick and straightforward:



  	macOS: Open DMG file and drag ‘TestWise’ to ‘Applications’ folder.

  	Linux: Run install.sh after unzipping the package.

  	Windows: Run the installer and accept all default options.
    Special note for Windows users. There is TestWise Ruby edition (Windows only, ~22MB), which bundles Ruby, ChromeDriver and required libraries (called Gems) required, I recommend this for beginners. 


    I do recommend installing the standard Ruby distribution, refer to this guide: “10-Minute Guide to Set up Test Automation using Selenium WebDriver with Ruby”. After that, you can use the smaller TestWise standard edition.   

  





  Install ChromeDriver




  	Find out your Chrome version.

  	Download the ChromeDriver matches the browser.

  	Put chromedriver executable into a directory, which is a part the execution PATH in the TestWise’s settings (‘Execution’ Tab → ‘Execution Path’).
      

  





  Install testing libraries



Assuming you have Ruby installed, run the command below (in a command window or terminal) to install the required testing libraries, such as Selenium WebDriver.




  
  > gem install selenium-webdriver rspec  multipart_body 









5.3 New Performance Test Project


Create a new folder for your test scripts, e.g. /Users/YOUR/demo/first-ui-performance-test.


Select menu ‘File’  → ‘New Project’ 


           


Fill the new project form: 



  	Project name: free text 

  	Location: the path of newly created folder

  	Website URL: ‘https://travel.agileway.net’ from the testdata

  	Check the ‘Include the helper for load testing’ checkbox




Click ‘OK’, the new project is displayed in TestWise like the below:


  



5.4 Run the blank test


Click the new_spec.rb to open it in an editor, right-click any line in the test case, and select “Run ‘Test Case Name’”.


 
       


You shall be a Chrome browser starts up and open the “Agile Travel” site.


Here is the test script.




  
  load File.dirname(__FILE__) + '/../test_helper.rb'
load File.dirname(__FILE__) + '/../load_test_helper.rb'

describe "Test Suite" do
  include TestHelper
  include LoadTestHelper

  before(:all) do
    @driver = $driver = Selenium::WebDriver.for(browser_type, browser_options)
    driver.manage().window().resize_to(1280, 720)
    log_time("Visit Home Page") { driver.get(site_url) }
  end

  after(:all) do
    dump_timings
    driver.quit unless debugging?
  end

  it "Test Case Name" do
    load_test_repeat.times do      
      # driver.find_element(...)
    end
  end
end







Don’t worry if you haven’t used Ruby before, just focus the part within it ... do scope, it is the main test case part.  The rest will gradually make more sense to you, and they are not complex anyway. 


Now the test runs, but the test name does not match our testing task. Change them.



  	test suite name, describe "Test Suite" ⇒ describe "Performance - User Auth"


  	test case name, it "Test Case Name" ⇒ describe "User sign in"


  	test script file name, “new_spec.rb” ⇒ “login_spec.rb”  
(right-click the file and select ‘Rename’)




Also, for performance testing, not loads. Change “load_test_repeat.times do” ⇒ “1.times do” to just run the test steps once in this test case.



5.5 Create test steps


Now we add the test steps to perform ‘a user logs in’, in Selenium. 



5.5.1 Create test steps manually


Scripting in Selenium WebDriver is very easy, Selenium syntax follows a simple and intuitive pattern: “locate a web control”, then either “drive it” or “retrieve its data for assertion”.



  	Right-click a web control in Chrome, and select the ‘Inspect’ menu
      

  

  	Analyse the HTML for the selected control, determine a suitable Selenium locator, such as ‘ID’ and ‘NAME’).  




Now write scripts.



  	Locate the control in Selenium, e.g. driver.find_element(:id, "username")  

  	Drive it, e.g. driver.find_element(:id, "username").send_keys('agileway')





The below is four sample selenium steps for a typical login operation.



  
    
      	Operation
      	Selenium Script
    

  
  
    
      	Click ‘Sign in’ link
      	driver.find_elmment(:link_text, "Sign in").click
    

    
      	Enter email
      	driver.find_elmment(:id, "email").send_keys("driving@biz.com")
    

    
      	Enter password
      	driver.find_elmment(:name, "session[password]").send_keys("test01")
    

    
      	Click ‘Sign in’ button
      	driver.find_elmment(:xpath, "//input[@value='Sign in]").click
    

  




I used four different WebDriver locators (there are 8 locators in total) for three types of web controls: Link, Text Field and Button. Can you see the pattern here? It is quite easy, isn’t it?  Many beginners are not comfortable with XPath, the most powerful locator for Selenium. XPath is a standard, plenty of resources can be found online.


For more on Selenium WebDriver, please refer my other books “Practical Web Test Automation” and “Selenium WebDriver recipes in Ruby”. 



    Using TestWise Snippets


  Type dfei and followed by a Tab key, TestWise will tranform it to  
 driver.find_element(:id, "ID").





5.5.2 Using TestWise Recorder


Alternatively, you may use a Selenium recorder. I strongly discourage record-n-playback, because resulting test scripts are hard to maintain.  TestWise Recorder is a Chrome extension (created by me), which records your operations into executable Selenium WebDriver and Watir test scripts while you navigate through your web application in Chrome. Get TestWise Recorder here.



Once installed, open your target web site in Chrome, and click the recorder icon on the toolbar to enable recording.


  


You may use any other Selenium WebDriver recording tool, such as Selenium IDE. I declare I rarely using any recording tools for creating automated tests. 


Copy selected test steps in TestWise Recorder to the editor in TestWise.



5.5.3 Test case


The test case, the it part, shall look like the below.




  
  it "Login" do
  1.times do      
    driver.find_element(:id, "username").send_keys("agileway")
    driver.find_element(:id, "password").send_keys("testwise")
    driver.find_element(:name, "commit").click
    expect(driver.find_element(:tag_name, "body").text).to include("Signed in!")
    driver.find_element(:link_text, "Sign off").click
  end
end







Rerun the test. You shall see the execution of “User sign in” in a new Chrome browser.



5.6 Add measurements


The above automated test works functionally. To make it a performance test, we need to add some measurements.   



5.6.1 Measure timings in Ruby


We can use the log_time function defined in load_test_helper.rb. 




  
    log_time("OPERATION NAME") { STEPS } 







Test Script 




  
  1.times do      
  driver.find_element(:id, "username").send_keys("agileway")
  driver.find_element(:id, "password").send_keys("testwise")
  log_time('Login') { driver.find_element(:name, "commit").click }
  expect(driver.find_element(:id, "flash_notice").text).to eq("Signed in!")
  log_time('Sign off') { driver.find_element(:link_text, "Sign off").click }
end







Run the test. You can see the output like below. (if running in TestWise, the output will be shown under ‘Console’ at the right bottom)




  
  [1, "Visit Home Page", nil, 1609060992088, 1783, 1, nil] 
[2, "Login", nil, 1609060994220, 855, 1, nil] 
[3, "Sign off", nil, 1609060995173, 982, 1, nil] 







At the moment, you just need to care the two columns: #2 (operation name, you specified) and #5 (duration). For example, the above three operations took 1.7s, 0.86s and 0.99s respectively. 



5.7 Headless browser mode


Headless Browser Testing is a way of running browser tests without the UI (head, a term from Unix). Test execution is faster in headless mode, therefore it makes sense to run performance/load tests in headless mode. Let’s run a Selenium test in headless. 



  Run in TestWise



Check the ‘Headless execution (Chrome only)’ checkbox in the TestWise settings dialog.


  



  Run in Terminal





  
  > export BROWSER_HEADLESS=true
> rspec login_spec.rb







This is turned on by setting the environment variable BROWSER_HEADLESS, which is used in the test_helper.rb.




  
    if  ENV["BROWSER_HEADLESS"] == "true"
    the_chrome_options.add_argument("--headless")
  end







Rerun your test in headless mode, and compare the result with the previous one (normal mode), it shall be a slightly faster. 



5.8 Compare performance testing results


So far, I have shown three types of performance tests for the same operations:



  	Request based using Mechanize

  	Selenium normal mode, with GUI

  	Selenium in headless mode




What are the differences in terms of timings? I did a quick benchmark against a real modern website WhenWise for realistic timing. 


I did four simple operations and recorded timings for four modes: the above three and the best in repeated executions in Selenium headless. 



  
    
      	Operation
      	Mechanize
      	Selenium
      	Selenium (Headless)
      	Selenium (Repeat)
    

  
  
    
      	Visit Home
      	0.12
      	1.79
      	1.61
      	0.11
    

    
      	Visit Login
      	0.04
      	1.87
      	1.79
      	0.12
    

    
      	Login
      	0.19
      	0.98
      	0.91
      	0.31
    

    
      	Logout
      	0.08
      	0.20
      	0.18
      	0.16
    

  




We can get the following findings from the above exercises: 



  	
Overall, request-based is considerably faster than browser-based.
    This is expected, as there is no rendering is required for request-based test execution. 


    For the operation based (processed in the server) timings, such as “User Login”, the difference between the requested-based and the browser-based is not big. For example, “Vist Home page”: request-based is 13 times faster; “Login”: requested-based is 5 times faster and only twice for repeated runs.
 

  

  	
The performance gain of Headless mode is minor, maybe around 5 - 10%.  
 

  	
Caching in browser-based greatly reduces test execution time
    Visiting a web page in Chrome the second time onwards will be a lot quicker, this is because the browser has cached the web page assets, such as JavaScript, images and stylesheets.


    This finding is important, it means after the warming up, browser-based performance test execution is not far behind request-based. In other words, browser-based approach can be used for performance/load testing.

  






5.9 Measure AJAX operations


In Chapter 2, I showed failed attempts to measure AJAX operations using protocol-based JMeter and Mechanize. We can achieve with Selenium WebDriver.


Let’s examine AJAX requests in more detail for the purpose of timing. There are more steps than standard HTTP requests. 


  



  	A user initiates an action, e.g. click a link, which invokes a JavaScript call

  	AJAX engine transforms to an HTTP request to the server 

  	AJAX engine returns an empty response to the user operation. 

  	The HTTP request arrives at the server

  	The server sends the response (XML Data) back

  	AJAX Engine transform the XML response to HTML/JS/CSS data

  	The browser finishes the rendering of the response data using JavaScript




If we just measure the time of the user operation, e.g. click an AJAX button, it is the time of A → C, which does not hit the server. That’s not what we want.


Let’s do it by continuing the test for AgileTravel. After user login,  we need to navigate the app to the payment page with an AJAX button.  The below are standard Selenium WebDriver steps in Ruby.




  
  driver.find_element(:xpath, "//input[@name='tripType' and @value='oneway']").click
Selenium::WebDriver::Support::Select.new(driver.find_element(:name, "fromPort"))
  .select_by(:text, "New York")
Selenium::WebDriver::Support::Select.new(driver.find_element(:name, "toPort"))
  .select_by(:text, "Sydney")
driver.find_element(:xpath, "//input[@type='submit' and @value='Continue']").click
driver.find_element(:name, "passengerFirstName").send_keys("B")
driver.find_element(:name, "passengerLastName").send_keys("D")
driver.find_element(:xpath, "//input[@type='submit' and @value='Next']").click
driver.find_element(:name, "card_type").click
driver.find_element(:name, "card_number").send_keys("4242424242424242")







Then click the ‘Pay Now’ button, an AJAX operation.




  
  log_time('Click pay button') { 
  driver.find_element(:xpath, "//input[@type='submit' and @value='Pay now']").cli\
ck 
}







The above step measures the time of A → C, it will be always quick like the below output shows. 




  
  Click pay button: 0.052 seconds







The below step waits until the booking number displayed on the page. The timing of operation is between C → G, which is correct for the AJAX operation. (F → G depends on browser, it usually will be very quick, negligible)




  
  wait = Selenium::WebDriver::Wait.new(:timeout => 10)
log_time("Pay now") {
  wait.until { driver.find_element(:id, "booking_number") }
}







Here is a timing result of the above AJAX operation.




  
  Pay now: 5.28 seconds







Given the time of A → C (clicking the ‘Pay now’ button in this example) is negligible, it is OK to use A → G for the time for an AJAX operation. 




  
  log_time('Pay now') { 
  driver.find_element(:xpath, "//input[@type='submit' and @value='Pay now']").cli\
ck   
  wait = Selenium::WebDriver::Wait.new(:timeout => 10)  
  wait.until { driver.find_element(:id, "booking_number") }
}









5.10 Functional Test vs Functional Performance Test


As you can see from the above, a functional performance test script is in fact a functional test script, besides log_times. However, functional performance tests serve a different purpose, therefore their writing style is slightly different. Let me illustrate with an example.


The test steps below tests an AJAX operation, waiting up to 10 seconds with a 2-second interval.




  
    driver.find_element(:id, "pay_now_btn").click
  try_for(10, 2) { driver.find_element(:id, "booking_number").text == "REF001"}







The above is fine for functional testing. However, it is not optimized for performance testing. The below is its performance testing version.




  
    wait = Selenium::WebDriver::Wait.new(:timeout => 10)
  log_time("Make payment") {
    driver.find_element(:id, "pay_now_btn").click
    wait.until { driver.find_element(:id, "booking_number") }
  }







There are two differences:



  	
Not using the try_for helper function to minimize the wait time. 
    The try_for helper is a convenient help method (very quick to type in TestWise). However, it might add an unnecessary wait time (set by the checking interval). In the context of performance testing, we want to minimize that. 
 

  

  	
Don’t bother with text assertion (sometimes)
    In this example, I only care the booking number is displayed, not the actual content.

  





5.11 Review


We created a simple yet complete functional performance test in raw Selenium WebDriver (Ruby). I strongly recommend you do another one for your own app. Some readers might not like the form of measurements, this I will address in the next chapter.









6 Performance Test Plan



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.1 Scope of work



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.2 Testing execution approach



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.3 Automation framework



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.3.1 Protocol based frameworks



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.3.2 Browser based frameworks



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.3.2.1 Browser



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.3.2.2 Headless mode



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.4 Scripting language



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.5 Test Syntax framework



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.6 Test Creation: Recording vs Handcrafting



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.7 Automation Tools



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.7.1 Be efficient



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.7.2 Preview browser-based tests



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.8 Measurements



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.8.1 Operation types for measurements



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.8.2 Determine operations for timing



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.9 Test executions and Reporting



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




6.10 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









7 Continuous Performance Testing



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.1 Why run performance tests in CT server



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.2 Set up BuildWise Server



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.3 Execute performance tests in a CT server



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.3.1 Prerequisite



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.3.2 Set a CT build project



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.3.3 Trigger a CT run



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.3.4 View Build result



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.3.5 Continuous Execution



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.4 Case Study - Performance Testing WhenWise’s Reset



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




7.5 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









8 Load Test Plan



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.1 Load Testing Scenarios



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.2 Determine the number of VUs required



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.3 Generate Load



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.4 Load Testing Metrics



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.5 Define Success Criteria



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.6 Parallel Execution in a CT server



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.7 Execution Control



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.7.1 Testing What?



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.7.2 With how much load?



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




8.8 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









9 Continuous Load Testing



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.1 Generate Load from the command line



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.2 How does Continuous Load Testing work?



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.2.1 Benefits



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.2.2 How can this approach handle a large load, e.g. 10000 concurrent users?



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3 Build Agents



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.1 Build Agent Machines



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.2 Install BuildWise agent software



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.3 Configure first build agent



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.3.1 Configuration - General Settings



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.3.2 Configuration - Application



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.4 Verify software on an Agent machine



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.5 Verify Test Execution in an Agent



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.6 Configure - Pre Execution (optional)



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.3.7 Clone multiple build agents



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.4 Set up Load Testing project



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




9.5 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









10 Custom Load Testing Execution



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.1 Control which tests to run



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.1.1 Focused Scenario(s)



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.1.2 Mix  Scenarios



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.2 Prepare Execution



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.3 A Quick Test Run with one Build Agent



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.3.1 Build Agent Specifiction Affects Performance



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.4 Control the Load



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.4.1 Set VU count



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.4.2 Set test execution time



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.4.3 Increase the load gradually



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.5 Set Success Criteria



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.5.1 Overall failure rate



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.5.2 Indvidual Operation Timings



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.6 Monitor Execution



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7 Case Study: Load Testing User Login



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.1 1 VU



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.2 3 VUs



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.3 6 VUs



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.4 9 VUs



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.5 12 VUs



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.6 Report



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.7 Analyse



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.8 What’s next?



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.7.9 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.8 Case Study: Mixed Scenarios



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.8.1 Create a new Build Project by Clone



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.8.2 Test Scripts



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.8.3 Debug Operation Failure



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




10.8.4 Report



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









11 Identifying Flaws and Performance issues



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.1 Functional Flaws



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.1.1 Design Flaw



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.1.1.1 Case Study - AdminWise Member Creation



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.1.2 Race conditions



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.2 Non-Functional



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.2.1 Website Crash



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.2.2 Software Inefficient



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.2.3 Deployment/Infrastructure Flaw



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.3 Feedback Time is Critical



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.4 Performance/Load Improvement Suggestions



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




11.5 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









12 Continuous Testing Lab



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.1 Costing Factor



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.2 Start Small, Start Today



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.3 Reliable



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.4 Ongoing Mainteance



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.4.1 Execution Environment



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.4.2 BuildWise Agent



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.4.3 App related



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.5 Optimize For Speed



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.5.1 Recommendations



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




12.6 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









13 Maintaining Load Test Scripts



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




13.1 Reusable functions and Page Objects



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




13.1.1 Page Object Models



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




13.1.2 Reusable Helper Functions



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




13.2 Test Refactoring



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




13.3 Coding conventions



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




13.4 AJAX in Load Tests



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




13.5 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.









14 Best Practices



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.1 Run a warm-up script first



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.2 Using faster Selenium operations



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.2.1 Prefer a faster locator



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.2.2 Avoid Selecting an option by Index



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.2.3 Reuse already located element



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.2.4 Submit form instead of clicking a submit button



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.2.5 Asserting page content using source



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.3 Speed up non-operational steps



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.3.1 Mimimize test data



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.3.2 Using JavaScript to enter text data



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.4 Avoid Conflicts



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.4.1 Stabilise load scripts with randomization



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.4.2 Leave no side effects



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.




14.5 Review



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.








Appendix: TestWisely


In this book, I have shown Practical Performance/Load Testing using BuildWise Server and Agents. The concept can be implemented in other Continuous Testing tools. 


One common feedback I often receive from people who are new to CI/CD or CT is “not easy to set up a Continuous Testing lab”. It is not hard; just putting up a list of common pieces of work together can be challenging.



  	Git (commmand line)

  	MySQL setup

  	Familiar with Unix, macOS, and Windows platforms

  	Shell Scripting

  	Build scripts, e.g. Rake

  	Programming in a scripting language, such as Ruby

  	Test Automation set up, e.g. ChromeDriver

  	…

  	Specific Continuous Testing tool knowledge 




When under my mentoring, one QA Engineer could set up a local Continuous Testing lab (with BuildWise + 2 Agents) in about two or three hours. It usually takes a few more runs to really master the set up process. The reason: it involves many pieces of knowledge.



  “An Ambitious test manager”


  Many years ago, I did a few days of test automation coaching at a government project. One week later, I received a call from a person who claimed to be a test manager of that government department. He told me that he had just joined and found out about the test automation (from the tester I mentored). He was interested in executing automated tests in a CI/CD manner. I sent him some links to BuildWise documentation, including some screencasts. 


  The next day, he called me again, asking for help on setting up BuildWise with MySQL backend. This means he had a BuildWise demo server running with a Sqlite3 database, a pre-packaged way to launch a BuildWise quickly. Technically, the BuildWise server is set up already, just need to switch to a MySQL server in the database configuration file (in YAML format).


  This supposes to be a simple job if I am on site. However, this test manager wanted me to instruct him over the phone. I replied: “MySQL server set up is generic, I can highlight the database configuration part once you got your MySQL server up and running”. However, he still requested my help to set up MySQL over the phone.


  I said “I need to be on-site to deal with any constraints on your machine or IT policies. If you engaged me for half-day consulting, I could help you with not only that but also setting up a build project to run automated tests in BuildWise, maybe even parallel test execution”.


  Then I never heard from him. From the conversation, I think he was keen to use BuildWise/TestWise to show off to his boss and peers, engaging me would take out the glory. This is fine, but he didn’t have the broad knowledge required and didn’t want to self-learn. For this type of people, TestWisely might be good news to them.




TestWisely is my latest app, which can be described  as “Pay-as-you-go Continuous Testing Services on Cloud” based on BuildWise. TestWisely officially is still at Beta status, it is usable for basic needs. I welcome you to try and appreciate the feedback.


Like anything, there are advantages and disadvantages to using a Cloud-based Testing Lab service like TestWisely:


Pros:



  	Easy setup, don’t need to worry about set up build machines.

  	No software installation required.

  	No license fees, just monthly fees, just pay as you go.   

  	
Easy to scale up.




Cons: 



  	No or less control on machines used  

  	Lack of access to certain log files on the build machines

  	Might cost more in the long run if using the CT lab often




In this appendix, I will show you set up TestWisely to run performance and load tests. It is worth pointing out that you can use TestWisely for functinoal testing, in fact, a far common case. Here I will just focus on the performance/load testing.


Test Scripts on Github


Firstly, check out sample test scripts from Github.




  
  git clone https://github.com/testwisely/whenwise-load-tests.git







The target web site is WhenWise, one of my web apps (with commerical customers). This server instance is created for testing only purposes, it is hosted on a Vultr’s low-spec machine. The URL: https://whenwise.agileway.net. 


Verify: Run tests on TestWise


Try runing the test scripts in functional mode first. 



  
    [image: ]
    
  




This will help boost your confidence on the test scripts, also, you will know to how to debug them when running into execution issues. 


Set up a CT Lab on TestWisely and Run Performance/Load Tests


TestWisely simplifies and speeds up the set-up process. The core practices of Practical Performance/Load Testing that you learned in this book, as you will see, unchanged with TestWisely. 


Sign up TestWisely


One-click Sign up TestWisely with your Google or Facebook account. TestWisely offers a free trial plan (limited to 1 server and two agents within a limit on continuous use), you can start using immedately after sign-up. By the way, no credit cards are required. 



Set up Wizard



  	
Repository
    An accessible Git repostory that stores the load test scripts.



  
    [image: ]
    
  




    At the moment, TestWisely only supports authentication by URL, e.g. GitHub HTTPS, with tokens if authentication required
 

  

  	
Team
    The ‘Team’ in TestWisely is an abstract concept to hold one or more Git repositories. Make you select at least one repository here.



  
    [image: ]
    
  



  

  	
Server
    Click the “Test Lab” link.



  
    [image: ]
    
  




    Click the “+ New Trial CT Server” button.



  
    [image: ]
    
  




    Fill the form (modal dialog) to allocate one build server instance. 
 


    
      	
Label: 
        Optional, for your own identification only.
 

      

      	
Identifier: 
        The unique server identifier (also called ‘digest’), 8-10 characters. Recommended to leave it empty, in this case, TestWisely will generate one.
 

      

      	
Team(s): 
        Must select at least one team (which you created previously).
 

      

    

  




We can stop here, worry about agents later. Click the “Test Lab” on the left, you will see your CT server.



  
    [image: ]
    
  




Click the link indicated by the green arrow to open your CT server’s URL. Please note your unique server identifier, in the case,  jqhywz1d. 



  
    [image: ]
    
  




Yes, this is your BuildWise server on cloud, created under one minute. 


Set up Build Projects


Login with default credentials (‘admin’/’buildwise’, strongly suggest changing it immediately). The next step is to create a build project in BuildWise. In this exercise, I will create three:



  	Performance Testing (Protocol-based) 

  	Performance Testing (Browser-based)

  	Load Testing




But will do it one by one.


On the new project screen, click the “Fill demo project” on the right and select “TestWisely Perforamce” or “TestWisly Load”, which will populate the default values. 



  
    [image: ]
    Executing a performance test in TestWise
  




We need to customize some of them on creation.


Performance Testing


Performance Testing can be run on the build server machine, no need to involve build agents. 


Protocol-based


The first project of this exercise is to run one Mechanize test, the login_spec.rb under the performance folder.


Project Setup



  	Project name: WhenWise Performance Login Mechanize
 

  	Project identifier: whenwise-performance-login-mechanize
Hint: clear the identifier field and enter the project name first, BuildWise will populate the hyphened identifer.
 

  	Working folder: ~/work/projects/whenwise-load-tests
TestWisely clones the respostory (specified earlier) on the BuildWise server machine  under ~/work/projects , in this case, whenwise-load-tests.





Execution


Click the “Build Now” button on BuildWise to trigger a run, which shall complete in a few seconds.



  
    [image: ]
    
  




Do a few more runs. Then click the ‘Login’ operation to view the historic results. 



  
    [image: ]
    
  





    How do we control which tests to run? 
Check out the performance_tests target defined in the Rakefile.




Browser-based


In the second project, I will run one functional performance test, the login_spec.rb under the load folder.


Project Setup


A quicker way is to clone the last project, with changes. 



  
    [image: ]
    
  




On the new project, check and update the settings of the following fields:



  	Build Step “Performance Test”

  
    [image: ]
    
  



  

  	UI Test folder

  
    [image: ]
    
  



  




Execution


Here is one performace testing report:



  
    [image: ]
    
  




As you can see, the ‘Login’ operation takes about 50% longer that the mechanize verison.


Load Testing


Lastly, I will run the login_spec.rb under the load folder in parallel as load testing.


Project Setup


This time, I start with new project. After filling a sample ‘TestWisely Load’, I update as below. 



  
    [image: ]
    
  




On the new project, check and update the settings of the following fields:



  	
App Name

  
    [image: ]
    
  




    Choose a concise and meaningful name, such as “WhenWise” in this case. You need to add this to the configuratons in build agents later.
 

  

  	
Server URL

  
    [image: ]
    
  




    In this case, change to https://whenwise.agileway.net.

  




We can trigger a run of this project, but no results.



  
    [image: ]
    
  




Why? We haven’t allocated the build agents on TestWisely yet.


Allocate Build Agents


The BuildWise server is up running, now I will add build agents to it. 



  
    [image: ]
    
  




Click the “+ Add new Trial Build Agent” button. (Trial is for free plan users) 



  
    [image: ]
    
  




Provide a lablel for the new agent, Agent-01 in this case. Make use the build server (CT01) and the Team (WhenWise) are selected. 



  
    [image: ]
    Two Build Agents added
  




What does a Build Agent look like?


The build agent machined inside TestWisely are transparent (i.e. accessible) to the users. To give you a feel, here is what the support staff see via VNC. It runs on Linux with Desktop Manager.



  
    [image: ]
    
  




A Run of Load Testing on TestWisely’s BuildWise


Click the “Build Now” button for the “WhenWise Load Login” project on the BuildWise server. Below is a test report. Not surprisingly, it is the same as in a on-premise setup.



  
    [image: ]
    
  




How do Build Agents support different Apps?


One BuildWise Agent can support testing multiple apps (with test scripts in different Git repositories against different servers). A BuildWise Agent will participate a parallel BuildWise build if satisfies all the conditions below:



  	
It can communicate with the BuildWise server.
Obvioulsy. 
 

  	
The Git-checked-out working directory exists on the agent machine.
In our example, ~/work/projects/whenwise-load-tests.
 

  	
App Name is in the BuildWise Agent’s Environment Variable settings
See section 9.3.3.2. 




Test Scripts on Build Agents


Below is a screenshot of test script folders (under ~/work/projects) on Agent 01.



  
    [image: ]
    
  




The buildwise-samples was included by default. The whenwise-load-tests was fetched (via Git) on agent allocation. How TestWisely knows the repository URL?  A BuildWise Agent → BuildWise Server → Team(s) → Repostories.


Update BuildWise Agent Configuration


BuildWise agents load configuration from the ~/.buildwise/agile-config.xml (on th agent machine). You can view the configuration on TestWisely by clicking the ‘Retrieve Agent Config’ button.



  
    [image: ]
    
  




Then, you can update the agent configuration. The changes will be made to the build agent machine. 



  
    [image: ]
    
  




To add support for executing tests for a new app, append an entry (like the example below) under <environment_variables> element. 




  
  <entry app_name="WhenWise" name="BASE_URL" value="https://whenwise.agileway.net"
       position="2"/>







Clicking the ‘Update’ button to apply the changes to the build agent, which now can participate a run of the ‘WhenWise’ app (the name is set in the BuildWise project).


FAQ



  	
How does the free plan work?
    You can request one BuildWise Server trial instance and two BuildWise agent trial instances, subject to availability. After 36 hours, the trial instances will be recycled for others. 


    If you noted down the server identifier (a unique 8-characters string), you can resume (see below). 
 

  

  	
If my trial ends, how to access my preivous build projects or results?
    Remember your current server identifier, which is a part of the BuildWise Server URL. On the next trial, Reset (see below)



  
    [image: ]
    
  




    with your last server identifier. TestWisely will restore the projects and its exeuction historic data


     

  

  	
How about restoring data on the build agents?
    Re-allocating build agents will re-checkout the test scripts from the configured repositories. One configuration is missing though, the agent configuration. The workaround is to back up the agent configuration first, then restore it (see the above “Update BuildWise Agent Configuration”).

  











  Resources




This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.



Books



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.



Tools



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.



Online Resource



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.








References



This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/practical-performance-and-load-testing.






OEBPS/resources/leanpub_warning.png





OEBPS/resources/leanpub_question-circle.png





OEBPS/resources/leanpub_comments.png





OEBPS/resources/leanpub_bug.png





OEBPS/resources/leanpub_info-circle.png





OEBPS/resources/leanpub_pencil.png





OEBPS/resources/leanpub_key.png





OEBPS/resources/ch05-testwise_headless_mode.png
[ NON ] TestWise Settings

General Execution Environment Variables Editor Frameworks

Execution Path (Test frameworks, Browser drivers, Git)

/Users/zhimin/.rbenv/shims:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

TestWise will invoke commands in the above PATH to run tests. Check

Validates syntax before running specs/tests
Save modified files before running tests

For web applications (RSpec)

Highlight the web control during execution
Kill existing chromedriver processes before test execution
Headless execution (Chrome only)

Delay between operations: 0.0 sec

Project Preferences OK

Cancel





OEBPS/resources/ch04-load_project_skeleton.png
load File.dirname(__FILE__) + '/../test_helper.rb'
load File.dirname(__FILE__) + '/../load_test_helper.rb'

E first-ui-performance-test
| pages

(P) abstract_page.rb . .
® il £ describe "Test Suite" do

1
2
3
4
L= spec 5 include TestHelper
6
7
8
9

@ include LoadTestHelper
@ spec_helper.rb
% Rakefile =) before(:all) do
. ’ # browser_type, browser_options, site_url are defined in test_helper.rb
@ agileway_utils.rb 10 @driver = $driver = Selenium::WebDriver.for(browser_type, browser_options)
& buildwise.rake 11 driver.manage() .window().resize_to(1280, 720)
@ buildwise_rspec_formatter.rb 12 log_time("Visit Home Page") { driver.get(site_url) }
first-ui-performance-test.tpr 13 end
@ load_test_helper.rb 1: - after'(:all) do
(H) test_helper.rb 16 dump_timings
17 driver.quit unless debugging?
18 end
19
20 g it "Test Case Name" do
21 @ load_test_repeat.times do
22 # driver.find_element(...)
23 # expect(page_text).to include(..)
24 end
25 end
26

27 end





OEBPS/resources/ch02-run_blank_test.png
20 g
21 @

22

23

24

25

26

27 end
28

it "Test Case Name" do . . o
load_test_repeat.times Run "Test Case Name $8F10
# driver.find_element > Run test cases in 'new_spec' 1 F10

’: expect(page_text).t Run Selected Scripts Against Current Browser X 1
en

end Refactor >
Run to line
Toggle Breakpoint 88 Fo

Done: 1 test (5.0 s) [Test]

Test File
new_spec.rb

Clear all Breakpoints k

| -

PETest' paste

Close other editors
ks Summar Close

Test Case Result Dur
Test Case Name OK






OEBPS/resources/ch03-chrome_inspect_html.png
<pbr>
<input type='text" name='"username"
id=""username' size="25"> == $0

User Name: agileway

Emoji & Symbols

Password: testwise Uinela ] </p>

Redo | v <p>

i ‘ <span title="password'>Password
(JRemember me Cor \ </span>

Paste R
Paste and Match Style | <i>testwise</i>

Select All : <br>

<input id="password" name="password"
type="password" size="25">

P

Language Settings

Writing Direction >

7, Assert Title ... er form div div#login-box p input#username ...

Styles Computed Layout Event Listeners >





OEBPS/resources/ch05-recording_with_testwise_recorder.png
@& travel.agileway.net/login

[ XN J
. .Stop
Agile Travel
Ruby
User Name: agileway —
I 1 driver

agileway

l \\i driver
Password: testwise driver
I _._l_—-}dr iver

ol e @
TestWise Recorder 0.5.2 (for Selenium WebDriver) /
https://travel.agileway.net/login Clear
Python JavaScript Java C# Watir

= Selenium::WebDriver.for :chrome
.get("https://travel.agileway.net/login")
.find_element(:id, "username").send_keys("agileway")
.find_element(:id, "password").send_keys("testwise")

*





OEBPS/resources/ch02-jmeter_regular_expression_extractor.png
v /' Visit Login page
' Regular Expression Extractor
ﬁ\ Response Assertion

v y"‘ Login
ﬁ\ Response Assertion

-~ View Results Tree
-~ View Results in Table

Field to check
O Body O Body (unescaped) ° Body as a Document O Response Headers O Request

Name of created variable: authenticity_token

Regular Expression: meta name="csrf-token" content="(.+?)"

Template ($i$ where i is capturing group number, starts at 1): $18

Match No. (0 for Random): 1





OEBPS/resources/ch02-jmeter_project.png
Ty kihaok

[PracticalLoadTesting/! /ch02-jmeter/JMeter-Rails-WhenWise.jmx) - Apache JMe...

000002 A\ 0 01 (3

® © @ JMeter-Rails-WhenWise.jmx (/User

8@ XOB +-% P h@O d# eb
v WhenWise Test Plan
“ ){ HTTP Cookie Manager A= RequeSt
_){ HTTP Header Manager Name: Login
_){ HTTP Request Defaults
v &3 User Login

Comments:
v /’ Visit Home page = 4
. Home Page Slogan Assertion Basic Advanced
I . .
v o Visit Login page Web Server

4 Regular Expression Extractor
Protocol [http]: Server Name or IP: Port Number:

0\ Response Assertion

I. . HTTP Request
0\ Response Assertion POST v Path: /sessions Content encoding:

-~ View Results Tree
D Redirect Automatically Follow Redirects Use KeepAlive Use ip dat: B ible headers

-~ View Results in Table
Parameters Body Data Files Upload
Send Parameters With the Request:

Name: Value URL Encode? Content-Type Include Equals?
session[email] driving@biz.com (] text/plain
session[password] test01 O text/plain

authenticity_token ${authenticity_token} (] text/plain





OEBPS/resources/ch02-testwise_settings_execution.png
@ TestWise Settings

General Execution Environment Variables Editor Frameworks

Execution Path (Test frameworks, Browser drivers, Git)

Jusr/local/bin:/Users/zhimin/.rbenv/shims:/usr/bin:/bin:/usr/sbin:/sbin

TestWise will invoke commands in the above PATH to run tests. Check





OEBPS/resources/ch04-new_load_test_project.png
@ [ ] New Project

Project name: first-ui-performance-test

Location: /Users/zhimin/demo/first-ui-performance-test
Enter or select an empty folder for the test project.

Test Framework

Automation Driver: © Selenium-WebDriver Watir

Test Script Syntax: © RSpec Pytest Mocha Cucumber

Project Settings

© Website URL

http://travel.agileway.net

Create project skeleton
Include Cl build tasks for BuildWise
Include the helper for load testing

OK Cancel





OEBPS/resources/leanpub-logo.png
[

Leanpub





OEBPS/resources/ch02-jmeter_add_post_processor_regex.png
Pl Visit Login Page | Web Server
con TS fcserin: > Servr Nam

Insert Parent 3

Timer »
Cut X Fre p ' Path: /sign-in
Copy %C re Processors b |
Paste RV JCsiz)Sr\lS;:IECtor Extractor
Duplicate £38C X xtractor
; Config Element » 5o\ jMESPath Extractor

Remove [E5g i
Listener Boundary Extractor

I :
Open... Regular Expression Extractor






OEBPS/resources/title_page.png
Q
QO
-
:
»
S
»
O
Ay
'©
O
=
Q
qv
=
A

& Load Testing

Zhimin Zhan





OEBPS/resources/testwisely-ct_servers_list.png
e CT Servers o Name Status IP address

CTO01 (jghywz1d) active 144,
Build Agents G





OEBPS/resources/testwisely-new_ct_server.png
<~ — C @& jghywzld.agileway.net
buildwise s~

There are no projects under BUILDWISE_HOME: [/home/cto/.buildwise].

Create a New project





OEBPS/resources/testwisely-buildwise_new_project_performance_template.png
New project

Option 1. Loading from a working folder or Specify manually

Project name:

Identifier:

Working folder:

Ul test folder:

Test results folder:

Main testing task
(Rake):

Sample Performance

sample-performance (lower case and unique,

~/work/projects/your_repository_folder_name
performance
spec/reports

-f Rakefile ci:performance_tests

"

Fill demo project ~

RSpec

Mocha (Node.js)

Cucumber

unittest (Python)

API Testing (Ruby)

Performance Testing (mechanize)
Performance Testing (selenium)
Load Testing (RSpec)

Typical RSpec

Apache Ant

TestWisely Performance

TestWisely Load

renolnaice 1est





OEBPS/resources/testwisely-buildwise_performance_mechanize_build.png
& — C @ jghywzild.agileway.net/builds/297 M v O M & v RO .

@ Test Results (1 tests )

Operation Timings (average)

0.8
0.6
GE) 0.4
£
0.2
0
© Visithome page @ Visit login page ' Login
Highcharts.com
Time Test Script Operation Duration
2022-09-28 23:31:09 login_spec.rb Visit home page 0.753
2022-09-28 23:31:09 login_spec.rb Visit login page 0.221
2022-09-28 23:31:09 login_spec.rb Login 0.524





OEBPS/resources/testwisely-wizard_repo.png
Step 1

Add Repository ~ Add Team  Add Build Server ~ Add Build Agent

Name

WhenWise Load Tests

URL The URL of the repository.

https://github.com/testwisely/whenwise-load-tests.git

Or Skip this step





OEBPS/resources/testwisely-wizard_team.png
Step 2

Add Repository ~ Add Team  Add Build Server ~ Add Build Agent

Name

WhenWise

Repositories The Git repositories used in this team

WhenWise Load Tests

Or Skip this step





OEBPS/resources/testwisely-wizard_add_build_server.png
Step 1 Step 2 Step 3 Step 4

Add Repository ~ Add Team  Add Build Server ~ Add Build Agent

Go the Test Lab to add a new CT server instance.

Or Skip this step





OEBPS/resources/testwisely_add_new_ct_server.png
New CT Server

Good news! A trial CT server instance is available.

Label: e.g. CT01, for your own identification only
CTOo1

Identifier: 8 unique characters, generate one if not provided
jghywz1d

Team(s): * To pass git repositories to the CT server.

Trial Dev
Team B






OEBPS/resources/ch02-ajax_request_timings.png
Client Browser Webapp Server

User Interface AJAX Engine |

|
l A . ]
JavaScript call B HTTP-request D
Initiate C Response
(no data)
F Response (data) Response (XML Data) E
! Rendering in browser
See change | |





OEBPS/resources/testwisely-run_performance_test_in_testwise.png
63
0
™
B

whenwise-ui-tests - [[Users/zhimin/work/projects/whenwise-load-tests/performance/login_spec.rb] - TestWise 6.7.2
o - . - S WY
FERAY XAl =t b PeCOND
PROJECT EXPLORER C (T) new_spec.rb  €3| (T) login_spec.rb €3 < Rakefile €3 (T)login_specrb & README.md  §
| whenwise-ui-tests 16
| load 17 @ it "Login" do
- ) 18 log_time("Visit home page") { @browser.get(site_url) }
(1) login_spec.rb . s e . " . ya som
19 log_time("Visit login page™) { @browser.get(site_url + "/sign-in") }
[ pages 20 login_form = @browser.page.forms.first
| performance 21 login_form.field_with(name: "session[email]").value = "driving@biz.com"
@ 22 login_form.field_with(:name => "session[password]").value = "test@l"
B spec 23 @ log_time("Login™) {
. 24 @browser. submit(login_form, login_form.button_with(id: "sign-in-btn™))
|| README.md . }
< Rakefile 26 end
< agileway_utils.rb 27 end
4B huildwica ralka 28
3 Console
PELogin »E Login [1, "Visit home page", nil, 1664523898580, 89, 1, nil]
— [2, "Visit login page", nil, 1664523898670, 28, 1, nil]
pb Done: 1test (2.2 s) [Test] o [3, "Login”, nil, 1664523898701, 186, 1, nil]
il Summary | =l Test Output
I TestFile Test Case Result Duration
login_spec.rb Login OK 0.3

Test execution ended

Line: 22 Col: 57 RSpec 5 Q Test: https://whenwise.agileway.net

¥

[x]






OEBPS/resources/ch02-saved_offline_html.png
® File | /private/tmp/a.html * © » = e

ay, Current Plan: Professional (Australia)
Dashboard





OEBPS/resources/ch02-measure_http_timing.png
Client Browser Webapp Server
]

|
I I
l A HTTP-request

B
Initiate

— >

C
R HTML]
p 0 eewr

! Rendering in browser
E

See






OEBPS/resources/ch02-ajax_operation_ui.png
Pay by Credit Card

Fare {oncway Mow York lo New York): $952.00
Card type: @ visa O Master
Card holder's name: [John Wise |

Card number: (42424242424242 |
Expiry n : (0] [2021]





OEBPS/resources/loadwise.png
® agiletravel-ui-tests.tpr - [C\agileway\LoadWise\samples\agiletravel\sign_in._test.rb] - LoadWise 060 - o X
Fle Edt Seach View Navigation Scrpt Refactor Run Toos Window Help
BEO QP2 v = seen | Domiin ]| B b b | A
P e Ssreanss ]| @ Crmreeatyfor[1 2 s
mu:md:-mw 8% @startpage x| @ endzend speceb | @ sign_in_testrb x | (@ select fight testab X »
Ba;‘ e 3 O describe "Login " do ~
& pages 4 include TestHelper

® abstract_pagesb :

® confimtion pagesd | 5 55 Can sign in with concurrent users” do

® fight finder_pagerb || 7 start_vime = Time.now

(® home_page.rb 5 @  run_with virtual users() {

s

) passenger_pagerb
® end2end specb
@ select fight testrb
@ sign.in testsb,
@ signin_via_proxy_testrb

browser = open_browser
1og_tine ("Open home page”) { browser.goto_page!
browser. enter_text ("username”, "agileway")
browser.enter_text ("password”, "test")
1og_time ("Sign in") ( browser.click button("Sign in") }
browser. text.should include ("Welcome agileway”)

@ test helpertb - y o
run
B sign_in_test.rb (3:3)
P Done: 3 toal I
(5 Resuts | il Statstics | 180 estoutput | [§] TestReport
W Functon Duraton Started at
1 Openhomepae 049 2210110070520
2 Openhomepsse 0875 2210110070520
3 Ovenhomepsse 0% 2210110070520
x 1 Signin 1422 2021-01-1007:05:21
2 s 189 2210110070521
3 s 20 2210110070521
25 Verson 36 Refator 70 Find (2] 8 T0DO
Lne: 13 Colmm 28 RWebspec (2 prociuction: ttp:fravel agieway.net






OEBPS/resources/testwisely-buildwise_load_project_setting_server_url.png
Server URL https://your-server-host






OEBPS/resources/ch02-dedicated_team_to_individual_projects.png





OEBPS/resources/testwisely-buildwise_load_run_without_agents.png
WhenWise Load Login Qj’ iv

263%

Load Test Started: 2022-09-29 10:42  Elapsed: 45 seconds i I I
| ]

© Load Test Results
@ Test Results (0 tests )¢

Export ¥

AGENT  TEST FILE (0 test cases) TIME (S) RESULT |5
login_spec.rb[3 3

2

login_spec.rb[3

login_spec.rb[3





OEBPS/resources/ch02-expensive_to_free_open.png
o3

—

Proprietary open source





OEBPS/resources/testwisely-add-agent.png
Build Agents

Unless for load testing or trial, we don't recommend tear down

CIVII{eWV-(To Il + Add new Trial Build Agent v

Name IP address

= TestlLab

CT Servers n

o Build Agents





OEBPS/resources/ch02-run_rarely_to_run_often.png





OEBPS/resources/testwisely-buildwise_performance_functional_setting_2.png
Ul test folder load





OEBPS/resources/ch01_performace-vs-load.png
Performance Testing Load Testing

B0 O | =T
buildwise | buildwise =
adminw&se — ©
I i = !
b e
&i‘n’,‘!ﬁ'ﬂ.m G i i v & A?}g’m{'ﬁm D e s §
p—— " m—) —_—
| q | |






OEBPS/resources/testwisely-buildwise_performance_functional_build.png
v
£
£
1
0
@ Visithome page @ Visit login page " Login @ Logout
Highcharts.com
Time Test Script Operation Duration
2022-09-29 00:03:53 login_spec.rb Visit home page 2.206
2022-09-29 00:03:53 login_spec.rb Visit login page 1.059
2022-09-29 00:03:53 login_spec.rb Login 0.837
2022-09-29 00:03:53 login_spec.rb Logout 0.593





OEBPS/resources/ch01_census-2016.jpg
LN ] Census Login
& https://stream41.census.abs.gov.au/eCensusWeb/login.jsp#top2

Log in to your 2016 Census

Thank you for participating in the Census. The system is very busy at the moment.
Please wait for 15 minutes before trying again. Your patience and cooperation are
appreciated. [code 9]





OEBPS/resources/testwisely-buildwise_new_load_project.png
New project

Option 1. Loading from a working folder or Specify manually

Project name:

Identifier:

Working folder:

Ul test folder:

Test results folder:

Main testing task
(Rake):

WhenWise Load Login
whenwise-load-login
~/work/projects/whenwise-load-tests
load

spec/reports

-f Rakefile ci:load_tests:login

Fill demo project ~

RSpec

Mocha (Node.js)

Cucumber

unittest (Python)

API Testing (Ruby)

Performance Testing (mechanize)
Performance Testing (selenium)
Load Testing (RSpec)

Typical RSpec

Apache Ant

TestWisely Performance
TestWisely Load

LUdu 1e5L





OEBPS/resources/ch02-protocol_to_browser.png





OEBPS/resources/testwisely-buildwise_load_project_setting_app_name.png
App name *

h(ou r-App






OEBPS/resources/testwisely-buildwise_performance_mechanize_operation_history.png
Login

Time (s)

0.6

0.5

0.4

0.3

0.2

0.1

0

2022-09-28 23:31

Recent performance test results and time

2022-09-28 23:31

2022-09-28 23:32

2022-09-28 23:35

2022-09-28 23:35





OEBPS/resources/testwisely-buildwise_duplicate_performance.png
Duplicate project: WhenWise Performance Login Mechanize

Quickly clone an existing build project, you may customize the setting later.

New Project Name: WhenWise Performance Login Functional
New Project Identifier: whenwise-performance-login-functional
Test Execution Mode: @ Sequential O Parallel
Ul Test Task: ci:performance_tests:functional
Branch:





OEBPS/resources/testwisely-buildwise_performance_functional_setting_1.png
Performance Test -f Rakefile ci:performance_tests:functional





OEBPS/resources/ch02-jmeter_response_action_verify_homepage.png
Response Assertion

Name: Home Page Slogan Assertion
Comments:
Apply to:
Main sample and sub-samples © Main sample only Sub-samples only JMeter Variable Name to use
Field to Test
© Text Response Response Code Respon
Request Headers URL Sampled Docum

Request Data

Pattern Matching Rules
© Contains Matches Equals

Patterns to Test
Patterns to Test

Discover quality services near yob






OEBPS/resources/ch02-jmeter_response_action_verify_homepage_results.png
-~ View Results Tree

' View Results in Table Sample # Start Time Thread Name Label Sample Time(ms) Status

1 06:47:09.841 User Login 1-1 Visit the Homepage 385 L ]
2 06:47:25.706 User Login 1-1 Visit the Homepage 102 L J





OEBPS/resources/ch02-jmeter_http_request_homepage.png
a WhenWise Test Plan
)( HTTP Cookie Manager
)( HTTP Header Manager
)( HTTP Request Defaults
L User Login

(/" Visit the Homepage

HTTP Request

Name: Visit the Homepage
Comments:

Web Server

Protocol [http]: Server Name or IP:

HTTP Request
GET ¢ Path: /

Advanced





OEBPS/resources/ch02-jmeter_add_view_results_tree.png
E* User Logia . i . B i
A Visit AL & Sampler >

Add Think Times to children Logic Controller » Stop Thread  Stop Test  Stop Test
Start
Start no pauses Pre Processors >
Validate Post Processors >
Assertions »
Cut X ) E
Copy %C Timer >
Paste 8V Test Fragment » _
Duplicate 438C
Remove ® Config Element » |

Listener » View Results Tree





OEBPS/resources/ch02-jmeter_run_view_results_tree.png
O@lad K| +[=-1%DIr @ e ¥4

7 00:00:00 A\ 0 0/1

a WhenWise Test Plan
){ HTTP Cookie Manager
){ HTTP Header Manager
){ HTTP Request Defaults
‘0 User Login

‘y' Visit the Homepage

Pl View Results Tree

View Results Tree
Name: View Results Tree
Comments:

Write results to file / Read from file

Filename BmwNDisplay Only: Errors
— N
Search: Case sensitive Regular exp. Search Reset
av
P
Text >

L~ MVisit the Homepage

Sampler result Response data

Request Headers

Find (

1 GET https://whenwise.agileway.net/





OEBPS/resources/ch02-jmeter_add_response_assertion.png
L User Login

L4
&

View Results Tré





OEBPS/resources/ch02-jmeter_add_config_elements.png
Threads (Users)

>
Paste #V Config Element » CSV Data Set Config '
Listener > HTTP Header Manager
Open... . HTTP Cookie Manager |
Merge s HTTP Cache Manager

>
Save Selection As... Bre Processors R HTTP Request Defaults |

3> User Login





OEBPS/resources/testwisely-agent_work_folder.png
cto@Agent-01l:~/work/projects$ 1ls -1F

total 8
drwxrwxr-x 13 cto cto 4096 Sep 29 22:31 buildwise-samples/

drwxrwxr-x 7 cto cto 4096 Sep 29 22:31 whenwise-load-tests/





OEBPS/resources/ch02-jmeter_request_defaults.png
a WhenWise Test Plan
)( HTTP Cookie Manager
)( HTTP Header Manager

)( HTTP Request Defaults

HTTP Request Defaults
Name: HTTP Request Defaults

Comments:

Web Server

Protocol [http]: https Server Name or IP:

whenwise.agileway.net

Advanced






OEBPS/resources/testwisely-retrieve-agent-config-xml.png
Agent Configuration Retrieve Agent Config H Edit Config l

<?xml version="1.0"7>
<config version="1.4">
<master>
<url>http://144.202.111.168</url>
</master>
<agent start_on_launch="true">
<temp_directory>/tmp</temp_directory>
<name>Agent@1</name>
<log_level>info</log_level>
<build_check_interval>3</build_check_interval>
<idle_check_interval>5</idle_check_interval>
<browser headless="false">chrome</browser>
<test_results_dir archive="true">/home/cto/.buildwise/agent-test-results</test_results_dir>
<execution_path>/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin</execution_path>
</agent>






OEBPS/resources/ch02-jmeter_add_thread_group.png
a WhenWise Test Plan
)( HTTP Cookie Manager
)( HTTP Header Manager
)( HTTP Request Defaults
o

Thread Group
Name: User Login

Comments:

Action to be taken after a Sampler error

© Continue Start Next Thread Loop Stop Thread

Thread Properties

Number of Threads (users): 1

Stop Test





OEBPS/resources/testwisely-edit-agent-config-xml.png
Agent Configu ration | Retrieve Agent Config H Edit Config l
7

<environment_variables> /
<l-- start ENV VARS-->
<entry app_name="AgileTravel" name="BASE_URL" value="http://travel.agileway.net" position="0"/>
<entry app_name="AgileTravel-Load" name="BASE_URL" value="https://travel.agileway.net"
position="1"/>
<entry app_name="WhenWise" name="BASE_URL" value="https://whenwise.agileway.net"
position="2"/>
<l-- end ENV VARS -->
</environment_variables>

<build> N . Q/,






OEBPS/resources/ch02-jmeter_add_http_request.png
Add Think Times to children

Logic Controller »

Flow Control Action

Debug Sampler





OEBPS/resources/testwisely-reset-server.png
Reset the Build Server

The build server working fgider will be cleared, the entries in
the database will still be r¢tained. However, you need to set
the same server digest tojaccess previous records.

New Server Digest: 8 alpha-digit Generate






OEBPS/resources/testwisely-allocate_build_agent.png
New Build Agent
Trial Build Agent Available

Server: CTO1
Label: Agent-01

Team(s): WhenWise






OEBPS/resources/testwisely-two_agents.png
= Testlab v IV WY=L I 4+ Add new Trial Build Agent v

CT Servers a Name IP address Launched
Server: CTO1
¢ Build Agents 9
Agent02 45.63.86.199 2022-09-30 12:58

& Teams ° Agent01 45.32.139.155 2022-09-30 11:37





OEBPS/resources/testwisely-agent_buildwise_agent.png
\/

PR BuildWise Agent - TestWisely

& Dashboard | {; Settings | [ ]Test Output |  |Log | About

Agent: Agent0l Stop

Buildwise Server: http://144.202.111.168
Build #






OEBPS/resources/testwisely-buildwise_load_results.png
&< - C @& jghywzild.agileway.net/builds/327 & M % ®

WhenWise Load Login (&'~ - Build Now

<

Started: 2022-09-30 13:37 Duration: 1 minute App Server: https://whenwise.agileway.net
© Change log
© Build artifacts
© Load Test Results
VUs: 2 Hits: 88 Hits per second: 1.67 (Peak: 11.0) Errors: 0

Response times

Operation # Average (ms) Fastest (ms) Slowest (ms) Error
Ll Visit home page 22 1338 383 2327
Ll Visit login page 22 794 374 1361
lil Login 22 774 654 883
lil Logout 22 621 542 880

Operation Timings

3
2
C)
v
E
'_
1
0 J L \“ ‘ l l ‘h ‘ ‘“ l l ‘h A ‘ ‘h “ i W “‘H ‘
30 Sep 30 Sep 30 Sep 30 Sep 30 Sep 30 Sep 30 Sep 30 Sep 30 Sep 30 Sep 30 Sep
13:37:45 13:37:50 13:37:55 13:38:00 13:38:05 13:38:10 13:38:15 13:38:20 13:38:25 13:38:30 13:38:35

@ Visit home page @ Visit login page " Login @ Logout





