Practical Event Sourcing
with Scala

Practical Event Sourcing with Scala

A comprehensive example based on Scala, Play and Akka
Streams

Denis Kalinin

This book is for sale at http://leanpub.com/practical-event-sourcing-with-scala

This version was published on 2021-01-25

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2021 Denis Kalinin

http://leanpub.com/practical-event-sourcing-with-scala
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Preface

Chapter 1. The initial project
Preparing the environment
Initializing the project
The backend part
The frontend part

Preface

Event sourcing is an architectural pattern that implies recording the state of the system as a series
of events. This approach is somewhat different from a traditional approach, which only maintains
the current state of the system.

The event sourcing pattern is known to have many advantages. Since the event store already contains
all events ever happened, we get a reliable auditing mechanism for free. Moreover, these events can
also be used for analytics to get more insight into how the system behaved at some particular moment
in the past.

However, implementing the system based on event sourcing is considered to be quite a challenging
task. Part of the reason is that event-based approach is not very common, and best practices are
not well-known. The developers implementing such a system are usually on their own as seemingly
ubiquitous Internet resources are usually limited to only covering basics.

Another interesting thing about event sourcing is that most people seem to associate it with
the Enterprise world. Things like domain-driven design (DDD), command-query responsibility
separation (CQRS) often go hand in hand. At the same time, typical Web startups usually start with
a more traditional CRUD approach (Create-Read-Update-Delete) but often switch to event-based
architecture later.

This book takes a rather unusual look at event sourcing. Instead of emphasizing domain modeling,
we will concentrate on technological aspects of building an event-based Web application. Our
question-and-answer service, although relatively minimalistic, will nevertheless contain many
attributes of a typical social-networking site like tagging and upvoting.

We will be using Scala as the main backend language throughout the book. I believe that this a very
good choice, because it makes a good compromise between heavy-weight languages like C# or Java
and overly concise languages like Ruby or Python. You don’t need to be a Scala guru, but if you want
to benefit most from reading the book, you need to at least be familiar with the syntax. If you're
coming from another language, I suggest you read through my 40-page Scala tutorial released as a

free sample for “Modern Web Development with Scala™.

Another prerequisite is familiarity with Web technologies. We're not going to spend time discussing
HTTP methods and basic syntax of JavaScript, so readers should already know what they are for.
However, will discuss in some details different JavaScript libraries as we start introducing them into
our project. Since the project contains quite a lot of code, this book is accompanied with a code
repository. All repository code is split into chapters so that the reader will be able to easily follow
what we achieved at some particular point.

'https://leanpub.com/modern-web-development-with-scala

https://leanpub.com/modern-web-development-with-scala
https://leanpub.com/modern-web-development-with-scala

Chapter 1. The initial project

In this chapter, we will prepare the environment and initialize the project which will serve as a
starting point of our application.

Preparing the environment

Since Scala is a JVM language, you need to have a Java Development Kit (JDK) installed on your
machine. Some of the libraries that we will be using throughout the book require Java 8, so make
sure to install JDK 8.

There are many ways to obtain JDK, and all of them are relatively straightforward. If you’re running
a Linux distribution, then there’s a good chance that it has a prebuilt OpenJDK package in its
repository. For example, on Ubuntu you can get the latest update for OpenJDK 8 using the following
command:

$ sudo apt-get install openjdk-8-jdk

You can also download a prebuilt OpenJDK package from AdoptOpen]DK and then install it
manually:

« Go to https://adoptopenjdk.net/releases.html® and download the latest JDK 8 (look for “Open-
JDK 8 with HotSpot” and make sure that the full name looks something like “jdk8u172-b11”,
which means “version 8, update 172”). For Linux you’ll probably end up getting a tar . gz file.
Extract the contents of the archive anywhere (for example, to ~/DevTools/ javas);

« On Windows, just follow the instructions of the installer;

« Create an environment variable JAVA_HOME and point it to the JDK directory;

« Add thebin directory of JDK to your PATH so that the java command works from any directory
on your machine;

On Linux, you can accomplish both goals if you add to your ~/.bashrc the following:

JAVA_HOME=/home/user /DevTools/ jdk8ul72-b11
PATH=$JAVA_HOME /bin:$PATH

*https://adoptopenjdk.net/releases.html

https://adoptopenjdk.net/releases.html
https://adoptopenjdk.net/releases.html

Chapter 1. The initial project 3

Another option is to add the above lines to the ~/.profile file. The use of these files usually differs
in various distributions, but in Ubuntu ~/.profile is a good place to put environment variables if
you want to make them available to GUI programs.

For our application, we will also build a frontend workflow based on Node]S. This means that you’ll
need to have two Node]JS tools installed - node (the Node]JS executable) and npm (the Node]S package
Manager). Since Node]S is actively developed, I usually recommend installing nvm - the Node]JS
version manager. This tool will allow you to switch between different versions of Node]S without
reinstalling it system-wide. In order to install it, just go to their website® and follow the instructions.

After nvm is installed, use it to obtain Node]S itself:
$ nvm install v14.15.1

Add the following line to the very end of your .bashrc to make sure that NodeJS v14.15.1 is used by
default:

nvm use v14.15.1 > /dev/null
Open a new terminal and check that npm is also available:

$ npm --version
6.14.9

Finally, we will be running all supporting services such as databases or message brokers as Docker*
images. This simplifies everything tremendously, but you’ll need to install both Docker and Docker
Compose. The installation of Docker differs significantly from one operating system to another, but
on Ubuntu it usually boils down to adding the official Docker repository and then getting the binaries
from there:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$ sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(1lsb_release -cs) \
stable”
$ sudo apt-get update
$ sudo apt-get install docker-ce docker-ce-cli containerd.io

On Windows or Mac, Docker comes with a sophisticated installer that takes care of the entire process.

*https://github.com/nvm-sh/nvm
“https://www.docker.com/

https://github.com/nvm-sh/nvm
https://www.docker.com/
https://github.com/nvm-sh/nvm
https://www.docker.com/

Chapter 1. The initial project 4
Initializing the project

Right now, sbt is the most popular Scala build tool. It is extremely powerful, and we will be using
it throughout the book.

There are several ways to obtain sbt. For example, you can download the zip or tar.gz archive from
the official Web-site’. After extracting the contents somewhere (for example, to ~/DevTools/sbt),
add the sbt executable to your PATH.

As always, you can add the SBT_HOME environment variable by editing the .bashrc file:

SBT_HOME=/home/user /DevTools/sbt
PATH=$JAVA_HOME/bin:$SBT_HOME/bin:$PATH

Starting with version 0.13.13, sbt is capable of initializing projects from Giter8°® templates, which are
little more than GitHub repositories with some metadata. I prepared such a template specifically for
this book so that you will be able to easily create a new project without writing any boilerplate. In
order to initialize a new project in a new directory called event-sourcing-app, type the following
command:

$ sbt new denisftw/play-event-sourcing-starter.g8

sbt will prompt you to type in the project name. Type event-sourcing-app and sbt will create a
directory with this name and initialize a new project there.

If you navigate to a newly created directory, you will see that there are a lot of files. We will discuss
the project structure in details in the next section, but now let’s check that everything actually works.

First, download the frontend dependencies by invoking the following command:
$ npm i

The i option here stands for install, so npm will look at the dependencies sections in the
package. json file and install all necessary packages into the node_modules subdirectory. It may take
some time, but after it’s done, you will be able to compile frontend assets by typing the following:

$ npm run watch

In another (new) terminal window, run bash run-sbt.sh from the project directory:

*http://www.scala-sbt.org/download.html
“https://github.com/foundweekends/giters

http://www.scala-sbt.org/download.html
https://github.com/foundweekends/giter8
http://www.scala-sbt.org/download.html
https://github.com/foundweekends/giter8

Chapter 1. The initial project 5

$ bash run-sbt.sh
Listening for transport dt_socket at address: 9999
[play-event-sourcing-starter] $

This will start sbt in debug mode so that it will be possible to connect your IDE to the running
application and check what’s going on.

In order to start the Web server, simply type run and press Enter:

[play-event-sourcing-starter] $ run
--- (Running the application, auto-reloading is enabled) ---
[info] p.c.s.AkkaHttpServer - Listening for HTTP on /0:0:0:0:0:0:0:0:9000

(Server started, use Ctrl+D to stop and go back to the console...)

Finally, open yet another terminal tab, go to the stack directory and start the accompanying crew
of services by typing the following:

$ cd stack/
$ docker-compose up

You will see a lot of logs in different colors, which should serve as an indication that all services are
up and running. Since this is not a book about Docker, all necessary services are included from the
very beginning even though some won’t be used until final chapters.

Finally, now you can open a new browser tab and navigate to localhost:9000. You should see the
following page:

Chapter 1. The initial project 6

= | @ localhost

ES.Q&A

Ifyou can see this message then the React-based part of the application was successiully connected

to the Play-based part.
Mo tny logging inflogging out using the navigation links on the top. The default user has credentials

user@example.com ANd passuordlZd

You can also register a new user using the Sing Up form,

The Welcome page

If you see it, congratulations! If not, try to analyze the error message. If it says something about
connection pool, it’s very likely that the PostgreSQL server is not started. There could be a problem
with Docker, and it’s usually easy to understand what went wrong by analyzing the logs.

When you resolve the problem, try running the server again. First, press Ctrl+D to stop the current
task and return to the interactive shell. Second, type run and press Enter one more time.

The backend part

Now that we have a working application, let’s stop for a moment and take a look at its internals. The
backend part of our app is based on the Play framework. This framework is quite similar to other
full-stack frameworks such as Django and Rails, so if you’re familiar with them, you will probably
notice a lot of similarities.

Here are the main parts:

part description

build.sbt contains typical sbt stuff like library dependencies,
project name, versions etc

public contains static assets like images and compiled

frontend assets like minified scripts and style sheets
project/build.properties specifies the sbt version
project/plugins.sbt specifies necessary sbt plugins, including Play itself
conf/application.conf contains configuration for the app, for example,
database connection properties
conf/logback . xml contains logging configuration

Bw N -

Chapter 1. The initial project 7

part description

routes specifies exposed routes as HTTP endpoints and maps
them to Scala controller methods

app contains Scala files

The Scala files are organized into packages, so it makes sense to discuss them here as well:

package description

controllers contains controllers

dao contains low-level services that talk directly to the database

model contains data types (mainly case classes) that are used by all other
parts of the app

security contains actions for user authentication

services contains higher-level services

util contains utility classes

views contains Play templates

Controllers have methods directly tied to HTTP endpoints. If you look at the conf/routes file, you
will see that every HTTP endpoint is always mapped to a specific controller method. For example:

GET /login controllers.AuthController.login()
POST /login controllers.AuthController.dolLogin()

When Play receives a GET request on /login, it will serve this request using the 1login method of the
AuthController:

// class AuthController
def login = Action { request =>
Ok(views.html.security.login(None))

Roughly speaking, a Play action is a function that accepts aRequest and returns a Result. Wrapping
the payload in Ok will send a status code of 200, but there are other constants available as well. The
views.html.security.login part corresponds to the login.scala.html template that resides in the
views/security directory. It doesn’t make much sense to show an entire template, but here is one
interesting part:

O© 00 I O O b W N =

o I O O b W N =~

Chapter 1. The initial project 8

@(maybeMessage: Option[String])

@views.html.security.authMain(maybeMessage) {
@maybeMessage.map { message =>
<div class="login-page__message-panel">
<div class="alert alert-danger" role="alert">@message</div>
</div>

The first line declares that this template takes one argument of type Option[String]. More
generally, everything starting with the @ character signifies a Scala expression. In particular, the
@views.html.security.authMain(maybeMessage) expression references the authMain template. The
maybeMessage has a type of Option[String], and there is no reason why calling the map shouldn’t
work here, so it does. The same goes for @message, which simply replaces this expression with the
text content.

The DAO services in our application are implemented using Scalike]DBC’. This library allows users
to write type-safe SQL queries easily. Here is the typical usage from the UserDao:

// class UserDao
import scalikejdbe._
import util.ThreadPools.IO
def getUsers: Future[Seq[User]]| = Future {
NamedDB(Symbol("auth")).readOnly { implicit session =>
sql"select * from users".map(User.fromRS).list().apply()

The NamedDB specifies the name of the database we want to use. The readonly method opens a
connection in the read-only mode. Inside the block, we can write arbitrary queries and turn them
into SQL objects by using the sql interpolation. The map method can be used to convert generic result
sets to domain objects. Finally, the 1ist method instructs Scalike]DBC to retrieve a list of objects,
and apply actually executes the query. Note that the apply method needs a DBSession defined in
the implicit scope, so if you forget to mark session as implicit, code will not compile.

One important thing to note here is that our getUsers method returns a Future. Every time we
use Future.apply, we need to specify an execution context. That execution context will be used to
execute the code within curly braces, which is this case means running a SQL query. Since executing
the SQL query is a blocking IO operation, it’s prudent to run it in a so-called blocking thread pool.

In fact, there are only two thread pools that we will be using throughout the book, and both are
defined in the ThreadPools utility object:

"http://scalikejdbc.org

http://scalikejdbc.org/
http://scalikejdbc.org/

a b W N -

N O O B W N =

© 00 N O O & W N =

N
(N

Chapter 1. The initial project 9

object ThreadPools ({
implicit val IO = ExecutionContext.
fromExecutor (Executors . newCachedThreadPool())
implicit val CPU = ExecutionContext.Implicits.global

A good rule of thumb is to use 10 for everything that blocks or is not directly dependent on the
computing power of the central processor. Therefore, we’ll stick to 10 whenever we’re writing code
for DAO-classes that deal with the database. On the other hand, most higher level services rely
primarily on the CPU, so for them it’s better to stick to the default execution context.

Getting back to the database example, the User class from the previous code snippet is actually quite
simple:

case class User(userId: UUID, userCode: String,
fullName: String, password: String, isAdmin: Boolean)

There is also a companion object containing the fromrRS method for mapping result set rows to
domain entities:

object User {
def fromRS(rs: WrappedResultSet): User = {
User(UUID. fromString(rs.string("user_id")),
rs.string("user_code"), rs.string("full_name"),

rs.string("password"), rs.boolean("is_admin"))

As it was already stated previously, the services package contains higher-level services that don’t
typically interact with the database directly. Instead, they delegate low-level work to lower-level
DAO classes:

class UserService(userDao: UserDao) {
import util.ThreadPools.CPU
def getUserFullName(userId: UUID): Future[Map[UUID, String]] = {
userDao.getUsers.map { users =>
users.map { user =>
user .userId -> user.fullName
} . toMap

o N O O b W N =

Chapter 1. The initial project 10

Here, the UserService accepts a UserDao as a constructor parameter and then uses it within its
methods. As we will see later, this forms the basis of our dependency injection mechanism. Note
also that as a higher-level service UserService uses a CPU-bound thread pool for its operations.

The security package contains two action builders - UserAuthAction and UserAwareAction. These
action builders can be used in controllers instead of regular Actions we’ve seen earlier. The detailed
explanation of the Play API is definitely beyond the scope of this book, but here is the basic idea.

We pass an instance of the UserAuthAction to a controller as a constructor parameter. Then, using
this instance, we can create a new Action as usual:

// simplified
class AuthController(userAuthAction: UserAuthAction)
extends AbstractController {
def restricted = userAuthAction { request =>
val user = request.user

/e

The UserAuthAction makes sure that only authenticated users can proceed; everyone else is sent
to the login page. Within the curly braces we have access to a request wrapper that has a type of
UserAuthRequest defined as follows:

case class UserAuthRequest[A](user: User,
request: Request[A]) extends WrappedRequest|A](request)

The most important part of this class is the user field. Since the UserAuthAction restricts certain
endpoints to only authenticated users, we can always get a User object back if we need. The
UserAwareRequest, which works together with the UserAwareAction, is similar, but it doesn’t
redirect unauthorized users to the Login page:

case class UserAwareRequest[A](user: Option[User],
request: Request[A]) extends WrappedRequest[A](request)

In this case, user information may be not available, therefore the type of the user field is
Option[User].

Controllers and services take other services as their constructor parameters. But how does it work in
practice? The conf/application.conf file defines a number of configuration settings, in particular
the following one:

o N O O b W N =

W N

Bw N

Chapter 1. The initial project 11

play.application.loader = "ApplLoader"

When the application starts, Play instantiates a class called AppLoader (it resides in the root
package) and calls its 1oad method. This, in turn, triggers the loading of the AppComponents class.
AppComponents has the following structure:

class AppComponents(context: Context) extends
BuiltInComponentsFromContext(context) with EvolutionsComponents
with DBComponents with HikariCPComponents with AssetsComponents {
/S
lazy val sessionDao = wire[SessionDao]
lazy val userDao = wire[UserDao]

lazy val userService = wire[UserService]

}

This class glues together pretty much every service that our Play application uses. Essentially,
this process consists of two parts. First, we mix in built-in traits and by doing so gain access to
standard Play services such as Configuration (gives access to the application settings in runtime)
or ConnectionPool (which is based on HikariCP?). Then, inside the class we instantiate necessary
services by invoking their constructors and passing necessary parameters to them. The reason we
don’t call the constructors directly is the presence of the wire macro that does it for us. At compile
time, the above snippet will be transformed into something like this:

// trait AppComponents
lazy val sessionDao = new SessionDao
lazy val userDao = new UserDao

lazy val userService = new UserService(userDao)

The wire macro does this substitution based on parameter types, whereas the order of initialization
is resolved by the Scala compiler itself.

Talking of the wire macro, it comes from a library called MacWire®. This library is not bundled with
Play, so it’s defined as a dependency in the build.sbt file. Let’s take a closer look at this file. The
first part is extremely straightforward:

mon

name := """play-event-sourcing-starter
organization := "com.appliedscala.streaming"
version := "1.0-SNAPSHOT"
scalaVersion := "2.13.4"

It simply defines the name of the project (artifactId in Maven terms), the organization name
(groupld) and the version. It also specifies the version of Scala.

The next part simply enables Play itself, because from SBT perspective, Play is just a plugin:

®https://github.com/brettwooldridge/HikariCP
*https://github.com/adamw/macwire

https://github.com/brettwooldridge/HikariCP
https://github.com/adamw/macwire
https://github.com/brettwooldridge/HikariCP
https://github.com/adamw/macwire

© 00 N O O b W N =

N
V)

O O B W N

Chapter 1. The initial project 12

lazy val root = (project in file(".")).
enablePlugins(PlayScala)

The next line is actually Play-specific:
pipelineStages := Seq(digest)

This setting essentially enables fingerprinting of static resources (works only in production mode),
which makes resource caching easier.

Finally, the last part lists all application dependencies:

libraryDependencies ++= Seq(
jdbc,
evolutions,
"com.softwaremill .macwire" %% "macros" % "2.3.3" % "provided",
"org.postgresql" % "postgresql" % "42.2.18",
"org.scalikejdbc" %% "scalikejdbc" % "3.5.0",
"org.scalikejdbc" %% "scalikejdbc-config" % "3.5.0",
"ch.qos.logback" % "logback-classic" % "1.2.3",
"de.svenkubiak" % "jBCrypt" % "©.4.1"

jdbe and evolutions are built-in Play modules. Everything else is a third-party dependency. All of
them are summarized below:

dependency description

MacWire enables compile-time dependency injection via the wire macro
PostgreSQL enables low-level (JDBC) access to PostgreSQL database
Scalike]DBC simplifies access to the database

Logback a logging framework used by Scalike]DBC and others

jBCrypt cryptographic hash library (used for generating password hashes)

The application settings are set in the application.conf file. Let’s take a look at this file starting
with the first part:

play {
http.secret.key = "changeme"
i18n.langs = ["en"]
application.loader = "ApplLoader"”
evolutions.autoApply = true

© 00 N O O b W N =

10
11

Chapter 1. The initial project 13

The application.conf file uses a JSON-like format called HOCON™ (Human-Optimized
Contfig Object Notation), which is promoted by Lightbend. This format is quite popular in
the Scala community, and it’s often used in non-Play projects as well.

The first part of the configuration file specifies Play-related settings:

setting description

http.secret.key application-wide secret key (used internally by Play for
things like encryption and fingerprinting)

i18n.1langs the list of supported languages (used by Play 118N
mechanism)

application.loader specifies a custom application loader

evolutions.autoApply instructs Play to apply evolutions automatically when
needed

Let’s look at the second part of application.conf:

db {
auth {

driver=org.postgresql .Driver
url="jdbc:postgresql://localhost:5432/authdb"
username=scalauser
password=scalapass
poollnitialSize=1
poolMaxSize=5
ConnectionTimeoutMillis=1000

The database connection settings are mostly self-explanatory. Note that auth specifies the name of
the database, so everywhere in the application, Play will refer to this database as “auth”. We’ve
already seen it in the getUsers method, but we also use this name when we define database
evolutions.

Since our authentication database is called auth, we must put evolution scripts into the conf/evolutions/auth
folder. The evolution scripts must be named 1.sql, 2.sql, 3.sql etc. In our case, we only use
evolutions for convenience purposes so that we don’t have to execute SQL scripts manually.
Therefore, we have only one script that creates two tables - users and sessions and inserts a default

user named Joe Average with login user@example.com and password password123. We instructed

Play to apply evolutions automatically, so when your browser loaded the home page for the first

time, necessary tables had already been created and users inserted.

%https://github.com/lightbend/config

https://github.com/lightbend/config
https://github.com/lightbend/config

Chapter 1. The initial project 14

The frontend part

The frontend is mostly defined by two files - package . json and webpack.config. js. The package. json
file contains lots of settings, but we’re only interested in three specific sections. These sections are:

¢ dependencies
¢ devDependencies
e scripts

The dependencies section lists all frontend dependencies that the application has. For example, if
your application uses React'’, you’ll need to add React to this section. Developers rarely edit this
section manually, but instead, they instruct npm to install the required package and save it as an
application dependency at the same time. To do that, they simply type something like this:

$ npm i react -S

The -S option instructs npm to add the package as an application dependency. The initial template
comes with the following application dependencies:

package description

axios simplifies sending HTTP requests
react helps to develop UI using VirtualDOM
react-dom integrates React with the DOM model
bootstrap-scss makes the application look decent

In contrast, the devDependencies section lists all dependencies that your project uses during
development. For example, if you want to use Webpack'? to build your app bundle, you will need to
add webpack to this section via the following command:

$ npm i webpack -D

Since the Giter8 template we used earlier comes with already defined frontend dependencies, you
don’t need to do any of that.

Finally, there is the scripts section that defines two scripts:

"https://reactjs.org/
https://webpack.github.io

https://reactjs.org/
https://webpack.github.io/
https://reactjs.org/
https://webpack.github.io/

Bw N

Chapter 1. The initial project 15

"scripts": {
"watch": "webpack --mode development --watch",

"prod": "webpack --mode production"

So, when you type npm run watch, it will start Webpack in the monitor mode. If you type npm run
prod, it will compile the frontend assets and minimize them for production.

The initial package. json defines a number of packages as development dependencies, including
Babel, Webpack and several Webpack loaders. Babel™® is an EcmaScript6-to-JavaScript5 transpiler.
It allows developers to use the new language features' which are not yet available in all browsers,
such as arrow functions, the class syntax, new keywords etc. Here is the summary of main Babel
packages included in the project:

package description

@babel/core the core part of the library
babel-loader provides integration with Webpack
@babel/preset-env manages syntax transformations
@babel/preset-react adds support for React templates

The project also comes with ESLint pre-installed. ESLint is a JavaScript linter and it helps identify
potential problems in code on the fly. Provided that you use an editor that supports ESLint (both VS
Code and Intelli] IDEA Ultimate both do) you will be able to reap the benefits of having your code
constantly checked against the set of best practices.

Webpack is both a build tool and module bundler for JavaScript. In our case, it performs the following
tasks:

« allows us to work with separate JavaScript files as independent modules
« transforms (using the Babel loader) JSX and modern JavaScript into regular JavaScript code
« combines all of these files into a single script and provides source maps for in-browser

debugging

Webpack also performs similar tasks for style sheets. For this project, we use a CSS preprocessor
called Sass'’, which enhances ordinary CSS syntax with additional goodies like variables and
imports.

In this book, we’re not paying much attention to CSS and styling in general. The sample
repository includes all necessary code that makes our application look decent, but we’re not
going to discuss how it is achieved at all.

Now that we know what we need Webpack for, let’s take a look at the most important part of its
main configuration file - webpack .config. js:

https://babeljs.io
“http://es6-features.org
Phttp://sass-lang.com

https://babeljs.io/
http://es6-features.org/
http://sass-lang.com/
https://babeljs.io/
http://es6-features.org/
http://sass-lang.com/

=~ O O b W N =

© 00 N O O b W N =

NN
= O

Chapter 1. The initial project 16

module.exports = {
entry: './ui/entry.js',
output: {
path: path.resolve(__dirname, 'public/compiled'),
filename: 'bundle.js'},

VZART

The entry setting specifies the starting point of the bundle, and in our case, this is the entry. js file.
This is a very simple file that only contains two references:

import './scripts/app/main.js’;
import './styles/style.scss';

Both main. js and style.scss also reference other files. Webpack starts its processing from the
entry. js file, analyzes it, processes all of its references, analyzes them, processes their references
and so on. Eventually, everything that our project uses will be linked together.

The output setting of the webpack.config. js specifies the output directory. In the previous section, I
pointed out that the public directory contains static assets like images and fonts as well as compiled
scripts and style sheets. Play uses this directory only as a source of static files. If you look at this
folder, you’ll see that it contains several subdirectories:

subdirectory description

compiled contains JavaScript and CSS bundles created by Webpack as well as
source maps

images contains the logo and favicon

js contains auxiliary JavaScript libraries not included in the bundle

The compiled subdirectory is not under version control and can be seen as a bridge between the
frontend and backend parts of the app.

The next part of webpack.config. js deals with actual source files:

// module.exports
module: {
rules: [
{
test: /\.jsx?$/,
include: /ui/,
use: {

loader: 'babel-loader'

Zamee

© 00 N O O b W N =

[S Y
O b 0w N =~ O

O O B W N

Chapter 1. The initial project 17

Out of the box, Webpack only works with regular JavaScript files. For everything else, it requires
loaders. This part of the configuration file actually defines which loader to use for each type of file.
First, the babel - 1loader takes *. js and *. jsx files written in EcmaScript 6 and transforms them into
a single JavaScript 5-compliant bundle. Which language features to use is specified in the .babelrc
file

{
"plugins”: [
"@babel/plugin-proposal-class-properties”
1,
"presets": |
[
"@babel/preset-env", {
"targets": {
"browsers": ["last 2 versions"]
}
}
1,
"@babel/preset-react”
]
}

If you’re wondering about class properties, this is the kind of code they allow us to write:

class AppComponent {
init = () => {
this.initlLoginRedirecting();
this.renderComponent();

¥

It may not be necessary to write the init method as a class property in this particular example, but
their presence makes it much easier to write event listeners for React components, and we’re going
to write many of those in next chapters.

The next part of webpack.config. js deals with styles:

O© 00 I O O b W N =

10
11

© 00 N O O b W N =

g b W N

Chapter 1. The initial project 18

rules: |
/)

{
test: /\.scss$/,

use: |
MiniCssExtractPlugin.loader,
'css-loader’,

'sass-loader’

This part may look really cryptic, but essentially, it instructs Webpack to take all *.scss files and
combine them in a single CSS file. And the final rule instructs Webpack to treat stuff like images
and fonts as binaries and do not attempt to parse them:

rules: [
/S
{
test: /\.(eot|woff|woff2|ttfl|svglpngljpg)$/,
use: {
loader: 'url-loader?limit=1"'

After discussing Webpack, let’s take a look at the actual app. The ui folder contains all frontend
assets:

$ tree ui -L 1
ui

F— entry.js
— scripts
L— styles

Not surprisingly, JavaScript (ES6) source files reside in the scripts directory, whereas style (SCSS)
files are kept in the styles directory.

The JavaScript app starts with the main. js file, which merely imports the AppComponent:

Bw N

© 0O N O O & W N =

g b W N =

© 00 N O O b W N =

10
11

Chapter 1. The initial project

import AppComponent from './AppComponent. jsx';

const appComponent = new AppComponent();
appComponent . init();

The AppComponent itself is written as an ES6 class:

import React from 'react’;
import ReactDOM from 'react-dom’;

import axios from 'axios';

class AppComponent {
//

export default AppComponent;

Note that the class keyword is merely syntactic sugar over the JavaScript inheritance model. This,

19

however, makes programming somewhat more pleasant and straightforward. Using this syntax, we
can define methods with arrows and access class members via this. Everything we want to use

outside this file needs to be exported, thus we’re exporting the component.

// class AppComponent

init = () => {
this.initLoginRedirecting();
this.renderComponent();

};

The init method simply calls two other methods - initLoginRedirecting and renderComponent.
The initLoginRedirecting method adds a response interceptor that analyzes errors:

// class AppComponent
initLoginRedirecting = () => {

axios.interceptors.response.use((response) => {

return response;

}, (error) => {
if (error.response.status === 401) {

window.location = '/login';

}
return error.response;

1)

b

© 00 N O O b W N =

Chapter 1. The initial project 20

When the response status is “401 Unauthorized”, the user will be redirected to the login page.

Finally, the renderComponent method makes React render a small HTML fragment on the page:

renderComponent = () => {
const reactDiv = document.getElementById('reactDiv');
if (reactDiv !== null) {
ReactDOM.render(
<div className="view-home-composite__react-panel__welcome-text">
If you can see this message then ...
</div>, reactDiv);

This method first checks whether the page contains an element with the specific id. This check
makes sense, because some pages (for example, the login page) are not supposed to include any
React by design. If such an element exists, the React part of the app will be rendered inside the given
HTML element. It may be unusual to see HTML markup inside of a JavaScript file, but as we will
discover later, this approach gives developers a lot of flexibility. Also note that React templates must
use className instead of class for specifying style classes of HTML elements.

We haven’t written any code so far, but we will start doing that in the next
chapter. If you want to follow along, remember to initialize the app using the
denisftw/play-event-sourcing-starter.g8 template as shown above. The final project is
available in the book repository. Feel free to refer to Appendix A for more details.

	Table of Contents
	Preface
	Chapter 1. The initial project
	Preparing the environment
	Initializing the project
	The backend part
	The frontend part

