

The PowerShell Conference Book

Mike F Robbins, Michael T Lombardi and Jeff Hicks

This book is for sale at http://leanpub.com/powershell-conference-book

This version was published on 2018-09-08

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 The DevOps Collective, Inc. All Rights Reserved

http://leanpub.com/powershell-conference-book
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Mike F Robbins, Michael T Lombardi and Jeff Hicks by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

I’m supporting the future and just bought a copy of The #PowerShell Conference Book

The suggested hashtag for this book is #PSConfBook.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#PSConfBook

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20supporting%20the%20future%20and%20just%20bought%20a%20copy%20of%20The%20%23PowerShell%20Conference%20Book
https://twitter.com/search?q=%23PSConfBook
https://twitter.com/search?q=%23PSConfBook

Also By These Authors
Books by Mike F Robbins
PowerShell 101

Books by Jeff Hicks
The PowerShell Scripting and Toolmaking Book

The PowerShell Practice Primer

http://leanpub.com/u/mikefrobbins
http://leanpub.com/powershell101
http://leanpub.com/u/jeffhicks
http://leanpub.com/powershell-scripting-toolmaking
http://leanpub.com/psprimer

Contents

Introduction . i

Contributors . ii

How to Use This Book . x

Acknowledgements . xii

Disclaimer . xiii

Part 1 - PowerShell Scripting . 1

Writing Secure and Sterile Code . 2

Finding Performance Bottlenecks with PowerShell . 9

Introduction
Windows PowerShell has been around for over a decade now and with each revision, more and
more features have been added. PowerShell Core, which was introduced in 2017, allows you to run
PowerShell not only on Windows, but also on Linux and macOS.

Learning the features that were added incrementally for those of us who started back in the
PowerShell version 1.0 or 2.0 days was easy enough, but the learning curve has become steeper
with each new feature for people who are just getting started in the industry.

I’ve attended the PowerShell + DevOps Global Summit every year since its inception and I can
definitely speak from experience that it has helped my career, not only from the knowledge that I
gained, but also from the connections I’ve made while networking with others at the conference.

In 2018, one person was awarded a scholarship to attend the PowerShell + DevOps Global Summit.
After meeting the recipient, Andrew Pla¹, I couldn’t believe how enthusiastic he was about learning
PowerShell. His enthusiasm was contagious. A new OnRamp track and scholarship program was
also announced to help bootstrap others into the PowerShell and DevOps community.

I decided to leverage the connections that I’d made and create a book where we could all pay it
forward by donating a small portion of the time we’d saved over the years with PowerShell and
give it back to the community. Be sure to read the Contributors section of this book which lists the
authors because they’re the ones who made this project a huge success. I would like to thank each
of them for taking time away from their families to help others begin with a solid foundation of
PowerShell knowledge by donating to the OnRamp scholarship program.

Mike F. Robbins², Creator of The PowerShell Conference Book

¹https://twitter.com/AndrewPlaTech
²https://mikefrobbins.com/

https://twitter.com/AndrewPlaTech
https://mikefrobbins.com/
https://twitter.com/AndrewPlaTech
https://mikefrobbins.com/

Contributors
Emin Atac

Emin Atac is an IT and SecOps Pro who blogs about his Information Security (InfoSec) and
Automation journeys on p0w3rsh3ll.wordpress.com³ and shares his projects on his GitHub page⁴.
Emin is a contributor and moderator at patchmanagement.org. Emin is a certified Digital Forensics
and Incident Response (DFIR) professional and a Cloud and Datacenter Management (CDM)
Microsoft Most Valuable Professional (MVP) award recipient.

Graham Beer

Graham is an experienced Infrastructure engineer with a passion for PowerShell and automation.
You can follow his blog at https://graham-beer.github.io/⁵ or reach him on Twitter at @GKBeer⁶.

Brian Bunke

Brian is an IT Operations Lead who likes data, APIs, testing, and long lists. He enjoys helping others
become more included, empowered, and efficient. He dislikes autobiographical blurbs, especially
those written in third person.

brianbunke.com⁷ | Twitter⁸ | GitHub⁹

Tim Curwick

Tim Curwick is an automation consultant, trainer, and speaker with a passion for PowerShell-
based automation. He blogs as MadWithPowerShell¹⁰, tweets @MadWPowerShell¹¹, and speaks at
many venues, most frequently as a long-time leader of theMinnesota PowerShell Automation (User)
Group¹².

³https://p0w3rsh3ll.wordpress.com
⁴https://github.com/p0w3rsh3ll
⁵https://graham-beer.github.io/
⁶https://twitter.com/GKBeer
⁷http://www.brianbunke.com
⁸https://twitter.com/brianbunke
⁹https://github.com/brianbunke
¹⁰https://MadWithPowerShell.com
¹¹https://Twitter.com/MadWPowerShell
¹²https://MeetUp.com/Twin-Cities-PowerShell-User-Group

https://p0w3rsh3ll.wordpress.com/
https://github.com/p0w3rsh3ll
https://graham-beer.github.io/
https://twitter.com/GKBeer
http://www.brianbunke.com/
https://twitter.com/brianbunke
https://github.com/brianbunke
https://madwithpowershell.com/
https://twitter.com/MadWPowerShell
https://meetup.com/Twin-Cities-PowerShell-User-Group
https://meetup.com/Twin-Cities-PowerShell-User-Group
https://p0w3rsh3ll.wordpress.com/
https://github.com/p0w3rsh3ll
https://graham-beer.github.io/
https://twitter.com/GKBeer
http://www.brianbunke.com/
https://twitter.com/brianbunke
https://github.com/brianbunke
https://madwithpowershell.com/
https://twitter.com/MadWPowerShell
https://meetup.com/Twin-Cities-PowerShell-User-Group

Contributors iii

Luc Dekens

Luc Dekens, co-author of the PowerCLI Reference books (Ed 1 and Ed 2), is a huge automation
fan, and ultimately wants to achieve a 100% Software Defined Data Center (SDDC). He is a
regular speaker at conferences worldwide. For his community contributions he has receivedmultiple
VMware vExpert and Microsoft MVP awards.

Doug Finke

Doug Finke, author of the O’Reilly title PowerShell for Developers and Microsoft MVP since 2010,
builder of advanced PowerShell tools, gluing things together, making humans faster and more
agile. From release pipelines to DevOps in the Cloud, surfacing APIs around .NET DLLs like his
popular PowerShell Excel module and his latest, building PowerShell Azure Functions to make them
accessible as REST APIs. Catch up with Doug at his blog https://dfinke.github.io¹³

Tore Groneng

Tore Groneng is a consultant working with Azure and PowerShell. From time to time I write
and maintain my blog at https://asaconsultant.blogspot.no/¹⁴. You can follow me on Twitter
@ToreGroneng¹⁵.

Patrick Gruenauer

Patrick Gruenauer was awarded the MVP on PowerShell for the first time in 2017. He is an IT-
Trainer, IT-Systems Engineer and Cisco Instructor. His focus is on Windows PowerShell, Windows
Server, Network Technologies andAutomation. Follow Patrick on his site sid-500.com¹⁶ or on Twitter
@pewa2303¹⁷.

Jeff Hicks

Jeff Hicks is a long time PowerShell MVP, IT veteran andwell known PowerShell teacher, author and
speaker. His latest book from Leanpub is The PowerShell Practice Primer¹⁸. Follow Jeff on Twitter
at @JeffHicks¹⁹ or his blog²⁰.

¹³https://dfinke.github.io
¹⁴https://asaconsultant.blogspot.no/
¹⁵https://twitter.com/ToreGroneng
¹⁶https://sid-500.com/
¹⁷https://twitter.com/pewa2303
¹⁸https://leanpub.com/psprimer
¹⁹https://twitter.com/JeffHicks
²⁰https://jdhitsolutions.com/blog

https://dfinke.github.io/
https://asaconsultant.blogspot.no/
https://twitter.com/ToreGroneng
https://sid-500.com/
https://twitter.com/pewa2303
https://leanpub.com/psprimer
https://twitter.com/JeffHicks
https://jdhitsolutions.com/blog
https://dfinke.github.io/
https://asaconsultant.blogspot.no/
https://twitter.com/ToreGroneng
https://sid-500.com/
https://twitter.com/pewa2303
https://leanpub.com/psprimer
https://twitter.com/JeffHicks
https://jdhitsolutions.com/blog

Contributors iv

Don Jones®

Don Jones has worked with PowerShell since before its 2006 release, and is a well-known PowerShell
author, speaker, and blogger. He co-authored “Learn Windows PowerShell in a Month of Lunches”
and many other PowerShell books, co-founded PowerShell.org, and founded PowerShell + DevOps
Global Summit. Reach Don online at DonJones.com²¹.

Mike Kanakos

Mike Kanakos is a Windows IT Pro located in the RTP area of North Carolina. He specializes in
Active Directory, Azure AD, Group Policy, and automation via PowerShell. You can follow Mike’s
blog at www.networkadm.in²² or on Twitter at @MikeKanakos²³.

Wesley Kirkland

Wesley Kirkland is a Sr. Systems Engineer with a focus on Automation and Microsoft technologies.
He is a lifelong techie and enjoys copious amount of Dr. Pepper. He can be found at wesleyk.me²⁴,
on Twitter @UnleashTheCloud²⁵, or on reddit /u/creamersrealm²⁶

Mark Kraus

Mark Kraus (@markekraus²⁷) is a Microsoft MVP with over 2 decades of IT experience in companies
of all shapes and sizes. Mark is a PowerShell Core Open Source Collaborator and primary contributor
to the Web Cmdlets. Mark is also the author of the Get-PowerShellBlog²⁸ PowerShell blog.

Thomas Lee

Thomas Lee is a consultant/trainer/writer from England and has been in the IT business since the
late 1960’s. Since 1988, he has run his own consulting and training business, with a couple of spells
as an employee. Thomas holds numerous Microsoft certifications, including the original MCSE (he
was one of the first in the world), has been an MCT for 22 years, and has been awarded Microsoft’s

²¹https://donjones.com/
²²https://www.networkadm.in/
²³https://twitter.com/MikeKanakos
²⁴https://wesleyk.me
²⁵https://twitter.com/UnleashTheCloud
²⁶https://reddit.com/u/creamersrealm
²⁷https://twitter.com/markekraus
²⁸https://get-powershellblog.blogspot.com/

https://donjones.com/
https://www.networkadm.in/
https://twitter.com/MikeKanakos
https://wesleyk.me/
https://twitter.com/UnleashTheCloud
https://reddit.com/u/creamersrealm
https://twitter.com/markekraus
https://get-powershellblog.blogspot.com/
https://donjones.com/
https://www.networkadm.in/
https://twitter.com/MikeKanakos
https://wesleyk.me/
https://twitter.com/UnleashTheCloud
https://reddit.com/u/creamersrealm
https://twitter.com/markekraus
https://get-powershellblog.blogspot.com/

Contributors v

MVP award 17 times. He is also a Fellow (retired) of the British Computer Society and Chartered IT
Professional.

Thomas is semi-retired but is always happy to teach, talk about, and solve problems related to
PowerShell. He has time toworkwith his collection of Grateful Dead and Jerry Garcia live recordings
and a bit of gardening.

Michael T. Lombardi

Mike is a sysadmin-turned-automation-engineer-turned-software-engineer at Puppet²⁹, passionate
about documentation and restorative justice. He is the founder and co-organizer of the St. Louis
PowerShell User Group³⁰ and host of the ChatterOps³¹ podcast.

He also makes time to mentor and teach folks about agile approaches to infrastructure, infrastructure
as code, source control, systems thinking, and general engineering. He has open office hours listed
here³².

Twitter³³ | GitHub³⁴

Tommy Maynard

TommyMaynard is a Senior SystemsAdministrator with a focus onMicrosoft technologies, Amazon
Web Services, and all things automation. Tommy is a dedicated PowerShell community author. He’s
published at tommymaynard.com³⁵ since June 2014 at a rate of nearly six posts per month. He can
be found on Twitter using @thetommymaynard³⁶.

Jeremy Murrah

Jeremy Murrah is an old OPS guy from the dark ages of computing. He started automating NT 4.0
installations and hasn’t looked back. Classically trained as an Active Directory Administrator and
Windows Engineer, he is currently engrossed in all things PowerShell and is eagerly awaiting the
death of the GUI. He blogs at murrahjm.github.io³⁷ and can be found on twitter @JeremyMurrah³⁸.

²⁹https://puppet.com
³⁰https://meetup.com/stlpsug
³¹https://chatterops.org
³²https://appoint.ly/t/michaeltlombardi
³³https://twitter.com/barbariankb
³⁴https://github.com/michaeltlombardi
³⁵https://tommymaynard.com
³⁶https://twitter.com/thetommymaynard
³⁷https://murrahjm.github.io
³⁸https://twitter.com/JeremyMurrah

https://puppet.com/
https://meetup.com/stlpsug
https://meetup.com/stlpsug
https://chatterops.org/
https://appoint.ly/t/michaeltlombardi
https://twitter.com/barbariankb
https://github.com/michaeltlombardi
https://tommymaynard.com/
https://twitter.com/thetommymaynard
https://murrahjm.github.io/
https://twitter.com/JeremyMurrah
https://puppet.com/
https://meetup.com/stlpsug
https://chatterops.org/
https://appoint.ly/t/michaeltlombardi
https://twitter.com/barbariankb
https://github.com/michaeltlombardi
https://tommymaynard.com/
https://twitter.com/thetommymaynard
https://murrahjm.github.io/
https://twitter.com/JeremyMurrah

Contributors vi

AdamMurray

Adam Murray is a doer, an optimist, and a technologist. With 20 years of experience in corporate
IT and one startup behind him, he’s recently embarked on my second startup, Tikabu, which
provides premium consulting services in secure DevOps. Focusing on clients with a predominantly
Microsoft technology stack, he helps his customers become more agile at delivering solutions to
their customers.

You can followAdam on twitter at@muzzar78³⁹, on GitHub⁴⁰ or read an occasional blog at Tikabu⁴¹.

Anthony E. Nocentino

Meet Anthony Nocentino, Enterprise Architect, Founder and President of Centino Systems, Mi-
crosoft Data PlatformMVP, Pluralsight Author, Corporate Problem Solver and a voracious student of
the latest computer science technology. Anthony is only satisfied when he finds the right technology
resolution for his client’s business need. Business today thrives on data – from the C-Suite to
the information worker. Anthony specializes in all things related to data – database systems,
virtualization, system and network design and performance engineering. He designs solutions,
deploys the technology and provides expertise on business system performance, architecture and
security.

Brandon Olin

Brandon is a Cloud Architect, veteran Systems Engineer, speaker, blogger, freelance writer, and open
source contributor. He has a penchant for PowerShell and DevOps processes. You can follow his code
at GitHub⁴², his blog at devblackops.io⁴³, or reach him on Twitter at @devblackops⁴⁴.

James Petty

James has been in the IT industry since graduating college (actually before that, but only part
time). He currently lives in Southeast Tennessee and works as a Windows Server Administra-
tor. When he is not at work, you can find him volunteering with the Boy Scouts and work-
ing with the DevOps Collective. James can be found on Twitter @PSJamesP⁴⁵ and blogs at
https://www.scriptautomaterepeat.com⁴⁶

³⁹https://twitter.com/muzzar78
⁴⁰https://github.com/muzzar78
⁴¹https://tikabu.com.au/blog/
⁴²https://github.com/devblackops
⁴³https://devblackops.io
⁴⁴https://twitter.com/devblackops
⁴⁵https://twitter.com/PSJamesP
⁴⁶https://www.scriptautomaterepeat.com

https://twitter.com/muzzar78
https://github.com/muzzar78
https://tikabu.com.au/blog/
https://github.com/devblackops
https://devblackops.io/
https://twitter.com/devblackops
https://twitter.com/PSJamesP
https://www.scriptautomaterepeat.com/
https://twitter.com/muzzar78
https://github.com/muzzar78
https://tikabu.com.au/blog/
https://github.com/devblackops
https://devblackops.io/
https://twitter.com/devblackops
https://twitter.com/PSJamesP
https://www.scriptautomaterepeat.com/

Contributors vii

James is also the Treasurer for the DevOps Collective Inc / PowerShell.org and helps run the
PowerShell + DevOps Global Summit.

Rob Pleau

Rob is an automation engineer and PowerShell nerd. He is a PowerShell Summit speaker and
PowerShell blogger at https://ephos.github.io.

You can follow Rob on twitter at @rjpleau⁴⁷ or on GitHub⁴⁸.

Thomas Rayner

Thomas Rayner is a Senior Security Service Engineer at Microsoft with many years of experience
in IT. He is a master technologist, specializing in DevOps, systems and process automation, public,
private and hybrid cloud, security and PowerShell. Thomas is a former 4x Microsoft MVP, Honorary
Scripting Guy, an international speaker, best-selling author, and instructor covering a vast array of
IT topics.

Follow Thomas on Twitter at @MrThomasRayner⁴⁹, and read more from him on his blog, work-
ingsysadmin.com⁵⁰.

Mike F. Robbins

Mike F. Robbins is a Microsoft Cloud and Datacenter Management MVP for Windows PowerShell.
He is the creator of The PowerShell Conference Book, author of PowerShell 101: The No-Nonsense
Beginner’s Guide to PowerShell, co-author of Windows PowerShell TFM 4th Edition, and a
contributing author of a chapter in the PowerShell Deep Dives book. Mike is also the leader and
co-founder of the Mississippi PowerShell User Group. He blogs at mikefrobbins.com⁵¹ and can be
found on twitter @mikefrobbins⁵².

Thom Schumacher

Thom is a Microsoft PowerShell Enthusiast and User group leader based in Chandler, Arizona.

You can follow Thom on Twitter @driberif⁵³ or on GitHub⁵⁴

⁴⁷https://twitter.com/rjpleau
⁴⁸https://github.com/ephos
⁴⁹http://twitter.com/mrthomasrayner
⁵⁰https://workingsysadmin.com
⁵¹https://mikefrobbins.com/
⁵²https://twitter.com/mikefrobbins
⁵³https://twitter.com/driberif
⁵⁴https://github.com/crshnbrn66

https://twitter.com/rjpleau
https://github.com/ephos
http://twitter.com/mrthomasrayner
https://workingsysadmin.com/
https://workingsysadmin.com/
https://mikefrobbins.com/
https://twitter.com/mikefrobbins
https://twitter.com/driberif
https://github.com/crshnbrn66
https://twitter.com/rjpleau
https://github.com/ephos
http://twitter.com/mrthomasrayner
https://workingsysadmin.com/
https://mikefrobbins.com/
https://twitter.com/mikefrobbins
https://twitter.com/driberif
https://github.com/crshnbrn66

Contributors viii

Rob Sewell

Rob is a SQL Server DBA with a passion for Powershell, Azure, Automation, & SQL (PaaS geddit?).
He is an MVP & an officer for the PASS PowerShell VG & has spoken at & volunteered at many
events. He is a member of the committee that organises SQL Saturday Exeter & also the European
PowerShell Conference. He is a proud supporter of the SQL & PowerShell communities. He works as
a consultant, generally with Data Platform solutions, providing DevOps, automation and training.

He relishes sharing & learning & can be found doing both via social media. He spends most of his
time looking at a screen & loves to solve problems. He knows that looking at a screen so much is
bad for him because his wife tells him so. Thus, you can find him on the cricket field in the summer
or flying a drone in the winter.

Mike Shepard

Mike is a Solutions Architect doing build and install development and has previously been a
SysAdmin, a DBA, a developer, and in Operations. PowerShell is Mike’s second superpower, after
SQL. He has been using PowerShell since 2008, blogs at https://PowerShellStation.com⁵⁵ and has
written two PowerShell books. He is the founder of the SouthwestMissouri PowerShell User Group⁵⁶.

Justin Sider

Justin Sider, Chief Information Officer for Belay Technologies, leads the development and imple-
mentation of a tool for his current company utilizing VMware for an automated provisioning &
testing solution. Mr. Sider has 15+ years of experience as owner of his own tech business and in
lead roles for various tech companies. Mr. Sider has 10+ years of experience working with VMware
products and programming with PowerShell. His work can be found on GitHub and the PowerShell
Gallery under the username jpsider.

You can follow Justin on twitter at @jpsider⁵⁷, at the PowerShell Gallery⁵⁸,on GitHub⁵⁹ or read an
occasional blog at Invoke-Automation⁶⁰.

Prateek Singh

Prateek Singh is a Infrastructure developer, automation engineer and technical writer, you can read
his articles on his blog RidiCurious.com⁶¹ where he fiddles with code and technologies, specially

⁵⁵https://PowerShellStation.com
⁵⁶https://www.meetup.com/SWMO-PowerShell-User-Group
⁵⁷https://twitter.com/jpsider
⁵⁸https://www.powershellgallery.com/profiles/jpsider/
⁵⁹https://github.com/jpsider
⁶⁰https://invoke-automation.blog/
⁶¹http://ridicurious.com

https://powershellstation.com/
https://www.meetup.com/SWMO-PowerShell-User-Group
https://twitter.com/jpsider
https://www.powershellgallery.com/profiles/jpsider/
https://github.com/jpsider
https://invoke-automation.blog/
http://ridicurious.com/
https://powershellstation.com/
https://www.meetup.com/SWMO-PowerShell-User-Group
https://twitter.com/jpsider
https://www.powershellgallery.com/profiles/jpsider/
https://github.com/jpsider
https://invoke-automation.blog/
http://ridicurious.com/

Contributors ix

with PowerShell and Azure cloud. Prateek also runs a YouTube channel⁶² where you can find him
talking about PowerShell scripting, Azure services and Python.

All his PowerShell projects are open-sourced at GitHub⁶³ and you can follow Prateek on Twitter
@SinghPrateik⁶⁴ to see what he is working on right now.

Irwin Strachan

Irwin Strachan is a senior consultant at OLGreen B.V. specialized in PowerShell andMicrosoft-based
technologies. You can reach Irwin at his blog⁶⁵ or his Twitter at @IrwinStrachan⁶⁶.

Tim Warner

TimWarner is a Microsoft MVP in Cloud & Datacenter Management based in Nashville, Tennessee.
Follow Tim on Twitter at @TechTrainerTim⁶⁷.

Friedrich “Fred” Weinmann

Fred is Systems Engineer, PowerShell consultant, speaker, blogger, PowerShell enthusiast, usergroup
organizer, open source contributor and writer. His enthusiasm for automation in general and
PowerShell in specific often lead him down the rabbit-hole in search for yet greater convenience.

You can trace his path by reading his blog⁶⁸, checking his coding work at his PowerShell Framework
Project⁶⁹ or by his occasional tweets as @FredWeinmann⁷⁰.

Mark Wragg

Mark is a DevOps Engineer who is passionate about PowerShell, automation and all things DevOps.
You can follow his blog, https://wragg.io/, or reach him on Twitter at @markwragg⁷¹. He can also
often be found answering questions on the PowerShell⁷² and Pester⁷³ tags of StackOverflow.com.

⁶²https://www.youtube.com/channel/UCjzFiRgBGLSKQ2Uu2wUds-g
⁶³https://github.com/PrateekKumarSingh
⁶⁴https://twitter.com/SinghPrateik
⁶⁵https://pshirwin.wordpress.com
⁶⁶https://twitter.com/irwinstrachan
⁶⁷https://twitter.com/TechTrainerTim
⁶⁸https://allthingspowershell.blogspot.com
⁶⁹https://psframework.org
⁷⁰https://twitter.com/fredweinmann
⁷¹https://twitter.com/markwragg
⁷²https://stackoverflow.com/questions/tagged/powershell
⁷³https://stackoverflow.com/questions/tagged/pester

https://www.youtube.com/channel/UCjzFiRgBGLSKQ2Uu2wUds-g
https://github.com/PrateekKumarSingh
https://twitter.com/SinghPrateik
https://pshirwin.wordpress.com/
https://twitter.com/irwinstrachan
https://twitter.com/TechTrainerTim
https://allthingspowershell.blogspot.com/
https://psframework.org/
https://psframework.org/
https://twitter.com/fredweinmann
https://twitter.com/markwragg
https://stackoverflow.com/questions/tagged/powershell
https://stackoverflow.com/questions/tagged/pester
https://www.youtube.com/channel/UCjzFiRgBGLSKQ2Uu2wUds-g
https://github.com/PrateekKumarSingh
https://twitter.com/SinghPrateik
https://pshirwin.wordpress.com/
https://twitter.com/irwinstrachan
https://twitter.com/TechTrainerTim
https://allthingspowershell.blogspot.com/
https://psframework.org/
https://twitter.com/fredweinmann
https://twitter.com/markwragg
https://stackoverflow.com/questions/tagged/powershell
https://stackoverflow.com/questions/tagged/pester

How to Use This Book
Imagine attending a PowerShell conference where over thirty speakers who are subject matter
experts in the industry are each presenting one forty-five minute session. All of the sessions are at
different times so there’s no need to worry about choosing between them. You might be wondering
how much a conference like this will cost by the time you pay for the conference, hotel, airfare, and
meals? Well, there’s no need to worry because this conference doesn’t cost a fortune because it’s
actually a book that’s designed to be like a conference.

This book is designed to be like a conference in a book where each chapter is written by a different
author who is a subject matter expert on the topic covered in their chapter. Each chapter is also
independent of the others so you can read one chapter, ten chapters, or all of them. You can start
with the first chapter, the last one, or somewhere in-between and not miss out on anything related
to that particular topic.

About OnRamp

OnRamp is an annual entry-level education program focused on PowerShell and DevOps. It’s a
conference within a conference at the PowerShell + DevOps Global Summit. The OnRamp track
requires a distinct ticket type which is specifically designed for entry-level technology professionals
who have completed foundational certifications such as CompTIA A+ and Cisco IT Essentials. No
prior PowerShell experience is required, although some basic knowledge of server administration
is useful. You’ll network with other Summit attendees who are attending the expert level sessions
during keynotes, meals, and evening events.

Through fundraising and corporate sponsorships, The DevOps Collective, Inc.⁷⁴ will be offering a
number of full-ride scholarships to the OnRamp track at the PowerShell + DevOps Global Summit.

All (100%) of the royalties from this book are donated to the OnRamp scholarship program.

More information about the OnRamp track⁷⁵ at the PowerShell + DevOps Global Summit and their
scholarship program⁷⁶ can be found on the PowerShell.org⁷⁷ website.

See the DevOps Collective Scholarships cause⁷⁸ on Leanpub.com⁷⁹ for more books that support the
OnRamp scholarship program.

⁷⁴https://devopscollective.org/
⁷⁵https://powershell.org/summit/summit-onramp/
⁷⁶https://powershell.org/summit/summit-onramp/onramp-scholarship/
⁷⁷https://powershell.org/
⁷⁸https://leanpub.com/causes/devopscollective
⁷⁹https://leanpub.com/

https://devopscollective.org/
https://powershell.org/summit/summit-onramp/
https://powershell.org/summit/summit-onramp/onramp-scholarship/
https://powershell.org/summit/summit-onramp/onramp-scholarship/
https://powershell.org/
https://leanpub.com/causes/devopscollective
https://leanpub.com/
https://devopscollective.org/
https://powershell.org/summit/summit-onramp/
https://powershell.org/summit/summit-onramp/onramp-scholarship/
https://powershell.org/
https://leanpub.com/causes/devopscollective
https://leanpub.com/

How to Use This Book xi

Prerequisites

Prior experience with PowerShell is highly recommended. This book is written for the intermediate
to advanced audience and each chapter assumes that you’ve completed the OnRamp track at the
PowerShell + DevOps Global Summit or have equivalent experience with PowerShell.

A Note on Code Listings

If you’ve read other PowerShell books from LeanPub, you probably have seen some variation on
this code sample disclaimer. The code formatting in this book only allows for about 75 characters
per line before things start automatically wrapping. We’ve tried to keep the code samples within
that limit, although sometimes you may see some awkward formatting as a result.

For example:

Get-CimInstance -ComputerName $computer -Classname Win32_logicalDisk -Filter "drivetype=3" -pr\

operty DeviceID,Size,FreeSpace

Here, you can see the default action for a too-long line - it gets word-wrapped, and a backslash
inserted at the wrap point to let you know.We try to avoid those situations, but they may sometimes
be unavoidable. When we do avoid them in this book, it may be with awkward formatting, such as
using backticks (‘)

Get-CimInstance -ComputerName $computer `

-Classname Win32_logicalDisk `

-Filter "drivetype=3" `

-property 'DeviceID','Size','FreeSpace'

This code is formatted purely for reading purposes, you would never write code in this manner.

If you are reading this book on a Kindle, tablet or other e-reader, then all code formatting
bets are off the table. There’s no telling what the formatting will look like due to how each
reader might format the page.

When you write PowerShell expressions, you should not be limited by these constraints. And all of
our downloaded code samples do not have these limitations.

Feedback

Have a question, comment, or feedback about this book? Please share it via the Leanpub forum
dedicated to this book. Once you’ve purchased this book, login to Leanpub, and click on the “Join
the Forum” link in the Feedback section of this book’s webpage⁸⁰.

⁸⁰https://leanpub.com/powershell-conference-book

https://leanpub.com/powershell-conference-book
https://leanpub.com/powershell-conference-book

Acknowledgements
About the Cover Image

Wewould like to thankWill Anderson⁸¹ for providing us with the cover image which is a photograph
of David Wilson⁸² presenting at the PowerShell + DevOps Global Summit⁸³. We would also like to
thank David Wilson for allowing us to use this photo of him as the cover image of this book.

Trademarks

All registered trademarks mentioned herein belong to their respective organizations and trademark
holders.

⁸¹https://twitter.com/GamerLivingWill
⁸²https://twitter.com/daviwil
⁸³https://powershell.org/summit/

https://twitter.com/GamerLivingWill
https://twitter.com/daviwil
https://powershell.org/summit/
https://twitter.com/GamerLivingWill
https://twitter.com/daviwil
https://powershell.org/summit/

Disclaimer
All code examples shown in this book have been tested by each individual chapter author and every
effort has been made to ensure that they are error free, but since every environment is different,
they should not be run in a production environment without thoroughly testing them first. It is
recommended that you use a non-production or lab environment to thoroughly test code examples
used throughout this book.

All data and information provided in this book is for educational purposes only. The editors make no
representations as to accuracy, completeness, currentness, suitability, or validity of any information
in this book and will not be liable for any errors, omissions, or delays in this information or any
losses, injuries, or damages arising from its display or use. All information is provided on an as-is
basis.

This disclaimer is provided simply because someone, somewhere will ignore this disclaimer and in
the event that they do experience problems or a “resume generating event”, they have no one to
blame but themselves. Don’t be that person!

Part 1 - PowerShell Scripting
Without a doubt many people come to PowerShell with scripting in mind. And why not? PowerShell
has an easy to learn scripting language and once you master running PowerShell from a console
prompt, creating reusable scripts and tools is the next logical step. Any PowerShell conference worth
your time will have plenty of scripting related content and this book is no different.

Writing Secure and Sterile Code

by Jeff Hicks

I’ve been teaching and writing about PowerShell since its very beginning and in addition to my
own scripting, I’ve seen the efforts of countless students and conference attendees. People want to
write good PowerShell code but often either don’t have the necessary skill set yet or fall into bad
habits, primarily because they are easy. But at this point in PowerShell’s evolution, creating good
PowerShell also means creating secure and safe PowerShell.

Don’t Be Foolish

You would think that after more than 5 versions of PowerShell that IT Pros (or even developer-
types) would know better than to include hard-coded credentials into their scripts and modules. Yet,
people still do this. If you want to create secure code, you absolutely cannot include credentials and
especially plain text passwords. If you are doing this today – stop. Really. Stop. It. Now.

If you are using Visual Studio Code, the integrated PowerShell Script Analyzer should detect these
types of violations, including passing passwords as clear text. If you need to support credentials,
then pass it as a parameter.

Parameter(

[Parameter(Position = 0, Mandatory)]

[string]$Computername,

[PSCredential]$Credential

)

Don’t pass a username or password. Use a PSCredential object such as what you get when calling
Get-Credential. What I hope I’d never see in a script is code like this:

$p = "S3c>+P@ssw0rd"

$pass = ConvertTo-SecureString -String $p -AsPlainText -force

$cred = New-Object PSCredential administrator,$pass

I often see requests for help in obfuscating or encrypting source code of a PowerShell script. I’d
wager that the reason most people want to do this is because they want to hide credentials. But
I’ve already stressed that this is a major flaw. In fact, there should be nothing in your script that is
sensitive, confidential, or would compromise security. If your code is clean and sterile, there is no
need to hide it.

Writing Secure and Sterile Code 3

The Typical Problem

Let’s take a look at a sample PowerShell function that retrieves information from Active Directory
for accounts in a given organizational unit. The function itself is not that compelling but look at the
highlighted points.

#requires -module ActiveDirectory

Get-DomainUser.ps1

Function Get-DomainUser {

[cmdletbinding()]

Param(

[Parameter(ValueFromPipeline)]

[ValidateNotNullOrEmpty()]

[string]$OU = "OU=Employees,DC=Company,DC=pri", #hard coded maybe OK

[string]$Department

)

Begin {

Write-Verbose "[$((Get-Date).TimeofDay) BEGIN] Starting `

$($myinvocation.mycommand)"

$domain = "company.pri" # <--- hard coded values

$dc = "dom1" # <--- hard coded values

$properties = "Name","SamAccountName","UserPrincipalName",

"Description","Enabled"

if ($Department) {

$filter = "Department -eq '$Department'"

$properties += "Title","Department"

}

else {

$Filter = "*"

}

$paramhash = @{

SearchBase = ""

Server = "$dc.$domain"

Filter = $filter

}

} #begin

Process {

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Getting user accounts`

from $OU"

$paramhash.SearchBase = $OU

Writing Secure and Sterile Code 4

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Connecting to domain `

controller $($dc.toupper())"

Get-ADUser @paramhash

} #process

End {

Write-Verbose "[$((Get-Date).TimeofDay) END] Ending `

$($myinvocation.mycommand)"

} #end

} #close Get-DomainUser

This function relies on hard-code values that identify your domain and domain controllers. More
than once I’ve had people tell me they can’t share their code because it contains sensitive or
identifiable information. Why? If you would have to sanitize your code before showing it to me,
you are doing something wrong. You need to start thinking about separating the data from the
PowerShell commands that use it.

Your PowerShell script or function should be generic, sterile and completely agnostic. With the
exceptions of in-house or vendor specific applications, your code should be general enough that
anyone could view or execute it without compromising your security.

Leverage Parameters

One of the best options to achieve secure and sterile code is to pass the necessary data as parameter
values. Here’s a revised version of my domain user function.

#requires -module ActiveDirectory

Get-DomainUser2.ps1

Instead of relying on hard coded values, set as parameter values

Function Get-DomainUser {

[cmdletbinding()]

Param(

[Parameter(Mandatory, ValueFromPipelineByPropertyName)]

[ValidateNotNullOrEmpty()]

[string]$OU,

[Parameter(Mandatory, ValueFromPipelineByPropertyName)]

[string]$Domain,

[Parameter(Mandatory, ValueFromPipelineByPropertyName)]

Writing Secure and Sterile Code 5

[ValidateNotNullOrEmpty()]

[string]$DC,

[Parameter(ValueFromPipelineByPropertyName)]

[string]$Department

)

Begin {

Write-Verbose "[$((Get-Date).TimeofDay) BEGIN] Starting `

$($myinvocation.mycommand)"

$properties = "Name", "SamAccountName", "UserPrincipalName",

"Description", "Enabled"

if ($Department) {

$filter = "Department -eq '$Department'"

$properties += "Title", "Department"

}

else {

$Filter = "*"

}

} #begin

Process {

#moved to process block

$paramhash = @{

SearchBase = ""

Server = "$($dc).$($domain)"

Filter = $filter

}

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Getting user `

accounts from $OU"

$paramhash.SearchBase = $OU

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Connecting to `

domain controller $($dc.toupper())"

Get-ADUser @paramhash

} #process

End {

Write-Verbose "[$((Get-Date).TimeofDay) END] Ending $($myinvocation.mycommand)"

} #end

} #close Get-DomainUser

In this version, the previously hard coded values are now passed as parameter values. Notice that
I’ve made some of the parameters mandatory. You certainly have an option to set a default parameter
value. Realize that is a trade-off between ease of use and security. But the default value may not be
that critical, so passing it as a default value is might be OK. You have to make that call.

Writing Secure and Sterile Code 6

Notice that I also configured a number of parameters to accept value from the pipeline by property
value. With this approach I can pass any object to the function.

$data = @"

"OU","Domain","DC"

"OU=Employees,DC=company,DC=pri","company.pri","dom1"

"@

$data | ConvertFrom-Csv | get-domainuser -Verbose -Department sales

In this example, I have some data stored in a CSV format. This could easily have been an actual CSV
file. The key point is that I am converting the CSV data to an object with properties that correspond
to the function parameters. The function consumes incoming objects, binds the parameter values
and runs the code.

With some planning you can store commonly used data sets into any number for formats. It really
doesn’t matter if you need to use json, xml or csv. If you can turn it into a PowerShell object you can
pipe it to your function. With this model, you focus on securing and protecting the data files. You
could incorporate the use of CMS Messages (see Protect-CmsMessage.) If you really, really needed
to persist a credential to disk you might use my PSJsonCredential⁸⁴ module which you can install
from the PowerShell Gallery.

Depending on who might be using your PowerShell tool or function, you might need to create a
wrapper script that imports the necessary data.

[cmdletbinding()]

Param(

[Parameter(Mandatory,HelpMessage="Enter a department")]

[String]$Department

)

Import-CSV -path c:\data\helpdesk.csv | Get-DomainUser -department $department

Clearly, this script sample is merely a proof of concept.

Use Configuration Data

To take this idea of separating data from code to the extreme, but in a good way, you might consider
the use of PowerShell configuration data files. If you have worked with Desired State Configuration
(DSC) you have mostly likely used data configuration in the form of psd1 files. You can use that
same approach in traditional PowerShell scripting. Here’s a version of my domain user function
that utilizes configuration data.

⁸⁴https://github.com/jdhitsolutions/PSJsonCredential

https://github.com/jdhitsolutions/PSJsonCredential
https://github.com/jdhitsolutions/PSJsonCredential

Writing Secure and Sterile Code 7

#requires -module ActiveDirectory

Get-DomainUser3.ps1

#Using configuration data

Function Get-DomainUser {

[cmdletbinding()]

Param(

[Parameter(Mandatory)]

[ValidateScript({Test-Path $_})]

[string]$ConfigurationData,

[string]$Department

)

Begin {

Write-Verbose "[$((Get-Date).TimeofDay) BEGIN] Starting `

$($myinvocation.mycommand)"

#import the configuration data into the function

$config = Import-PowerShellDataFile -Path $ConfigurationData

$properties = "Name","SamAccountName","UserPrincipalName",

"Description","Enabled"

if ($Department) {

$filter = "Department -eq '$Department'"

$properties += "Title","Department"

}

else {

$Filter = "*"

}

#use the configuration data values

$paramhash = @{

SearchBase = $config.ou

Server = "$($config.dc).$($config.domain)"

Filter = $filter

}

} #begin

Process {

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Getting user `

accounts from $($config.ou)"

Write-Verbose "[$((Get-Date).TimeofDay) PROCESS] Connecting to `

domain controller $(($config.dc).toupper())"

Get-ADUser @paramhash

Writing Secure and Sterile Code 8

} #process

End {

Write-Verbose "[$((Get-Date).TimeofDay) END] Ending `

$($myinvocation.mycommand)"

} #end

} #close Get-DomainUser

This version of the function assumes the user will specify the path to a .psd1 file, which is why my
parameter is typed as a string. Here’s a sample file, domain.configdata.psd1.

@{

OU = "OU=Employees,DC=Company,DC=pri"

Domain = "company.pri"

DC = "dom1"

}

In my function, I can import this data and turn it into the expected hashtable format:

$config = Import-PowerShellDataFile -Path $ConfigurationData

Now, I can use the configuration data throughout my function. Depending on how configuration
data might be generated or passed to the function, I could have written the parameter like this:

Param(

[Parameter(Mandatory)]

[hashtable]$ConfigurationData,

[string]$Department

)

This avoids the need to persist data to a psd1 file if I have other ways of getting the necessary
configuration data.

Summary

I hope you recognize that the easiest way to write secure PowerShell code is to separate the data from
the functionality that uses it. Once you get your head around PowerShell’s object-centric nature,
you’ll discover this isn’t that difficult. True, you may need to re-architect or at least re-think your
script or function. You will also need to consider how you will secure the data, but I’m trusting that
as an IT Pro you have some experience with that task.

The next time some one asks to look at your code, your answer should be, “Why of course. Let me
show you how it works!”

Finding Performance Bottlenecks
with PowerShell

by Mike F. Robbins

Lab Environment

A single workstation running Windows 10 version 1803 is used throughout this chapter. It’s running
Windows PowerShell version 5.1 which ships in the box with that operating system. PowerShell
must be run elevated as an administrator and the execution policy must be set to remote signed
or less restrictive for some of the examples in this chapter to complete successfully. I recommend
following along on your computer and walking through the examples while reading this chapter to
see the results for yourself.

Windows PowerShell, not PowerShell Core
Some of the cmdlets used in this chapter do not exist in PowerShell Core. Contrary to popular
belief, PowerShell Core version 6.0 is not an upgrade or replacement toWindows PowerShell
version 5.1. It installs side by side on Windows systems.

Introduction

You’ve had a great weekend after leaving work with everything operating normally on Friday only
to discover chaos as you walk into the office on Monday morning. It seems as if everyone who
arrived at the office prior to you is standing around waiting on their profile to finish loading so they
can begin working. The first few people who arrived at the office this morning were able to log in
successfully and their systems seem to be operating normally.

Through the logical progression of trying to figure out why these problems are occurring, you start
thinking of recent changes that were made to the infrastructure. Maybe it’s related to that extended
power outage that occurred a couple of weeks ago when all of the systems went down and didn’t
come back up in the proper sequence. Maybe it’s something related to those new domain controllers

Finding Performance Bottlenecks with PowerShell 10

that were recently added to the network. After all, both the old and new ones are now online. The
users who are experiencing problems could be authenticating to the new domain controllers and the
users who were able to login could be authenticating to the old ones. It’s been at least several days
since each of these changes were made so why would it have taken this long for the problems to
occur if one of them were the cause? Maybe it’s related to some undocumented change that you’re
unaware of? Maybe it’s not related to a change at all? We all battle these types of problems at one
time or another and they can be very stressful for everyone involved.

Creating a baseline of the performance for the systems in your environment can be extremely useful
when these types of problems occur, but it’s rarely something that’s done in information technology
(IT) because no one cares about infrastructure until there’s a problem.

Performance Counters

Even if you don’t have a baseline, performance counters can still be beneficial for use when trying
to determine where performance related problems reside. While you do need something to compare
the current results to, generic industry standard recommendations can be found on the Internet.

The Get-Counter PowerShell cmdlet is used to query performance counters on Windows systems.
One of the reasons I chose to write about this topic is because the Get-Counter cmdlet is not very
intuitive and the results for it aren’t what I would call a great object-oriented design.

Finding Performance Counter Sets

First, if you don’t already know what performance counters you want to query, you’ll need to find
them somehow.While you could search the Internet, finding performance counters with PowerShell
itself is easy enough. A good place to start would be to read the help for the Get-Counter cmdlet⁸⁵.

As with any other commands in PowerShell that produce object-based output, a list of the properties
for Get-Counter can be determined by piping it to Get-Member. It’s a good idea to start here nomatter
how much you know about PowerShell because what you think are the property names as shown
in the output of a command aren’t always the actual property names.

⁸⁵https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-counter

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-counter
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-counter

Finding Performance Bottlenecks with PowerShell 11

PS C:\> Get-Counter -ListSet * |

Get-Member -MemberType Properties

TypeName: Microsoft.PowerShell.Commands.GetCounter.CounterSet

Name MemberType Definition

---- ---------- ----------

Counter AliasProperty Counter = Paths

CounterSetName Property string CounterSetName {get;}

CounterSetType Property System.Diagnostics.PerformanceCounterCatego...

Description Property string Description {get;}

MachineName Property string MachineName {get;}

Paths Property System.Collections.Specialized.StringCollec...

PathsWithInstances Property System.Collections.Specialized.StringCollec...

If you select all of the properties for the first result, you’ll get an idea of what type of values
are returned for each property. Get-Counter just happens to return all of its properties by default
regardless of whether or not you select all of them from the pipeline.

CounterSetName is one of the properties returned when using the ListSet parameter of Get-Counter
as shown in the following example.

PS C:\> Get-Counter -ListSet * |

Select-Object -First 1 -Property *

Counter : {\Hyper-V VM Virtual Device Pipe IO(*)\Receive Message

Quota Exceeded, \Hyper-V VM Virtual Device Pipe

IO(*)\Receive QoS - Total Message Delay Time (100ns),

\Hyper-V VM Virtual Device Pipe IO(*)\Receive QoS -

Exempt Messages/sec, \Hyper-V VM Virtual Device Pipe

IO(*)\Receive QoS - Non-Conformant Messages/sec...}

CounterSetName : Hyper-V VM Virtual Device Pipe IO

MachineName : .

CounterSetType : SingleInstance

Description : Worker process per-pipe statistics, for performance

debugging.

Paths : {\Hyper-V VM Virtual Device Pipe IO(*)\Receive Message

Quota Exceeded, \Hyper-V VM Virtual Device Pipe

IO(*)\Receive QoS - Total Message Delay Time (100ns),

\Hyper-V VM Virtual Device Pipe IO(*)\Receive QoS -

Exempt Messages/sec, \Hyper-V VM Virtual Device Pipe

IO(*)\Receive QoS - Non-Conformant Messages/sec...}

PathsWithInstances : {\Hyper-V VM Virtual Device Pipe IO(*)\Receive Message

Quota Exceeded, \Hyper-V VM Virtual Device Pipe

IO(*)\Receive QoS - Total Message Delay Time (100ns),

\Hyper-V VM Virtual Device Pipe IO(*)\Receive QoS -

Exempt Messages/sec, \Hyper-V VM Virtual Device Pipe

IO(*)\Receive QoS - Non-Conformant Messages/sec...}

Finding Performance Bottlenecks with PowerShell 12

The CounterSetName property returns the category for a group of performance counters. The Counter
property returns the list of counters which are grouped into that category.

A list of all the CounterSetNames can easily be determined by simply returning that single property.
Only a subset of the results is shown in the following example.

PS C:\> (Get-Counter -ListSet *).CounterSetName

Hyper-V VM Virtual Device Pipe IO

Hyper-V Virtual Machine Health Summary

Storage QoS Filter - Flow

Storage QoS Filter - Volume

Network Virtualization

RAS

Hyper-V VM Vid Partition

WSMan Quota Statistics

BranchCache

Hyper-V VM Vid Numa Node

Hyper-V Virtual Switch

Network QoS Policy

RemoteFX Root GPU Management

AppV Client Streamed Data Percentage

SMB Client Shares

NVIDIA GPU

Hyper-V Virtual Machine Bus Provider Pipes

Windows Time Service

...

The results can be limited by filtering left if you have an idea of the specific set of performance
counters that you’re looking for. In the following example, the results are limited to the ones that
are related to disks.

PS C:\> (Get-Counter -ListSet *disk*).CounterSetName

FileSystem Disk Activity

Storage Spaces Virtual Disk

LogicalDisk

PhysicalDisk

For those of you who aren’t familiar with the term filtering left, that means filtering the results as
early as possible in the pipeline or as far to the left as possible to make the process of filtering more
efficient.

Finding Performance Counter Names

Once you’ve narrowed your choice down to a specific CounterSetName, the performance counter
names themselves can be determine by returning the Paths property.

Finding Performance Bottlenecks with PowerShell 13

PS C:\> (Get-Counter -ListSet PhysicalDisk).Paths

\PhysicalDisk(*)\Current Disk Queue Length

\PhysicalDisk(*)\% Disk Time

\PhysicalDisk(*)\Avg. Disk Queue Length

\PhysicalDisk(*)\% Disk Read Time

\PhysicalDisk(*)\Avg. Disk Read Queue Length

\PhysicalDisk(*)\% Disk Write Time

\PhysicalDisk(*)\Avg. Disk Write Queue Length

\PhysicalDisk(*)\Avg. Disk sec/Transfer

\PhysicalDisk(*)\Avg. Disk sec/Read

\PhysicalDisk(*)\Avg. Disk sec/Write

\PhysicalDisk(*)\Disk Transfers/sec

\PhysicalDisk(*)\Disk Reads/sec

\PhysicalDisk(*)\Disk Writes/sec

\PhysicalDisk(*)\Disk Bytes/sec

\PhysicalDisk(*)\Disk Read Bytes/sec

\PhysicalDisk(*)\Disk Write Bytes/sec

\PhysicalDisk(*)\Avg. Disk Bytes/Transfer

\PhysicalDisk(*)\Avg. Disk Bytes/Read

\PhysicalDisk(*)\Avg. Disk Bytes/Write

\PhysicalDisk(*)\% Idle Time

\PhysicalDisk(*)\Split IO/Sec

The Top 10 Performance Counters

Remember what I said about finding recommended values on the Internet if you don’t already have
a performance baseline? There’s an article on the Microsoft TechNet Blog titled the “Top 10 most
important performance counters for Windows and their recommended values⁸⁶”. It provides a list
of performance counters and their recommended values. The ones listed in that article are a great
starting point to help narrow down the source of performance bottlenecks for a particular system.

Querying Performance Counters

There aren’t many choices when it comes to properties for querying a specific performance counter
with Get-Counter. There’s a CounterSamples property which returns each instance of the results
for that particular performance counter as a separate result, there’s a Timestamp property which is
self-explanatory, and then there’s the Readings property which returns all instances of a particular
performance counter as a single result.

⁸⁶https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-
recommended-values/

https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-recommended-values/
https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-recommended-values/
https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-recommended-values/
https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-recommended-values/

Finding Performance Bottlenecks with PowerShell 14

PS C:\> Get-Counter -Counter '\PhysicalDisk(*)\% Idle Time' |

Get-Member -MemberType Properties

TypeName:

Microsoft.PowerShell.Commands.GetCounter.PerformanceCounterSampleSet

Name MemberType Definition

---- ---------- ----------

CounterSamples Property Microsoft.PowerShell.Commands.GetCounter.Perfo...

Timestamp Property datetime Timestamp {get;set;}

Readings ScriptProperty System.Object Readings {get=$strPaths = ""...

Clearly, CounterSamples is the easier of the two when choosing between the properties that return
the actual results of a performance counter because each instance is returned by it as a separate
result.

One of the problems with the results of the CounterSamples property is the computer name and the
performance counter being queried are returned jumbled together.

PS C:\> (Get-Counter -Counter '\PhysicalDisk(*)\% Idle Time').CounterSamples

Path InstanceName CookedValue

---- ------------ -----------

\\PC01\physicaldisk(1 c:)\% idle time 1 c: 99.9588209059401

\\PC01\physicaldisk(0 d:)\% idle time 0 d: 99.9588209059401

\\PC01\physicaldisk(2 u:)\% idle time 2 u: 99.9588509052801

\\PC01\physicaldisk(_total)\% idle time _total 99.9588309057201

It can become messy when you’re trying to use a regular expression (regex) to parse the individual
information from the Path property.

PS C:\> (Get-Counter -Counter '\PhysicalDisk(*)\% Idle Time').CounterSamples |

Select-Object -Property @{label='ComputerName';expression={

$_.Path -replace '^\\\\|\\.*$'}},

@{label='Object';expression={

$_.Path -replace "^\\\\$env:COMPUTERNAME\\|\(.*$"}},

@{label='Counter';expression={$_.Path -replace '^.*\\'}},

@{label='Instance';expression={$_.InstanceName}},

@{label='Value';expression={$_.CookedValue}},

@{label='TimeStamp';expression={$_.TimeStamp}}

ComputerName : PC01

Object : physicaldisk

Counter : % idle time

Instance : 1 c:

Value : 99.7276006677545

Finding Performance Bottlenecks with PowerShell 15

TimeStamp : 5/21/2018 11:02:47 PM

ComputerName : PC01

Object : physicaldisk

Counter : % idle time

Instance : 0 d:

Value : 99.987620482975

TimeStamp : 5/21/2018 11:02:47 PM

ComputerName : PC01

Object : physicaldisk

Counter : % idle time

Instance : 2 u:

Value : 99.987620482975

TimeStamp : 5/21/2018 11:02:47 PM

ComputerName : PC01

Object : physicaldisk

Counter : % idle time

Instance : _total

Value : 99.9009438807218

TimeStamp : 5/21/2018 11:02:47 PM

Luckily the format for the results is the same for all performance counters, or at least I haven’t run
into one that’s different.

Creating a Reusable Tool

In this section we’ll create a reusable tool in the form of a PowerShell function to query the top 10
performance counters. The specific counters that will be queried are listed below.

• '\PhysicalDisk(*)\% Idle Time'

• '\PhysicalDisk(*)\Avg. Disk sec/Read'

• '\PhysicalDisk(*)\Avg. Disk sec/Write'

• '\PhysicalDisk(*)\Current Disk Queue Length'

• '\Memory\Available Bytes'

• '\Memory\Pages/sec'

• '\Network Interface(*)\Bytes Total/sec'

• '\Network Interface(*)\Output Queue Length'

• '\Hyper-V Hypervisor Logical Processor(*)\% Total Run Time'

• '\Paging File(*)\% Usage'

Just in case you didn’t read the help for Get-Counter, let’s take a look at the help for the Counter

parameter. The one specific thing to notice is that more than one performance counter can be queried
at the same time without having to call Get-Counter for each individual one.

Finding Performance Bottlenecks with PowerShell 16

PS C:\> help Get-Counter -Parameter Counter

-Counter <String[]>

Gets data from the specified performance counters. Enter one or more

counter paths. Wildcards are permitted only in the Instance value. You can

also pipe counter path strings to Get-Counter.

Each counter path has the following format:

"[\\<ComputerName>]\<CounterSet>(<Instance>)\<CounterName>"

For example:

"\\Server01\Processor(2)\% User Time"

The <ComputerName> element is optional. If you omit it, Get-Counter uses

the value of the ComputerName parameter.

Note: To get correctly formatted counter paths, use the ListSet parameter

to get a performance counter set. The Paths and PathsWithInstances

properties of each performance counter set contain the individual counter

paths formatted as a string. You can save the counter path strings in a

variable or pipe the string directly to another Get-Counter command. For a

demonstration, see the examples.

Required? false

Position? 1

Default value

Accept pipeline input? true (ByValue, ByPropertyName)

Accept wildcard characters? true

The function shown in the following figure stores the top 10 performance counters in a hash table.
It queries the values for each of them while only running the Get-Counter cmdlet once. The ability
to query these performance counters for a remote computer has also been added to this function.
Querying all of the performance counters with a single call to Get-Counter has a huge performance
impact and exponentially increases the efficiency of the function when querying them on a remote
system.

Finding Performance Bottlenecks with PowerShell 17

#Requires -Version 3.0

function Get-MrTop10Counter {

<#

.SYNOPSIS

Gets performance counter data from local and remote computers.

.DESCRIPTION

The Get-MrTop10Counter function gets live, real-time performance counter

data directly from the performance monitoring instrumentation in Windows.

.PARAMETER ComputerName

Gets data from the specified computers. Type the NetBIOS name, an Internet

Protocol (IP) address, or the fully qualified domain names of the computers.

The default value is the local computer.

.EXAMPLE

Get-MrTop10Counter -ComputerName Server01, Server02

.INPUTS

None

.OUTPUTS

PSCustomObject

.NOTES

Author: Mike F Robbins

Website: http://mikefrobbins.com

Twitter: @mikefrobbins

#>

[CmdletBinding()]

param (

[ValidateNotNullOrEmpty()]

[string]$ComputerName = $env:COMPUTERNAME

)

$Params = @{

Counter = '\PhysicalDisk(*)\% Idle Time',

'\PhysicalDisk(*)\Avg. Disk sec/Read',

'\PhysicalDisk(*)\Avg. Disk sec/Write',

'\PhysicalDisk(*)\Current Disk Queue Length',

'\Memory\Available Bytes',

'\Memory\Pages/sec',

'\Network Interface(*)\Bytes Total/sec',

'\Network Interface(*)\Output Queue Length',

'\Hyper-V Hypervisor Logical Processor(*)\% Total Run Time',

Finding Performance Bottlenecks with PowerShell 18

'\Paging File(*)\% Usage'

ErrorAction = 'SilentlyContinue'

}

if ($PSBoundParameters.ComputerName) {

$Params.ComputerName = $ComputerName

}

$Counters = (Get-Counter @Params).CounterSamples

foreach ($Counter in $Counters){

[pscustomobject]@{

ComputerName = $ComputerName

CounterSetName = $Counter.Path -replace "^\\\\$ComputerName\\|\(.*$"

Counter = $Counter.Path -replace '^.*\\'

Instance = $Counter.InstanceName

Value = $Counter.CookedValue

TimeStamp = $Counter.Timestamp

}

}

}

In the following example, the Get-MrTop10Counter function is being run against the local computer.
Due to space restrictions in this chapter, the results are being filtered down to only the performance
counters that are specific to the “C” drive.

PS C:\> Get-MrTop10Counter |

Where-Object Instance -like '*c:'

ComputerName : PC01

CounterSetName : physicaldisk

Counter : % idle time

Instance : 1 c:

Value : 71.1378247123575

TimeStamp : 5/26/2018 9:52:11 PM

ComputerName : PC01

CounterSetName : physicaldisk

Counter : avg. disk sec/read

Instance : 1 c:

Value : 0.014748914084507

TimeStamp : 5/26/2018 9:52:11 PM

ComputerName : PC01

CounterSetName : physicaldisk

Counter : avg. disk sec/write

Finding Performance Bottlenecks with PowerShell 19

Instance : 1 c:

Value : 0.000612503821656051

TimeStamp : 5/26/2018 9:52:11 PM

ComputerName : PC01

CounterSetName : physicaldisk

Counter : current disk queue length

Instance : 1 c:

Value : 40

TimeStamp : 5/26/2018 9:52:11 PM

It’s difficult to determine if the value returned by a specific performance counter is normal or not
without having something to compare it to. This is why it’s best to have a baseline as I previously
mentioned, but values that are considerably outside of the normal range for a specific counter can
be found on the Internet.

Based on the article⁸⁷ that I previously mentioned, the Current Disk Queue Length should not be
greater than 2 and the current value for the “C” drive of the computer used in this chapter is 40 so
that would be a specific area that needs more investigation.

Automate the Validation of Performance Counters

While querying performance counters with PowerShell is relatively easy as shown in the previous
portion of this chapter, who really wants to query each one of them and validate they’re within an
acceptable range manually? I’m assuming that no one does since all I’m hearing is crickets.

Pester

In this section, we’ll use Pester to automate the testing of whether or not the performance counter
values returned by Get-MrTop10Counter are within their recommended ranges.

Pester is an open-source Behavior-Driven Development (BDD) based framework for PowerShell.
While a version of Pester ships with Windows 10, it’s an older and out of date version that must be
updated before attempting to run the examples shown in this chapter.

I recommend installing the latest version of Pester from the PowerShell Gallery⁸⁸. While Update-

Module may work depending on whether or not you’ve previously updated Pester, the following
commandwill work regardless of which version you currently have installed as long as the computer
it’s being run on is connected to the Internet.

⁸⁷https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-
recommended-values/

⁸⁸https://www.powershellgallery.com/

https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-recommended-values/
https://www.powershellgallery.com/
https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-recommended-values/
https://blogs.technet.microsoft.com/bulentozkir/2014/02/14/top-10-most-important-performance-counters-for-windows-and-their-recommended-values/
https://www.powershellgallery.com/

Finding Performance Bottlenecks with PowerShell 20

PS C:\> Install-Module -Name Pester -Force -SkipPublisherCheck

More information about Pester can be found on its Wiki⁸⁹.

Validation Tests

We’ll start out by writing a simple validation test for the Current Disk Queue Length for the “C”
drive on your local computer.

PS C:\> Describe 'Current Disk Queue Length' {

It 'Should not be higher than 2' {

(Get-Counter -Counter '\PhysicalDisk(* c:)\Current Disk Queue Length'

).CounterSamples.CookedValue |

Should -Not -BeGreaterThan 2

}

}

Describing Current Disk Queue Length

[+] Should not be higher than 2 1.02s

Testing Collections

A helper function to convert the results of a command to a hash table is needed in the next section.
Luckily, I had previously written a function to accomplish this exact task for similar scenario at
some point in the past and saved it in my PowerShell repository on GitHub⁹⁰. This helper function,
ConvertTo-MrHashTable, is also included as part of the downloadable extras of this book.

As many computers do, the computer used in this chapter has multiple hard drives. We’ll need to
iterate through each one of them individually with our infrastructure test. While we could use a
foreach loop to prevent writing the same redundant code for each one of them over and over again,
Pester has a TestCases parameter which is specifically designed for this exact scenario.

⁸⁹https://github.com/pester/Pester/wiki
⁹⁰https://github.com/mikefrobbins/PowerShell

https://github.com/pester/Pester/wiki
https://github.com/mikefrobbins/PowerShell
https://github.com/pester/Pester/wiki
https://github.com/mikefrobbins/PowerShell

Finding Performance Bottlenecks with PowerShell 21

PS C:\> $Counters = Get-MrTop10Counter

PS C:\> Describe 'Physical Disk Current Disk Queue Length' {

$Counter = 'Current Disk Queue Length'

$Cases = $Counters.Where({

$_.Counter -eq $Counter -and $_.Instance -ne '_total'

}) |

Select-Object -Property Instance |

ConvertTo-MrHashTable

It 'Should Not Be Greater than 2 for: <Instance>' -TestCases $Cases {

param($Instance)

$Counters.Where({

$_.Instance -eq $Instance -and $_.Counter -eq $Counter

}).Value |

Should -Not -BeGreaterThan 2

}

}

Describing Current Disk Queue Length

[+] Should Not Be Higher than 2 for: '0 c:' 29ms

[+] Should Not Be Higher than 2 for: '1 d:' 37ms

The total for all instances (all hard drives) in the computer has been excluded because for this
particular test, we’re concerned about testing each hard drive individually and not the total for
all of them combined.

Advanced Validation Tests

Now it’s time to write these same types of infrastructure validation tests for all of the top 10
performance counters that Get-MrTop10Counter queries. Writing validation tests for some of the
counters is more complicated than others. Validating that the percent idle time for a physical disk is
not less than sixty percent is simple because the results are returned as a percentage by default.

18 Describe "Physical Disk % Idle Time for $Computer" {

19 $Counter = '% Idle Time'

20 $Cases = $Counters.Where({

21 $_.Counter -eq $Counter -and $_.Instance -ne '_total'

22 }) |

23 Select-Object -Property Instance |

24 ConvertTo-MrHashTable

25

26 It 'Should Not Be Less than 60% for: <Instance>' -TestCases $Cases {

27 param($Instance)

28 $Counters.Where({

29 $_.Instance -eq $Instance -and $_.Counter -eq $Counter

30 }).Value |

Finding Performance Bottlenecks with PowerShell 22

31 Should -Not -BeLessThan 60

32 }

33 }

Validating the average time that disk transfers took is another story since the counters return seconds
instead of milliseconds and it’s not uncommon to see the results returned in scientific notation
instead of a numeric datatype that can be used for normal calculations.

35 Describe "Physical Disk Avg. Disk sec/Read for $Computer" {

36 $Counter = 'Avg. Disk sec/Read'

37 $Cases = $Counters.Where({

38 $_.Counter -eq $Counter -and $_.Instance -ne '_total'

39 }) |

40 Select-Object -Property Instance |

41 ConvertTo-MrHashTable

42

43 It 'Should Not Be Greater than 20ms for: <Instance>' -TestCases $Cases {

44 param($Instance)

45 $Counters.Where({

46 $_.Instance -eq $Instance -and $_.Counter -eq $Counter

47 }).Value * 1000 -as [decimal] |

48 Should -Not -BeGreaterThan 20

49 }

50 }

51

52 Describe "Physical Disk Avg. Disk sec/Write for $Computer" {

53 $Counter = 'Avg. Disk sec/Write'

54 $Cases = $Counters.Where({

55 $_.Counter -eq $Counter -and $_.Instance -ne '_total'

56 }) |

57 Select-Object -Property Instance |

58 ConvertTo-MrHashTable

59

60 It 'Should Not Be Greater than 20ms for: <Instance>' -TestCases $Cases {

61 param($Instance)

62 $Counters.Where({

63 $_.Instance -eq $Instance -and $_.Counter -eq $Counter

64 }).Value * 1000 -as [decimal] |

65 Should -Not -BeGreaterThan 20

66 }

67 }

Determining if at least ten percent of memory is available is another tricky one because the
performance counter returns the currently available bytes of memory, but you need to know how
much physical memory is installed in the machine to be able to calculate the percentage. Figuring
this out on a remote system only complicates matters even further.

Finding Performance Bottlenecks with PowerShell 23

86 Describe "Memory Available Bytes for $Computer" {

87 It 'Should Not Be Less than 10% free' {

88 ($Counters.Where({$_.Counter -eq 'Available Bytes'}).Value / 1MB) /

89 ((Get-CimInstance @Params -ClassName Win32_PhysicalMemory -Property Capacity |

90 Measure-Object -Property Capacity -Sum).Sum / 1MB) * 100 -as [int] |

91 Should -Not -BeLessThan 10

92 }

93 }

Verifying that a network card’s available bandwidth isn’t saturated is also complicated. The
performance counter returns total bytes a second. You’ll need to determine the current link speed of
the network adapter in order to be able to calculate that it’s not more than sixty-five percent utilized.
If that weren’t complicated enough, the performance counter returns parentheses as brackets in the
network cards description.

102 Describe "Network Interface Bytes Total/sec for $Computer" {

103 $Counter = 'Bytes Total/sec'

104 $Cases = $Counters.Where({

105 $_.Counter -eq $Counter -and $_.Instance -notmatch 'isatap'}) |

106 Select-Object -Property Instance |

107 ConvertTo-MrHashTable

108

109 It 'Should Not Be Greater than 65% for: <Instance>' -TestCases $Cases {

110 param($Instance)

111 ($Counters.Where({

112 $_.Instance -eq $Instance -and $_.Counter -eq $Counter

113 }).Value) /

114 ((Get-NetAdapter @Params -InterfaceDescription (

115 $Instance -replace '\[', '(' -replace '\]', ')' -replace '_', '#')).Speed

116) * 100 |

117 Should -Not -BeGreaterThan 65

118 }

119 }

To run these tests on a remote system, both a Common Information Model (CIM) session needs to
be established to it and PowerShell needs to be run with enough privileges to query performance
counters on the remote system.

The code for the tests used to validate all of the top 10 performance counters, Performance-Counter-
Validation.Tests.ps1, is included as part of the downloadable extras of this book. Since these tests
have been saved as a PowerShell script with a .tests.ps1 extension, they can be run against the local
system by simply running Invoke-Pester as shown in the following example.

Finding Performance Bottlenecks with PowerShell 24

PS C:\> Invoke-Pester -Script .\Performance-Counter-Validation.Tests.ps1

Executing all tests in '.\Performance-Counter-Validation.Tests.ps1'

Executing script .\Performance-Counter-Validation.Tests.ps1

Describing Physical Disk % Idle Time for PC01

[+] Should Not Be Less than 60% for: '0 c:' 1.07s

Describing Physical Disk Avg. Disk sec/Read for PC01

[+] Should Not Be Greater than 20ms for: '0 c:' 399ms

Describing Physical Disk Avg. Disk sec/Write for PC01

[+] Should Not Be Greater than 20ms for: '0 c:' 36ms

Describing Physical Disk Current Disk Queue Length for PC01

[+] Should Not Be Greater than 2 for: '0 c:' 29ms

Describing Memory Available Bytes for PC01

[+] Should Not Be Less than 10% free 32ms

Describing Memory Pages/sec for PC01

[+] Should Not Be Greater than 1000 25ms

Describing Network Interface Bytes Total/sec for PC01

[+] Should Not Be Greater than 65% for: 'microsoft hyper-v network adapter' 53ms

Describing Network Interface Output Queue Length for PC01

[+] Should Not Be Greater than 2 for: 'microsoft hyper-v network adapter' 30ms

Describing Hyper-V Hypervisor Logical Processor % Total Run Time for PC01

[+] Should Not Be Greater than 90% for: <Instance> 30ms

Describing Paging File % Usage for PC01

[+] Should Not Be Greater than 10% for: '\??\c:\pagefile.sys' 54ms

Tests completed in 1.77s

Tests Passed: 10, Failed: 0, Skipped: 0, Pending: 0, Inconclusive: 0

As shown in the previous example, these tests can easily be run against the local computer to get
an idea of where performance bottlenecks reside. To run it against a remote system, simply create a
CIM session, run the script itself, and specify the CimSession parameter.

PS C:\> $CimSession = New-CimSession -ComputerName Server01

PS C:\> .\Performance-Counter-Validation.Tests.ps1 -CimSession $CimSession

You’re looking for anything that the tests return in red instead of green.

Finding Performance Bottlenecks with PowerShell 25

Summary

In this chapter you’ve learned how to find performance bottlenecks of Windows based systems
with PowerShell. You’ll now be able to find specific performance counters for yourself, query those
performance counters and validate that they’re within acceptable ranges.

The tests shown in this chapter were used to diagnose the performance problems described in the
scenario from the introduction to this chapter. The current disk queue length was excessively high
on the Hyper-V hosts that the virtual desktop infrastructure (VDI) workstations were running on
in that scenario. The root cause of the high disk queue length was determined to be due to a newly
installed antivirus solution on the VDI workstations themselves.

	Table of Contents
	Introduction
	Contributors
	How to Use This Book
	Acknowledgements
	Disclaimer
	Part 1 - PowerShell Scripting
	Writing Secure and Sterile Code
	Finding Performance Bottlenecks with PowerShell

