
PREVIEW

FREE PREVIEW
Includes Chapters 1, 2, and 5

PREVIEW

PREVIEWPOSIX Shell Scripting from Scratch
Write Once, Run Everywhere - A Beginner’s Guide

Sultan Zavrak

December 2025

PREVIEW

PREVIEWTable of contents

Welcome! 1
Who This Book Is For . 1
What You’ll Learn . 1
How This Book Is Different . 1
Book Structure . 2
Comprehensive Appendices . 3
How to Use This Book . 3
What You’ll Need . 4
Conventions Used in This Book . 4
A Note on POSIX Compliance . 5
Getting Help . 6
Ready to Begin? . 6
About the Author . 6
Acknowledgments . 7
Copyright and License . 7

I. Command Line Fundamentals (Preview) 9

1. Introduction to the Command Line 11
1.1. What is the Command Line and Why Use It? . 11
1.2. Opening the Terminal . 20
1.3. Your First Commands . 29
1.4. Getting Help . 41

2. Navigating the File System 53
2.1. Understanding Paths and Directories . 53
2.2. Listing Files . 63
2.3. Changing Directories . 73
2.4. Understanding the Directory Tree . 90

II. Your First Script! (Preview) 107

3. Your First Shell Script 109
3.1. What is a Shell Script? . 109
3.2. Creating a Simple Script . 117
3.3. The Shebang Line . 131
3.4. Making Scripts Executable . 143
3.5. Running Your Script . 157

v

PREVIEW
Table of contents

Appendices 179

Get the Full Book 179
What You’ve Just Read . 179
What’s in the Full Book . 179
Why Get the Full Book? . 180
Get the Full Book Now . 181
What Readers Are Saying . 181
Ready to Continue Your Journey? . 181
About the Author . 181

vi

PREVIEWWelcome!

Welcome to POSIX Shell Scripting from Scratch, a comprehensive guide designed to take you from
never having opened a terminal to confidently writing production-ready shell scripts that work on
any Unix-like system.

Who This Book Is For

This book is written for complete beginners who want to learn shell scripting but don’t know where
to start. You don’t need:

• Previous programming experience
• Command-line knowledge
• A computer science background
• Experience with Linux or Unix

All you need is:

• A computer (macOS, Linux, or Windows)
• Willingness to learn
• Curiosity about automation

If you can use a mouse and keyboard, you can learn shell scripting!

What You’ll Learn

By the end of this book, you’ll be able to:
� Navigate the command line with confidence � Write POSIX-compliant scripts that work across

different systems � Automate repetitive tasks to save time and reduce errors � Process text and
data efficiently using Unix tools � Handle errors gracefully in production scripts � Debug and
troubleshoot script problems � Build real-world automation projects for practical use

How This Book Is Different

POSIX-First Approach

Unlike many shell scripting books that focus exclusively on Bash, this book teaches POSIX-compliant
shell scripting first. This means:

• Your scripts will work on any Unix-like system (Linux, macOS, BSD, etc.)
• You’ll understand portable scripting from the start
• Bash-specific features are clearly marked and explained
• You’ll know when to choose portability vs. convenience

1

PREVIEW
Welcome!

Interactive Command Flow

This book shows you how to work the way real people work at the terminal - one command at a
time, seeing output, making decisions, and proceeding based on results. You’ll learn:

• The thought process behind each command
• How to interpret output
• What to do when things go wrong
• Decision-making skills for troubleshooting

Progressive Learning

The book is structured in a carefully planned progression:

1. No forward references - We never use concepts before teaching them
2. Spiral learning - Important concepts are revisited and deepened
3. Practical examples - Every concept is illustrated with real use cases
4. Hands-on practice - You’ll write code from the very first chapter

Book Structure

The book is organized into seven parts with 18 chapters and 5 comprehensive appendices:

Part I: Command Line Fundamentals (Chapters 1-4)

Learn to navigate the command line, work with files and directories, and use basic text tools. Perfect
for absolute beginners.

Start here: Chapter 1: Introduction to the Command Line

Part II: Introduction to Shell Scripting (Chapters 5-7)

Write your first shell scripts, work with variables and user input, and make decisions with condition-
als.

Key milestone: Create your first working shell script!

Part III: Control Flow and Loops (Chapters 8-9)

Master loops for repetitive tasks and organize your code with functions for reusability.
Key milestone: Write scripts that process multiple files automatically.

Part IV: Text Processing (Chapters 10-11)

Learn powerful text processing tools including grep, sed, and awk. Master regular expressions for
pattern matching.

Key milestone: Parse and transform text data like log files and CSV files.

Part V: Intermediate Scripting (Chapters 12-14)

Work with files programmatically, handle errors gracefully, and implement robust error handling
strategies.

2

PREVIEW
Comprehensive Appendices

Key milestone: Write production-quality scripts with proper error handling.

Part VI: Advanced Topics (Chapters 15-17)

Explore advanced pattern matching, process management, and best practices for building profes-
sional scripts.

Key milestone: Understand ShellCheck and write maintainable scripts.

Part VII: Real-World Applications (Chapter 18)

Build five complete automation projects: backup scripts, log analysis, deployment automation, file
organization, and monitoring.

Key milestone: Complete real-world projects for your portfolio.

Comprehensive Appendices

Eight detailed appendices provide essential reference material:

• Appendix A: Installation & Setup - Get your environment configured
• Appendix B: Command Quick Reference - Look up any command quickly
• Appendix C: Common Errors - Troubleshoot problems fast
• Appendix D: POSIX vs Bash - Understand portability choices
• Appendix E: Learning Resources - Continue your journey
• Appendix F: Glossary - Key terms and definitions
• Appendix G: Index - Comprehensive topical index
• Appendix H: Bibliography - References and further reading

How to Use This Book

For Complete Beginners

Recommended path: Read sequentially from Chapter 1 to Chapter 18.

1. Start with setup: Visit Appendix A to set up your environment
2. Begin at Chapter 1: Work through Chapter 1 to get oriented
3. Type every command: Don’t just read - practice in your terminal
4. Complete each chapter’s examples before moving to the next
5. Refer to appendices when you need help or reference information

For Those With Some Experience

Custom path: Jump to the sections you need.

• Know the command line but new to scripting? Start with Chapter 5
• Want to write better scripts? Focus on Part VI (Chapters 15-17)
• Need POSIX portability? Read Appendix D
• Building specific projects? Jump to Chapter 18

3

appendices/appendix_a_installation.html
appendices/appendix_b_command_reference.html
appendices/appendix_c_errors.html
appendices/appendix_d_posix_bash.html
appendices/appendix_e_resources.html
appendices/appendix_f_glossary.html
appendices/appendix_g_index.html
appendices/appendix_h_bibliography.html
appendices/appendix_a_installation.html
appendices/appendix_d_posix_bash.html

PREVIEW
Welcome!

As a Reference

Quick lookup: Use the appendices and table of contents.

• Command syntax: Appendix B
• Error messages: Appendix C
• POSIX vs Bash features: Appendix D
• Search: Use the search function (magnifying glass icon) to find specific topics

What You’ll Need

Software Requirements

• Terminal application (built into macOS/Linux, WSL for Windows)
• Text editor (nano, vim, VS Code, or any plain text editor)
• POSIX shell (sh, dash, or bash - instructions in Appendix A)

Optional but recommended:

• ShellCheck - Script validation tool (introduced in Chapter 17)
• Git - Version control (useful but not required)

Time Commitment

• Each chapter: 30-60 minutes
• Complete beginner track: 20-30 hours total
• Experienced programmer: 10-15 hours (skipping basics)

Work at your own pace - there’s no rush!

Conventions Used in This Book

Code Blocks

Commands you type are shown like this:

echo "Hello, World!"

Output is shown separately:

Hello, World!

File Names

Complete scripts are labeled with filenames:

Listing 0.1 hello.sh

##!/bin/sh

echo "Hello, World!"

4

appendices/appendix_b_command_reference.html
appendices/appendix_c_errors.html
appendices/appendix_d_posix_bash.html

PREVIEW
A Note on POSIX Compliance

POSIX vs Bash Indicators

• � POSIX - Works on all POSIX-compliant shells
• � Bash - Requires Bash specifically

Special Notes

INFO Note

Supplementary information or helpful context.

LIGHTBULB Pro Tip

Time-saving shortcuts and best practices.

Exclamation-Triangle Warning

Important cautions about potentially destructive commands.

Exclamation Important

Critical information you must understand before proceeding.

A Note on POSIX Compliance

This book emphasizes POSIX compliance for maximum portability. POSIX (Portable Operating
System Interface) is a standard that ensures your scripts work across different Unix-like systems.

INFO POSIX Standard Version

This book is based on POSIX.1-2017 (IEEE Std 1003.1-2017), also known as Issue 7. While
POSIX.1-2024 (Issue 8) was released in 2024, the shell scripting standards remain virtually
unchanged between versions. All code examples in this book are fully compliant with both
POSIX.1-2017 and POSIX.1-2024.
The changes in POSIX 2024 primarily affect C library functions rather than shell scripting, so
this book’s teachings remain current and authoritative.

Why this matters:

• Your scripts work on Linux, macOS, BSD, and other Unix systems
• Your scripts work in minimal environments (Docker Alpine, embedded systems)
• Your scripts are future-proof and won’t break with system updates

When we use Bash:

• Bash-specific features are clearly marked with warnings
• We always explain why we’re using Bash
• We provide POSIX alternatives when possible

You’ll learn both approaches and know when to choose each.

5

PREVIEW
Welcome!

Getting Help

Within This Book

• Appendix C: Common Error Messages - Troubleshooting guide
• Appendix B: Command Quick Reference - Fast lookup
• Search function: Find topics quickly

External Resources

• man pages: Type man command in your terminal
• ShellCheck: https://www.shellcheck.net/ - Online script checker
• Stack Overflow: Search for specific error messages
• Appendix E: Further Learning Resources - Comprehensive resource list

Ready to Begin?

Congratulations on taking the first step toward learning shell scripting! Whether you’re automating
personal tasks, preparing for a career in DevOps, or just curious about the command line, this book
will guide you from beginner to confident scripter.

Next Steps

1. Set up your environment: Visit Appendix A: Installation & Setup
2. Start learning: Begin with Chapter 1: Introduction to the Command Line
3. Practice regularly: Open your terminal and type the commands
4. Be patient: Everyone starts as a beginner

Our Promise

By the end of this book, you’ll have:

• � Solid understanding of shell scripting fundamentals
• � Portfolio of working scripts
• � Confidence to automate your own tasks
• � Foundation to continue learning advanced topics

Let’s get started! �

About the Author

Sultan Zavrak is an Assistant Professor in the Department of Computer Engineering at Duzce Univer-
sity, Turkey. He received his B.Sc. (2010) and M.Sc. (2013) degrees in Computer Engineering from
Karadeniz Technical University, Trabzon, and his Ph.D. in Computer and Information Engineering
from Sakarya University in 2020.

Dr. Zavrak’s research interests span computer networks, network security, and machine learning,
with a strong focus on automation and real-world systems. His passion for teaching and tooling-

6

appendices/appendix_c_errors.html
appendices/appendix_b_command_reference.html
appendices/appendix_e_resources.html
appendices/appendix_a_installation.html

PREVIEW
Acknowledgments

driven workflows led him to develop this comprehensive guide, making POSIX shell scripting
approachable for beginners while preserving technical rigor and industry best practices.

With more than a decade of experience in academic research, he offers a perspective that bridges
theoretical computer science with the everyday automation challenges faced by engineers and
practitioners.

Acknowledgments

This book was developed with assistance from modern AI tools for content structuring, code val-
idation, and editorial refinement. All technical content, pedagogical approaches, and teaching
methodologies reflect the author’s expertise and educational philosophy developed through years of
teaching and research in computer engineering.

I would like to thank the open-source community, whose countless contributions to Unix, Linux,
and shell scripting tools have made this field both powerful and accessible. Special appreciation
goes to the creators and maintainers of POSIX standards, GNU utilities, Bash, and the many shell
scripting resources that have educated generations of developers.

Finally, I am grateful to the students and colleagues who provided feedback, asked challenging
questions, and helped shape this book into a comprehensive learning resource.

Copyright and License

Copyright © 2025 Sultan Zavrak. All rights reserved.
This book and its contents are protected by copyright law. No part of this publication may be

reproduced, distributed, or transmitted in any form or by any means, including photocopying,
recording, or other electronic or mechanical methods, without the prior written permission of
the author, except in the case of brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law.

Code Examples and Scripts: All code examples, scripts, and command-line snippets presented in
this book are provided for educational purposes. Readers are granted permission to use, modify, and
distribute the code examples in their own projects, both personal and commercial, without attribution
requirements. However, the surrounding explanatory text, structure, and teaching methodology
remain under copyright protection.

Trademarks: Unix, Linux, macOS, Windows, Bash, and other product names mentioned in this
book are trademarks or registered trademarks of their respective owners. The author is not affiliated
with or endorsed by any of these trademark holders.

Disclaimer: While every effort has been made to ensure the accuracy and completeness of the
information presented in this book, the author and publisher assume no responsibility for errors,
omissions, or damages resulting from the use of the information contained herein. The code examples
are provided “as is” without warranty of any kind.

For permissions requests, corrections, or inquiries, please contact the author through the book’s
official repository or website.

Ready to start? Head to Chapter 1: Introduction to the Command Line →

7

PREVIEW

PREVIEW
Part I.

Command Line Fundamentals (Preview)

9

PREVIEW

PREVIEW1. Introduction to the Command Line

1.1. What is the Command Line and Why Use It?

Welcome to your journey into shell scripting! If you’ve only ever used computers through windows,
icons, and menus, you might be wondering what this “command line” thing is all about. Don’t worry
- by the end of this section, you’ll understand exactly what it is and why it’s worth learning.

In this section, you will:

• Understand what the command line is and how it differs from graphical interfaces
• Learn what a shell is and why it’s called that
• Discover practical reasons to learn command-line skills
• Understand what POSIX means and why we focus on it
• Get motivated about what you’ll be able to accomplish

Prerequisites:
This is your starting point! No command-line or programming experience required.
You should know: - How to use a computer with a mouse and keyboard - Basic file and folder

concepts from using File Explorer (Windows) or Finder (Mac) - How to install software on your
system

New Concepts Introduced:
This section introduces: terminal, command line, shell, CLI, GUI, shell prompt, command, POSIX

shell
POSIX Compliance:

• This section is conceptual and introduces POSIX as a standard
• All practical examples in this book will be POSIX-compliant by default

Estimated Time: 15 minutes

What is the Command Line?

The command line (also called the CLI or Command Line Interface) is a text-based way to interact
with your computer. Instead of clicking icons and buttons, you type commands as text and the
computer responds with text.

Think of it this way: when you use your computer normally, you’re having a conversation with it
using pictures and gestures. The command line is like having that same conversation using written
words instead.

A Quick Comparison

Let’s look at the same task done both ways:

11

PR
EV
IE
W

1. Introduction to the Command Line

GUI vs CLI: Different Interfaces, Same Results
GUI Way (What You’re Used To): 1. Open File Explorer or Finder 2. Navigate through folders

by double-clicking 3. Find a file 4. Right-click and select “Properties” or “Get Info” 5. Read the file
size, creation date, etc.

Command Line Way (What You’ll Learn): 1. Type a command like ls -l myfile.txt 2. Press
Enter 3. See all the file information instantly

Both accomplish the same thing, but the command-line approach is: - Faster (once you know the
commands) - More precise (you specify exactly what you want) - Automatable (you can repeat it
easily with a script) - Powerful (you can work with hundreds of files at once)

What Does It Look Like?

Here’s what you might see when you open the command line:

12

PREVIEW
1.1. What is the Command Line and Why Use It?

zavrak@laptop:~$

This is called the shell prompt. It’s the computer’s way of saying “I’m ready for your command!”
Let’s break down what this means:

• zavrak - Your username
• @laptop - Your computer’s name
• ~ - Your current location (the tilde means your home folder)
• $ - Indicates you’re a regular user (you’d see # for administrator)

INFO About Examples in This Book

Throughout this book, we use “zavrak” as an example username and “laptop” as an example
computer name. Your actual username and computer name will be different. When you see
zavrak in examples, think of it as representing YOUR username.

The prompt might look different on your system, and that’s perfectly normal. You might see
something simpler like:

$

Or something more detailed like:

zavrak@macbook-pro /Users/zavrak $

All of these are just the computer saying “Ready for your next command!”

What is a Shell?

The shell is the program that reads your commands and executes them. Think of it as a translator
between you and the computer’s operating system.

Why is it called a “shell”? Because it’s the outer layer that wraps around the operating system’s
core (called the kernel). Just like a shell protects what’s inside, the shell program protects the
operating system by controlling how you interact with it.

How the Layers Work Together

Here’s how the different layers of your system interact:

13

PREVIEW
1. Introduction to the Command Line

System Architecture: From User to Hardware
Understanding each layer:

1. You (User): Type commands like ls or cd
2. Terminal: The window/application where you see text (Terminal.app, iTerm, GNOME Termi-

nal)
3. Shell: The program that interprets your commands (sh, bash, zsh)
4. Kernel: The operating system core that controls hardware
5. Hardware: Physical components (CPU, disk, memory, network)

When you type a command, it flows down through these layers, and the result flows back up to
be displayed.

Different Types of Shells

Just like there are different web browsers (Chrome, Firefox, Safari), there are different shell pro-
grams:

• sh (Bourne Shell) - The original POSIX shell
• bash (Bourne Again Shell) - Very popular, available on most systems
• dash - A lightweight POSIX shell
• zsh (Z Shell) - Modern shell with extra features
• fish - User-friendly shell with different syntax

Important: This book focuses on POSIX-compliant shell scripting, which means what you learn
will work on all these shells (and more). We’ll occasionally note features specific to bash when
they’re particularly useful.

14

PREVIEW
1.1. What is the Command Line and Why Use It?

What is POSIX?

POSIX (Portable Operating System Interface) is a standard that defines how Unix-like operating
systems should work. When we write “POSIX-compliant” shell scripts, they’ll run on:

• Linux (all distributions)
• macOS
• BSD systems (FreeBSD, OpenBSD, etc.)
• Unix systems
• Even Windows with WSL (Windows Subsystem for Linux)

Think of POSIX like a universal language for shell commands. Just as you might write in standard
English that anyone can understand, rather than heavy regional slang, we’ll write in “standard shell”
that any POSIX system can understand.

INFO Why POSIX Matters for Beginners

When you’re learning, you want your skills to be useful everywhere. By learning POSIX shell
scripting, you’re investing in knowledge that will work on virtually any Unix-like system you
encounter, now and in the future.

Why Learn the Command Line?

You might be thinking: “If I can do everything with a graphical interface, why bother learning this?”
Great question! Here are compelling reasons:

1. Speed and Efficiency

Once you know the commands, the command line is often much faster than clicking through
menus.

Example scenario: You need to rename 100 photos to include today’s date.

• GUI approach: Right-click, rename, type, click… for each of 100 files (maybe 30-45 minutes)
• Command line approach: One command, 2 seconds

2. Automation and Repetition

The command line excels at repetitive tasks.
Example scenario: Every Friday, you need to backup your documents folder, compress it, and

save it with the date.

• GUI approach: Manually copy, compress, rename each week (5-10 minutes each time)
• Command line approach: Write a script once, run it every Friday (5 seconds each time)

3. Working with Remote Computers

When you connect to a remote server (like a web server), you often only have command-line access.
There’s no graphical interface.

Many jobs in web development, system administration, data science, and cloud computing require
command-line skills because you’re working with remote machines.

15

PREVIEW
1. Introduction to the Command Line

4. Power and Precision

Some tasks are simply not available through graphical interfaces, or are much more powerful via
command line.

Example scenario: Find all files modified in the last 7 days that are larger than 10MB and contain
the word “budget” in their filename.

• GUI approach: Difficult, time-consuming, might require multiple tools
• Command line approach: One precise command

5. Understanding How Computers Really Work

Using the command line gives you a deeper understanding of what your computer is actually doing.
Instead of “magic” happening behind the scenes, you see exactly what’s going on.

6. Professional Development

Command-line skills are valuable in many careers: - Software development - Web development -
Data science and analytics - System administration - DevOps and cloud engineering - Cybersecurity
- Scientific computing

Even if these aren’t your career goals, these skills make you more capable and self-sufficient with
technology.

What You’ll Be Able to Do

By the time you finish this book, you’ll be able to:
Basic Skills: - Navigate your file system with ease - Create, move, copy, and organize files and

folders - Search for files and content - View and edit text files - Understand file permissions and
security

Intermediate Skills: - Write shell scripts to automate tasks - Process text files (extract data, trans-
form formats, analyze logs) - Work with variables and user input - Make decisions with conditional
logic - Use loops to process multiple items

Advanced Skills: - Build production-ready scripts with error handling - Parse command-line
arguments like professional tools do - Manage multiple processes - Create automated backup and
deployment systems - Analyze logs and generate reports

Real-World Applications: - Automate your daily computer tasks - Manage files and directories
efficiently - Process data and generate reports - Deploy websites and applications - Monitor systems
and create alerts - Build tools that save hours of manual work

Command Line vs. GUI: Working Together

Here’s an important point: learning the command line doesn’t mean abandoning graphical inter-
faces. Professional developers and system administrators use both, choosing the right tool for each
task.

Think of it like cooking: sometimes you use a knife, sometimes a food processor. Both are valuable,
and knowing when to use each makes you a better cook.

Use the GUI when: - You’re exploring and not sure what you’re looking for - Visual layout is
important (photo editing, design work) - You’re doing something once and it’s straightforward

16

PREVIEW
1.1. What is the Command Line and Why Use It?

Use the command line when: - You need to repeat the same task multiple times - You’re working
with many files at once - You want to automate a process - You need precise control - You’re working
on a remote system

The Terminal Application

To use the command line, you’ll use a program called a terminal (also called a terminal emulator or
console). This is the application that provides the window where you type commands.

The terminal is just the container - it displays text and accepts your typing. The shell (which
we discussed earlier) is the program running inside the terminal that actually processes your com-
mands.

Analogy: Think of the terminal as a picture frame, and the shell as the picture inside. You need
both, but they’re separate things.

In the next section, we’ll show you exactly how to open the terminal on your system.

Don’t Be Intimidated

The command line might seem intimidating at first. That’s completely normal! Here’s what you
should know:

Everyone starts as a beginner. Every expert you see typing commands fluently was once exactly
where you are now, looking at a blank prompt and wondering what to do.

You can’t break your computer. The command line gives you power, but modern systems have
protections. We’ll teach you safe practices, and we’ll warn you before any potentially destructive
commands.

Mistakes are learning opportunities. You’ll make typos, you’ll get error messages, and that’s
perfect - that’s how you learn. Error messages are the computer’s way of teaching you.

It gets easier fast. The first few commands feel awkward, like learning to type. But within a week
of practice, you’ll be navigating confidently. Within a month, you’ll wonder how you lived without
these skills.

LIGHTBULB Your Learning Mindset

Approach this with curiosity, not perfection. Try things, make mistakes, and learn from them.
The command line is incredibly forgiving - you can always try again. Every expert was once a
beginner who kept practicing.

Summary

Key Concepts Learned:

• Command Line (CLI): A text-based interface where you type commands instead of clicking
icons

• Shell: The program that reads and executes your commands (acts as a translator to the operating
system)

• Terminal: The application that provides the window where you interact with the shell
• Shell Prompt: The text indicator showing the shell is ready for your command (like $ or
zavrak@laptop:~$)

• POSIX: A standard ensuring shell scripts work across different Unix-like systems

Key Distinctions:

17

PREVIEW
1. Introduction to the Command Line

• GUI vs CLI: Graphical (visual, point-and-click) vs Command Line (text-based, type com-
mands)

• Terminal vs Shell: Terminal is the window/application, shell is the program running inside it
• POSIX vs Bash: POSIX is the portable standard, Bash is one specific shell (we focus on POSIX

for maximum compatibility)

Why It Matters:

• Speed: Command line is faster for many tasks once you know the commands
• Automation: Easily repeat tasks and create scripts
• Power: Access to capabilities not available in GUI
• Career: Valuable skill in many technical fields
• Remote Work: Essential for managing servers and cloud systems
• Understanding: Deeper knowledge of how computers work

Mindset for Success:

• You don’t need to abandon the GUI - both tools have their place
• Everyone starts as a beginner - mistakes are part of learning
• The command line becomes comfortable quickly with practice
• POSIX knowledge works everywhere - you’re learning portable skills

POSIX Compliance Notes:

⊠ This book teaches POSIX-compliant shell scripting by default
⊠ What you learn will work on Linux, macOS, BSD, Unix, and more
• � We’ll clearly mark when showing Bash-specific features
⊠ You’re learning skills that will remain relevant for decades

Practice Exercises

Exercise 1: Identifying Interfaces (Easy)

Goal: Understand the difference between graphical and text-based interfaces
Tasks: 1. Look at three applications you use daily (email, web browser, file manager) 2. For each,

identify which elements are part of the graphical interface 3. Imagine how you would describe each
action in words (text commands) 4. Write down one task that would be easier with GUI and one
that might be faster with CLI

Skills practiced: Interface concepts, critical thinking Expected time: 5 minutes
Expected output: Example answer:

Email client - GUI: Click buttons, drag emails, see images

Could be CLI: "send email to john@example.com subject 'Meeting' body 'See you at 2pm'"

Easier with GUI: Viewing image attachments

Faster with CLI: Sending the same email to 50 people

Hint: Think about repetitive tasks - those often benefit from text commands.

Exercise 2: Real-World CLI Examples (Easy)

Goal: Recognize where command-line interfaces appear in everyday life

18

PR
EV
IE
W

1.1. What is the Command Line and Why Use It?

Tasks: 1. List three devices or systems that use text commands (consider: routers, smart home
devices, game consoles, servers) 2. For each, explain why it might use a CLI instead of a GUI 3.
Consider: Have you ever used Siri, Alexa, or Google Assistant? How is that similar to a CLI?

Skills practiced: Conceptual understanding, pattern recognition Expected time: 5 minutes
Expected output: Example answer:

1. WiFi router admin - Uses CLI because it's accessed remotely and needs minimal resources

2. Smart thermostat API - Uses text commands for automation and integration

3. Voice assistants - Similar to CLI because you give commands in a structured format

Hint: Voice assistants are like spoken CLIs - you give commands in a structured format.

Exercise 3: Advantages Analysis (Medium)

Goal: Critically evaluate when to use CLI vs GUI
Tasks: 1. Read through the “Why Use the Command Line?” section again 2. Choose three

scenarios from your life or work 3. For each scenario, decide: GUI or CLI, and why? 4. Consider:
automation, speed, remote access, resource usage

Skills practiced: Critical thinking, real-world application Expected time: 8 minutes
Expected output: Example answer:

Scenario 1: Renaming 500 photos from vacation

Choice: CLI - Can rename all at once with a pattern

Reason: Automation - one command vs 500 manual renames

Scenario 2: Editing a photo's colors and filters

Choice: GUI - Visual feedback needed

Reason: Need to see changes in real-time

Scenario 3: Managing files on a remote server

Choice: CLI - No GUI available remotely

Reason: Remote access via SSH requires text commands

Hint: Think about tasks you repeat frequently - those are often good CLI candidates.

Exercise 4: Shell Terminology (Easy)

Goal: Master the basic vocabulary of command-line computing
Tasks: 1. Define these terms in your own words: terminal, shell, command line, CLI, prompt 2.

Explain the relationship: How does a terminal relate to a shell? 3. Draw a simple diagram showing:
User → Terminal → Shell → Operating System

Skills practiced: Terminology, conceptual understanding, system architecture Expected time: 7
minutes

Expected output: Example answer:

19

PREVIEW
1. Introduction to the Command Line

Terminal: The window/application that displays text

Shell: The program that interprets your commands

Command Line: The actual line where you type commands

CLI: The overall text-based interface system

Prompt: The symbol that shows the shell is ready for input

Relationship: The terminal is the interface you see; the shell is the program

running inside it that actually processes your commands.

[User types] → [Terminal displays] → [Shell interprets] → [OS executes] → [Results shown in terminal]

Hint: Think of the terminal as the window and the shell as the brain inside it.

What’s Next:
In Opening the Terminal, we’ll show you exactly how to open the terminal application on your

system (Linux, macOS, or Windows) and get ready to type your first command.

INFO Ready to Begin?

You now understand what the command line is and why it’s worth learning. Take a moment to
let this sink in - you’re about to gain a superpower that many computer users never discover. In
the next section, we’ll get hands-on and open the terminal for the first time.

1.2. Opening the Terminal

Now that you understand what the command line is, it’s time to actually open it and see it for yourself.
This section will walk you through finding and launching the terminal application on your specific
operating system.

In this section, you will:

• Locate the terminal application on your operating system
• Open the terminal for the first time
• Understand what you’re seeing in the terminal window
• Learn how to close and reopen the terminal
• Customize basic terminal settings (optional)

Prerequisites:
This section builds on concepts from:

• What is the Command Line and Why Use It? - understanding of terminal, shell, and command
line concepts

New Concepts Introduced:
This section introduces: terminal application, launching terminal, terminal window, closing

terminal
POSIX Compliance:

• This section is platform-specific (different steps for different operating systems)

20

PREVIEW
1.2. Opening the Terminal

• Once opened, all terminal applications provide POSIX-compliant shells

Estimated Time: 10 minutes

Overview: Different Systems, Same Goal

Every operating system has a terminal application, but they’re located in different places and have
different names. Don’t worry - we’ll cover all the major options:

• macOS: Terminal (built-in) or iTerm2 (popular alternative)
• Linux: Terminal, GNOME Terminal, Konsole, xterm (varies by distribution)
• Windows: Windows Terminal, PowerShell, or WSL (Windows Subsystem for Linux)

Let’s go through each one.

Opening the Terminal on macOS

macOS comes with a built-in terminal application that works perfectly for everything we’ll learn in
this book.

Method 1: Using Spotlight Search (Fastest)

1. Press Command + Space on your keyboard (this opens Spotlight Search)
2. Type terminal
3. Press Enter when “Terminal” appears in the results

That’s it! The terminal window should now be open.

Method 2: Using Finder

1. Open Finder
2. Click on Applications in the left sidebar
3. Open the Utilities folder
4. Find and double-click Terminal

Method 3: Using Launchpad

1. Open Launchpad (the rocket icon in your Dock, or pinch with thumb and three fingers on
trackpad)

2. Type terminal in the search box
3. Click the Terminal icon

What You’ll See on macOS

When you open Terminal on macOS, you’ll see something like this:

Last login: Mon Jan 15 10:30:22 on ttys000

zavrak@Zavraks-MacBook-Pro ~ %

Or on older macOS versions:

Last login: Mon Jan 15 10:30:22 on ttys000

zavrak@Zavraks-MacBook-Pro:~$

21

PREVIEW
1. Introduction to the Command Line

This is normal! The first line tells you when you last logged in. The second line is your shell
prompt, ready for commands.

INFO macOS Shell Change

macOS Catalina (10.15) and later use zsh (Z shell) by default, which shows % as the prompt.
Earlier versions use bash, which shows $. Both are POSIX-compatible, and everything in this
book works with both.

Opening the Terminal on Linux

Linux has many different desktop environments, each with their own terminal application. Here are
the most common methods:

Method 1: Keyboard Shortcut (Most Common)

Most Linux distributions use this shortcut:

1. Press Ctrl + Alt + T

This should immediately open a terminal window on Ubuntu, Debian, Fedora, Linux Mint, and
most other distributions.

Method 2: Application Menu

The exact steps depend on your desktop environment:
Ubuntu/GNOME: 1. Click Activities (top-left corner) 2. Type terminal 3. Click the Terminal

icon
KDE Plasma: 1. Click the Application Launcher (usually bottom-left) 2. Type konsole or

terminal 3. Click the application
Xfce: 1. Click Applications Menu (usually top-left) 2. Go to System → Terminal Emulator
Cinnamon (Linux Mint): 1. Click Menu (bottom-left) 2. Go to Accessories → Terminal

Method 3: Right-Click Desktop Menu (Some Distributions)

On some Linux distributions:

1. Right-click on an empty area of your desktop
2. Select Open Terminal or Open Terminal Here

What You’ll See on Linux

When you open a terminal on Linux, you’ll typically see something like:

zavrak@ubuntu:~$

Or:

[zavrak@fedora ~]$

The exact format varies by distribution and configuration, but they all serve the same purpose -
showing you’re ready to type commands.

22

PR
EV
IE
W

1.2. Opening the Terminal

Opening the Terminal on Windows

Windows requires a bit more setup to get a POSIX-compliant shell. You have several options:

Option 1: Windows Subsystem for Linux (WSL) - Recommended

WSL provides a full Linux environment on Windows. This is the best option for learning shell
scripting on Windows because it’s fully POSIX-compliant.

First-time setup (one-time only):

1. Open PowerShell as Administrator:

• Press Windows key

• Type powershell
• Right-click Windows PowerShell
• Select Run as administrator

2. In PowerShell, type this command and press Enter:

wsl --install

3. Restart your computer when prompted
4. After restart, Ubuntu will finish installing automatically

• You’ll be asked to create a username and password
• Choose something you’ll remember

Opening WSL after setup:

1. Press Windows key

2. Type ubuntu or wsl
3. Click Ubuntu or WSL

You’ll see a Linux terminal prompt like:

zavrak@DESKTOP-ABC123:~$

LIGHTBULB Windows Terminal for Better Experience

Install Windows Terminal from the Microsoft Store for a much better WSL experience with
tabs, customization, and modern features.

Option 2: Git Bash (Alternative)

If you can’t use WSL, Git Bash provides a POSIX-like environment on Windows.
First-time setup:

1. Download Git for Windows from git-scm.com
2. Run the installer
3. Accept default options (including “Git Bash”)

Opening Git Bash:

1. Press Windows key

2. Type git bash

3. Click Git Bash

You’ll see:

23

https://git-scm.com

PR
EV
IE
W

1. Introduction to the Command Line

user@COMPUTER-NAME MINGW64 ~

$

Exclamation-Triangle PowerShell is Different

While Windows has PowerShell built-in, it uses different commands and syntax. For learning
POSIX shell scripting, use WSL or Git Bash instead. PowerShell is powerful but not POSIX-
compliant.

Understanding Your Terminal Window

Now that you have a terminal open, let’s understand what you’re seeing.

The Shell Prompt

The prompt is the text that appears, waiting for your input. While it looks different on different
systems, it usually contains:

Common elements: - Username: Your login name (like zavrak) - Computer name: Your ma-
chine’s name (like laptop or macbook-pro) - Current directory: Where you are in the file system
(often ~ for home) - Prompt symbol: Usually $ for regular users or # for administrators

Examples:

zavrak@laptop:~$ # Linux/Ubuntu style

zavrak@macbook ~ % # macOS zsh style

zavrak@macbook:~$ # macOS bash style

[zavrak@fedora ~]$ # Fedora/Red Hat style

zavrak@DESKTOP-123:~$ # WSL style

All of these mean the same thing: “I’m ready for your command!”

The Cursor

You’ll see a blinking cursor (usually a rectangle or underscore) after the prompt. This shows where
your text will appear when you type.

The Window Itself

The terminal window is just like any other application window: - You can resize it by dragging the
edges - You can minimize, maximize, or close it - You can have multiple terminal windows open at
once

Testing Your Terminal

Let’s make sure everything is working. We haven’t learned any commands yet, but let’s verify you
can type.

After your prompt, try typing a few letters:

hello

24

PREVIEW
1.2. Opening the Terminal

You should see the letters appear after your prompt:

zavrak@laptop:~$ hello

Don’t press Enter yet! We’re just testing that typing works.
To clear what you typed without executing it, press Ctrl + C. This is the universal “cancel what

I’m typing” shortcut.
Your prompt should return to a clean state:

zavrak@laptop:~$

Perfect! Your terminal is working correctly.

LIGHTBULB Ctrl + C is Your Friend

Remember Ctrl + C - it cancels the current command or stops a running program. If you ever
get stuck or want to start over, press Ctrl + C.

Closing the Terminal

There are several ways to close the terminal when you’re done:

Method 1: Close the Window

• Click the X button (just like closing any application)
• Or press Alt + F4 (Windows/Linux) or Command + Q (macOS)

Method 2: Type exit

Type the word exit and press Enter:

exit

The terminal window will close. This is the “proper” way to close a shell session.

Method 3: Use Ctrl + D

Press Ctrl + D (works on all systems)
This sends an “end of file” signal that tells the shell you’re done.

INFO Don’t Worry About Closing Incorrectly

All three methods are fine. Closing the window is quick, typing exit is proper, and Ctrl + D

is what experienced users often use. Choose whatever feels comfortable.

Opening Multiple Terminals

As you get comfortable, you might want multiple terminal windows open at once. Here’s how:
macOS: - Open Terminal, then press Command + N for a new window - Or Command + T for a

new tab in the same window

25

PREVIEW
1. Introduction to the Command Line

Linux: - Open Terminal, then press Ctrl + Shift + N for a new window (most distributions) -
Or Ctrl + Shift + T for a new tab

Windows (WSL/Windows Terminal): - Press Ctrl + Shift + T for a new tab - Or click the +
button

Why multiple terminals? - Run a long command in one while working in another - View output
in one while typing in another - Work in different directories simultaneously

Optional: Customizing Your Terminal

You don’t need to customize anything to learn shell scripting, but if you want to make your terminal
more comfortable, here are basic adjustments:

Adjusting Text Size

macOS: - Terminal → Preferences → Profiles → Text - Adjust font and size
Linux (GNOME Terminal): - Edit → Preferences → (Your Profile) → Text - Adjust font and

size
Windows Terminal: - Settings → Appearance - Adjust font size

Changing Colors

Most terminal applications let you choose color schemes. This is purely personal preference - choose
what’s comfortable for your eyes.

Increasing Scrollback

By default, terminals remember a limited number of previous lines. Increasing this can be helpful:
macOSTerminal: - Preferences → Profiles → (Your Profile) - Set “Scrollback” to “Limit to available

memory”
GNOME Terminal: - Preferences → (Your Profile) - Increase “Scrollback” lines or set to unlim-

ited

INFO Customization Can Wait

Don’t spend too much time on customization now. The defaults work fine for learning. You can
always adjust things later once you know what you prefer.

Troubleshooting Common Issues

“Command not found” when opening terminal

This is actually normal for a blank terminal - it means it’s working! You haven’t typed a command
yet.

Terminal opens and immediately closes

On Windows with Git Bash, this might happen if the installation didn’t complete. Try reinstalling
Git Bash.

On WSL, you might need to complete the setup by creating a username and password.

26

PREVIEW
1.2. Opening the Terminal

Can’t find Terminal on Linux

Try searching for: - “terminal” - “console” - “konsole” (KDE) - “xterm” - “gnome-terminal”
One of these should work for your distribution.

WSL won’t install on Windows

Requirements: - Windows 10 version 2004 or higher, or Windows 11 - Virtualization enabled in BIOS
(usually enabled by default)

If wsl --install doesn’t work, check Windows updates and try again.

Summary

Key Concepts Learned:

• Terminal Application: The program that provides the command-line interface (different on
each OS)

• Launching Terminal: How to open the terminal on macOS, Linux, and Windows
• Shell Prompt: The text indicator that the shell is ready for input
• Closing Terminal: Multiple ways to exit the terminal (exit, Ctrl + D, or close window)

Platform-Specific Methods:

• macOS: Use Spotlight (Command + Space, type “terminal”) or Applications → Utilities →
Terminal

• Linux: Keyboard shortcut Ctrl + Alt + T or application menu search
• Windows: WSL (recommended for POSIX) or Git Bash (alternative)

Essential Shortcuts:

• Ctrl + C: Cancel current typing or stop a running command
• Ctrl + D: Close the terminal (same as typing exit)
• Window close button: Also closes the terminal

Practical Skills:

• How to open a terminal on your specific operating system
• How to verify the terminal is working (typing appears after prompt)
• How to close and reopen the terminal
• How to open multiple terminal windows or tabs
• Basic awareness of customization options

Common Prompt Formats:

zavrak@laptop:~$ # Linux/Ubuntu

zavrak@macbook ~ % # macOS (zsh)

[zavrak@fedora ~]$ # Fedora/Red Hat

zavrak@DESKTOP-123:~$ # WSL on Windows

All represent the same thing: the shell is ready for your command.
Windows-Specific Notes:

• � WSL provides full POSIX compliance (recommended)
• � Git Bash provides POSIX-like environment (alternative)
• � PowerShell is different and not POSIX-compliant

27

PREVIEW
1. Introduction to the Command Line

What’s Next:
In Your First Commands, we’ll actually start typing commands and seeing results! You’ll learn

your first three commands: pwd, echo, and date. Get ready for hands-on practice.

Practice Exercises

Exercise 1: Opening Your Terminal (Easy)

Goal: Successfully open the terminal application on your system
Tasks: 1. Use the appropriate method for your operating system to open the terminal 2. Verify

you see a command prompt (like $ or %) 3. Identify your username in the prompt (if shown) 4.
Identify your computer name in the prompt (if shown)

Skills practiced: Terminal access, understanding prompts Expected time: 3 minutes
Expected output: You should see a prompt similar to:

zavrak@laptop:~$

or

zavrak@macbook ~ %

Hint: On macOS use Command+Space and type “terminal”; on Linux use Ctrl+Alt+T; on
Windows use WSL or Git Bash.

Exercise 2: Testing Ctrl+C (Easy)

Goal: Learn to cancel commands and clear your typing
Tasks: 1. Type some random letters at the prompt (don’t press Enter) 2. Press Ctrl+C to cancel 3.

Verify you get a fresh prompt 4. Repeat this process 2-3 times to build muscle memory
Skills practiced: Canceling commands, keyboard shortcuts Expected time: 2 minutes
Expected output: Your typed text disappears and you get a new prompt without executing

anything.
Hint: Ctrl+C is your “escape hatch” - use it whenever you want to start over.

Exercise 3: Opening Multiple Terminals (Medium)

Goal: Work with multiple terminal windows or tabs
Tasks: 1. Open your first terminal 2. Open a second terminal window or tab (use shortcuts from

the section) 3. Switch between them 4. Close one terminal using the exit command 5. Close the
other using the window close button

Skills practiced: Multi-window terminal work, exiting terminals Expected time: 5 minutes
Expected output: You should have two separate terminal sessions, each with its own prompt.
Hint: On macOS: Command+T for new tab; on Linux: Ctrl+Shift+T; on Windows Terminal:

Ctrl+Shift+T.

28

PREVIEW
1.3. Your First Commands

Exercise 4: Terminal Verification (Easy)

Goal: Confirm your terminal is working correctly
Tasks: 1. Open the terminal 2. Type hello (but don’t press Enter) 3. Press Ctrl+C to cancel 4.

Type exit and press Enter to close the terminal 5. Reopen the terminal 6. Leave it open for the next
section

Skills practiced: Full terminal workflow, confidence building Expected time: 3 minutes
Expected output: Terminal opens, you can type, you can cancel typing, you can close and reopen

successfully.
Hint: If typing doesn’t appear or Ctrl+C doesn’t work, your terminal may not be configured

correctly. Try reopening it.

LIGHTBULB Practice Opening and Closing

Before moving to the next section, practice opening and closing your terminal a few times. Get
comfortable with the process so it becomes second nature. Try the keyboard shortcuts - they’re
faster than using the mouse!

1.3. Your First Commands

You’ve opened the terminal and you’re looking at the prompt. Now what? In this section, you’ll type
and execute your very first commands. These three simple commands will teach you the fundamental
pattern of command-line interaction that you’ll use for everything else you learn.

In this section, you will:

• Execute your first command by typing and pressing Enter
• Use pwd to see where you are in the file system
• Use echo to display text on the screen
• Use date to see the current date and time
• Understand the basic pattern of command execution
• Learn to read and interpret command output

Prerequisites:
This section builds on concepts from:

• What is the Command Line - understanding of commands and shell
• Opening the Terminal - you need an open terminal

New Concepts Introduced:
This section introduces: pwd, echo, date, command execution, pressing Enter, reading output
POSIX Compliance:

• ✓ All commands (pwd, echo, date) are POSIX-standard
• ✓ These commands work identically on all Unix-like systems

Estimated Time: 20 minutes

29

PR
EV
IE
W

1. Introduction to the Command Line

Before We Begin: Open Your Terminal

Make sure you have a terminal window open with the shell prompt visible. If you need a refresher
on how to open it, refer back to Chapter 1.

You should see something like:

zavrak@laptop:~$

The blinking cursor after the $ means the shell is ready for your first command!

The Command Execution Pattern

Before we dive into specific commands, let’s understand the basic pattern you’ll use thousands of
times:

1. Type a command after the prompt
2. Press Enter to execute it
3. Read the output the shell displays
4. See a new prompt appear, ready for the next command

This is the fundamental rhythm of working at the command line. Let’s experience it with your
first command.

Your Very First Command: pwd

Let’s start with one of the most basic and useful commands: pwd.
Type exactly this (lowercase) after your prompt:

pwd

Your terminal should now show:

zavrak@laptop:~$ pwd

Now press the Enter key.
Output:

/home/zavrak

Congratulations! You just executed your first command!

What Just Happened?

Let’s break down what you just experienced:

1. You typed pwd

2. You pressed Enter
3. The shell executed the command
4. The output appeared: /home/zavrak (or similar)
5. A new prompt appeared, ready for your next command

The complete sequence looked like this:

30

PREVIEW
1.3. Your First Commands

zavrak@laptop:~$ pwd

/home/zavrak

zavrak@laptop:~$

What Does pwd Mean?

pwd stands for “print working directory”. It tells you where you currently are in the file system.
Think of your file system as a large building with many rooms. The pwd command answers the

question: “Which room am I in right now?”
The output you saw (like /home/zavrak) is your current directory - your current location in the

file system.

INFO Your Output Will Be Different

Don’t worry if your output doesn’t say exactly /home/zavrak. You might see: -
/home/yourname on Linux - /Users/yourname on macOS - /home/yourname in WSL on Win-
dows
This is perfectly normal - it shows your home directory with your actual username.

Let’s try pwd again to see that it’s consistent. Type it and press Enter:

pwd

Output:

/home/zavrak

Same result! This makes sense - we haven’t moved anywhere, so we’re still in the same location.

Understanding Paths

The output from pwd is called a path - it’s the address of your current location.
Let’s look at a typical path:

/home/zavrak

The forward slashes (/) separate directory names, creating a hierarchy:

• / - The root (top level) of the file system
• home - A directory inside the root
• zavrak - A directory inside home (your home directory)

Think of it like a mailing address:

Country: /

State: home

City: zavrak

We’ll explore paths in much more detail in Chapter 2. For now, just remember that pwd tells you
where you are.

31

PREVIEW
1. Introduction to the Command Line

Your Second Command: echo

Now let’s try a different type of command. Type this:

echo Hello

Press Enter.
Output:

Hello

The echo command displays (or “echoes”) whatever you type after it. It’s like asking the computer
to repeat what you said.

Experimenting with echo

Let’s try echo with different text. Type this:

echo Welcome to the command line

Output:

Welcome to the command line

Perfect! The computer echoed back exactly what you told it to say.
Now let’s try something with numbers:

echo 12345

Output:

12345

The echo command doesn’t care if you give it words or numbers - it just displays whatever you
provide.

Why is echo Useful?

You might wonder: “Why would I need a command that just repeats text?” Great question! Here’s
why echo is actually very useful:

1. Testing: Verify the terminal is working and accepting input
2. Displaying messages: Scripts can print information to users
3. Showing values: Display the contents of variables (you’ll learn this later)
4. Creating files: Send text into files (we’ll cover this in Chapter 3)

For now, think of echo as a simple way to make the computer talk back to you.

Using Quotes with echo

What if you want to echo something with special characters or multiple spaces? Let’s experiment:

32

PREVIEW
1.3. Your First Commands

echo Hello there

Output:

Hello there

Notice that the multiple spaces were reduced to one space. The shell treats multiple spaces as a
single separator between words.

To preserve exact spacing, use quotes:

echo "Hello there"

Output:

Hello there

Now the spaces are preserved! The quotes tell the shell to treat everything inside as a single
unit.

Let’s try with a sentence that contains punctuation:

echo "It's a beautiful day!"

Output:

It's a beautiful day!

Works perfectly! We’ll learn much more about quotes in Chapter 6, but for now, remember: when
in doubt, use quotes around your text.

Your Third Command: date

Let’s try one more command. Type this:

date

Output:

Mon Jan 15 14:30:22 PST 2024

The date command shows the current date and time. Your output will be different because it
shows the actual current date and time when you run it.

Understanding date Output

Let’s break down what date typically shows:

Mon Jan 15 14:30:22 PST 2024

• Mon - Day of the week (Monday)
• Jan 15 - Month and day
• 14:30:22 - Time in hours:minutes:seconds (24-hour format)
• PST - Time zone (Pacific Standard Time, will vary by location)
• 2024 - Year

33

PREVIEW
1. Introduction to the Command Line

INFO Date Format Varies

The exact format of the date output might look slightly different on your system depending on
your location and settings. This is normal. The important thing is that it shows you the current
date and time.

Try running date again:

date

Output:

Mon Jan 15 14:30:35 PST 2024

Notice the time changed? If you wait a moment and run it again, you’ll see the seconds tick
forward. The date command always shows the current time when you execute it.

Why is date Useful?

The date command is useful for:

1. Checking the time: Quick way to see current date and time
2. Timestamping: Scripts can record when they run
3. Naming files: Create unique filenames with dates
4. Scheduling: Verify the system clock is correct

We’ll use date in more advanced ways later in the book, but for now it’s a great command to
practice with.

Command Syntax Basics

Now that you’ve run a few commands, let’s understand the basic syntax pattern:

Commands Without Arguments

Some commands work on their own:

pwd

date

These commands don’t need any additional information - they know what to do.

Commands With Arguments

Other commands need you to tell them what to work with:

echo Hello

Here, echo is the command and Hello is the argument (what to echo).
You can have multiple arguments:

34

PR
EV
IE
W

1.3. Your First Commands

echo Hello World

Output:

Hello World

Both Hello and World are arguments to the echo command.

The Pattern

The general pattern is:

command argument1 argument2 argument3

• Command comes first
• Arguments follow, separated by spaces
• Press Enter to execute

Trying Some Experiments

Now that you know three commands, let’s experiment to learn more about how the shell works.

Experiment 1: Combining pwd and echo

Let’s verify we can run different commands one after another:

pwd

Output:

/home/zavrak

Good, we’re still in the same place. Now let’s echo a message about it:

echo "I am in my home directory"

Output:

I am in my home directory

Perfect! You can run as many commands as you want, one after another. Each command executes,
shows its output, and then a new prompt appears for the next command.

Experiment 2: What Happens with Typos?

Let’s intentionally make a typo to see what happens. Type this (note the misspelling):

pwdd

Output:

35

PREVIEW
1. Introduction to the Command Line

bash: pwdd: command not found

Or on some systems:

pwdd: command not found

This is an error message. The shell is telling you it doesn’t know a command called pwdd. This is
perfectly normal! You’ll see error messages like this when:

• You mistype a command name
• You try to use a command that isn’t installed
• You make a syntax error

Error messages are helpful - they tell you what went wrong. Don’t be afraid of them!
Let’s try the command correctly now:

pwd

Output:

/home/zavrak

All fixed! A fresh prompt appears, and the shell has already forgotten about the error.

Experiment 3: Case Sensitivity

Commands are case-sensitive. Let’s see what happens if we capitalize:

PWD

Output:

PWD: command not found

The shell sees PWD and pwd as completely different things. Always use lowercase for the standard
commands you’ll learn in this book.

Let’s try again with the correct capitalization:

pwd

Output:

/home/zavrak

Works perfectly!

Exclamation-Triangle Case Sensitivity Matters

Unix-like systems are case-sensitive. pwd, PWD, and Pwd are all different. The correct command
is lowercase pwd. When a command doesn’t work, check your capitalization!

Experiment 4: echo with Nothing

What happens if you run echo with no arguments?

36

PREVIEW
1.3. Your First Commands

echo

Output:

It prints a blank line! This is actually useful in scripts when you want to add vertical space between
outputs.

Now let’s echo an empty string (quotes with nothing inside):

echo ""

Output:

Same result - a blank line.

Common Mistakes and How to Fix Them

As you practice, you might encounter these situations:

Mistake 1: Forgetting to Press Enter

What happens: You type pwd but nothing happens.
Why: The command doesn’t execute until you press Enter.
Fix: Press the Enter key.

Mistake 2: Extra Spaces

What you type:

pwd

(with spaces before the command)
What happens: It actually works fine! The shell ignores leading spaces.
Output:

/home/zavrak

But it’s cleaner to type commands right after the prompt without extra spaces.

Mistake 3: Misspelling Commands

What you type:

echoo Hello

Output:

37

PREVIEW
1. Introduction to the Command Line

echoo: command not found

Fix: Check your spelling and try again:

echo Hello

Mistake 4: Wrong Quotes

What you type:

echo 'Hello there

(missing closing quote)
What happens: The prompt changes to something like:

>

This means the shell is waiting for you to close the quote.
Fix: Type the closing quote and press Enter:

'

Or press Ctrl + C to cancel and start over.

Practice Exercises

Try these on your own to reinforce what you’ve learned:

Exercise 1: Location Check

Run pwd and see where you are. Your output will be your home directory path.

Exercise 2: Echo Your Name

Use echo to display your name:

echo "Your Name"

(Replace “Your Name” with your actual name)

Exercise 3: Time Check

Run date to see the current date and time.

Exercise 4: Multiple Commands

Run these three commands in sequence: 1. pwd to see where you are 2. date to see when it is 3. echo
"Practice complete!" to celebrate

38

PREVIEW
1.3. Your First Commands

Exercise 5: Experiment with Quotes

Try echo with these variations:

echo Hello World

echo "Hello World"

echo 'Hello World'

Notice that all three produce the same output. For now, single quotes (') and double quotes (")
work the same with simple text. In Chapter 6, you’ll learn important differences between them.

Commands Recap

Let’s review the three commands you learned:

pwd (Print Working Directory)

Purpose: Shows your current location in the file system
Syntax: pwd
Example:

pwd

Typical Output: /home/zavrak or /Users/zavrak

echo (Display Text)

Purpose: Displays text or values to the screen
Syntax: echo text or echo "text with spaces"

Examples:

echo Hello

echo "Hello World"

echo 12345

Output: Exactly what you tell it to display

date (Show Date and Time)

Purpose: Displays the current date and time
Syntax: date
Example:

date

Typical Output: Mon Jan 15 14:30:22 PST 2024

Summary

Key Concepts Learned:

39

PREVIEW
1. Introduction to the Command Line

• Command Execution: Type command, press Enter, see output, get new prompt
• pwd: Shows your current directory (where you are in the file system)
• echo: Displays text or values to the screen
• date: Shows the current date and time
• Arguments: Additional information you provide to commands (like the text after echo)
• Error Messages: The shell’s way of telling you something went wrong

Interactive Workflow Learned:

1. Look at the shell prompt to confirm it’s ready
2. Type a command (and arguments if needed)
3. Press Enter to execute
4. Read the output
5. See a new prompt appear
6. Repeat with the next command

Practical Skills:

• How to execute a command by pressing Enter
• How to check your current location with pwd

• How to display messages with echo

• How to check the system time with date

• How to recognize and recover from simple errors
• Understanding that commands are case-sensitive

Essential Command Summary:

Show current directory

pwd

Display text

echo Hello

echo "Text with spaces"

Show date and time

date

POSIX Compliance Notes:

• ✓ All three commands (pwd, echo, date) are POSIX-standard
• ✓ These commands work identically on Linux, macOS, BSD, Unix, WSL
• ✓ The behavior you learned is portable across all Unix-like systems

Common Pitfalls:

• � Typing PWD instead of pwd → � Commands are case-sensitive, use lowercase
• � Forgetting to press Enter → � Command doesn’t execute until you press Enter
• � Being afraid of error messages → � Errors are normal and helpful learning tools
• � Typing spaces before the command → � Not harmful but unnecessary, type right after prompt

What You Can Now Do:

• Execute basic commands confidently
• Understand command output
• Recover from simple mistakes
• Know where you are in the file system at any time
• Display messages and check the time from the command line

40

PREVIEW
1.4. Getting Help

What’s Next:
In Getting Help, you’ll learn how to discover what commands can do and how to use them. You’ll

learn about man pages and the --help flag - essential tools that will help you learn new commands
on your own.

LIGHTBULB Building Muscle Memory

The best way to remember these commands is to use them! Before moving to the next section,
try running pwd, echo, and date a few more times. Type them without looking at the notes.
This hands-on practice builds the muscle memory that makes command-line work feel natural.

1.4. Getting Help

You’ve learned your first three commands, but there are hundreds more available. How do you learn
what they do? How do you remember all the options? The answer: you don’t memorize everything.
Instead, you learn how to ask for help. This section teaches you the two most important ways to get
information about any command: man pages and the --help flag.

In this section, you will:

• Use the man command to read detailed documentation
• Navigate through man pages (scroll, search, exit)
• Use the --help flag for quick reference
• Understand how to read command documentation
• Learn which help method to use in different situations
• Discover how to teach yourself new commands

Prerequisites:
This section builds on concepts from:

• Your First Commands - you need to know how to execute commands and read output

New Concepts Introduced:
This section introduces: man pages, --help flag, command documentation, manual sections,

navigating documentation, POSIX compliance checking
POSIX Compliance:

• ✓ man command is POSIX-standard
• ✓ --help flag is widely supported (convention, not POSIX-mandated)
• ✓ Man pages often indicate POSIX compliance

Estimated Time: 20 minutes

Why You Need Help Documentation

No one memorizes every command and every option. Even experienced developers constantly look
things up. The key skill isn’t memorization - it’s knowing how to find information quickly.

Think of help documentation like a dictionary. You don’t memorize the whole dictionary, but you
know how to look up a word when you need it.

41

PREVIEW
1. Introduction to the Command Line

Method 1: The man Command

The man command displays the manual pages (often called “man pages”) - comprehensive docu-
mentation for commands.

Let’s try it. Type this command:

man pwd

What you’ll see:
A documentation page will fill your terminal screen, something like this:

PWD(1) User Commands PWD(1)

NAME

pwd - print name of current/working directory

SYNOPSIS

pwd [OPTION].....

DESCRIPTION

Print the full filename of the current working directory.

-L, --logical

use PWD from environment, even if it contains symlinks

-P, --physical

avoid all symlinks

--help display this help and exit

--version

output version information and exit

.....

You’re now inside a man page viewer! The documentation is longer than your screen, so you
need to know how to navigate it.

Navigating Man Pages

Man pages open in a program called a pager (usually less on modern systems). Here’s how to
move around:

Basic Navigation:

Key Action

Space or Page Down Move down one screen
b or Page Up Move up one screen
Down Arrow or Enter Move down one line
Up Arrow Move up one line
g Go to the beginning
G (capital) Go to the end

42

PREVIEW
1.4. Getting Help

Key Action

/search term Search for text (press n for next match)
q Quit and return to prompt

Let’s practice. While viewing the man pwd page:

1. Press Space to scroll down a screen
2. Press b to scroll back up
3. Press q to quit and return to your prompt

You should be back at your normal prompt:

zavrak@laptop:~$

Good! Now you know how to get in and out of man pages.

Understanding Man Page Structure

Let’s look at the man page for echo. Type this:

man echo

Man pages typically have this structure:
NAME - The command name and a brief description
SYNOPSIS - Shows how to use the command - Square brackets [.....] indicate optional parts -

..... means you can repeat the previous element
DESCRIPTION - Detailed explanation of what the command does - Lists all available options
EXAMPLES (sometimes) - Example usage
SEE ALSO (often) - Related commands
AUTHOR and COPYRIGHT (sometimes) - Who wrote the command and licensing info
Let’s explore the echo man page:

1. While viewing man echo, press / (forward slash) to search
2. Type options and press Enter
3. The cursor jumps to the first occurrence of “options”
4. Press n to find the next occurrence
5. Press q to quit when you’re done exploring

Reading SYNOPSIS Format

The SYNOPSIS section shows how to use a command. Let’s decode the format:
Example from man ls:

ls [OPTION]..... [FILE].....

This means: - ls - The command name - [OPTION]..... - You can provide options (optional, as
indicated by []), and you can provide multiple options (indicated by) - [FILE]..... - You can
specify files (optional), and you can specify multiple files

Another example from man echo:

43

PREVIEW
1. Introduction to the Command Line

echo [SHORT-OPTION]..... [STRING].....

• You can optionally provide options
• You can optionally provide strings to echo
• Both can be repeated multiple times

Don’t worry if this seems complex now. With practice, you’ll read SYNOPSIS sections naturally.

Method 2: The –help Flag

While man pages are comprehensive, sometimes you just need a quick reminder. Most commands
support the --help flag for quick reference.

Let’s try it with pwd:

pwd --help

Output:

pwd: pwd [-LP]

Print the name of the current working directory.

Options:

-L print the value of $PWD if it names the current working

directory

-P print the physical directory, without any symbolic links

By default, `pwd' behaves as if `-L' were specified.

This appears directly in your terminal (no pager), giving you a quick summary.

Comparing –help vs man

Let’s compare both methods with the date command.
First, try the help flag:

date --help

Output: (abbreviated)

Usage: date [OPTION]..... [+FORMAT]

or: date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

Display or set the system date and time.

Mandatory arguments to long options are mandatory for short options too.

-d, --date=STRING display time described by STRING, not 'now'

-f, --file=DATEFILE like --date; once for each line of DATEFILE

-I[FMT], --iso-8601[=FMT] output date/time in ISO 8601 format.

.....

Quick and to the point! This appears right in your terminal, you can scroll back to see it, and your
prompt is ready immediately.

Now let’s compare with the man page:

44

PREVIEW
1.4. Getting Help

man date

You’ll see much more detailed documentation, including: - Detailed descriptions of every option -
Format string documentation - Examples - Related commands - Technical details

Press q to exit.

When to Use Each Method

Use --help when: - You need a quick reminder of options - You want to see usage syntax quickly -
You’re already familiar with the command - You want to stay in your current terminal context

Use man when: - You’re learning a new command - You need detailed explanations - You want
to see examples - You need to search for specific functionality - You want comprehensive reference
material

LIGHTBULB Quick Reference Workflow

Many experienced users start with --help for a quick look, then use man if they need more
details. Try command --help first, and if you need more information, follow up with man

command.

Practical Example: Learning a New Command

Let’s use what we’ve learned to explore a command we haven’t covered yet: whoami (which tells you
your username).

First, let’s see what it does:

whoami

Output:

zavrak

It displays your username! But what if we want to know more about it?
Let’s check the quick help:

whoami --help

Output:

Usage: whoami [OPTION].....

Print the user name associated with the current effective user ID.

This is the same as id -un.

--help display this help and exit

--version output version information and exit

Good! Now we know: - What it does (prints the username) - What options are available (--help
and --version) - A related command (id -un)

Now let’s see the detailed documentation:

45

PREVIEW
1. Introduction to the Command Line

man whoami

The man page shows: - More detailed explanation - How it differs from similar commands -
Cross-references to related commands

Press q to exit the man page.
We just learned a new command entirely through its documentation!

Understanding Man Page Sections

Man pages are organized into numbered sections. You might see something like PWD(1) at the top of
a man page. The number indicates the section:

1. Section 1: User commands (like pwd, ls, date)
2. Section 2: System calls (programming)
3. Section 3: Library functions (programming)
4. Section 4: Special files (devices)
5. Section 5: File formats and conventions
6. Section 6: Games
7. Section 7: Miscellaneous
8. Section 8: System administration commands

For this book, you’ll primarily work with Section 1 (user commands).
Sometimes the same name exists in multiple sections. For example, passwd is both a command

(Section 1) and a file format (Section 5).
To specify a section:

man 1 passwd

This shows the command documentation.

man 5 passwd

This shows the password file format documentation.
For beginners, you usually don’t need to worry about sections - man command will show you the

user command by default.

Commands That Don’t Have Man Pages

Some commands, especially shell built-in commands, might not have separate man pages. Instead,
they’re documented in the shell’s man page.

Let’s try to get help on cd (which we haven’t learned yet, but will in Chapter 2):

man cd

On some systems, you might see:

No manual entry for cd

This is because cd is a shell built-in command, not a separate program. It’s documented in the
shell’s manual.

For built-in commands, try:

46

PREVIEW
1.4. Getting Help

help cd

Or:

man bash

Then search for /cd to find the cd documentation within the bash manual.
Don’t worry if this seems confusing now. As you learn more commands, you’ll develop intuition

for where to find documentation.

Finding Commands You Don’t Know About

What if you don’t even know which command to look up? Here are some strategies:

Strategy 1: man -k (Keyword Search)

Search for commands by keyword:

man -k directory

Output: (abbreviated)

chdir (2) - change working directory

fchdir (2) - change working directory

getcwd (3) - get current working directory

ls (1) - list directory contents

mkdir (1) - make directories

pwd (1) - print name of current/working directory

rmdir (1) - remove empty directories

This shows all commands related to “directory”! The numbers in parentheses show the man page
section.

Let’s try another keyword search:

man -k time

You’ll see many commands related to time, including date, time, uptime, and others.

Strategy 2: Use apropos

The apropos command is identical to man -k:

apropos file

This searches for all commands with “file” in their description.

Strategy 3: Web Search

Don’t hesitate to search online! Try queries like: - “linux command to [task]” - “posix shell how to
[task]” - “unix command reference”

But always verify what you find works on your system by checking its man page or --help.

47

PREVIEW
1. Introduction to the Command Line

Checking POSIX Compliance

Man pages often indicate whether a command is POSIX-compliant. Look for:

• “CONFORMING TO” or “STANDARDS” sections
• Mentions of “POSIX.1”, “IEEE Std 1003.1”, or “Single UNIX Specification”
• Options marked as “POSIX” vs. “GNU extension” or “Bash extension”

Let’s check the pwd man page:

man pwd

Scroll down (using Space) and look for a section like:

CONFORMING TO

POSIX.1-2001, POSIX.1-2008

This confirms that pwd is POSIX-standard!
Press q to exit.

INFO Why This Matters

When learning shell scripting, POSIX-compliant commands are your friends. They work
everywhere. If a command or option says “GNU extension” or “Bash-specific”, it might not
work on all systems. For maximum portability, stick to POSIX features.

Practice: Exploring Commands

Let’s practice using documentation to explore commands. Try these exercises:

Exercise 1: Learn About ls

1. Run ls --help for a quick overview
2. Run man ls for full documentation
3. Find the option that lists hidden files (hint: search for “hidden” with /)
4. Exit the man page with q

Exercise 2: Explore date Options

1. Run date --help to see available options
2. Find the option to display time in UTC
3. Try running date -u to see UTC time

Exercise 3: Keyword Search

1. Run man -k copy to find commands related to copying
2. Notice cp in the results (we’ll learn this in Chapter 3)
3. Run man cp to preview what copying files looks like

48

PREVIEW
1.4. Getting Help

Exercise 4: Check Command Compliance

1. Run man echo

2. Scroll through and look for “CONFORMING TO” or similar sections
3. See if it mentions POSIX
4. Exit with q

Summary

Key Concepts Learned:

• man pages: Comprehensive manual documentation for commands (accessed with man

command)
• –help flag: Quick reference for command options (used as command --help)
• Pager navigation: How to move through man pages (Space/b/arrows/q)
• SYNOPSIS format: How to read command syntax documentation
• Man page sections: Documentation is organized by type (Section 1 for user commands)
• Keyword search: Finding commands with man -k or apropos

Interactive Workflow Learned:

1. Want to learn a command quickly? Try command --help

2. Need detailed information? Use man command

3. Inside man page: Use Space to scroll, / to search, q to quit
4. Don’t know which command? Use man -k keyword to search
5. Always check if new commands are POSIX-compliant

Practical Skills:

• How to read man pages and navigate with the pager
• How to get quick help with --help

• How to interpret SYNOPSIS syntax (brackets, ellipses)
• How to search for commands by keyword
• How to verify POSIX compliance
• How to teach yourself new commands independently

Essential Commands Summary:

Read full manual page

man pwd

man command

Quick help reference

pwd --help

command --help

Search for commands by keyword

man -k directory

apropos time

Navigation inside man pages:

Space - next page

b - previous page

/search - search for text

49

PREVIEW
1. Introduction to the Command Line

q - quit

Get help on shell built-ins

help cd

Man Page Navigation:

Key Action

Space / PgDn Scroll down one screen
b / PgUp Scroll up one screen
/text Search for “text”
n Next search result
g Go to beginning
G Go to end
q Quit

POSIX Compliance Notes:

• ✓ man command is POSIX-standard
• ✓ Man pages often indicate POSIX compliance in “CONFORMING TO” sections
• � --help flag is a convention, not POSIX-mandated, but widely supported
• ✓ Use man pages to check if commands and options are portable

When to Use Each:
Use --help for: - Quick syntax reminders - Checking available options - Fast reference when you

know the command
Use man for: - Learning new commands - Detailed explanations - Finding examples - Compre-

hensive reference
Common Pitfalls:

• � Trying to scroll man pages with mouse → � Use Space, b, and arrow keys
• � Not knowing how to exit man pages → � Press q to quit
• � Thinking you need to memorize everything → � Use help docs every time you need them
• � Assuming all commands have man pages → � Built-in commands use help or are in man

bash

Self-Learning Strategy:

1. Encounter a new command or forget an option
2. Try command --help for quick answer
3. Use man command for detailed learning
4. Search with / to find specific information
5. Try the examples or options you find
6. Check POSIX compliance for portable scripts

Practice Exercises

Exercise 1: Reading a Man Page (Easy)

Goal: Get comfortable reading man pages and finding information

50

PREVIEW
1.4. Getting Help

Tasks: 1. Open the man page for the ls command with man ls 2. Find the description of what
ls does (usually near the top) 3. Find the -a option and read what it does 4. Find the -h option and
read what it does 5. Quit the man page with q

Skills practiced: Reading man pages, navigation, finding options Expected time: 5 minutes
Expected output: You should learn that: - ls lists directory contents - -a shows hidden files (files

starting with .) - -h makes file sizes human-readable (e.g., 1.5K instead of 1536)
Hint: Use the / key to search within the man page. Try typing /^ *-a to find the -a option.

Exercise 2: Using –help (Easy)

Goal: Learn to use the –help option as a quick reference
Tasks: 1. Run ls --help to see quick help for ls 2. Identify 3 different options you haven’t used

yet 3. Run pwd --help to see help for pwd 4. Run date --help to see help for date
Skills practiced: Using –help, comparing to man pages Expected time: 4 minutes
Expected output: You should see concise help output that lists common options for each command.

Notice that –help is faster than man pages but less detailed.
Hint: The –help output goes to your screen directly - no need to quit like with man pages.

Exercise 3: Searching Man Pages (Medium)

Goal: Find specific information quickly within man pages
Tasks: 1. Open man ls 2. Search for the word “sort” by typing /sort and pressing Enter 3. Press

n to jump to the next match 4. Press N to jump to the previous match 5. Find information about the
-t option (sorts by modification time) 6. Quit with q

Skills practiced: Man page search, navigation Expected time: 5 minutes
Expected output: You should find multiple references to sorting, including the -t option that

sorts files by modification time (newest first).
Hint: After typing /sort, press Enter. Then use n for next match, N for previous.

Exercise 4: Comparing Help Resources (Medium)

Goal: Understand when to use man vs –help vs help
Tasks: 1. Run help cd to see help for the cd builtin command 2. Try man cd - notice it might

show a different page or error 3. Run pwd --help to see quick help 4. Run man pwd to see the full
manual 5. Compare the amount and detail of information

Skills practiced: Choosing the right help resource Expected time: 6 minutes
Expected output: - help cd works (cd is a shell builtin) - man cd may not work or shows a

different page (builtins don’t always have man pages) - --help is quick and concise - man pages are
detailed and comprehensive

Hint: Builtins (like cd) are part of the shell itself, so use help for them. External programs (like
ls) use man pages.

51

PREVIEW
1. Introduction to the Command Line

Exercise 5: Finding New Commands (Hard)

Goal: Explore a command you haven’t used yet using help resources
Tasks: 1. Run man wc to learn about the word count command 2. Find out what wc -l does

(counts lines) 3. Try wc --help to see the quick reference 4. Create a test: echo "hello world" |

wc -w 5. Verify it counts 2 words 6. Explain in your own words what wc does
Skills practiced: Learning new commands independently, experimentation Expected time: 8

minutes
Expected output: You should discover that: - wc counts words, lines, and characters in text - wc

-l counts only lines - wc -w counts only words - echo "hello world" | wc -w outputs 2
Hint: Don’t worry about the | symbol yet - it’s a pipe that sends text from echo to wc. We’ll learn

pipes in Chapter 12.

What’s Next:
Congratulations! You’ve completed Chapter 1. You now know: - What the command line is and

why it’s valuable - How to open and use the terminal - Your first commands (pwd, echo, date) - How
to get help and learn new commands on your own

In Chapter 2: Navigating the File System, you’ll learn to move around your computer’s file system
with confidence, understanding paths, directories, and how to navigate like a pro.

LIGHTBULB Your Superpower

Learning to use man and --help effectively is like gaining a superpower. You now have the
ability to teach yourself thousands of commands. Whenever you’re stuck or curious, remember:
the documentation is always there to help. Use it liberally!

INFO Chapter 1 Complete!

You’ve finished the first chapter! You’ve gone from never using the command line to confidently
executing commands and looking up documentation. Take a moment to appreciate how far
you’ve come. The foundation you’ve built here will support everything else you learn in this
book.

52

PR
EV
IE
W

2. Navigating the File System

2.1. Understanding Paths and Directories

When you use a graphical file manager like Windows Explorer or macOS Finder, you click through
folders to find your files. The command line works the same way, but instead of clicking, you type
paths. Understanding how paths work is fundamental to using the command line effectively.

In this section, you will:

• Understand what directories are and how they organize files
• Learn the difference between absolute and relative paths
• Discover special directory symbols: /, ~, ., and ...

• Use pwd to understand your current location in the file system
• Read and interpret file system paths

Prerequisites:
This section builds on concepts from:

• Your First Commands - we’ll use pwd and echo

• No other prerequisites - we’re building foundational knowledge!

New Concepts Introduced:
This section introduces: paths, directories, absolute path, relative path, / (root), ~ (home), .

(current directory), ... (parent directory)
POSIX Compliance:

• ✓ All commands and concepts are POSIX-compliant
• Works identically on all Unix-like systems (Linux, macOS, BSD, etc.)

Estimated Time: 15-20 minutes

What Are Directories?

In graphical interfaces, you call them “folders.” On the command line, we call them “directories.”
They’re the same thing - containers that organize files and other directories.

Think of your file system as a filing cabinet. The cabinet has drawers (directories), and those
drawers can contain folders (more directories) and documents (files). Each item has a specific
location or “address” - that’s its path.

Your Current Location

Just like in real life, when you’re working on the command line, you’re always standing somewhere
in the file system. Let’s find out where you are right now:

pwd

Output:

53

PREVIEW
2. Navigating the File System

/home/zavrak

The pwd command (which stands for “print working directory”) shows your current location.
This output tells us we’re in a directory called zavrak that’s inside a directory called home.

INFO Your Output Will Be Different

Don’t worry if your output doesn’t say /home/zavrak. You might see /home/yourname,
/Users/yourname, or something else. The important thing is understanding what it means.

Understanding Absolute Paths

The path /home/zavrak is an absolute path. It’s called “absolute” because it describes the complete
location starting from the very top of the file system.

Think of it like a complete mailing address: - In real life: “123 Main Street, Springfield, State,
Country” - On the computer: /home/zavrak

Let’s break down what we see. Look at your output from pwd again:

pwd

Output:

/home/zavrak

Notice how the path is divided by forward slashes (/)? Each slash separates levels in the directory
hierarchy. Let’s read this path from left to right:

• The first / at the beginning means “start at the root” (the very top of the file system)
• home is a directory at the root level
• zavrak is a directory inside home

Visualizing the Directory Tree

Here’s what the file system hierarchy looks like:

Unix File System Hierarchy
Understanding this tree:

• Root (/) is at the top - everything starts here

54

PREVIEW
2.1. Understanding Paths and Directories

• Directories branch down like a family tree
• Your home is typically /home/yourname (Linux) or /Users/yourname (macOS)
• Each level adds another / to the path
• Files are at the ends of branches (leaves on the tree)

Path examples from this tree: - / = Root directory - /home = The home directory folder -
/home/zavrak = Your home directory (where ~ points) - /home/zavrak/Documents = Your Docu-
ments folder - /home/zavrak/Documents/report.txt = A file in Documents

Important: Absolute vsRelative -Absolute path: Starts with / (from root): /home/zavrak/Documents
- Relative path: Starts from current location: Documents (if you’re in /home/zavrak)

So /home/zavrak means: “Starting from the root, go into the home directory, then into the zavrak
directory.”

The Root Directory

That first slash (/) is special - it represents the root directory, which is the very top of your entire file
system. Everything on your computer lives somewhere under root.

Let’s use echo to display some absolute paths and understand their structure:

echo "Path 1: /home/zavrak"

Output:

Path 1: /home/zavrak

This starts at root (/), goes into home, then into zavrak.
Let’s look at another example:

echo "Path 2: /home/zavrak/Documents"

Output:

Path 2: /home/zavrak/Documents

This goes even deeper: root → home → zavrak → Documents. We’ve added one more level to the
path.

One more example to make this clear:

echo "Path 3: /usr/bin/python"

Output:

Path 3: /usr/bin/python

This is a completely different branch of the file system: root → usr → bin → python (which
would be a file, not a directory).

Exclamation The Key Rule of Absolute Paths

If a path starts with /, it’s an absolute path. It always means the same location, no matter where
you currently are in the file system.

55

PREVIEW
2. Navigating the File System

Understanding Relative Paths

Now let’s talk about relative paths. These are paths that depend on where you currently are - they’re
“relative” to your current location.

Think of it like giving directions: - Absolute: “Go to 123 Main Street, Springfield” (works from
anywhere) - Relative: “Go down two blocks and turn left” (only works if I know where you’re
starting from)

Let’s check where we are:

pwd

Output:

/home/zavrak

If we’re currently in /home/zavrak, and we want to refer to a Documents directory inside it, we
can use a relative path. Instead of writing the full path /home/zavrak/Documents, we can just write
Documents.

Here’s the difference: - Absolute path: /home/zavrak/Documents (complete address from root)
- Relative path: Documents (relative to where we are now)

Let’s demonstrate this concept with echo:

echo "Relative path: Documents"

Output:

Relative path: Documents

Since we’re in /home/zavrak, the relative path Documents means the same thing as the absolute
path /home/zavrak/Documents. But if we were in a different directory, Documents would refer to a
completely different location!

INFO Relative Paths Don’t Start with /

If a path doesn’t start with /, it’s a relative path. It starts from your current location.

Special Directory Symbols

The shell provides several shortcuts for common directory locations. These are incredibly useful and
you’ll use them constantly.

The Home Directory: ~

The tilde symbol (~) is a shortcut for your home directory. Your home directory is your personal
space where your documents, settings, and files live.

Let’s see what ~ represents:

echo ~

Output:

56

PREVIEW
2.1. Understanding Paths and Directories

/home/zavrak

The shell replaced ~ with the actual path to the home directory! This is incredibly useful because
your home directory path might be different on different systems, but ~ always works.

Let’s verify this matches our current location:

pwd

Output:

/home/zavrak

Perfect! They’re the same because we’re currently in our home directory.
Now let’s see how ~ can be used in paths:

echo ~/Documents

Output:

/home/zavrak/Documents

The shell expanded ~ to /home/zavrak, then added /Documents to create the full path.
One more example:

echo ~/Documents/report.txt

Output:

/home/zavrak/Documents/report.txt

Using ~ makes your commands more portable - they’ll work regardless of what the actual home
directory path is.

The Current Directory: .

The single dot (.) represents your current directory - wherever you are right now. Let’s see where
we are:

pwd

Output:

/home/zavrak

Now let’s see what . means:

echo "Current directory: ."

Output:

Current directory: .

57

PREVIEW
2. Navigating the File System

This shows the symbol itself, but in most contexts, . means “right here where I am.” So if we’re
in /home/zavrak, then . refers to /home/zavrak.

You might wonder why we need a symbol for “here” - it becomes important when running
programs or scripts from your current location, which you’ll learn about in later chapters.

The Parent Directory: ...

The double dot (...) represents the parent directory - the directory one level up from where you
are.

Let’s check our current location:

pwd

Output:

/home/zavrak

We’re in /home/zavrak. The parent directory (one level up) would be /home. Let’s see what ...
represents:

echo "Parent directory: ..."

Output:

Parent directory: ...

Again, this shows the symbol itself. The ... symbol means “one level up from where I am.”
If we’re in /home/zavrak, then: - . refers to /home/zavrak (current) - ... refers to /home (one

level up)
We can even go up multiple levels by combining ... with slashes:

echo "Two levels up: .../..."

Output:

Two levels up: .../...

If we’re in /home/zavrak, then .../... means “up one level to /home, then up another level to /”
(the root).

The Root Directory: /

We’ve already seen / at the beginning of absolute paths, but / by itself refers to the root directory -
the very top of the file system.

echo "Root directory: /"

Output:

Root directory: /

The root directory is the ancestor of all other directories. Everything on your system lives under
/.

58

PR
EV
IE
W

2.1. Understanding Paths and Directories

Putting It All Together

Let’s review all the special symbols with examples. First, let’s confirm where we are:

pwd

Output:

/home/zavrak

Now let’s see all our special symbols in action:

echo "Home: ~"

Output:

Home: ~

Let’s expand it:

echo ~

Output:

/home/zavrak

Now the current directory:

echo "Current: . refers to $(pwd)"

Output:

Current: . refers to /home/zavrak

Notice we used $(pwd) here - this runs the pwd command and inserts its output. We learned
about pwd in Section 1.3.

LIGHTBULB Path Symbol Summary

• / at the start: Root directory (top of file system)
• ~: Your home directory
• .: Current directory (where you are now)
• ...: Parent directory (one level up)

Absolute vs Relative: A Practical Comparison

Let’s imagine you have a file called report.txt in a Documents directory inside your home directory.
Here are different ways to refer to that same file:

Absolute paths (work from anywhere):

echo "/home/zavrak/Documents/report.txt"

Output:

59

PREVIEW
2. Navigating the File System

/home/zavrak/Documents/report.txt

Using the home directory shortcut:

echo ~/Documents/report.txt

Output:

/home/zavrak/Documents/report.txt

Relative paths (only work when you’re in /home/zavrak):
Let’s verify we’re in the right location:

pwd

Output:

/home/zavrak

Good! Now the relative path:

echo "Documents/report.txt"

Output:

Documents/report.txt

This relative path Documents/report.txt only works because we’re currently in /home/zavrak.
If we were in a different directory, this would refer to a completely different file (or more likely,
wouldn’t exist at all).

Why Understanding Paths Matters

You might be wondering why we’re spending so much time on paths without actually moving
around yet. Here’s why this foundation is crucial:

1. Navigation: In the next sections, you’ll use these concepts to move through directories
2. File operations: When copying, moving, or deleting files, you need to specify paths
3. Running programs: You’ll need to tell the computer where programs and scripts are located
4. Troubleshooting: Understanding paths helps you figure out why something can’t be found

Think of this section as learning to read a map before you start traveling. Once you understand
how to read paths, navigating the file system becomes natural.

Summary

Key Concepts Learned:

• Directory: A container for files and other directories (same as “folder” in GUI)
• Path: The address or location of a file or directory
• Absolute path: Complete path from root (starts with /), works from anywhere
• Relative path: Path from your current location (doesn’t start with /), depends on where you

are

60

PREVIEW
2.1. Understanding Paths and Directories

• Root directory (/): The very top of the file system, ancestor of everything

Special Path Symbols:

• / at the start: Root directory (top of the file system)
• ~: Your home directory (expands to something like /home/username)
• .: Current directory (where you are right now)
• ...: Parent directory (one level up from current location)

Practical Skills:

• How to read and interpret paths like /home/zavrak/Documents
• How to understand the difference between /home/zavrak/file.txt (absolute) and
Documents/file.txt (relative)

• How to use ~ to refer to your home directory
• How to use pwd to find out where you are

Essential Commands:

Show your current location

pwd

Display expanded home path

echo ~

Display any path or text

echo "some text or path"

Interactive Workflow Learned:

1. Use pwd to see where you currently are
2. Understand that absolute paths start with / and work from anywhere
3. Understand that relative paths don’t start with / and depend on your location
4. Use special symbols (~, ., ...) as shortcuts

POSIX Compliance Notes:

• ✓ All path concepts are part of POSIX and Unix standards
• ✓ These symbols work identically on all Unix-like systems
• The specific paths (like /home vs /Users) may vary by system, but the concepts remain the

same

Common Pitfalls:

• � Confusing /home (absolute) with home (relative) → � The leading / makes all the difference!
• � Thinking ~ is a directory name → � It’s a shortcut that expands to your home directory path
• � Using backslashes \ like Windows → � Unix uses forward slashes /
• � Forgetting that relative paths depend on your current location → � Use pwd to check where

you are

Practice Exercises

Exercise 1: Identifying Your Location (Easy)

Goal: Use pwd to understand where you are in the file system

61

PREVIEW
2. Navigating the File System

Tasks: 1. Open your terminal 2. Run pwd to see your current directory 3. Write down the full path
4. Count how many levels deep you are (count the / characters) 5. Identify your home directory
name from the path

Skills practiced: Using pwd, reading paths, understanding directory depth Expected time: 3
minutes

Expected output: You should see a path like /home/username or /Users/username. The number
of forward slashes tells you how many levels deep you are from the root.

Hint: Each / separates directory levels. /home/zavrak is 2 levels deep (root → home → zavrak).

Exercise 2: Understanding Absolute vs Relative Paths (Easy)

Goal: Distinguish between absolute and relative paths
Tasks: 1. Write down which of these are absolute paths: - /home/user/documents -

documents/report.txt - /usr/bin/ls - .../parent_directory - /etc/hosts 2. Write down
which are relative paths 3. Explain why each absolute path is absolute 4. Explain why each relative
path is relative

Skills practiced: Path recognition, understanding path types Expected time: 5 minutes
Expected output: Absolute: /home/user/documents, /usr/bin/ls, /etc/hosts (start with /)

Relative: documents/report.txt, .../parent_directory (don’t start with /)
Hint: Absolute paths always start with / (root). Relative paths start with anything else.

Exercise 3: Exploring the Root Directory (Medium)

Goal: Understand the root directory and standard Unix directories
Tasks: 1. Run ls / to see the root directory contents 2. Identify at least 5 directories you see 3.

Try ls /home to see user home directories 4. Try ls /usr to see system programs 5. Try ls /etc to
see configuration files 6. Explain in your own words what the root directory is

Skills practiced: Exploring the filesystem, understanding structure Expected time: 7 minutes
Expected output: You should see directories like: bin, etc, home, usr, var, tmp, and others. Each

serves a specific purpose in the Unix filesystem hierarchy.
Hint: Don’t worry if you see “Permission denied” for some directories - that’s normal security.

You can still see their names with ls /.

Exercise 4: Relative Path Practice (Medium)

Goal: Understand how relative paths work with ." and..”
Tasks: 1. Run pwd to see where you are 2. Run ls . to list the current directory 3. Run ls ... to

list the parent directory 4. Run ls .../... to list the grandparent directory 5. Compare the output of
ls . and ls (with no arguments) 6. Explain what . and ... represent

Skills practiced: Using dot notation, relative navigation Expected time: 6 minutes

62

PREVIEW
2.2. Listing Files

Expected output: - ls . and ls show the same thing (current directory) - ls ... shows the
parent directory (one level up) - ls .../... shows two levels up - . means “current directory” - ...
means “parent directory”

Hint: Think of . as “here” and ... as “one level up from here”.

Exercise 5: Path Construction Challenge (Hard)

Goal: Build absolute and relative paths to specific locations
Tasks: 1. Run pwd and write down your current location (e.g., /home/zavrak) 2. Write the

absolute path to your parent directory (e.g., /home) 3. Write the absolute path to the root directory
(/) 4. Write the relative path to your parent directory (...) 5. Write the relative path to your current
directory (.) 6. If you’re in /home/zavrak, write the absolute path to /home/zavrak/documents 7.
From the same location, write the relative path to documents (just documents)

Skills practiced: Path construction, absolute vs relative thinking Expected time: 10 minutes
Expected output: If you’re in /home/zavrak: - Absolute to parent: /home - Absolute to root: / -

Relative to parent: ... - Relative to current: . - Absolute to documents: /home/zavrak/documents -
Relative to documents: documents or ./documents

Hint: Absolute paths describe the full journey from / (root). Relative paths describe the journey
from where you are now.

What’s Next:
In Listing Files, we’ll use these path concepts to explore what’s actually in your directories using

the ls command. You’ll learn how to see files, view details about them, and discover hidden files.

2.2. Listing Files

Now that you understand paths and directories, it’s time to see what’s actually inside them. In a
graphical file manager, you’d open a folder and see its contents. On the command line, you use the
ls (list) command to see what files and directories are in a location.

In this section, you will:

• Use the ls command to see files and directories
• View detailed information with ls -l (long format)
• Discover hidden files with ls -a

• Make file sizes human-readable with ls -h

• Combine multiple options together
• Interpret the output of ls -l to understand file permissions, sizes, and dates

Prerequisites:
This section builds on concepts from:

• Your First Commands - running commands and understanding output
• Understanding Paths - directories, paths, and the pwd command

New Concepts Introduced:
This section introduces: ls command, ls -l, ls -a, ls -h, hidden files (dot files), file permis-

sions basics, file sizes, timestamps, combining options

63

PREVIEW
2. Navigating the File System

POSIX Compliance:

• ✓ All commands and options shown are POSIX-compliant
• Works identically across all Unix-like systems

Estimated Time: 20-25 minutes

Your First Look: Basic ls

Let’s start by seeing what’s in your current directory. First, let’s confirm where we are:

pwd

Output:

/home/zavrak

Good! We’re in the home directory. Now let’s see what’s inside:

ls

Output:

Documents Downloads Music Pictures Videos

The ls command shows you the names of files and directories in your current location. In this
case, we can see five directories: Documents, Downloads, Music, Pictures, and Videos.

INFO Your Output Will Be Different

You’ll see whatever files and directories are actually in your home directory. Don’t worry if
your list looks different - we’re learning the concepts, not the exact content.

Let’s try looking at a different directory without moving there. We can give ls a path to examine:

ls Documents

Output:

notes.txt report.pdf project

This shows what’s inside the Documents directory. We can see two files (notes.txt and
report.pdf) and what appears to be another directory (project). But how can we tell which
items are files and which are directories? That’s where options come in.

Getting More Details: ls -l

The basic ls command just shows names. But often you need more information - is something a file
or directory? How big is it? When was it modified? The -l option (that’s a lowercase letter L, for
“long format”) shows detailed information.

Let’s try it:

64

PR
EV
IE
W

2.2. Listing Files

ls -l

Output:

drwxr-xr-x 2 zavrak zavrak 4096 Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4096 Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4096 Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4096 Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4096 Jan 13 11:30 Videos

Wow! That’s a lot more information. Let’s break down what each column means. Look at the
first line:

drwxr-xr-x 2 zavrak zavrak 4096 Jan 15 10:30 Documents

Reading from left to right:

1. drwxr-xr-x - File type and permissions (we’ll explore this more in Chapter 3)

• The first letter d means it’s a directory
• A - would mean it’s a regular file

2. 2 - Number of links (don’t worry about this for now)
3. zavrak - Owner of the file/directory
4. zavrak - Group that owns the file/directory
5. 4096 - Size in bytes
6. Jan 15 10:30 - Last modification date and time
7. Documents - Name of the file/directory

Let’s look at a directory that has both files and directories to see the difference:

ls -l Documents

Output:

drwxr-xr-x 2 zavrak zavrak 4096 Jan 15 10:30 project

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 09:20 notes.txt

-rw-r--r-- 1 zavrak zavrak 8432 Jan 15 10:15 report.pdf

Notice the difference at the beginning of each line: - project starts with d - it’s a directory -
notes.txt starts with - - it’s a regular file - report.pdf starts with - - also a regular file

Also notice the file sizes: - notes.txt is 256 bytes - report.pdf is 8,432 bytes
These sizes are in bytes, which can be hard to read for large files. Let’s make them more readable.

Making Sizes Readable: ls -h

The -h option stands for “human-readable.” It converts bytes into KB (kilobytes), MB (megabytes),
or GB (gigabytes) automatically.

Let’s try combining -l and -h:

ls -l -h

Output:

65

PREVIEW
2. Navigating the File System

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 13 11:30 Videos

Look at the size column now - instead of 4096, we see 4.0K (4 kilobytes). Much easier to read!
You can also write this more concisely by combining the options:

ls -lh

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 13 11:30 Videos

The output is identical! When options don’t require arguments, you can combine them after a
single dash. So -l -h and -lh are equivalent.

Let’s look at our Documents directory with human-readable sizes:

ls -lh Documents

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 project

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 09:20 notes.txt

-rw-r--r-- 1 zavrak zavrak 8.3K Jan 15 10:15 report.pdf

Now report.pdf shows as 8.3K instead of 8432 bytes - much easier to understand at a glance!

Discovering Hidden Files: ls -a

On Unix-like systems, files and directories whose names start with a dot (.) are hidden by default.
These are often configuration files or system files. Let’s see them!

First, let’s look at what we see without the -a option:

ls

Output:

Documents Downloads Music Pictures Videos

Now let’s add the -a option (which stands for “all”):

ls -a

Output:

.bash_history .bashrc .profile Documents Downloads Music Pictures Videos

66

PR
EV
IE
W

2.2. Listing Files

Look at all the new items! They all start with a dot (.). These are hidden files and directories.
Let’s examine what we’re seeing:

• . - Remember this? It’s the current directory (from Section 2.1)
• ... - The parent directory (from Section 2.1)
• .bash_history - A hidden file that stores your command history
• .bashrc - A hidden file with shell configuration
• .profile - Another configuration file

The rest are the regular (non-hidden) directories we saw before.

INFO Hidden Files Are Configuration

Files that start with . are usually configuration files or data that programs use behind the
scenes. They’re hidden to keep your directory listings clean, but they’re important for how your
system works.

Let’s see hidden files with details:

ls -l -a

Output:

drwxr-xr-x 8 zavrak zavrak 4096 Jan 15 10:30 .

drwxr-xr-x 3 root root 4096 Jan 01 08:00 ...

-rw------- 1 zavrak zavrak 573 Jan 15 10:25 .bash_history

-rw-r--r-- 1 zavrak zavrak 220 Jan 01 08:00 .bashrc

-rw-r--r-- 1 zavrak zavrak 807 Jan 01 08:00 .profile

drwxr-xr-x 2 zavrak zavrak 4096 Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4096 Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4096 Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4096 Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4096 Jan 13 11:30 Videos

Notice that even . and ... show up with details: - . shows as a directory (d at the start) - ... also
shows as a directory - All the hidden files (.bash_history, .bashrc, .profile) show with - at the
start, indicating they’re regular files

Combining Multiple Options

You can combine as many options as you need. Let’s combine all three we’ve learned:

ls -a -l -h

Output:

drwxr-xr-x 8 zavrak zavrak 4.0K Jan 15 10:30 .

drwxr-xr-x 3 root root 4.0K Jan 01 08:00 ...

-rw------- 1 zavrak zavrak 573 Jan 15 10:25 .bash_history

-rw-r--r-- 1 zavrak zavrak 220 Jan 01 08:00 .bashrc

-rw-r--r-- 1 zavrak zavrak 807 Jan 01 08:00 .profile

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 14 09:15 Downloads

67

PREVIEW
2. Navigating the File System

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 13 11:30 Videos

Perfect! We’re seeing: - All files including hidden ones (from -a) - Long format with detailed
information (from -l) - Human-readable sizes like 4.0K instead of bytes (from -h)

As mentioned earlier, when combining options without arguments, you can write them together:

ls -alh

Output:

drwxr-xr-x 8 zavrak zavrak 4.0K Jan 15 10:30 .

drwxr-xr-x 3 root root 4.0K Jan 01 08:00 ...

-rw------- 1 zavrak zavrak 573 Jan 15 10:25 .bash_history

-rw-r--r-- 1 zavrak zavrak 220 Jan 01 08:00 .bashrc

-rw-r--r-- 1 zavrak zavrak 807 Jan 01 08:00 .profile

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 13 11:30 Videos

Identical output! You can write them in any order too:

ls -lah

Output:

drwxr-xr-x 8 zavrak zavrak 4.0K Jan 15 10:30 .

drwxr-xr-x 3 root root 4.0K Jan 01 08:00 ...

-rw------- 1 zavrak zavrak 573 Jan 15 10:25 .bash_history

-rw-r--r-- 1 zavrak zavrak 220 Jan 01 08:00 .bashrc

-rw-r--r-- 1 zavrak zavrak 807 Jan 01 08:00 .profile

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 13 11:30 Videos

Still the same! The order of options usually doesn’t matter.

LIGHTBULB Common ls Combinations

Many people use ls -lah so often they think of it as a single command. It shows everything
(including hidden files), in long format, with readable sizes. This is one of the most useful
combinations!

Using ls with Paths

You don’t have to be in a directory to see its contents. You can give ls a path to any directory. Let’s
look at our Documents directory from our current location:

68

PREVIEW
2.2. Listing Files

pwd

Output:

/home/zavrak

Good, we’re in the home directory. Now let’s examine Documents using a relative path:

ls -lh Documents

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 project

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 09:20 notes.txt

-rw-r--r-- 1 zavrak zavrak 8.3K Jan 15 10:15 report.pdf

We can also use an absolute path:

ls -lh /home/zavrak/Documents

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 project

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 09:20 notes.txt

-rw-r--r-- 1 zavrak zavrak 8.3K Jan 15 10:15 report.pdf

Same result! The absolute path /home/zavrak/Documents and the relative path Documents point
to the same location (when we’re in /home/zavrak).

Let’s try using the home directory shortcut:

ls -lh ~/Documents

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 project

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 09:20 notes.txt

-rw-r--r-- 1 zavrak zavrak 8.3K Jan 15 10:15 report.pdf

Still the same! Remember, ~ expands to your home directory path.

Practical Exploration Workflow

Let’s put everything together with a realistic exploration workflow. Imagine you want to see what’s
in your home directory, find the Documents folder, and see what’s inside it.

First, verify your location:

pwd

Output:

/home/zavrak

Get an overview of what’s here:

69

PREVIEW
2. Navigating the File System

ls

Output:

Documents Downloads Music Pictures Videos

I can see there’s a Documents directory. Let me get more details about everything:

ls -lh

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 10 14:22 Music

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 13 11:30 Videos

Good! I can confirm Documents is a directory (starts with d). Now let’s see what’s inside
Documents:

ls -lh Documents

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 project

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 09:20 notes.txt

-rw-r--r-- 1 zavrak zavrak 8.3K Jan 15 10:15 report.pdf

Perfect! I can see: - One directory called project - Two files: notes.txt (256 bytes) and
report.pdf (8.3 KB)

This is exactly how you’d explore your file system on the command line - checking where you are,
listing contents, examining directories of interest, and gathering information about files.

Understanding What You See

Let’s take a moment to understand what we’re really looking at in the long format. Here’s a single
line:

-rw-r--r-- 1 zavrak zavrak 8.3K Jan 15 10:15 report.pdf

Breaking it down piece by piece:
First character (-): - - = regular file - d = directory - l = symbolic link (we’ll learn about these

later)
Next nine characters (rw-r--r--): These are permissions - who can read, write, or execute this

file. We’ll cover this in detail in Section 3.5. For now, just know: - r = read permission - w = write
permission - - = permission not granted

Owner and group (zavrak zavrak): - First zavrak = the user who owns this file - Second
zavrak = the group that owns this file

Size (8.3K): - The file size (8.3 kilobytes in this case, because we used -h)
Date and time (Jan 15 10:15): - When this file was last modified
Name (report.pdf): - The file name

70

PREVIEW
2.2. Listing Files

Summary

Key Concepts Learned:

• ls command: Lists files and directories in a location
• ls -l: Shows detailed information in long format (permissions, size, date, etc.)
• ls -a: Shows all files including hidden ones (those starting with .)
• ls -h: Makes file sizes human-readable (KB, MB, GB instead of bytes)
• Hidden files: Files starting with . are hidden by default
• Combining options: Multiple options can be combined like -lah

Practical Skills:

• How to see what’s in a directory with ls

• How to view detailed file information with ls -l

• How to see hidden files with ls -a

• How to make file sizes readable with ls -h

• How to combine options for maximum information: ls -lah

• How to list contents of any directory by providing a path: ls path/to/directory

• How to distinguish files from directories in ls -l output (- vs d)
• How to interpret file sizes, dates, and ownership

Essential Commands:

Basic listing

ls

Long format with details

ls -l

Show all files including hidden

ls -a

Human-readable file sizes

ls -h

Combine all three (very common)

ls -lah

List contents of a specific directory

ls path/to/directory

ls ~/Documents

ls /home/zavrak

Interactive Workflow Learned:

1. Use pwd to verify where you are
2. Use ls to get a quick overview of contents
3. Use ls -lh to see details about files and directories
4. Use ls -lah to see everything including hidden files
5. Use ls -lh path/to/dir to examine other directories without moving there

POSIX Compliance Notes:

• ✓ The ls command is part of POSIX

71

PREVIEW
2. Navigating the File System

• ✓ Options -l, -a, and -h are POSIX-standard
• ✓ These work identically on all Unix-like systems
• Note: Some systems may show slightly different output formats, but the information is the

same

Common Pitfalls:

• � Thinking you can see hidden files by default → � Use ls -a to see files starting with .

• � Confusing -l (lowercase L for “long”) with -1 (number one) → � Use lowercase L for details
• � Reading raw bytes for large files → � Use -h for human-readable sizes
• � Forgetting which items are directories vs files → � Look for d at the start in ls -l output

Practice Exercises

Exercise 1: Basic Directory Exploration (Beginner)

Goal: Practice using basic ls commands to explore your home directory.
Requirements: - Use pwd to confirm you’re in your home directory - Run ls to see the contents -

Count how many items you see - Run ls -l and identify which items are directories (look for d at
the start)

Expected output:

/home/yourusername

Desktop Documents Downloads Music Pictures Videos

Total items: 6

Directories: Desktop, Documents, Downloads, Music, Pictures, Videos

Exercise 2: Discovering Hidden Files (Beginner)

Goal: Find and count hidden files in your home directory.
Requirements: - Navigate to your home directory - List all files including hidden ones - Count

how many hidden files/directories you find - List at least 3 hidden files by name
Expected output:

Hidden files found: .bash_history, .bashrc, .profile, .ssh, .config

Total hidden items: 5 or more

Hint: Remember that hidden files start with a dot (.). Use the -a option.

Exercise 3: Human-Readable File Sizes (Intermediate)

Goal: Compare file sizes in bytes versus human-readable format.
Requirements: - Navigate to a directory with various files (e.g., Documents or Downloads) - Use

ls -l to see sizes in bytes - Use ls -lh to see human-readable sizes - Identify the largest file in the
directory - Explain what the size units mean (K, M, G)

Expected output:

72

PREVIEW
2.3. Changing Directories

Largest file: report.pdf (8.3K = 8,300 bytes approximately)

Units: K=kilobytes, M=megabytes, G=gigabytes

Exercise 4: Complete Directory Information (Intermediate)

Goal: Use multiple options together to get comprehensive directory information.
Requirements: - Navigate to your home directory - Run ls -lah to see all files with details and

readable sizes - Identify at least one hidden file and its size - Find when your .bashrc or .profile was
last modified - Determine who owns these files

Expected output:

Hidden file: .bashrc

Size: 220 bytes

Last modified: Jan 01 08:00

Owner: yourusername

Group: yourusername

Exercise 5: Exploring Different Directories (Intermediate)

Goal: Practice listing contents of directories without changing into them.
Requirements: - From your home directory, list the contents of Documents without using cd -

List the contents of /tmp without using cd - Use both absolute and relative paths - Combine -lh

options to see details and readable sizes
Expected output:

Command: ls -lh Documents

Result: Lists Documents contents with human-readable sizes

Command: ls -lh /tmp

Result: Lists /tmp contents with human-readable sizes

Command: ls -lh ~/Documents

Result: Same as first command, using absolute path with ~ shortcut

Hint: You can provide a path as an argument to ls: ls [options] path

What’s Next:
In Changing Directories, we’ll learn how to move between directories using the cd command.

You’ll combine pwd, ls, and cd to navigate your file system confidently.

2.3. Changing Directories

In the previous sections, you learned how to understand paths and see what’s in directories. But
you’ve been stationary - like looking at a map without moving. Now it’s time to learn how to actually
navigate through your file system using the cd (change directory) command.

73

PREVIEW
2. Navigating the File System

In this section, you will:

• Use the cd command to move between directories
• Navigate to your home directory quickly with cd ~ or just cd
• Move up to parent directories with cd ...

• Return to your previous directory with cd -

• Understand the difference between absolute and relative paths when navigating
• Use tab completion to save time and avoid typos
• Combine pwd, ls, and cd for confident navigation

Prerequisites:
This section builds on concepts from:

• Understanding Paths - absolute and relative paths, special symbols
• Listing Files - using ls to see directory contents

New Concepts Introduced:
This section introduces: cd command, directory navigation, cd ..., cd ~, cd -, tab completion
POSIX Compliance:

• ✓ All commands in this section are POSIX-compliant
• Works on any Unix-like system (Linux, macOS, BSD, etc.)

Estimated Time: 20-25 minutes

The cd Command Basics

The cd command stands for “change directory.” It’s how you move around the file system from the
command line. Think of it like clicking to open a folder in a graphical file manager, except you type
the destination instead of clicking.

Let’s start by seeing where we currently are:

pwd

Output:

/home/zavrak

Good! We’re in the home directory. Now let’s see what directories are available to move into:

ls

Output:

Documents Downloads Music Pictures Videos

We can see several directories. Let’s move into the Documents directory:

cd Documents

Notice that after running cd, you don’t see any output. This is normal - cd only produces output
if there’s an error. The shell follows the Unix philosophy: “no news is good news.” If a command
succeeds, it often stays silent.

Let’s verify we successfully moved:

74

PREVIEW
2.3. Changing Directories

pwd

Output:

/home/zavrak/Documents

Perfect! We’re now in the Documents directory. Our location changed from /home/zavrak to
/home/zavrak/Documents. The cd Documents command moved us from our current location into
the Documents subdirectory.

Now let’s see what’s in this directory:

ls

Output:

notes.txt project report.pdf

We can see the contents of where we just moved to. This three-command pattern is very com-
mon:

1. cd to move somewhere
2. pwd to verify where you are
3. ls to see what’s there

Moving Up: The Parent Directory

Now that we’re in the Documents directory, what if we want to go back up to the home directory?
We could type the full path cd /home/zavrak, but there’s a much easier way.

Remember the ... symbol from Section 2.1? It represents the parent directory - one level up from
where you are. Let’s use it:

cd ...

Again, no output means it worked. Let’s verify:

pwd

Output:

/home/zavrak

Excellent! We’re back in the home directory. The cd ... command moved us up one level in the
directory tree, from /home/zavrak/Documents back to /home/zavrak.

Let’s try this again to see the pattern. First, let’s move into a directory:

cd Downloads

Check where we are:

pwd

Output:

75

PREVIEW
2. Navigating the File System

/home/zavrak/Downloads

Good! Now back up:

cd ...

Verify:

pwd

Output:

/home/zavrak

We’re back home again. This cd ... command works from anywhere - it always takes you one
level up.

Moving Up Multiple Levels

What if you’re deep in the directory structure and want to move up several levels at once? You can
chain ... with slashes.

Let’s navigate somewhere nested first. We’ll go into Documents:

cd Documents

Verify:

pwd

Output:

/home/zavrak/Documents

Now let’s say there’s a project directory inside Documents:

ls

Output:

notes.txt project report.pdf

Let’s go into project:

cd project

Check our location:

pwd

Output:

/home/zavrak/Documents/project

Now we’re two levels deep from home. To go up two levels at once, we use .../...:

76

PR
EV
IE
W

2.3. Changing Directories

cd .../...

Let’s see where we ended up:

pwd

Output:

/home/zavrak

Perfect! We jumped straight back to our home directory, skipping the intermediate Documents
directory. The .../... path means “up one level (...), then up another level (...).”

Going Home: Quick Shortcuts

No matter where you are in the file system, you often need to get back to your home directory. There
are several ways to do this.

Let’s first move somewhere else. We’ll go to the /tmp directory using an absolute path:

cd /tmp

Verify we’re there:

pwd

Output:

/tmp

Good! We’re in /tmp, which is far from our home directory. Now let’s jump home using the tilde
(~) symbol:

cd ~

Check where we are:

pwd

Output:

/home/zavrak

We’re home! The ~ symbol is a shortcut for your home directory, so cd ~ takes you straight there
from anywhere.

There’s an even shorter way. Let’s move away from home again:

cd /tmp

Verify:

pwd

Output:

77

PREVIEW
2. Navigating the File System

/tmp

Now try cd with no arguments at all:

cd

Check where we are:

pwd

Output:

/home/zavrak

We’re home again! When you run cd with no arguments, it automatically takes you to your home
directory. This is even faster than typing cd ~.

LIGHTBULB Three Ways Home

All of these do the same thing: - cd /home/zavrak (absolute path - only works for user zavrak)
- cd ~ (tilde shortcut - works for any user) - cd (no arguments - works for any user)
Most people use just cd because it’s the quickest!

Remembering Where You Were: cd -

Sometimes you’re working in one directory, need to quickly check something in another directory,
then want to return to where you were. The cd - command makes this easy.

Let’s see it in action. First, make sure we’re in our home directory:

pwd

Output:

/home/zavrak

Now let’s go to Documents:

cd Documents

Verify:

pwd

Output:

/home/zavrak/Documents

Now let’s go somewhere completely different, like the Music directory. We’ll use an absolute
path:

cd ~/Music

Check our location:

78

PREVIEW
2.3. Changing Directories

pwd

Output:

/home/zavrak/Music

We’re in Music now. But what if we want to go back to Documents where we were just before?
Use cd -:

cd -

Output:

/home/zavrak/Documents

Notice that cd - actually prints where it took you! This is helpful to confirm you went to the right
place. Let’s verify with pwd:

pwd

Output:

/home/zavrak/Documents

Perfect! We’re back in Documents. The cd - command is like a “back button” - it takes you to
your previous directory.

Let’s try it again. If we use cd - once more:

cd -

Output:

/home/zavrak/Music

We’re back in Music! The cd - command toggles between your current and previous directories.
It’s incredibly useful when you’re working back and forth between two locations.

One more time to see the toggle:

cd -

Output:

/home/zavrak/Documents

Back to Documents again!

Absolute vs Relative Navigation

Let’s explore the practical difference between absolute and relative paths when using cd. First, let’s
make sure we’re home:

79

PREVIEW
2. Navigating the File System

cd

Verify:

pwd

Output:

/home/zavrak

Using Absolute Paths

An absolute path starts with / and specifies the complete path from the root. It works from any-
where:

cd /home/zavrak/Documents

Check:

pwd

Output:

/home/zavrak/Documents

This works no matter where you started from because the path is complete. Let’s go somewhere
else and try the same absolute path:

cd /tmp

Verify:

pwd

Output:

/tmp

Now use the same absolute path again:

cd /home/zavrak/Documents

Check:

pwd

Output:

/home/zavrak/Documents

It works! The absolute path /home/zavrak/Documents takes us to the same place regardless of
where we started.

80

PREVIEW
2.3. Changing Directories

Using Relative Paths

A relative path doesn’t start with / and is based on your current location. Let’s go home first:

cd

Verify we’re home:

pwd

Output:

/home/zavrak

From here, we can use a relative path to go to Documents:

cd Documents

Check:

pwd

Output:

/home/zavrak/Documents

This worked because we were in /home/zavrak, so the relative path Documents referred to
/home/zavrak/Documents.

But what happens if we try the same relative path from a different location? Let’s go to Music:

cd ~/Music

Verify:

pwd

Output:

/home/zavrak/Music

Now try the same relative path:

cd Documents

Output:

bash: cd: Documents: No such file or directory

It failed! This is because we’re now in /home/zavrak/Music, and there’s no Documents directory
inside Music. The relative path Documents means “a directory called Documents starting from where
I am now,” and that doesn’t exist.

Let’s see what is here:

81

PREVIEW
2. Navigating the File System

ls

Output:

albums playlists

The Music directory contains albums and playlists, but no Documents. To get to Documents
from here using a relative path, we need to go up one level first:

cd ...

Verify:

pwd

Output:

/home/zavrak

Good! Now we’re back in /home/zavrak, and we can use the relative path:

cd Documents

Check:

pwd

Output:

/home/zavrak/Documents

Success! This demonstrates the key difference: - Absolute paths always work the same way,
regardless of your current location - Relative paths depend on where you currently are

Using Tab Completion

Here’s a technique that will save you enormous amounts of time and prevent typos: tab completion.
The shell can automatically complete directory and file names for you.

Let’s start from home:

cd

Now type cd Doc (just those 6 characters) and press the Tab key (don’t press Enter yet):

cd Doc[Tab]

The shell automatically completes it to:

cd Documents

Magic! The shell saw that Doc uniquely matches Documents and filled in the rest. Now press
Enter to execute the command:

82

PREVIEW
2.3. Changing Directories

[Enter]

Verify it worked:

pwd

Output:

/home/zavrak/Documents

Perfect! Let’s try another example. Go back home:

cd

Type cd Mu and press Tab:

cd Mu[Tab]

It completes to:

cd Music

Press Enter and verify:

[Enter]

pwd

Output:

/home/zavrak/Music

When Tab Completion Finds Multiple Matches

What happens if multiple items start with the same letters? Let’s go home and try:

cd

Type cd D and press Tab:

cd D[Tab]

You might hear a beep or see both options displayed:

Documents Downloads

The shell can’t complete automatically because both Documents and Downloads start with D. Type
one more letter to make it unique. If you type o:

cd Do[Tab]

It completes to:

83

PREVIEW
2. Navigating the File System

cd Documents

Or if you typed w instead:

cd Dow[Tab]

It would complete to:

cd Downloads

LIGHTBULB Tab Completion Benefits

• Saves typing: Type just enough to be unique, let Tab do the rest
• Prevents typos: The shell only completes to things that actually exist
• Shows options: Double-tap Tab to see all matching possibilities
• Works with paths: You can Tab-complete each part of a path: cd Doc[Tab]/pro[Tab]

Make tab completion a habit - it’s one of the most useful shell features!

Practical Navigation Workflow

Let’s put everything together with a realistic navigation scenario. Imagine you want to explore your
file system, starting from home.

First, verify where you are:

pwd

Output:

/home/zavrak

Good! See what’s available:

ls

Output:

Documents Downloads Music Pictures Videos

Let’s explore Documents:

cd Documents

Confirm where we are:

pwd

Output:

/home/zavrak/Documents

See what’s inside:

84

PREVIEW
2.3. Changing Directories

ls -lh

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 project

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 09:20 notes.txt

-rw-r--r-- 1 zavrak zavrak 8.3K Jan 15 10:15 report.pdf

I see a project directory. Let’s go into it:

cd project

Check location:

pwd

Output:

/home/zavrak/Documents/project

See what’s here:

ls

Output:

README.md src tests

Interesting! Now let’s say I want to go back to my home directory to check something. I’ll use the
quick shortcut:

cd

Verify:

pwd

Output:

/home/zavrak

Perfect! Now I want to go back to where I was working. I’ll use cd -:

cd -

Output:

/home/zavrak/Documents/project

Great! I’m back in the project directory. This workflow demonstrates how you naturally combine:
- pwd to know where you are - ls to see what’s available - cd with various paths and shortcuts to
move around - cd - to bounce between locations

85

PR
EV
IE
W

2. Navigating the File System

Common Navigation Patterns

Here are navigation patterns you’ll use constantly:

Pattern 1: Explore and Return

cd # Start at home

cd Documents # Go explore Documents

cd project # Go deeper

cd # Quick return to home

Pattern 2: Toggle Between Two Locations

cd ~/shell-scripting-book # Go to shell-scripting-book

cd ~/Music # Go to Music

cd - # Back to shell-scripting-book

cd - # Back to Music

Pattern 3: Navigate Up and Across

pwd # Check location: /home/zavrak/Documents/project

cd ... # Up to Documents

cd .../Music # Up then across to Music

Pattern 4: Use Absolute Paths for Certainty

cd /tmp # Go to system temp directory

cd /etc # Go to system config directory

cd # Back home from anywhere

Handling Errors

What happens if you try to go somewhere that doesn’t exist? Let’s try:

cd

Verify we’re home:

pwd

Output:

/home/zavrak

Now try to go to a non-existent directory:

cd NonExistent

86

PREVIEW
2.3. Changing Directories

Output:

bash: cd: NonExistent: No such file or directory

The shell tells you clearly that the directory doesn’t exist. When you see this error:

1. Check your spelling (this is where tab completion helps!)
2. Verify you’re in the right location with pwd

3. See what actually exists with ls

Let’s verify we didn’t move:

pwd

Output:

/home/zavrak

Good! When cd fails, you stay in your current directory. The shell doesn’t move you to a random
location.

Summary

Key Concepts Learned:

• cd command: Changes your current directory to a new location
• cd ...: Moves up one level to the parent directory
• cd ~ or cd: Takes you directly to your home directory from anywhere
• cd -: Returns you to your previous directory (toggles between two locations)
• Tab completion: Automatically completes directory names to save time and prevent typos
• Silent success: cd produces no output when successful (Unix philosophy)

Practical Skills:

• How to move into a directory using cd directoryname (relative path)
• How to move using absolute paths like cd /home/zavrak/Documents

• How to move up one or more levels using cd ... or cd .../...

• How to quickly return home with cd ~ or just cd
• How to toggle between two directories with cd -

• How to use Tab completion to avoid typos and save time
• When to use absolute paths (when you know exactly where you want to go)
• When to use relative paths (when moving relative to your current location)

Essential Commands:

Change to a directory (relative path)

cd directoryname

Move up one level

cd ...

Move up two levels

cd .../...

87

PREVIEW
2. Navigating the File System

Go to home directory (three equivalent ways)

cd ~

cd

cd /home/zavrak # Only works for user zavrak

Go back to previous directory

cd -

Use absolute path (works from anywhere)

cd /path/to/directory

Use relative path (based on current location)

cd path/to/directory

Interactive Workflow Learned:

1. Check where you are with pwd

2. See what directories are available with ls

3. Navigate to a directory with cd

4. Verify you arrived with pwd

5. Explore contents with ls

6. Use shortcuts (~, ..., -) to navigate efficiently

POSIX Compliance Notes:

• ✓ The cd command is part of POSIX
• ✓ All shortcuts (~, ..., -) are POSIX-standard
• ✓ Tab completion is a shell feature (not POSIX-specified but widely available)
• These commands work identically on all Unix-like systems

Common Pitfalls:

• � Typing cd directory name with a space → � Use cd "directory name" with quotes for
names with spaces, or better yet, avoid spaces in directory names

• � Forgetting where you are → � Use pwd frequently to orient yourself
• � Trying to cd into a file → � Only directories can be navigated to; files are accessed with other

commands
• � Using a relative path from the wrong location → � Check pwd first or use an absolute path
• � Expecting output when cd succeeds → � Silent success is normal; use pwd to confirm

Practice Exercises

Exercise 1: Basic Navigation Practice (Beginner)

Goal: Practice moving between directories and verifying your location.
Requirements: - Start in your home directory and verify with pwd - Change to the Documents

directory - Verify you’re in Documents with pwd - Use ls to see what’s in Documents - Return to
your home directory using cd

Expected output:

/home/yourusername

/home/yourusername/Documents

[Contents of Documents directory]

88

PREVIEW
2.3. Changing Directories

/home/yourusername

Exercise 2: Moving Up the Directory Tree (Beginner)

Goal: Practice using ... to navigate to parent directories.
Requirements: - Navigate to a nested directory (e.g., Documents/project if it exists, or create one

mentally) - Use cd ... to go up one level - Use pwd to confirm your location - Use cd ... again to go
up another level - Verify you’re back in your home directory

Expected output:

/home/yourusername/Documents/project

/home/yourusername/Documents

/home/yourusername

Exercise 3: Using Directory Shortcuts (Intermediate)

Goal: Practice using ~, -, and ... shortcuts efficiently.
Requirements: - From anywhere, use cd ~ to go home - Navigate to the /tmp directory using an

absolute path - Use cd - to return to where you were before - Use cd (with no arguments) to go
home again - Use pwd after each step to verify

Expected output:

cd ~ → /home/yourusername

cd /tmp → /tmp

cd - → /home/yourusername

cd → /home/yourusername

Exercise 4: Absolute vs Relative Paths (Intermediate)

Goal: Understand the difference between absolute and relative paths when navigating.
Requirements: - Navigate to your Documents directory using a relative path from home - Navigate

to /tmp using an absolute path - Try to use cd Documents from /tmp (note the error) - Navigate to
your home Documents using an absolute path with ~ - Explain why the relative path failed from
/tmp

Expected output:

From home: cd Documents → /home/yourusername/Documents

cd /tmp → /tmp

cd Documents → Error: No such file or directory

cd ~/Documents → /home/yourusername/Documents

Explanation: Relative paths depend on current location; Documents doesn't exist in /tmp

Hint: Relative paths work from your current location; absolute paths work from anywhere.

89

PREVIEW
2. Navigating the File System

Exercise 5: Tab Completion Practice (Intermediate)

Goal: Master tab completion to speed up navigation and avoid typos.
Requirements: - From your home directory, type cd Do and press Tab to complete - If multiple

options appear, add enough letters to make it unique - Navigate to a directory using tab completion -
Practice completing a path with multiple parts (e.g., cd Doc[Tab]/pro[Tab]) - Verify you arrived
at the correct destination

Expected output:

cd Do[Tab] → cd Documents or cd Downloads (depending on what you choose)

cd Documents/pr[Tab] → cd Documents/project

Final location verified with pwd

Hint: Press Tab after typing part of a directory name. Press Tab twice to see all options if there
are multiple matches.

What’s Next:
In Understanding the Directory Tree, we’ll visualize how directories relate to each other and

explore the complete file system structure from root to home. You’ll learn about standard Unix
directories and how everything fits together in a hierarchy.

2.4. Understanding the Directory Tree

You’ve learned how to understand paths, list files, and navigate between directories. Now it’s time
to step back and see the big picture: how all directories fit together in a hierarchical tree structure.
Understanding this structure will help you navigate confidently and understand where things live
on your system.

In this section, you will:

• Visualize the file system as a hierarchical tree structure
• Understand the root directory as the foundation of everything
• Learn about standard Unix directories (/home, /usr, /etc, /tmp, etc.)
• Explore the directory tree starting from root
• Understand parent-child relationships in the directory hierarchy
• See how your home directory fits into the larger system

Prerequisites:
This section builds on concepts from:

• Understanding Paths - paths, root, home, special symbols
• Listing Files - using ls to explore
• Changing Directories - navigating with cd

New Concepts Introduced:
This section introduces: directory tree/hierarchy, root directory (/), standard Unix directories

(/home, /usr, /etc, /tmp, /var, /bin), tree visualization, parent-child directory relationships
POSIX Compliance:

• ✓ All concepts and commands are POSIX-compliant
• ✓ Standard directory locations follow Unix conventions

90

PREVIEW
2.4. Understanding the Directory Tree

• Note: Exact directory names may vary slightly between systems (e.g., /home vs /Users)

Estimated Time: 20-25 minutes

The Tree Metaphor

A file system isn’t organized randomly - it’s structured like an upside-down tree. At the very top (or
more accurately, the root) is /, and everything branches out from there.

Think of it like a family tree: - The root (/) is the ancestor of everything - Directories can contain
other directories (parents have children) - Every directory except root has exactly one parent -
Directories can have many children

Here’s a simple visualization:

/ (root - the very top)

├── home/ (user home directories)

│ ├── zavrak/ (zavrak's home)

│ └── bob/ (bob's home)

├── usr/ (user programs)

│ ├── bin/ (executable programs)

│ └── lib/ (libraries)

├── etc/ (configuration files)

└── tmp/ (temporary files)

In this tree: - / is the parent of home, usr, etc, and tmp - home is the parent of zavrak and bob -
zavrak is a child of home - zavrak and bob are siblings (same parent)

Starting at the Root

Let’s explore the actual tree structure on your system. First, let’s go to the very top - the root
directory:

cd /

Verify we’re at root:

pwd

Output:

/

Perfect! We’re at the foundation of the entire file system. Now let’s see what’s here:

ls

Output:

bin dev home lib media opt root sbin sys usr

boot etc lib64 mnt proc run srv tmp var

These are the top-level directories that branch directly from root. Let’s get more details:

91

PREVIEW
2. Navigating the File System

ls -lh

Output:

drwxr-xr-x 2 root root 4.0K Jan 10 08:15 bin

drwxr-xr-x 3 root root 4.0K Jan 12 09:30 boot

drwxr-xr-x 16 root root 3.2K Jan 15 10:00 dev

drwxr-xr-x 95 root root 4.0K Jan 15 09:45 etc

drwxr-xr-x 3 root root 4.0K Jan 05 14:20 home

drwxr-xr-x 14 root root 4.0K Jan 08 11:30 lib

drwxr-xr-x 2 root root 4.0K Jan 08 11:30 lib64

drwxr-xr-x 2 root root 4.0K Jan 05 14:18 media

drwxr-xr-x 2 root root 4.0K Jan 05 14:18 mnt

drwxr-xr-x 3 root root 4.0K Jan 10 15:22 opt

dr-xr-xr-x 142 root root 0 Jan 15 08:30 proc

drwx------ 4 root root 4.0K Jan 14 16:45 root

drwxr-xr-x 8 root root 4.0K Jan 15 10:01 run

drwxr-xr-x 2 root root 4.0K Jan 10 08:15 sbin

drwxr-xr-x 2 root root 4.0K Jan 05 14:18 srv

dr-xr-xr-x 13 root root 0 Jan 15 08:30 sys

drwxrwxrwt 9 root root 4.0K Jan 15 10:15 tmp

drwxr-xr-x 10 root root 4.0K Jan 10 08:20 usr

drwxr-xr-x 12 root root 4.0K Jan 10 08:25 var

Notice that all of these directories are owned by root (the system administrator). These are
system directories that organize different types of files. Let’s explore what each major directory
contains.

Standard Unix Directories

The /home Directory (User Homes)

The /home directory is where user home directories live. Let’s explore it:

ls -lh /home

Output:

drwxr-xr-x 8 zavrak zavrak 4.0K Jan 15 10:30 zavrak

drwxr-xr-x 7 bob bob 4.0K Jan 14 15:20 bob

Each user has their own directory under /home. When we talk about “your home directory,” we
mean /home/yourusername. Let’s see what’s in zavrak’s home:

ls -lh /home/zavrak

Output:

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 15 10:30 Documents

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 14 09:15 Downloads

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 10 14:22 Music

92

PR
EV
IE
W

2.4. Understanding the Directory Tree

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 12 16:45 Pictures

drwxr-xr-x 2 zavrak zavrak 4.0K Jan 13 11:30 Videos

This should look familiar - it’s what we’ve been exploring! Here’s how zavrak’s home fits into the
tree:

/ (root)

└── home/ (all user homes)

└── zavrak/ (zavrak's home directory)

├── Documents/

├── Downloads/

├── Music/

├── Pictures/

└── Videos/

INFO macOS Difference

On macOS, user home directories are in /Users instead of /home. So you’d see /Users/zavrak
instead of /home/zavrak. The concept is identical, just a different location.

The /usr Directory (User Programs)

The /usr directory contains user programs and files. Let’s look inside:

ls /usr

Output:

bin games include lib lib64 local sbin share src

Let’s examine /usr/bin, which contains most of the programs you use:

ls /usr/bin | head -20

Output:

awk

cat

chmod

cp

date

echo

grep

gzip

head

ls

mkdir

mv

pwd

rm

93

PREVIEW
2. Navigating the File System

sed

sort

tail

touch

wc

whoami

These are all commands you can use! When you type ls, the shell finds and runs /usr/bin/ls.
Let’s verify where ls actually lives:

echo /usr/bin/ls

Output:

/usr/bin/ls

We can even run ls using its full absolute path:

/usr/bin/ls /home

Output:

zavrak bob

It works! When you type just ls, the shell automatically searches standard directories like
/usr/bin to find the program.

The /etc Directory (Configuration)

The /etc directory contains system configuration files. Let’s see what’s there:

ls /etc | head -15

Output:

bash.bashrc

cron.d

default

environment

fstab

group

hostname

hosts

issue

login.defs

passwd

profile

shells

timezone

These files configure how your system behaves. For example, /etc/passwd contains user account
information, and /etc/hostname contains your computer’s name.

94

PR
EV
IE
W

2.4. Understanding the Directory Tree

Exclamation-Triangle System Files

Files in /etc are system configuration files. Looking at them is fine, but modifying them usually
requires administrator (root) privileges and should be done carefully. Don’t change files in
/etc unless you know what you’re doing!

The /tmp Directory (Temporary Files)

The /tmp directory is for temporary files. Let’s see what’s there:

ls -lh /tmp

Output:

drwx------ 2 zavrak zavrak 4.0K Jan 15 09:30 tmp_zavrak_session

drwx------ 2 bob bob 4.0K Jan 15 08:45 tmp_bob_session

-rw-r--r-- 1 zavrak zavrak 256 Jan 15 10:15 temp_file.txt

Programs use /tmp to store files they only need temporarily. These files are often deleted auto-
matically when you restart your computer.

The /var Directory (Variable Data)

The /var directory contains files that change frequently, like logs. Let’s look:

ls /var

Output:

cache lib local lock log mail opt run spool tmp

System logs are in /var/log:

ls /var/log | head -10

Output:

auth.log

boot.log

dmesg

dpkg.log

kern.log

syslog

user.log

These log files track what happens on your system - useful for troubleshooting!

95

PR
EV
IE
W

2. Navigating the File System

Visualizing the Complete Tree

Let’s put together what we’ve learned into a more complete tree visualization:

/ (root - the foundation of everything)

│

├── bin/ (essential system programs)

│ ├── bash

│ ├── ls

│ └── cat

│

├── boot/ (files needed to start the system)

│

├── dev/ (device files - hardware interfaces)

│

├── etc/ (system configuration files)

│ ├── passwd (user accounts)

│ ├── group (user groups)

│ └── hostname (computer name)

│

├── home/ (user home directories)

│ ├── zavrak/ (zavrak's personal files)

│ │ ├── Documents/

│ │ │ ├── notes.txt

│ │ │ └── project/

│ │ ├── Downloads/

│ │ ├── Music/

│ │ ├── Pictures/

│ │ └── Videos/

│ │

│ └── bob/ (bob's personal files)

│ ├── Documents/

│ └── Downloads/

│

├── lib/ (shared libraries)

│

├── opt/ (optional software)

│

├── proc/ (process information - virtual)

│

├── root/ (root user's home directory)

│

├── tmp/ (temporary files)

│

├── usr/ (user programs and data)

│ ├── bin/ (most user commands)

│ │ ├── awk

96

PREVIEW
2.4. Understanding the Directory Tree

│ │ ├── grep

│ │ └── python

│ ├── lib/ (libraries for programs)

│ ├── local/ (locally installed software)

│ └── share/ (shared data)

│

└── var/ (variable data)

├── log/ (system logs)

├── mail/ (email)

└── tmp/ (more temporary files)

Exploring the Tree Interactively

Let’s navigate through this tree to reinforce the relationships. We’ll start at root and work our way
down:

cd /

Verify:

pwd

Output:

/

We’re at root. Let’s go down into home:

cd home

Check where we are:

pwd

Output:

/home

Good! Notice the path grew from / to /home. Now let’s go into zavrak:

cd zavrak

Check:

pwd

Output:

/home/zavrak

The path keeps growing: / → /home → /home/zavrak. Now into Documents:

97

PREVIEW
2. Navigating the File System

cd Documents

Check:

pwd

Output:

/home/zavrak/Documents

We’ve traveled down the tree from root to our current location. Each cd moved us one level
deeper. Now let’s climb back up. Go up one level:

cd ...

Check:

pwd

Output:

/home/zavrak

We’re back in zavrak’s home. Up another level:

cd ...

Check:

pwd

Output:

/home

Now we’re in /home. One more level up:

cd ...

Check:

pwd

Output:

/

We’re back at root! This demonstrates how ... moves you up the tree toward root, and directory
names move you down the tree away from root.

98

PREVIEW
2.4. Understanding the Directory Tree

Navigating Across Branches

The tree structure means you sometimes need to go up before you can go across to a different branch.
Let’s demonstrate this.

First, go to zavrak’s Documents:

cd /home/zavrak/Documents

Verify:

pwd

Output:

/home/zavrak/Documents

Now let’s say we want to get to /usr/bin. These are on different branches of the tree. We need to
go up to a common ancestor, then down the other branch.

Here’s one way - go all the way to root, then down:

cd /usr/bin

Check:

pwd

Output:

/usr/bin

That worked because we used an absolute path. But what if we want to use relative paths? Let’s
go back to Documents:

cd /home/zavrak/Documents

Verify:

pwd

Output:

/home/zavrak/Documents

To get to /usr/bin using a relative path, we need to: 1. Go up three levels to root: .../.../... 2.
Then down into usr: usr 3. Then into bin: bin

Let’s do it:

cd .../.../.../usr/bin

Check:

99

PREVIEW
2. Navigating the File System

pwd

Output:

/usr/bin

Success! Let’s break down that path .../.../.../usr/bin: - ... - up from Documents to zavrak -
... - up from zavrak to home - ... - up from home to root (/) - usr - down into usr - bin - down into
bin

This is why absolute paths are often easier - cd /usr/bin is simpler than cd .../.../.../usr/bin!

Understanding Your Place in the Tree

Your home directory is just one small part of the larger tree. Let’s visualize where /home/zavrak/Documents
fits:

/ (we're 4 levels down from here)

└── home/ (we're 3 levels down from here)

└── zavrak/ (we're 2 levels down from here)

└── Documents/ (we're 1 level down from here)

└── project/ (if we're here, this is where we are)

Let’s verify this by going to project and checking the path:

cd /home/zavrak/Documents/project

Verify:

pwd

Output:

/home/zavrak/Documents/project

Count the slashes - each slash represents moving one level down the tree from root. Let’s see
what ... references at each level:

From /home/zavrak/Documents/project:

echo "One level up would be:"

cd ...

pwd

Output:

One level up would be:

/home/zavrak/Documents

From here:

100

PREVIEW
2.4. Understanding the Directory Tree

echo "Another level up would be:"

cd ...

pwd

Output:

Another level up would be:

/home/zavrak

And again:

echo "Another level up would be:"

cd ...

pwd

Output:

Another level up would be:

/home

One final time:

echo "One more level up would be:"

cd ...

pwd

Output:

One more level up would be:

/

We’ve reached root! If we try to go up one more time:

cd ...

pwd

Output:

/

We stay at root. Root has no parent - it’s the top of the tree. Going ... from root just keeps you at
root.

Practical Understanding

Understanding the tree structure helps you:

1. Navigate efficiently: Know whether to go up or down
2. Understand paths: See why /home/zavrak/Documents means what it does
3. Find files: Know where different types of files live
4. Troubleshoot: Understand error messages about paths
5. Organize your own files: Create a logical structure in your home directory

Let’s return home and see how you might organize your own directory tree:

101

PREVIEW
2. Navigating the File System

cd

Verify:

pwd

Output:

/home/zavrak

See what’s here:

ls

Output:

Documents Downloads Music Pictures Videos

This is your personal branch of the tree. You have complete control over how you organize things
under your home directory. You could create a structure like:

/home/zavrak/ (your home)

├── Documents/

│ ├── Work/

│ │ ├── Projects/

│ │ └── Reports/

│ └── Personal/

│ ├── Letters/

│ └── Notes/

├── Downloads/

├── Music/

│ ├── Rock/

│ ├── Jazz/

│ └── Classical/

└── Pictures/

├── Vacation/

└── Family/

Each directory is a branch that can contain more branches (subdirectories) and leaves (files).

Summary

Key Concepts Learned:

• Directory tree: The file system is organized as a hierarchical tree structure
• Root directory (/): The top of the tree, ancestor of all other directories
• Parent-child relationships: Every directory except root has one parent; directories can have

many children
• Branches: Different paths in the tree (like /home/zavrak and /usr/bin)
• Standard directories: Unix systems have conventional directory structures (/home, /usr, /etc,
/tmp, /var)

102

PREVIEW
2.4. Understanding the Directory Tree

Standard Unix Directories:

• /: Root - the foundation of everything
• /home: User home directories (your personal files)
• /usr: User programs and data

– /usr/bin: Most command-line programs
– /usr/lib: Shared libraries

• /etc: System configuration files
• /tmp: Temporary files
• /var: Variable data (logs, mail, etc.)

– /var/log: System log files

• /bin: Essential system programs
• /root: The root user’s home directory (different from /!)

Practical Skills:

• How to visualize paths as positions in a tree
• How to understand parent-child relationships
• How to navigate up and down the tree using cd and ...

• How to navigate across branches using absolute paths
• Where to find different types of files in the system
• How your home directory fits into the larger structure

Essential Commands Used:

Navigate to root

cd /

List root contents

ls /

Navigate down the tree

cd home

cd home/zavrak/Documents

Navigate up the tree

cd ...

cd .../.../...

Jump to specific locations

cd /usr/bin

cd ~

Interactive Workflow Learned:

1. Start at a known location (use pwd)
2. Visualize where you want to go in the tree
3. Determine if you need to go up, down, or across
4. Use appropriate paths (absolute or relative)
5. Verify arrival with pwd

POSIX Compliance Notes:

103

PREVIEW
2. Navigating the File System

• ✓ The hierarchical tree structure is fundamental to Unix/POSIX
• ✓ Root directory / is standard across all Unix-like systems
• � Specific directory names may vary slightly:

– Linux: /home/username
– macOS: /Users/username
– But the concepts remain identical

Common Pitfalls:

• � Confusing /root (root user’s home) with / (root directory) → � They’re completely different!
• � Trying to go above root with cd ... → � Root has no parent; you stay at root
• � Getting lost in deep directory structures → � Use pwd frequently and know you can always
cd to return home

• � Assuming all systems have identical directory layouts → � Follow POSIX standards but check
your specific system

Practice Exercises

Exercise 1: Exploring the Root Directory (Beginner)

Goal: Familiarize yourself with the top-level directories in the file system.
Requirements: - Navigate to the root directory using cd / - List all directories in root using ls -

Count how many directories you see - Use ls -lh to see which directories exist - Identify at least 5
standard Unix directories (e.g., home, usr, etc, tmp, var)

Expected output:

/ (confirmed with pwd)

Directories found: bin, boot, dev, etc, home, lib, tmp, usr, var

Total: 15-20 directories (varies by system)

Standard directories identified: /home, /usr, /etc, /tmp, /var

Exercise 2: Following a Path from Root to Home (Beginner)

Goal: Understand your position in the directory tree by navigating step-by-step.
Requirements: - Start at root: cd / - Navigate to home: cd home - Navigate to your user directory:

cd yourusername - Use pwd after each step to see the path grow - Then navigate back to root using
cd /

Expected output:

Step 1: pwd → /

Step 2: pwd → /home

Step 3: pwd → /home/yourusername

Back to root: pwd → /

104

PR
EV
IE
W

2.4. Understanding the Directory Tree

Exercise 3: Understanding Parent-Child Relationships (Intermediate)

Goal: Practice navigating up and down the directory tree to understand relationships.
Requirements: - Navigate to a deeply nested directory (e.g., /home/yourusername/Docu-

ments/project) - Use cd ... repeatedly to go up the tree, using pwd after each step - Document
the parent of each directory - Navigate back down using individual cd commands

Expected output:

/home/yourusername/Documents/project

Parent: /home/yourusername/Documents

Parent: /home/yourusername

Parent: /home

Parent: /

Going back down:

/ → /home → /home/yourusername → /home/yourusername/Documents

Exercise 4: Navigating Across Branches (Intermediate)

Goal: Practice moving between different branches of the directory tree.
Requirements: - Start at /home/yourusername/Documents - Navigate to /usr/bin using an abso-

lute path - Navigate to /tmp using an absolute path - Return to /home/yourusername/Documents
using a relative path from /tmp - Use both cd .../... and absolute paths to compare approaches

Expected output:

Start: /home/yourusername/Documents

cd /usr/bin → /usr/bin

cd /tmp → /tmp

cd .../.../home/yourusername/Documents → /home/yourusername/Documents

OR: cd ~/Documents → /home/yourusername/Documents (easier!)

Hint: When crossing branches, absolute paths are usually simpler than complex relative paths
with multiple ... sequences.

Exercise 5: Exploring Standard Directories (Intermediate)

Goal: Understand what types of files live in standard Unix directories.
Requirements: - List the contents of /usr/bin and identify at least 5 commands you recognize -

List the contents of /etc and identify at least 3 configuration files - List the contents of /tmp and see
what temporary files exist - List the contents of /var/log and identify at least 2 log files - Explain the
purpose of each directory

Expected output:

/usr/bin: Contains executable programs (ls, cat, grep, pwd, mkdir)

/etc: Contains configuration files (passwd, hostname, hosts)

/tmp: Contains temporary files (varies)

/var/log: Contains log files (syslog, auth.log, boot.log)

105

PREVIEW
2. Navigating the File System

Purpose summary:

- /usr/bin: User command binaries

- /etc: System configuration

- /tmp: Temporary storage

- /var/log: System logs

What’s Next:
Congratulations! You’ve completed Chapter 2 and now understand file system navigation. You

can: - Understand and read paths - List directory contents - Navigate anywhere in the file system -
Visualize the tree structure

In Chapter 3: Working with Files, you’ll learn to create, view, copy, move, and delete files. You’ll
also dive deeper into file permissions and ownership.

106

PREVIEW
Part II.

Your First Script! (Preview)

107

PREVIEW

PREVIEW3. Your First Shell Script

3.1. What is a Shell Script?

You’ve learned how to use commands like ls, cd, echo, and many others in the terminal. Each time
you type a command and press Enter, the shell executes it immediately. But what if you need to run
the same sequence of commands over and over? What if you want to automate a task that requires
dozens of commands? This is where shell scripts come in.

In this section, you will:

• Understand what a shell script is and how it differs from typing commands interactively
• Learn when and why to use shell scripts
• Discover the benefits of automation through scripting
• Understand the concept of portability and why it matters
• Learn the difference between POSIX shell and Bash

Prerequisites:
This section builds on concepts from:

• Chapter 1: Introduction to the Command Line - basic command usage
• Chapter 2: Navigating the File System - working in the terminal
• Chapter 3: Working with Files - file operations
• Chapter 4: Text Editing - creating text files

New Concepts Introduced:
This section introduces: shell script, automation, script file, .sh extension, portability, POSIX

shell, Bash
POSIX Compliance:

⊠ This section is conceptual and introduces POSIX as a standard
• All future examples will prioritize POSIX-compliant code

Estimated Time: 15 minutes

What is a Shell Script?

A shell script is simply a text file containing a series of commands that you want the shell to execute
automatically, one after another.

Think of it this way: instead of typing commands one at a time in the terminal, you write them all
down in a file. Then you tell the shell, “Execute all the commands in this file, in order.” The shell
reads the file and runs each command just as if you had typed them yourself.

An Everyday Analogy

Imagine you’re baking a cake. You could:
Option 1: Look up each step as you go - Open cookbook, read “preheat oven,” do it - Open

cookbook again, read “mix flour and sugar,” do it - Open cookbook again, read “add eggs,” do it -
…and so on

109

PR
EV
IE
W

3. Your First Shell Script

Option 2: Write down all the steps on one card - Read the entire recipe - Write all steps on a
reference card - Follow your card from top to bottom without stopping

The second option is more efficient. A shell script is like that reference card - it contains all the
instructions in one place, ready to execute in sequence.

Why Use Shell Scripts?

Shell scripts provide several important benefits:

1. Automation

If you perform the same task repeatedly, a script saves time and effort.
Example scenario: Every Monday morning, you need to: 1. Check disk space 2. List files modified

in the last week 3. Create a backup of your documents 4. Email yourself a status report
Instead of typing these commands every week, you write them once in a script. Then you just run

the script each Monday (or even schedule it to run automatically).

2. Consistency

Scripts execute commands exactly the same way every time. Humans make typos and forget steps.
Scripts don’t.

When you type commands manually, you might: - Mistype a filename - Forget to create a backup
directory first - Skip an important step

A script runs the same commands in the same order every time, with no variations.

3. Sharing and Reusability

You can share scripts with colleagues or use them on multiple computers. Once you’ve solved a
problem with a script, you can reuse that solution anywhere.

4. Documentation

A well-written script serves as documentation of a process. Six months later, you can look at your
script and remember exactly what steps were needed for a task.

5. Complex Tasks Made Simple

Some tasks require dozens or even hundreds of commands. Running them manually would be
tedious and error-prone. A script reduces all that complexity to a single command.

Interactive Commands vs. Scripts

Let’s clarify the difference between what you’ve been doing and what you’re about to learn.

Interactive Shell Usage

What you’ve been doing so far:

110

PREVIEW
3.1. What is a Shell Script?

You type a command → Press Enter → See the result

You type another command → Press Enter → See the result

You type another command → Press Enter → See the result

Each command is interactive - you type it, wait for it to finish, see the output, then decide what
to do next.

Script Execution

What you’ll do with scripts:

You write commands in a file → Save the file → Run the script

All commands execute automatically in sequence

The script runs non-interactively - all commands execute in order without you typing each one.

When to Use Each Approach

Use interactive commands when: - Exploring and learning - Investigating a problem - Performing
one-time tasks - You need to see each result before deciding the next step

Use scripts when: - Performing the same task repeatedly - Executing many commands in sequence
- Automating routine tasks - Ensuring consistency and accuracy - Sharing processes with others

What Does a Script Look Like?

A shell script is just a text file. Here’s what a simple one might contain:

##!/bin/sh

This is my first script

It displays some information

echo "Hello! Here's some information about your system:"

echo ""

echo "Current date and time:"

date

echo ""

echo "Current directory:"

pwd

echo ""

echo "Files in current directory:"

ls

Don’t worry if you don’t understand every part yet - we’ll build this step by step in the next
sections. For now, notice:

• It’s plain text (you can read it)
• Each line is a command you already know (echo, date, pwd, ls)
• Lines starting with # are comments (notes to humans, ignored by the shell)
• The first line ##!/bin/sh is special (we’ll cover this in Section 5.3)

When you run this script, all those commands execute in order, producing output just as if you’d
typed each command yourself.

111

PREVIEW
3. Your First Shell Script

Script Files and Naming

Shell scripts are typically saved with a .sh extension, though this isn’t strictly required. The extension
helps humans identify the file as a shell script.

Common naming patterns: - backup.sh - a backup script - deploy.sh - a deployment script -
setup.sh - a setup script - hello.sh - our first simple script

Naming best practices: - Use descriptive names that indicate what the script does - Use lowercase
letters - Use underscores or hyphens for multi-word names: backup_database.sh or backup-

database.sh - Avoid spaces in filenames (they require quoting and can cause issues) - Use the .sh
extension to indicate it’s a shell script

Portability: POSIX Shell vs. Bash

Now we need to discuss an important concept: portability.

What is Portability?

A script is portable if it can run on different Unix-like systems without modification. This means
the same script works on: - Linux (various distributions) - macOS - BSD systems - Other Unix-like
operating systems

The POSIX Standard

POSIX (Portable Operating System Interface) is a standard that defines how Unix-like systems
should work. This includes a standard for what commands and features the shell should provide.

When you write a POSIX-compliant script, it will run on any system with a POSIX-compliant
shell. This is highly portable.

What is Bash?

Bash (Bourne Again Shell) is a specific shell program. It’s very popular and comes pre-installed on
most Linux systems and macOS. Bash includes all POSIX features plus many additional features that
are specific to Bash.

The Choice: POSIX or Bash?

POSIX shell scripts: - ✓ Run on virtually any Unix-like system - ✓ Highly portable - ✓ Use standard,
well-defined features - � Lack some convenient Bash-specific features

Bash scripts: - ✓ Include powerful additional features - ✓ Can be more convenient for complex
tasks - � Only run on systems with Bash installed - � Less portable

Our Approach in This Book

We’ll write POSIX-compliant scripts by default for maximum portability. When we use Bash-specific
features, we’ll clearly mark them and explain: 1. Why we’re using a Bash feature 2. What the POSIX
alternative would be (if applicable) 3. That the script requires Bash to run

This approach ensures you learn portable scripting first, then expand to Bash features when
needed.

112

PREVIEW
3.1. What is a Shell Script?

INFO POSIX Shell on Your System

The POSIX shell is typically located at /bin/sh on Unix-like systems. This might be: - The
original Bourne shell (sh) - Dash (Debian Almquist shell) - common on Debian/Ubuntu Linux
- Bash in POSIX mode - Another POSIX-compliant shell
Regardless of which shell /bin/sh points to, POSIX-compliant scripts will work correctly.

Common Use Cases for Shell Scripts

To help you understand when scripting is valuable, here are common real-world scenarios:

System Administration

• Automated backups
• User account creation and management
• System monitoring and health checks
• Log file rotation and cleanup
• Software installation and updates

Development

• Building and compiling projects
• Running automated tests
• Deploying applications
• Setting up development environments
• Code formatting and linting

Data Processing

• Processing log files
• Converting file formats
• Batch renaming files
• Extracting data from multiple files
• Generating reports

Personal Productivity

• Organizing downloaded files
• Batch photo processing
• Creating project directories with standard structure
• Managing dotfiles (configuration files)
• Automated file synchronization

What You’ll Learn in This Chapter

By the end of Chapter 5, you will be able to:

1. Create a shell script file
2. Write commands in the script
3. Add a shebang line to specify the interpreter

113

PREVIEW
3. Your First Shell Script

4. Make the script executable
5. Run your script successfully

We’ll build your first working script step by step across the next four sections.

Summary

Key Concepts Learned:

• Shell Script: A text file containing a series of shell commands to be executed in sequence
• Automation: Using scripts to perform repetitive tasks automatically instead of manually
• Portability: The ability of a script to run on different systems without modification
• POSIX: A standard for Unix-like systems that ensures compatibility across different platforms
• Bash: A popular shell with POSIX features plus additional enhancements

Why Shell Scripts Matter:

• Save time through automation
• Ensure consistency by eliminating manual errors
• Enable sharing and reusing solutions
• Document complex processes
• Simplify complicated multi-step tasks

Interactive vs. Script Execution:

• Interactive: Type commands one at a time, see results, decide next steps
• Script: Write all commands in a file, execute all at once automatically
• Use interactive for exploration, scripts for automation

POSIX-First Approach:

• POSIX scripts are portable and run on virtually any Unix-like system
• POSIX features are standard, reliable, and well-documented
• Bash adds extra features but reduces portability
• We’ll write POSIX-compliant scripts by default

Practical Applications:

• System administration and maintenance
• Software development workflows
• Data processing and reporting
• Personal productivity automation

Practice Exercises

Try these exercises to reinforce your understanding of shell scripts and automation:

Exercise 1: Conceptual Understanding (Beginner)

Question: In your own words, explain the difference between typing commands interactively in the
terminal versus running a shell script. What are two advantages of using a script?

Click to see answer
Interactive commands: You type each command one at a time, press Enter, see the result, then

decide what to do next.
Script execution: You write all commands in a file first, then run the script once. All commands

execute automatically in sequence without you typing each one.

114

PREVIEW
3.1. What is a Shell Script?

Two advantages of scripts: 1. Automation - You can run the same sequence of commands
repeatedly without retyping them 2. Consistency - The script runs exactly the same way every time,
eliminating typos and forgotten steps

Other valid advantages: documentation, sharing/reusability, handling complex multi-step tasks

Exercise 2: Identifying Script Use Cases (Beginner)

Question: For each scenario below, decide if it should be done interactively or with a script. Explain
why.

a) Checking the current date once to see what day it is
b) Creating a backup of your documents folder every Friday
c) Exploring a new directory to see what files it contains
d) Renaming 500 image files to follow a consistent naming pattern

Click to see answer

a) Interactive - This is a one-time task. Just run date at the prompt.
b) Script - This is a repetitive task done on a schedule. A script ensures consistency and can be

automated or run with a single command each Friday.
c) Interactive - This is exploration/investigation. You need to see results before deciding what to

look at next. Use ls, cd, cat, etc. interactively.
d) Script - Renaming 500 files manually would be tedious and error-prone. A script can process

all files consistently using a loop.

Exercise 3: POSIX vs Bash Understanding (Beginner)

Question: Explain the difference between a POSIX-compliant script and a Bash-specific script. Why
does this book recommend starting with POSIX-compliant scripts?

Click to see answer
POSIX-compliant scripts: - Use only features defined in the POSIX standard - Run on virtually

any Unix-like system (Linux, macOS, BSD, etc.) - Highly portable
Bash-specific scripts: - Use features specific to the Bash shell - May not run on systems that don’t

have Bash or where Bash is in a different location - Less portable but offer more powerful features
Why start with POSIX: The book recommends POSIX first because: 1. Maximum portability -

your scripts will work everywhere 2. Learn the standard, well-defined features first 3. These features
are widely supported and reliable 4. You can always add Bash features later when specifically
needed

Exercise 4: Recognizing Script Structure (Beginner)

Question: Look at this script content. Identify which lines are comments and which are commands:

##!/bin/sh

Daily backup script

Created by: Admin team

echo "Starting backup....."

Create backup directory

mkdir -p backups

115

PREVIEW
3. Your First Shell Script

Copy important files

cp -r Documents backups/

echo "Backup complete"

Click to see answer
Shebang line: - ##!/bin/sh - Tells the system to use /bin/sh to run this script
Comments (lines starting with #): - # Daily backup script - # Created by: Admin team -

Create backup directory - # Copy important files

Commands (executable instructions): - echo "Starting backup....." - mkdir -p backups -
cp -r Documents backups/ - echo "Backup complete"

Note: The shebang (##!/bin/sh) looks like a comment but is special - it’s an interpreter directive.

Exercise 5: Planning Your First Script (Intermediate)

Question: You want to create a script that runs every Monday morning to give you a weekly system
status report. The script should: - Display the current date and time - Show how long the system
has been running (uptime) - Show how much disk space is available - List files in your Documents
directory

Write the sequence of commands (one per line) that would accomplish this. Don’t worry about
making it executable yet - just list the commands in order.

Click to see answer

##!/bin/sh

Weekly system status report

Runs every Monday morning

echo "===== Weekly System Status Report ====="

echo ""

echo "Current Date and Time:"

date

echo ""

echo "System Uptime:"

uptime

echo ""

echo "Disk Space Available:"

df -h

echo ""

echo "Files in Documents:"

ls -l ~/Documents

echo ""

echo "===== End of Report ====="

Key points: 1. Start with shebang (##!/bin/sh) 2. Add comments explaining what the script
does 3. Use echo with labels to make output clear 4. Use blank lines (echo "") for readability 5.
Commands in logical order 6. Visual markers (===) help separate sections

What’s Next:
In Creating a Simple Script, you’ll actually create your first shell script file and write commands

in it. We’ll start with a simple “Hello, World!” style script that displays information about your
system.

116

PR
EV
IE
W

3.2. Creating a Simple Script

3.2. Creating a Simple Script

Now that you understand what a shell script is, it’s time to create your very first one! In this section,
we’ll build a simple script that displays information about your system. You’ll use the commands
you already know, but this time you’ll put them in a file instead of typing them interactively.

In this section, you will:

• Create a new script file using a text editor
• Write multiple commands in sequence
• Add comments to document your script
• Save your script file
• Verify the contents of your script

Prerequisites:
This section builds on concepts from:

• What is a Shell Script? - understanding scripts and automation
• Choosing a Text Editor - knowing how to use nano or another editor
• Creating Your First Text File - creating and editing files
• Viewing Files - using cat to view files
• Chapter 1: Basic Commands - echo, date, pwd commands

New Concepts Introduced:
This section introduces: creating script files, writing multiple commands in a file, shell script

comments (#), script structure
POSIX Compliance:

• ✓ All commands used are POSIX-compliant
• Uses only standard commands: echo, date, pwd, ls

Estimated Time: 20 minutes

Preparing Your Workspace

Before we create our script, let’s set up a good location for it. It’s helpful to keep your practice scripts
organized.

First, let’s see where we are:

pwd

Output:

/home/zavrak

Good, we’re in the home directory. Now let’s create a directory for our scripts:

mkdir scripts

Let’s verify it was created:

ls -l

Output:

117

PREVIEW
3. Your First Shell Script

drwxr-xr-x 2 zavrak zavrak 4096 Jan 20 10:00 scripts

drwxr-xr-x 2 zavrak zavrak 4096 Jan 15 09:30 Documents

drwxr-xr-x 2 zavrak zavrak 4096 Jan 15 09:30 Downloads

.....

Perfect! We can see the scripts directory at the top. The d at the beginning confirms it’s a
directory. Now let’s move into it:

cd scripts

Let’s confirm we’re in the right place:

pwd

Output:

/home/zavrak/scripts

Excellent! This is where we’ll create our first script.

Creating the Script File

We’ll create a script called hello.sh. The .sh extension tells us (and others) that this is a shell
script.

Let’s use nano to create and edit this file:

nano hello.sh

This opens the nano text editor with a new file called hello.sh. You should see a blank screen
with the nano interface at the bottom showing available commands.

INFO Using a Different Editor?

If you prefer a different text editor: - vi/vim: Use vi hello.sh instead - emacs: Use emacs

hello.sh instead - GUI editor: You can also use a graphical editor, but make sure to save the
file as plain text without formatting
The examples in this section use nano because it’s beginner-friendly and shows helpful com-
mands at the bottom of the screen.

Writing Your First Script

Now let’s write the content of our script. In the nano editor, type the following exactly as shown.
We’ll explain each part as we go.

Type this in nano:

My first shell script

This script displays system information

echo "Hello! Welcome to my first script!"

echo ""

echo "Current date and time:"

118

PREVIEW
3.2. Creating a Simple Script

date

echo ""

echo "You are currently in:"

pwd

echo ""

echo "Files in this directory:"

ls

Let’s understand what each part does:

Comments

My first shell script

This script displays system information

Lines starting with # are comments. The shell ignores these lines - they’re notes for humans
reading the script. Comments help you (and others) understand what the script does.

Use comments to: - Explain what the script does - Describe complex commands - Add reminders
about important details - Document who wrote the script and when

Echo Commands

echo "Hello! Welcome to my first script!"

The echo command displays text. We’re using it to print a greeting message.

echo ""

This echo with an empty string prints a blank line, making the output more readable with spacing
between sections.

The date Command

echo "Current date and time:"

date

First we print a label explaining what’s coming next, then we run the date command to show the
current date and time.

The pwd Command

echo "You are currently in:"

pwd

We print a label, then pwd shows the current working directory.

119

PREVIEW
3. Your First Shell Script

The ls Command

echo "Files in this directory:"

ls

We print a label, then ls lists the files in the current directory.

Saving Your Script

Now that we’ve typed our script, we need to save it.
In nano: 1. Press Ctrl+O (that’s the letter O, not zero) to write out (save) 2. Nano will show:

File Name to Write: hello.sh 3. Press Enter to confirm the filename 4. You’ll see a message: [
Wrote 12 lines] (the number might vary slightly) 5. Press Ctrl+X to exit nano

You’re now back at the command prompt.

LIGHTBULB Nano Shortcuts Reminder

The ^ symbol in nano means the Ctrl key: - ^O = Ctrl+O (save/write out) - ^X = Ctrl+X (exit) -
^K = Ctrl+K (cut line) - ^U = Ctrl+U (paste line)
Nano shows available commands at the bottom of the screen.

Verifying Your Script

Now let’s verify that our script was saved correctly. We’ll use the cat command to view its contents:

cat hello.sh

Output:

My first shell script

This script displays system information

echo "Hello! Welcome to my first script!"

echo ""

echo "Current date and time:"

date

echo ""

echo "You are currently in:"

pwd

echo ""

echo "Files in this directory:"

ls

Perfect! The file contains exactly what we typed. We’ve successfully created our first shell script!
Let’s also check that the file exists and see its details:

ls -l hello.sh

Output:

-rw-r--r-- 1 zavrak zavrak 245 Jan 20 10:15 hello.sh

120

PREVIEW
3.2. Creating a Simple Script

This shows us: - -rw-r--r--: File permissions (we’ll discuss these more in Section 5.4) - zavrak
zavrak: Owner and group - 245: File size in bytes - Jan 20 10:15: When it was last modified -
hello.sh: Filename

The file exists and contains our script!

Understanding the Script Structure

Let’s look at the structure of what we created:

Comments at the top explaining what the script does

More comments if needed

Commands below, in the order they should execute

command1

command2

command3

This is a simple but effective structure: 1. Comments at the top describe what the script does 2.
Commands in sequence below the comments 3. Blank lines (optional) to separate logical sections
for readability

INFO Script Organization

Good scripts are organized and readable: - Use comments to explain what the script does -
Group related commands together - Add blank lines between sections for readability - Use
descriptive variable names (we’ll cover variables in Chapter 6) - Keep the script focused on one
task
Even though our script is simple, these organizational habits will serve you well as you write
more complex scripts.

What Happens When We Run It?

You might be wondering: “Can I run this script now?”
Not quite yet! There are two more steps we need to complete first:

1. Add a shebang line (Section 5.3) - tells the system which interpreter to use
2. Make the script executable (Section 5.4) - gives it permission to run

If you tried to run the script now by typing ./hello.sh, you would see an error like:

bash: ./hello.sh: Permission denied

This is because the script doesn’t have execute permission yet. Don’t worry - we’ll fix this in
Section 5.4!

Adding More to Your Script

Now that you understand the basics, you can experiment by adding more commands. Let’s enhance
our script with one more feature.

Let’s edit the script again:

121

PREVIEW
3. Your First Shell Script

nano hello.sh

Add these lines at the end of the file, before the final ls command:

echo "Your username is:"

whoami

echo ""

Your complete script should now look like this:

My first shell script

This script displays system information

echo "Hello! Welcome to my first script!"

echo ""

echo "Current date and time:"

date

echo ""

echo "You are currently in:"

pwd

echo ""

echo "Your username is:"

whoami

echo ""

echo "Files in this directory:"

ls

Save the file (Ctrl+O, then Enter) and exit (Ctrl+X).
Let’s verify the changes:

cat hello.sh

Output:

My first shell script

This script displays system information

echo "Hello! Welcome to my first script!"

echo ""

echo "Current date and time:"

date

echo ""

echo "You are currently in:"

pwd

echo ""

echo "Your username is:"

whoami

echo ""

echo "Files in this directory:"

ls

122

PREVIEW
3.2. Creating a Simple Script

Great! We’ve added the whoami command, which displays your username. This demonstrates an
important point: scripts are just text files, and you can edit them anytime to add, remove, or change
commands.

Common Mistakes and How to Avoid Them

As you create scripts, watch out for these common issues:

Mistake 1: Typos in Commands

� Wrong

ecko "Hello" # Typo: ecko instead of echo

Result: Error message: ecko: command not found

Solution: Double-check command spelling. Use tab completion when possible.

Mistake 2: Missing Quotes

� Wrong

echo Hello, World! # The comma and exclamation might cause issues

� Correct

echo "Hello, World!" # Quotes ensure the text is treated as a single argument

Solution: Use quotes around text strings, especially if they contain spaces or special characters.

Mistake 3: Forgetting Comments

� Unclear

date

pwd

ls

� Clear

Display system information

echo "Current date:"

date

echo "Current directory:"

pwd

echo "Files here:"

ls

Solution: Add comments to explain what your script does, even if it seems obvious now.

Mistake 4: Inconsistent Indentation

While indentation doesn’t affect how the script runs (yet - it will matter with control structures later),
it affects readability:

123

PREVIEW
3. Your First Shell Script

� Hard to read

echo "Starting....."

date

pwd

echo "Done" # Random indentation

� Easy to read

echo "Starting....."

date

pwd

echo "Done" # Consistent left alignment

Solution: Keep commands aligned consistently.

Practice Exercise

To reinforce what you’ve learned, try creating a second script on your own:

1. Create a new file called system_info.sh

2. Add comments at the top explaining what it does
3. Use echo to create labels
4. Include these commands: hostname (shows computer name), date, uptime (shows how long

system has been running)
5. Save and verify with cat

Try it yourself before looking at the solution below!

LIGHTBULB Solution

Here’s one way to write system_info.sh:

nano system_info.sh

Type this content:

System Information Script

Displays basic information about the system

echo "===== System Information ====="

echo ""

echo "Computer name:"

hostname

echo ""

echo "Current date and time:"

date

echo ""

echo "System uptime:"

uptime

echo ""

echo "===== End of Report ====="

124

PREVIEW
3.2. Creating a Simple Script

Save (Ctrl+O, Enter) and exit (Ctrl+X).
Verify:

cat system_info.sh

Notice how we used ===== symbols to create visual separators in the output. This is purely for
formatting - it makes the output easier to read.

Exercise 2: Reading and Understanding Scripts (Beginner)

Question: What will this script output when saved and verified with cat? Don’t run it - just read
the code and predict what you’ll see in the file.

Greeting script

echo "Welcome to scripting"

date

echo "Script location:"

pwd

Click to see answer
When you run cat on this file, you’ll see exactly what’s written above:

Greeting script

echo "Welcome to scripting"

date

echo "Script location:"

pwd

Important understanding: Using cat to view a script shows you the contents of the file (the
commands), not the output of running those commands. You’re seeing what’s written in the file, not
what it would do if executed.

If you were to run this script (after adding shebang and making it executable), you would see the
actual output from the commands, which would be different.

Exercise 3: Debugging - Find the Mistakes (Intermediate)

Question: This script has 4 mistakes. Identify them and explain how to fix each one.

echo Hello and welcome

Display the current date

Date

echo ""

echo Current directory

pwd

echo My username is

whoami

ecko "All done!"

Click to see answer

125

PREVIEW
3. Your First Shell Script

Mistakes found:

1. Line 3: Date - Commands are case-sensitive. Should be date (lowercase)

• Fix: Change Date to date

2. Line 5: Missing quotes - “Current directory” has a space but no quotes

• Fix: Change echo Current directory to echo "Current directory"

• Note: This might work without quotes, but quotes are best practice for text with spaces

3. Line 9: ecko - Typo in command name

• Fix: Change ecko to echo

4. Missing shebang line - The script should start with ##!/bin/sh

• Fix: Add ##!/bin/sh as the very first line

Corrected script:

##!/bin/sh

echo "Hello and welcome"

Display the current date

date

echo ""

echo "Current directory"

pwd

echo "My username is"

whoami

echo "All done!"

Exercise 4: Creating a File Information Script (Intermediate)

Question: Create a script called file_check.sh that: 1. Displays a heading “File and Directory
Information” 2. Shows the current directory with pwd 3. Lists all files (including hidden ones) with
ls -a 4. Shows detailed file information with ls -l 5. Includes appropriate comments and blank
lines for readability

Write the complete script content (without actually creating the file).
Click to see answer

##!/bin/sh

File and Directory Information Script

Shows comprehensive information about current location

echo "===== File and Directory Information ====="

echo ""

Display current location

echo "Current Directory:"

pwd

echo ""

Show all files including hidden ones

126

PREVIEW
3.2. Creating a Simple Script

echo "All Files (including hidden):"

ls -a

echo ""

Show detailed file information

echo "Detailed File Information:"

ls -l

echo ""

echo "===== End of Report ====="

Key elements: - Shebang line at the top - Comments explaining sections - Labels before each
command output - Blank lines for readability - Visual separators (===) for clarity - Logical organi-
zation

Exercise 5: Multi-Command Script Planning (Advanced)

Question: You need to create a “developer workspace setup” script that: 1. Displays a welcome
message with your name 2. Shows the current date and time 3. Lists files in your home directory 4.
Shows current disk usage with df -h 5. Displays your shell with echo $SHELL 6. Shows environment
variables with printenv | head -5 (shows first 5) 7. Ends with “Workspace check complete!”

Write the complete script with proper structure, comments, and formatting.
Click to see answer

##!/bin/sh

Developer Workspace Setup Check

Displays system information and workspace status

Author: [Your Name]

Welcome message

echo "==="

echo " Developer Workspace Setup Check"

echo "==="

echo ""

Display current timestamp

echo "Current Date and Time:"

date

echo ""

Show home directory contents

echo "Home Directory Contents:"

ls -lh ~

echo ""

Check disk usage

echo "Disk Usage:"

df -h

echo ""

127

PREVIEW
3. Your First Shell Script

Display current shell

echo "Current Shell:"

echo "$SHELL"

echo ""

Show sample environment variables

echo "Environment Variables (first 5):"

printenv | head -5

echo ""

Completion message

echo "==="

echo " Workspace check complete!"

echo "==="

Advanced concepts demonstrated: - Professional header with decorative formatting - Use of ~ to
reference home directory - Combining commands with pipe (|) - Use of variables ($SHELL) - Clear
section organization - Consistent formatting throughout

Exercise 6: Understanding Script Organization (Beginner)

Question: You have two versions of a script. Which one follows better organizational practices?
Explain why.

Version A:

##!/bin/sh

echo "System Check"

date

echo "Files:"

ls

pwd

whoami

Version B:

##!/bin/sh

System Check Script

Displays system information and user details

echo "===== System Check ====="

echo ""

Current date and time

echo "Current Date:"

date

echo ""

Current location

echo "Current Directory:"

128

PREVIEW
3.2. Creating a Simple Script

pwd

echo ""

Current user

echo "Current User:"

whoami

echo ""

Files in current location

echo "Files in This Directory:"

ls

Click to see answer
Version B follows better organizational practices.
Reasons:

1. Comments for documentation

• Version B has a header explaining what the script does
• Version B has inline comments for each section
• Version A has no explanatory comments

2. Labeled output

• Version B uses echo statements to label each piece of output
• Version A produces unlabeled output that might be confusing

3. Spacing and readability

• Version B uses blank lines (echo "") to separate sections
• Version B groups related commands together
• Version A runs commands with no spacing

4. Logical order

• Version B has a clear flow: heading → date → location → user → files
• Version A’s order is less intuitive (pwd after ls, for example)

5. Professional presentation

• Version B uses visual markers (===) for the heading
• Version B would produce more readable output

While Version A would work functionally, Version B is easier to maintain, understand, and share
with others.

Summary

Key Concepts Learned:

• Creating script files: Use a text editor (like nano) to create a new .sh file
• Script structure: Comments at top, then commands in execution order
• Comments: Lines starting with # are ignored by the shell; they document your code
• Multiple commands: Scripts can contain many commands that execute in sequence
• Blank lines: echo "" creates spacing in output for better readability

Practical Skills:

129

PREVIEW
3. Your First Shell Script

• How to create a new script file with nano hello.sh

• How to write commands in a script file
• How to add comments to document what the script does
• How to save a file in nano (Ctrl+O, Enter, Ctrl+X)
• How to verify script contents with cat

• How to edit an existing script to add more commands

Essential Workflow:

1. Create/open script file with a text editor
2. Write commands in the order you want them to execute
3. Add comments to explain what the script does
4. Save the file
5. Verify contents with cat

6. Edit again if needed

Script Organization Best Practices:

• Use descriptive filenames with .sh extension
• Add comments at the top explaining the script’s purpose
• Use echo commands with labels to make output clear
• Add blank lines in output for readability
• Keep commands aligned consistently
• Group related commands together

Commands in Your Script:

Comments start with

echo "Text to display" # Print text

echo "" # Print blank line

date # Show current date/time

pwd # Show current directory

ls # List files

whoami # Show username

What We Created:
A complete shell script file named hello.sh that: - Contains comments explaining its purpose -

Uses multiple commands in sequence - Produces formatted output with labels and spacing - Is saved
as a text file ready for the next steps

Important Note:
The script we created is not executable yet. We still need to: 1. Add a shebang line (Section 5.3) 2.

Give it execute permission (Section 5.4) 3. Learn how to run it (Section 5.5)
Common Mistakes to Avoid:

• � Typos in command names → � Double-check spelling
• � Missing quotes around text → � Use quotes for strings
• � No comments → � Explain what the script does
• � Inconsistent formatting → � Keep commands aligned

What’s Next:
In The Shebang Line, you’ll learn about the special first line that tells the system which shell should

run your script. We’ll add ##!/bin/sh to our hello.sh script and understand why it’s important.

130

PREVIEW
3.3. The Shebang Line

3.3. The Shebang Line

You’ve created a script file with commands in it, but there’s one crucial element missing: the shebang
line. This special first line tells the operating system which program (interpreter) should be used to
run your script. In this section, we’ll add this important line to your script and understand why it
matters.

In this section, you will:

• Understand what a shebang line is and why it’s needed
• Learn the syntax of the shebang line (##!/bin/sh)
• Discover the difference between ##!/bin/sh and ##!/bin/bash

• Learn when to use each interpreter
• Add a proper shebang line to your script
• Understand the concept of script interpreters

Prerequisites:
This section builds on concepts from:

• What is a Shell Script? - understanding POSIX vs Bash
• Creating a Simple Script - you have a script file to work with
• Text Editing - using an editor to modify files

New Concepts Introduced:
This section introduces: shebang line, ##!/bin/sh, ##!/bin/bash, interpreter directive, /bin/sh

path, /bin/bash path
POSIX Compliance:

• ✓ The ##!/bin/sh shebang indicates a POSIX-compliant script
• � The ##!/bin/bash shebang indicates a Bash-specific script
• We’ll use ##!/bin/sh for maximum portability

Estimated Time: 20 minutes

What is a Shebang?

The term shebang (also called hashbang or hash-bang) refers to the two characters that start the
line: ##!

• # is called “hash” or “pound” or “number sign”
• ! is called “bang” or “exclamation point”

Together: ##! = “shebang” or “hashbang”
The shebang line must be the very first line of your script, and it looks like this:

##!/bin/sh

or

##!/bin/bash

This line tells the operating system: “To run this script, use the program located at this path.”

131

PREVIEW
3. Your First Shell Script

Why Do We Need a Shebang?

When you run a script, the operating system needs to know what program should interpret and
execute the commands in the file. The shebang line provides this information.

Think of it like this:

• A .pdf file needs a PDF reader program
• A .jpg file needs an image viewer
• A .sh script file needs a shell interpreter

The shebang line explicitly tells the system: “Use this specific shell to run this script.”
Without a shebang line, the system makes assumptions that might not always be correct. With a

shebang line, you’re being explicit and clear about your intentions.

Understanding the Syntax

Let’s break down what ##!/bin/sh means:

##! /bin/sh

│ │

│ └─ Path to the interpreter program

└─ Shebang indicator

• ##! - The shebang marker that says “this is an interpreter directive”
• /bin/sh - The absolute path to the shell program that should run this script

Exclamation Absolute Paths Required

The shebang line must use an absolute path (starting with /), not a relative path. This is
because the system needs to know exactly where to find the interpreter, regardless of your
current directory.
� Correct: ##!/bin/sh � Wrong: ##!sh or ##!bin/sh

POSIX Shell: #!/bin/sh

The path /bin/sh refers to the system’s default POSIX-compliant shell. This is the portable, stan-
dardized shell.

Advantages of #!/bin/sh: - ✓ Highly portable - works on virtually all Unix-like systems - ✓
Uses standardized, well-defined features - ✓ Script will run on Linux, macOS, BSD, and other Unix
systems - ✓ Follows POSIX standards - ✓ Reliable and predictable behavior

What /bin/sh actually is:
On different systems, /bin/sh might be: - The original Bourne shell - Dash (Debian Almquist

Shell) - common on Debian/Ubuntu - Bash running in POSIX mode - Another POSIX-compliant
shell

The important point: regardless of which specific shell it is, it provides POSIX-compliant behavior,
so your script will work consistently.

Bash Shell: #!/bin/bash

The path /bin/bash specifically refers to the Bash shell program.

132

PR
EV
IE
W

3.3. The Shebang Line

Advantages of #!/bin/bash: - ✓ Access to Bash-specific features (arrays, extended pattern
matching, etc.) - ✓ More powerful built-in commands - ✓ Convenient features for complex scripts

Disadvantages of #!/bin/bash: - � Less portable - requires Bash to be installed - � Might not be
available on all systems (or might be in a different location) - � Script won’t work on systems without
Bash

Choosing Between #!/bin/sh and #!/bin/bash

Here’s a simple decision guide:
Use ##!/bin/sh when: - You want maximum portability - You’re using only standard POSIX

features - The script might run on different Unix-like systems - You don’t need Bash-specific features
- This is the recommended default

Use ##!/bin/bash when: - You specifically need Bash features (arrays, extended tests, etc.) - You
know the script will only run on systems with Bash - The additional features justify the reduced
portability

LIGHTBULB Our Recommendation

Start with ##!/bin/sh for all scripts. Only switch to ##!/bin/bash if you find you need a specific
Bash feature that has no POSIX equivalent. This keeps your scripts portable and teaches you
the standard, widely-supported features first.

Adding the Shebang to Your Script

Now let’s add the shebang line to the hello.sh script we created in Section 5.2.
First, let’s verify we’re in the right directory:

pwd

Output:

/home/zavrak/scripts

Good! Now let’s look at the current content of our script:

cat hello.sh

Output:

My first shell script

This script displays system information

echo "Hello! Welcome to my first script!"

echo ""

echo "Current date and time:"

date

echo ""

echo "You are currently in:"

pwd

echo ""

133

PR
EV
IE
W

3. Your First Shell Script

echo "Your username is:"

whoami

echo ""

echo "Files in this directory:"

ls

Now let’s edit it to add the shebang line:

nano hello.sh

In nano, you need to add the shebang as the very first line of the file.
Move your cursor to the beginning of the first line (where the # of # My first shell script

is), then:

1. Press Ctrl+A to go to the beginning of the line
2. Press Enter to create a new line above
3. Press the up arrow to move to that new blank line
4. Type: ##!/bin/sh

Your script should now look like this:

##!/bin/sh

My first shell script

This script displays system information

echo "Hello! Welcome to my first script!"

echo ""

echo "Current date and time:"

date

echo ""

echo "You are currently in:"

pwd

echo ""

echo "Your username is:"

whoami

echo ""

echo "Files in this directory:"

ls

Notice that ##!/bin/sh is now the very first line, even before our comment.
Now save the file: 1. Press Ctrl+O to write out (save) 2. Press Enter to confirm the filename 3.

Press Ctrl+X to exit
Let’s verify the shebang was added correctly:

cat hello.sh

Output:

##!/bin/sh

My first shell script

This script displays system information

134

PREVIEW
3.3. The Shebang Line

echo "Hello! Welcome to my first script!"

echo ""

echo "Current date and time:"

date

echo ""

echo "You are currently in:"

pwd

echo ""

echo "Your username is:"

whoami

echo ""

echo "Files in this directory:"

ls

Perfect! The shebang line is in place as the first line of the script.

INFO Shebang Must Be First

The shebang line must be the very first line in the file, with no blank lines or spaces before it. If
anything comes before ##!/bin/sh, it won’t be recognized as a shebang line.
� Correct:

##!/bin/sh

Comments can come after

echo "Hello"

� Wrong:

##!/bin/sh # Blank line before it - won't work!

echo "Hello"

� Wrong:

Comment first

##!/bin/sh # Shebang not first - won't work!

echo "Hello"

How the Shebang Works

Let’s understand what happens when you run a script with a shebang line:

1. You execute: ./hello.sh
2. The operating system reads the first line
3. It sees ##!/bin/sh
4. It knows to run: /bin/sh hello.sh

5. The /bin/sh program reads and executes the commands in the script

Essentially, the shebang line transforms:

./hello.sh

Into:

135

PREVIEW
3. Your First Shell Script

/bin/sh hello.sh

The shebang makes this happen automatically.

Comments vs. Shebang

You might notice that the shebang line starts with #, just like comments. This is intentional:

• To the shell reading the script, ##!/bin/sh looks like a comment and is ignored
• To the operating system, ##! at the very first position is special and indicates an interpreter

directive

This dual nature is clever design: the shebang line doesn’t interfere with the script’s execution
while still providing instructions to the operating system.

Testing Different Shebangs

Let’s create a second version of our script to see the difference between shebangs. We’ll create a
Bash-specific version:

nano hello_bash.sh

Type this content (notice the ##!/bin/bash shebang):

##!/bin/bash

Bash-specific version of the script

echo "This script is using Bash"

echo "Bash version:"

echo "$BASH_VERSION"

Save (Ctrl+O, Enter, Ctrl+X) and verify:

cat hello_bash.sh

Output:

##!/bin/bash

Bash-specific version of the script

echo "This script is using Bash"

echo "Bash version:"

echo "$BASH_VERSION"

Notice we’re using $BASH_VERSION, which is a Bash-specific variable. This won’t work properly
with ##!/bin/sh.

Fire Bash-Specific Feature

The $BASH_VERSION variable is specific to Bash. If you tried to use this in a ##!/bin/sh script,
it would be empty or undefined. This is an example of why you need ##!/bin/bash for Bash-
specific features.

136

PREVIEW
3.3. The Shebang Line

We’ll make this script executable and run it in later sections to see the version output.

Common Shebang Variations

While we focus on ##!/bin/sh and ##!/bin/bash, you might see other shebang lines:

Using env for Portability

##!/usr/bin/env sh

or

##!/usr/bin/env bash

This uses the env program to find sh or bash in your PATH, rather than using a fixed location.
This can be more portable if the shell is installed in a non-standard location.

Pros: - More flexible - finds the shell wherever it’s installed - Useful if shells are in different
locations on different systems

Cons: - Slightly less secure (uses PATH, which can be modified) - One more program in the chain
(env → sh → script)

Our approach: We’ll use ##!/bin/sh for simplicity and because /bin/sh is essentially universal
on Unix-like systems.

Other Interpreters

The shebang concept isn’t limited to shells. You might see:

##!/usr/bin/python3 # Python script

##!/usr/bin/perl # Perl script

##!/usr/bin/ruby # Ruby script

##!/usr/bin/node # Node.js script

This is the same concept: telling the system what program should interpret the file.

Verifying Your Shebang Line

Let’s double-check that our shebang line is correct. We can use the head command to see just the
first line:

head -n 1 hello.sh

Output:

##!/bin/sh

Perfect! The first line is exactly ##!/bin/sh with no extra spaces or characters.
Let’s check our Bash version too:

137

PREVIEW
3. Your First Shell Script

head -n 1 hello_bash.sh

Output:

##!/bin/bash

Both scripts now have proper shebang lines!

What If You Forget the Shebang?

If you forget the shebang line, your script might still work, but:

1. The system will make assumptions about which shell to use
2. Behavior might be inconsistent across different systems
3. Some systems might refuse to run the script
4. It’s not considered a proper, professional script

Best practice: Always include the shebang line. It’s explicit, clear, and ensures your script runs
with the intended interpreter.

Summary

Key Concepts Learned:

• Shebang line: The first line of a script that tells the system which interpreter to use
• #!/bin/sh: Specifies the POSIX-compliant system shell (portable, standard)
• #!/bin/bash: Specifies the Bash shell specifically (Bash features, less portable)
• Syntax: ##! followed by the absolute path to the interpreter
• Position: Must be the very first line with no spaces or lines before it

Practical Skills:

• How to add a shebang line to an existing script
• How to choose between ##!/bin/sh and ##!/bin/bash

• How to verify the shebang line with head -n 1 script.sh

• How to edit a script to insert a line at the beginning
• Understanding when Bash-specific features require ##!/bin/bash

Decision Guide:

Do you need Bash-specific features?

│

├─ No → Use ##!/bin/sh (POSIX-compliant, portable)

│

└─ Yes → Use ##!/bin/bash (Bash features, less portable)

Essential Workflow:

1. Create your script file
2. Add ##!/bin/sh as the very first line
3. Add comments explaining the script
4. Add your commands
5. Save the file

Shebang Format:

138

PREVIEW
3.3. The Shebang Line

##!/bin/sh # POSIX shell (recommended default)

##!/bin/bash # Bash shell (when you need Bash features)

##!/usr/bin/env sh # Using env (alternative approach)

POSIX vs Bash Comparison:

Aspect #!/bin/sh #!/bin/bash

Portability ✓ Excellent � Good (if Bash installed)
Features Standard POSIX POSIX + Bash extensions
When to use Default choice Specific Bash features needed
Systems All Unix-like Systems with Bash

Common Mistakes:

• � Forgetting the shebang line → � Always add it as the first line
• � Shebang not on the first line → � Must be line 1, position 1
• � Spaces before ##! → � No spaces before the shebang
• � Using relative path like ##!bin/sh → � Use absolute path ##!/bin/sh

• � Typos like ##!/bin/sch → � Double-check: /bin/sh or /bin/bash

What We Accomplished:
Our hello.sh script now has: - ✓ A proper shebang line (##!/bin/sh) - ✓ Comments explaining

what it does - ✓ Commands that will execute in sequence - ✓ POSIX-compliant code
We’re almost ready to run it! We just need one more step: making it executable.

Practice Exercises

Try these exercises to reinforce your understanding of shebang lines and script interpreters:

Exercise 1: Understanding the Shebang (Beginner)

Question: Explain what happens when the operating system encounters ##!/bin/sh as the first line
of a script file. Why must this line be in the exact first position of the file?

Click to see answer
What happens: 1. When you run ./script.sh, the operating system reads the first two characters

2. If it sees ##!, it knows this is an interpreter directive 3. It reads the rest of the line to find the path
to the interpreter (/bin/sh) 4. It launches that program (/bin/sh) and passes the script file to it 5.
The interpreter reads and executes the commands in the script

Why it must be first: - The operating system only looks for ##! at position 1 of line 1 - If there are
any spaces, blank lines, or other characters before it, the OS won’t recognize it as a shebang - The
shebang won’t work if it’s on line 2 or later - It must be the very first thing in the file: no spaces, no
blank lines before it

Example of what works and what doesn’t:
� Correct:

##!/bin/sh

Comments can come after

echo "Hello"

139

PREVIEW
3. Your First Shell Script

� Wrong (blank line before):

##!/bin/sh

echo "Hello"

� Wrong (comment before):

My script

##!/bin/sh

echo "Hello"

Exercise 2: POSIX vs Bash Shebang Decision (Intermediate)

Question: For each scenario below, should you use ##!/bin/sh or ##!/bin/bash? Explain your
reasoning.

a) A script that uses only basic commands like echo, ls, pwd, and date

b) A script that uses Bash arrays to store a list of server names
c) A script that will be deployed on Linux, macOS, and BSD servers
d) A script that uses extended pattern matching features specific to Bash

Click to see answer

a) Use ##!/bin/sh

• These are all standard POSIX commands
• No Bash-specific features needed
• Maximum portability

b) Use ##!/bin/bash

• Arrays are a Bash-specific feature
• Not available in standard POSIX shell
• Must use ##!/bin/bash for arrays to work

c) Use ##!/bin/sh

• Need to run on multiple different Unix-like systems
• Portability is the primary concern
• POSIX compliance ensures it works everywhere

d) Use ##!/bin/bash

• Extended pattern matching is Bash-specific
• Requires Bash features that aren’t in POSIX
• Reduced portability but necessary for the features needed

General rule: Start with ##!/bin/sh unless you specifically need Bash features. Then switch to
##!/bin/bash only if necessary.

Exercise 3: Debugging Shebang Lines (Intermediate)

Question: Each of these shebang lines has a problem. Identify the issue and provide the correct
version.

a) ##! /bin/sh (note the space after #!)

140

PR
EV
IE
W

3.3. The Shebang Line

b) ##!/bin/Sh (note the capital S)
c) #/bin/sh (missing !)
d) ##!/bin/bash/ (note the trailing slash)
e) ##!bin/sh (missing leading /)

Click to see answer

a) Problem: Space between ##! and the path

• While this might work on some systems, it’s not standard
• Correct: ##!/bin/sh (no space)

b) Problem: Wrong capitalization - Sh instead of sh

• Unix paths are case-sensitive
• There’s no program at /bin/Sh
• Correct: ##!/bin/sh (lowercase)

c) Problem: Missing the ! character

• Without !, it’s just #/bin/sh which is treated as a comment
• The shebang requires both # and !

• Correct: ##!/bin/sh

d) Problem: Unnecessary trailing slash

• /bin/bash/ is a malformed path (bash is a file, not a directory)
• Correct: ##!/bin/bash (no trailing slash)

e) Problem: Relative path instead of absolute path

• bin/sh is a relative path (missing the leading /)
• Shebang requires an absolute path
• Correct: ##!/bin/sh (starts with /)

Key principle: The shebang must be exactly ##! (no spaces) followed by the absolute path to the
interpreter.

Exercise 4: Verifying Shebang Lines (Beginner)

Question: You have three scripts. For each one, write the command to verify that the shebang line is
correct. What should you see if the shebang is properly set?

Scripts: backup.sh, deploy.sh, monitor.sh
Click to see answer
Commands to verify shebang lines:

head -n 1 backup.sh

head -n 1 deploy.sh

head -n 1 monitor.sh

The head -n 1 command shows only the first line of each file.
What you should see:
For POSIX scripts:

##!/bin/sh

141

PREVIEW
3. Your First Shell Script

For Bash scripts:

##!/bin/bash

Or using env (alternative):

##!/usr/bin/env sh

or

##!/usr/bin/env bash

Red flags (problems): - Blank line or output that doesn’t start with ##! - Path with typos like
##!/bin/sahce##!/bin/bsh - Relative paths like ‘#!/bin/sahebang on line 2 or later (need to check
full file) - Wrong capitalization

Pro tip: You can check multiple files at once:

head -n 1 backup.sh deploy.sh monitor.sh

This shows the first line of each file with filename headers.

Exercise 5: Creating Scripts with Different Shebangs (Advanced)

Question: Create two versions of a simple script:
Version 1: POSIX-compliant (info_posix.sh) - Use ##!/bin/sh - Display “POSIX Script” - Show

the current date - Show current directory
Version 2: Bash-specific (info_bash.sh) - Use ##!/bin/bash - Display “Bash Script” - Show the

Bash version with echo "$BASH_VERSION" - Show the current date - Show current directory
Write both complete scripts.
Click to see answer
Version 1: info_posix.sh (POSIX-compliant)

##!/bin/sh

POSIX-compliant information script

Uses only standard POSIX features

echo "===== POSIX Script ====="

echo ""

echo "Current Date:"

date

echo ""

echo "Current Directory:"

pwd

echo ""

echo "Script completed successfully"

Version 2: info_bash.sh (Bash-specific)

142

PREVIEW
3.4. Making Scripts Executable

##!/bin/bash

Bash-specific information script

Uses Bash features

echo "===== Bash Script ====="

echo ""

echo "Bash Version:"

echo "$BASH_VERSION"

echo ""

echo "Current Date:"

date

echo ""

echo "Current Directory:"

pwd

echo ""

echo "Script completed successfully"

Key differences: 1. Different shebang lines (##!/bin/sh vs ##!/bin/bash) 2. Version 2 uses
$BASH_VERSION, which is a Bash-specific variable 3. Version 1 would work on any POSIX shell 4.
Version 2 requires Bash to be installed

Testing understanding: - If you tried to run info_bash.sh with sh info_bash.sh, the
$BASH_VERSION variable would be empty - If you run info_posix.sh with either sh or bash, it
works fine - This demonstrates why the shebang matters - it specifies the correct interpreter

What’s Next:
In Making Scripts Executable, you’ll learn about the execute permission and use the chmod +x

command to make your script runnable. Right now, even with the shebang line, the script doesn’t
have permission to execute. We’ll fix that next!

3.4. Making Scripts Executable

You’ve created a script file and added the shebang line, but there’s one final step before you can
run it: making it executable. On Unix-like systems, files need explicit permission to be executed
as programs. In this section, you’ll learn how to grant execute permission to your script using the
chmod command.

In this section, you will:

• Understand why scripts need execute permission
• Check current file permissions with ls -l

• Use chmod +x to make a script executable
• Understand what chmod +x actually does
• Verify that permissions changed correctly
• Learn the difference between readable, writable, and executable files

Prerequisites:
This section builds on concepts from:

143

PR
EV
IE
W

3. Your First Shell Script

• File Permissions Basics - understanding chmod and rwx permissions
• Listing Files - using ls -l to view file details
• The Shebang Line - you have a script with a shebang

New Concepts Introduced:
This section introduces: execute permission for scripts, chmod +x specifically for making scripts

runnable
POSIX Compliance:

• ✓ All commands are POSIX-compliant
• chmod +x is a standard POSIX feature
• File permissions are defined by POSIX

Estimated Time: 15 minutes

Why Do Scripts Need Execute Permission?

On Unix-like systems, not all files are allowed to run as programs. This is a security feature that
prevents accidental execution of files that aren’t meant to be programs.

Files have three types of permissions:

• Read (r): You can view the file’s contents
• Write (w): You can modify the file
• Execute (x): You can run the file as a program

When you create a new file (like our hello.sh script), it’s created with read and write permissions,
but not execute permission. This is intentional - files shouldn’t be executable by default.

To run a script, you must explicitly grant it execute permission.

Checking Current Permissions

Let’s see the current permissions on our script. First, make sure you’re in the scripts directory:

pwd

Output:

/home/zavrak/scripts

Good. Now let’s look at the detailed information for our hello.sh file:

ls -l hello.sh

Output:

-rw-r--r-- 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

Let’s break down what this means. The first part, -rw-r--r--, shows the file’s permissions:

-rw-r--r--

│││ │ │ │

│││ │ │ └─ Others: r (read only)

│││ │ └─── Others: - (no write)

144

PR
EV
IE
W

3.4. Making Scripts Executable

│││ └───── Others: - (no execute)

│││

││└──────── Group: r (read only)

│└───────── Group: - (no write)

└────────── Group: - (no execute)

│

└─────────── Owner: r (read)

────────── Owner: w (write)

────────── Owner: - (no execute)

The first character (-) indicates this is a regular file (not a directory).
The next nine characters are divided into three groups of three: 1. Owner permissions (rw-):

The file’s owner (you) can read and write, but not execute 2. Group permissions (r–): The file’s
group can read only 3. Others permissions (r–): Everyone else can read only

Notice that none of the three groups have execute permission (x). The execute position shows -
for all three groups, meaning no one can execute this file yet.

Let’s try to run it anyway and see what happens:

./hello.sh

Output:

bash: ./hello.sh: Permission denied

As expected, we get “Permission denied” because the file doesn’t have execute permission.

INFO Understanding ./

The ./ before the script name means “look in the current directory.” We’ll explain this more in
Section 5.5, but for now, know that ./ is needed to run a script in your current directory.

Adding Execute Permission with chmod +x

Now let’s make the script executable using the chmod command. The chmod command changes file
modes (permissions).

The syntax we’ll use is:

chmod +x filename

This means: “Add (+) execute permission (x) to the file.”
Let’s do it:

chmod +x hello.sh

This command produces no output, which is normal. In Unix tradition, commands that succeed
often produce no output - “silence means success.”

Now let’s verify that the permissions changed:

ls -l hello.sh

145

PREVIEW
3. Your First Shell Script

Output:

-rwxr-xr-x 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

Look at the permissions now: -rwxr-xr-x
Let’s compare before and after:

Before: -rw-r--r--

After: -rwxr-xr-x

^^^^ ^^^^ ^^^

│ │ └── Others gained execute (x)

│ └────── Group gained execute (x)

└─────────── Owner gained execute (x)

The chmod +x command added execute permission to all three groups: owner, group, and others.
Now everyone who can read the file can also execute it.

What Changed?

Let’s verify the change step by step. First, let’s compare our two scripts (hello.sh which we’ve
modified, and hello_bash.sh which we haven’t):

ls -l

Output:

-rwxr-xr-x 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

-rw-r--r-- 1 zavrak zavrak 156 Jan 20 10:45 hello_bash.sh

Perfect! You can see the difference: - hello.sh has x permissions: -rwxr-xr-x (executable) -
hello_bash.sh has no x permissions: -rw-r--r-- (not executable)

Let’s make hello_bash.sh executable too:

chmod +x hello_bash.sh

Now verify both files:

ls -l

Output:

-rwxr-xr-x 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

-rwxr-xr-x 1 zavrak zavrak 156 Jan 20 10:45 hello_bash.sh

Excellent! Both scripts now have execute permission.

LIGHTBULB Recognizing Executable Files

When you run ls -l, executable files show with x in their permissions. Many systems also
color-code executable files (often green) when you use ls --color=auto, making them easy
to spot at a glance.

146

PREVIEW
3.4. Making Scripts Executable

Try it:

ls --color=auto

On most systems, hello.sh and hello_bash.sh will appear in a different color (often green)
because they’re now executable.

Understanding chmod +x in Detail

The chmod +x command is shorthand for “add execute permission for everyone.” Let’s understand
the syntax:

chmod +x filename

│ │

│ └─ Permission to add: x (execute)

└─── Operation: + (add/grant)

Other chmod Operations

While +x is what we need for scripts, chmod can do more:
Adding permissions:

chmod +r file # Add read permission

chmod +w file # Add write permission

chmod +x file # Add execute permission

Removing permissions:

chmod -r file # Remove read permission

chmod -w file # Remove write permission

chmod -x file # Remove execute permission

Setting exact permissions:

chmod u+x file # Add execute for user (owner) only

chmod g+x file # Add execute for group only

chmod o+x file # Add execute for others only

chmod a+x file # Add execute for all (same as +x)

For scripts, chmod +x (which is the same as chmod a+x) is typically what you want - it makes the
script executable for everyone who has access to it.

Testing Execute Permission

Now that our script is executable, let’s verify we can run it. We won’t see the full output yet (we’ll
cover running scripts in Section 5.5), but let’s confirm the “Permission denied” error is gone.

Let’s check if we get a different response now:

./hello.sh

147

PREVIEW
3. Your First Shell Script

This time, instead of “Permission denied,” you should see the script’s output! (We’ll explore this
fully in Section 5.5.)

If you see output instead of an error, congratulations - your script is now executable!

Removing Execute Permission

Just to understand the process completely, let’s temporarily remove execute permission and then
add it back.

First, remove execute permission:

chmod -x hello.sh

Now check the permissions:

ls -l hello.sh

Output:

-rw-r--r-- 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

The x is gone from all three permission groups. The file is no longer executable.
Let’s try to run it:

./hello.sh

Output:

bash: ./hello.sh: Permission denied

We’re back to “Permission denied.”
Now let’s make it executable again:

chmod +x hello.sh

Verify:

ls -l hello.sh

Output:

-rwxr-xr-x 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

Perfect! It’s executable again. This exercise demonstrates that you can add and remove execute
permission as needed.

Why Not Make All Files Executable?

You might wonder: “Why don’t we just make all files executable by default?”
There are good security and organizational reasons:

148

PREVIEW
3.4. Making Scripts Executable

Security

If every file were executable by default: - Data files could accidentally be run as programs - Down-
loading a malicious file would be more dangerous - It would be harder to distinguish programs from
data

Clarity

Execute permission helps identify which files are meant to be run: - Scripts and programs: executable
- Data files, configuration files, documents: not executable - When you see the x permission, you
know it’s a program

Intentionality

Making files executable requires a deliberate action: - You have to consciously decide “this is a
program” - Prevents accidental execution of files - Helps prevent mistakes

Common Patterns for Script Permissions

In practice, you’ll typically see these permission patterns for scripts:

Personal Scripts (Common Pattern)

-rwxr-xr-x (755)

• Owner: read, write, execute
• Group: read, execute
• Others: read, execute

This is what chmod +x gives you, and it’s perfect for personal scripts.

Restricted Scripts

-rwx------ (700)

• Owner: read, write, execute
• Group: no permissions
• Others: no permissions

Created with: chmod 700 script.sh

Use this when the script is private and you don’t want others to run it.

Shared Team Scripts

-rwxrwxr-x (775)

• Owner: read, write, execute
• Group: read, write, execute
• Others: read, execute

Created with: chmod 775 script.sh

Use this for scripts maintained by a team, where group members can modify it.
For now, the default chmod +x pattern is perfect for your learning scripts.

149

PREVIEW
3. Your First Shell Script

Verification Checklist

Before moving to the next section, verify that your script is ready:
Let’s check everything:

ls -l hello.sh

Output should show:

-rwxr-xr-x 1 zavrak zavrak [size] [date] hello.sh

✓ The first character is - (regular file) ✓ Positions 2-4 are rwx (owner can read, write, execute) ✓
Positions 5-7 include x (group can execute) ✓ Positions 8-10 include x (others can execute)

Let’s verify the shebang line is still there:

head -n 1 hello.sh

Output:

##!/bin/sh

✓ Shebang line is present and correct
Perfect! Your script has: - ✓ A proper shebang line (##!/bin/sh) - ✓ Execute permission (-rwxr-

xr-x) - ✓ Commands to run - ✓ Everything needed to execute successfully

Practice Exercises

Try these exercises to master file permissions and making scripts executable:

Exercise 1: Reading Permission Output (Beginner)

Question: You run ls -l and see these three files:

-rw-r--r-- 1 user group 245 Jan 20 10:00 config.txt

-rwxr-xr-x 1 user group 312 Jan 20 10:15 backup.sh

-rw-rw-r-- 1 user group 156 Jan 20 10:20 notes.txt

For each file, answer: a) Which files can the owner execute? b) Which file can the group write to?
c) Which file is a script that’s ready to run?

Click to see answer

a) Which files can the owner execute?

• Only backup.sh - it has x in the owner position (position 3)
• config.txt has -rw- for owner (read, write, but no execute)
• notes.txt has -rw- for owner (read, write, but no execute)
• backup.sh has -rwx for owner (read, write, execute)

b) Which file can the group write to?

• Only notes.txt - it has w in the group position (position 6)
• config.txt has r-- for group (read only)

150

PREVIEW
3.4. Making Scripts Executable

• backup.sh has r-x for group (read and execute, no write)
• notes.txt has rw- for group (read and write)

c) Which file is a script ready to run?

• backup.sh - it has:
– The .sh extension (naming convention for scripts)
– Execute permission (x) for owner, group, and others
– This is the only executable file in the list

Permission breakdown:

config.txt: -rw-r--r-- (644) - readable by all, writable by owner only

backup.sh: -rwxr-xr-x (755) - executable, typical for scripts

notes.txt: -rw-rw-r-- (664) - writable by owner and group

Exercise 2: chmod Command Practice (Beginner)

Question: You have a script called deploy.sh with these permissions:

-rw-r--r-- 1 user group 456 Jan 20 11:00 deploy.sh

a) What command makes it executable?
b) What will the permissions be after running that command?
c) What command would you use to verify the permissions changed?

Click to see answer

a) Command to make it executable:

chmod +x deploy.sh

b) Permissions after chmod +x:

-rwxr-xr-x

Breakdown: - Before: -rw-r--r-- - After: -rwxr-xr-x - The +x adds execute permission to all
three groups (owner, group, others) - Owner: rw- becomes rwx - Group: r-- becomes r-x - Others:
r-- becomes r-x

c) Command to verify:

ls -l deploy.sh

This shows the detailed permissions. Look for x characters in the permission string.
Alternative verification:

ls -l deploy.sh | cut -c1-10

This shows just the permission string: -rwxr-xr-x

Exercise 3: Debugging Permission Problems (Intermediate)

Question: You created a script called monitor.sh, added a shebang line, and saved it. But when
you try to run it:

151

PREVIEW
3. Your First Shell Script

$./monitor.sh

bash: ./monitor.sh: Permission denied

What are the three most likely causes, and how do you fix each one?
Click to see answer
Three most likely causes:
1. Script doesn’t have execute permission (Most Common)
Diagnosis:

ls -l monitor.sh

Output shows: -rw-r--r-- (no x characters)
Fix:

chmod +x monitor.sh

Verify:

ls -l monitor.sh

Should now show: -rwxr-xr-x

2. Script is in a directory that doesn’t have execute permission
Diagnosis:

ls -ld .

The directory itself might not be executable
Fix:

chmod +x .

(Though this is rare and you might need different permissions depending on the directory)

3. Filesystem mounted with noexec option (Rare)
Diagnosis:

mount | grep $(df . | tail -1 | awk '{print $1}')

Look for noexec in the output
Fix: This requires remounting the filesystem or moving the script to a different location. This is

advanced and rare for personal scripts.

152

PREVIEW
3.4. Making Scripts Executable

Most likely solution: Number 1 - just run chmod +x monitor.sh

Troubleshooting steps: 1. Check if file exists: ls -l monitor.sh 2. Check permissions: Look
for x in the output 3. Add execute permission: chmod +x monitor.sh 4. Verify: ls -l monitor.sh

(should show x) 5. Try running again: ./monitor.sh

Exercise 4: Permission Modification Sequence (Intermediate)

Question: Starting with a script that has -rw-r--r-- permissions, show the complete sequence
of commands and outputs to: 1. Make it executable 2. Verify it’s executable 3. Remove execute
permission 4. Verify execute permission is gone 5. Make it executable again

Write each command and describe what the ls -l output would show at each verification step.
Click to see answer
Complete sequence:

Starting point: check current permissions

$ ls -l script.sh

-rw-r--r-- 1 user group 312 Jan 20 11:00 script.sh

Status: Not executable (no x anywhere)

Step 1: Make it executable

$ chmod +x script.sh

What it does: Adds execute permission to owner, group, and others

Step 2: Verify it's executable

$ ls -l script.sh

-rwxr-xr-x 1 user group 312 Jan 20 11:00 script.sh

Status: Now executable (see x in positions 3, 6, and 9)

-rwxr-xr-x

^ ^ ^

│ │ └── Others can execute

│ └──── Group can execute

└────── Owner can execute

Step 3: Remove execute permission

$ chmod -x script.sh

What it does: Removes execute permission from all three groups

153

PREVIEW
3. Your First Shell Script

Step 4: Verify execute permission is gone

$ ls -l script.sh

-rw-r--r-- 1 user group 312 Jan 20 11:00 script.sh

Status: Back to not executable (all x characters removed)

Step 5: Make it executable again

$ chmod +x script.sh

What it does: Adds execute permission again

Final verification:

$ ls -l script.sh

-rwxr-xr-x 1 user group 312 Jan 20 11:00 script.sh

Status: Executable again
Key observations: - chmod +x and chmod -x are reversible - The date/time doesn’t change

(permissions != content modification) - File size stays the same (312 bytes) - You can toggle execute
permission as many times as needed

Exercise 5: Understanding Permission Patterns (Advanced)

Question: Three developers have different permission philosophies for their scripts:
Developer A uses: chmod +x script.sh resulting in -rwxr-xr-x Developer B uses: chmod

700 script.sh resulting in -rwx------ Developer C uses: chmod 755 script.sh resulting in
-rwxr-xr-x

a) What’s the difference between A and C’s results?
b) Why might Developer B use chmod 700?
c) Which approach is best for a personal learning script?
d) Which approach is best for a sensitive backup script containing passwords?

Click to see answer

a) Difference between A and C:

• None! Both result in exactly the same permissions: -rwxr-xr-x
• chmod +x adds execute permission to existing permissions
• chmod 755 sets exact permissions (rwxr-xr-x)
• If the file started with -rw-r--r-- (common default), both produce the same result
• Developer A uses symbolic notation (+x)
• Developer C uses numeric notation (755)

b) Why Developer B uses chmod 700:

• 700 = -rwx------ means only the owner can read, write, or execute
• Group and others have NO permissions
• Use cases:

154

PREVIEW
3.4. Making Scripts Executable

– Private scripts with sensitive operations
– Scripts that contain passwords or API keys
– Personal automation scripts that shouldn’t be run by others
– Scripts that could cause problems if run by wrong user

• Security benefit: Others can’t even view the script contents

c) Best for personal learning script:

• Developer A or C: chmod +x or chmod 755 (same result)
• -rwxr-xr-x permissions
• Why:

– It’s a learning script, no security concerns
– Others can read it (good for code sharing/review)
– Standard practice for non-sensitive scripts
– Easy to remember (chmod +x)

d) Best for sensitive backup script with passwords:

• Developer B: chmod 700

• -rwx------ permissions
• Why:

– Contains sensitive information (passwords)
– Only the owner should be able to read the passwords
– Only the owner should run the backup
– Prevents accidental viewing by others
– Security first for sensitive scripts

• Even better: Don’t put passwords in scripts at all! Use environment variables or key files
with restricted permissions

Permission comparison:

chmod +x (755): -rwxr-xr-x ← Public, shareable scripts

chmod 700: -rwx------ ← Private, sensitive scripts

chmod 755: -rwxr-xr-x ← Public, shareable scripts

chmod 600: -rw------- ← Private data files (not executable)

Best practices: - Learning/public scripts: chmod +x (775 or 755) - Sensitive/private scripts: chmod
700 - Never put passwords in scripts if possible

Summary

Key Concepts Learned:

• Execute permission: The x permission bit that allows a file to be run as a program
• chmod +x: Command to add execute permission to a file
• Permission structure: -rwxr-xr-x shows read, write, execute for owner, group, and others
• Security by default: New files aren’t executable until you explicitly make them so
• Verification: Use ls -l to check if a file has execute permission

Practical Skills:

• How to check file permissions with ls -l filename

• How to make a script executable with chmod +x filename

• How to recognize executable files by their permissions (x present)

155

PREVIEW
3. Your First Shell Script

• How to remove execute permission with chmod -x filename

• How to verify permissions changed correctly

Essential Workflow:

1. Create script file with commands
2. Add shebang line as first line
3. Check current permissions: ls -l script.sh

4. Make it executable: chmod +x script.sh

5. Verify permissions changed: ls -l script.sh (should show x)
6. Script is now ready to run

chmod Command Syntax:

chmod +x script.sh # Add execute permission (most common for scripts)

chmod -x script.sh # Remove execute permission

chmod +r script.sh # Add read permission

chmod +w script.sh # Add write permission

Permission Patterns:

Before chmod +x: -rw-r--r-- (not executable)

After chmod +x: -rwxr-xr-x (executable)

^ ^ ^

│ │ └── Others can execute

│ └──── Group can execute

└────── Owner can execute

Common Mistakes:

• � Forgetting to add execute permission → � Always use chmod +x on new scripts
• � Trying to run without x permission → � Check ls -l shows x in permissions
• � Using wrong chmod syntax → � Remember: chmod +x filename (not chmod +x alone)
• � Not verifying the change → � Always run ls -l after chmod to confirm

Why This Matters:

• Security: Only files intended as programs should be executable
• Organization: Execute permission identifies what’s meant to be run
• Intentionality: Deliberate action required to make files executable
• Standard practice: All Unix-like systems work this way

What We Accomplished:
Our hello.sh script now has: - ✓ Shebang line (##!/bin/sh) - ✓ Comments and commands - ✓

Execute permission (-rwxr-xr-x) - ✓ Everything needed to run successfully!
POSIX Compliance:

• ✓ chmod is a POSIX standard command
• ✓ Permission model (rwx) is defined by POSIX
• ✓ All operations in this section are portable across Unix-like systems

What’s Next:
In Running Your Script, you’ll finally execute your script and see it work! You’ll learn different

ways to run scripts, understand the ./ notation, and celebrate your first successful script execution.
The moment of truth is coming!

156

PREVIEW
3.5. Running Your Script

3.5. Running Your Script

This is the moment you’ve been working toward! You’ve created a script file, added a shebang line,
and made it executable. Now you’ll finally run your script and see it work. In this section, you’ll
learn different ways to execute a script and understand why each method works.

In this section, you will:

• Run your script successfully for the first time
• Understand the ./ notation for executing scripts
• Learn why ./ is necessary
• Discover alternative ways to run scripts
• Understand the PATH environment variable concept
• Verify your script produces the expected output
• Celebrate your first working shell script!

Prerequisites:
This section builds on concepts from:

• Creating a Simple Script - you have a script with commands
• The Shebang Line - script has ##!/bin/sh
• Making Scripts Executable - script has execute permission
• Understanding Paths - absolute vs relative paths

New Concepts Introduced:
This section introduces: running scripts with ./, PATH environment variable concept, sh

script.sh execution method, difference between ./script.sh and sh script.sh

POSIX Compliance:

• ✓ All execution methods are POSIX-compliant
• Script execution is standardized by POSIX

Estimated Time: 20 minutes

Preparing to Run Your Script

First, let’s make sure we’re in the right location and our script is ready.
Check your current directory:

pwd

Output:

/home/zavrak/scripts

Good! Now let’s verify our script is ready. Check that it exists and is executable:

ls -l hello.sh

Output:

-rwxr-xr-x 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

Perfect! We can see: - ✓ The file exists - ✓ It has execute permission (the x characters in -rwxr-

xr-x)

157

PREVIEW
3. Your First Shell Script

Let’s also verify the shebang line is there:

head -n 1 hello.sh

Output:

##!/bin/sh

Excellent! We have everything we need: - ✓ Script file exists - ✓ Contains commands - ✓ Has
shebang line - ✓ Has execute permission

How Script Execution Works

Before we run the script, let’s understand what happens behind the scenes when you execute
./hello.sh:

Script Execution Flow: From Command to Output
Understanding each step:

1. You type ./hello.sh: The ./ tells the shell “execute the file in current directory”
2. Current shell checks: Your shell (bash/zsh/sh) receives the command
3. Execute permission check: If the file doesn’t have execute permission, it stops here with an

error

158

PREVIEW
3.5. Running Your Script

4. Read shebang: Shell reads the first line (##!/bin/sh) to find which interpreter to use
5. Find interpreter: Shell locates the interpreter at the path specified (/bin/sh)
6. Launch new process: A new shell process (/bin/sh) is started
7. Read script: The new shell reads your entire script file
8. Execute commands: Commands are executed line by line, in order
9. Output displayed: Any output (echo, ls, etc.) shows in your terminal

10. Script completes: The new shell process ends, you return to your prompt

Key point: Your script doesn’t run directly - it’s run by the shell interpreter specified in the
shebang!

We’re ready to run it!

Running Your Script with ./

The most common way to run a script in your current directory is to use ./ before the script name.
Let’s do it:

./hello.sh

Output:

Hello! Welcome to my first script!

Current date and time:

Thu Jan 20 11:45:23 UTC 2024

You are currently in:

/home/zavrak/scripts

Your username is:

zavrak

Files in this directory:

hello.sh

hello_bash.sh

� Congratulations! Your script ran successfully! You just executed your first shell script!
Let’s understand what happened:

1. You typed ./hello.sh

2. The shell looked in the current directory (.) for a file called hello.sh

3. It found the file and read the first line: ##!/bin/sh
4. It started /bin/sh and told it to execute the script
5. Each command in the script ran in sequence
6. The output appeared on your screen

Understanding the ./ Notation

You might wonder: “Why do I need ./ before the script name? Why can’t I just type hello.sh?”
Let’s try it without ./ and see what happens:

159

PREVIEW
3. Your First Shell Script

hello.sh

Output:

bash: hello.sh: command not found

It didn’t work! The error says “command not found” even though the file is right here in our
current directory.

Why ./ is Needed

When you type a command name without a path, the shell looks for it in directories listed in the
PATH environment variable. The PATH is a list of directories where the system looks for executable
programs.

The current directory (.) is not in the PATH by default, for security reasons. This prevents
accidentally running unintended programs in your current directory.

Let’s see what the ./ notation means:

./hello.sh

│ │

│ └─ The script filename

└─── Relative path: "current directory"

The ./ explicitly tells the shell: “Look in the current directory for this file.”

Understanding PATH

Let’s look at the PATH variable to see where the system looks for commands:

echo "$PATH"

Output:

/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin

The PATH contains a colon-separated list of directories. When you type a command like ls or
date, the shell searches these directories in order until it finds the command.

Notice that . (current directory) is not in this list! That’s why you need to specify ./ explicitly.

INFO Security: Why Current Directory Isn’t in PATH

In old Unix systems, the current directory (.) was sometimes in PATH. This was removed for
security:
The problem: If . were in PATH, and you were in a directory containing a malicious script
named ls, typing ls might run that malicious script instead of the real ls command.
The solution: Current directory is not in PATH by default. You must explicitly use ./ to run
scripts in the current directory.
This is a good security practice!

160

PR
EV
IE
W

3.5. Running Your Script

Using Absolute Paths

Another way to run a script is to use its absolute path. Let’s see where our script is:

pwd

Output:

/home/zavrak/scripts

So the absolute path to our script is /home/zavrak/scripts/hello.sh. We can run it using this
full path:

/home/zavrak/scripts/hello.sh

Output:

Hello! Welcome to my first script!

Current date and time:

Thu Jan 20 11:50:15 UTC 2024

You are currently in:

/home/zavrak/scripts

Your username is:

zavrak

Files in this directory:

hello.sh

hello_bash.sh

It works! Using the absolute path works from any directory.
Let’s demonstrate. First, move to your home directory:

cd ~

Verify where you are:

pwd

Output:

/home/zavrak

Now run the script using its absolute path:

/home/zavrak/scripts/hello.sh

Output:

161

PR
EV
IE
W

3. Your First Shell Script

Hello! Welcome to my first script!

Current date and time:

Thu Jan 20 11:52:30 UTC 2024

You are currently in:

/home/zavrak

Your username is:

zavrak

Files in this directory:

Documents Downloads Music Pictures Videos scripts

Notice something interesting: the “You are currently in:” output shows /home/zavrak now, not
/home/zavrak/scripts. That’s because pwd in the script shows where you were when you ran the
script, not where the script is located.

Let’s go back to the scripts directory:

cd scripts

Running a Script with sh

There’s another way to run a script that doesn’t require execute permission: explicitly calling the
shell interpreter.

First, let’s temporarily remove execute permission from our script to demonstrate:

chmod -x hello.sh

Verify it’s no longer executable:

ls -l hello.sh

Output:

-rw-r--r-- 1 zavrak zavrak 312 Jan 20 11:30 hello.sh

Now try to run it normally:

./hello.sh

Output:

bash: ./hello.sh: Permission denied

As expected, “Permission denied” because it’s not executable.
But we can still run it by explicitly calling the shell:

sh hello.sh

Output:

162

PREVIEW
3.5. Running Your Script

Hello! Welcome to my first script!

Current date and time:

Thu Jan 20 11:55:00 UTC 2024

You are currently in:

/home/zavrak/scripts

Your username is:

zavrak

Files in this directory:

hello.sh

hello_bash.sh

It worked! Let’s understand what happened:

sh hello.sh

│ │

│ └─ Script to execute (as an argument)

└──── The shell interpreter

When you run sh hello.sh, you’re saying: “Run the sh program and pass it hello.sh as an
argument to execute.”

This method: - ✓ Works even without execute permission - ✓ Explicitly specifies which shell to
use - � Ignores the shebang line (you’re explicitly calling sh) - � Requires typing more

Let’s make the script executable again:

chmod +x hello.sh

INFO When to Use sh script.sh

You might use sh script.sh instead of ./script.sh when:

• Testing a script that doesn’t have execute permission yet
• Explicitly choosing which shell to use (sh, bash, dash, etc.)
• Running someone else’s script that you don’t want to make executable
• Debugging (you can use sh -x script.sh to see each command as it runs)

For your own scripts, making them executable with chmod +x and using ./script.sh is more
common and convenient.

Comparing Execution Methods

Let’s summarize the different ways to run a script:

163

PREVIEW
3. Your First Shell Script

Method 1: ./script.sh (Most Common)

./hello.sh

Requirements: - Script must have execute permission (chmod +x) - Script must have a shebang
line - Must be in the same directory (or use a path)

How it works: - Shell looks in current directory - Reads shebang line to find interpreter - Executes
with the specified interpreter

Best for: Regular use of your own executable scripts

Method 2: Absolute Path

/home/zavrak/scripts/hello.sh

Requirements: - Script must have execute permission - Script must have a shebang line
How it works: - Shell finds script using full path - Reads shebang line - Executes with the specified

interpreter
Best for: Running scripts from any location without changing directories

Method 3: sh script.sh

sh hello.sh

Requirements: - Script file must exist and be readable - No execute permission needed - Shebang
line is ignored

How it works: - Directly runs sh interpreter - Passes script as argument - sh executes the com-
mands

Best for: Testing scripts, running without execute permission, explicitly choosing interpreter

Running the Bash Version

Remember we created hello_bash.sh with Bash-specific features? Let’s run it:

./hello_bash.sh

Output:

This script is using Bash

Bash version:

5.1.16(1)-release

Perfect! This script displays the Bash version using the $BASH_VERSION variable, which is Bash-
specific.

Notice that this script has ##!/bin/bash as its shebang, so it runs with Bash specifically, not the
POSIX shell.

164

PREVIEW
3.5. Running Your Script

Understanding Script Output

Let’s run our main script one more time and examine the output in detail:

./hello.sh

Output:

Hello! Welcome to my first script!

Current date and time:

Thu Jan 20 12:00:00 UTC 2024

You are currently in:

/home/zavrak/scripts

Your username is:

zavrak

Files in this directory:

hello.sh

hello_bash.sh

Each part of this output corresponds to commands in our script:

##!/bin/sh

My first shell script

This script displays system information

echo "Hello! Welcome to my first script!" # First line of output

echo "" # Blank line

echo "Current date and time:" # Label

date # Date command output

echo "" # Blank line

echo "You are currently in:" # Label

pwd # Current directory

echo "" # Blank line

echo "Your username is:" # Label

whoami # Username

echo "" # Blank line

echo "Files in this directory:" # Label

ls # File listing

The script executes each command in order, from top to bottom, exactly as if you had typed them
interactively.

Making Scripts Available Everywhere

Right now, you can only run ./hello.sh when you’re in the /home/zavrak/scripts directory.
What if you want to run your script from anywhere?

You have a few options:

165

PREVIEW
3. Your First Shell Script

Option 1: Use the Full Path

You can always use the absolute path:

/home/zavrak/scripts/hello.sh

This works from anywhere, but it’s a lot to type.

Option 2: Add Your Scripts Directory to PATH (Advanced)

You could add /home/zavrak/scripts to your PATH variable so the system looks there for com-
mands. We’ll cover this in a later chapter when we discuss environment variables.

Option 3: Create a Link in a PATH Directory (Advanced)

You could create a symbolic link to your script in a directory that’s already in PATH, like
/usr/local/bin. We’ll cover this technique in later chapters.

For now, using ./hello.sh from within the scripts directory or using the full path is perfectly
fine for learning and personal scripts.

Debugging: What If Your Script Doesn’t Work?

If your script doesn’t run correctly, work through this checklist:

Check 1: Is the file executable?

ls -l hello.sh

Look for x in the permissions: -rwxr-xr-x
If missing, add execute permission:

chmod +x hello.sh

Check 2: Does it have a shebang line?

head -n 1 hello.sh

Should show: ##!/bin/sh or ##!/bin/bash
If missing, edit the file and add it as the first line.

Check 3: Are you in the right directory?

pwd

ls hello.sh

If hello.sh isn’t in the current directory, navigate to it or use the full path.

166

PREVIEW
3.5. Running Your Script

Check 4: Are you using ./ ?

Make sure you’re typing ./hello.sh, not just hello.sh

Check 5: Are there syntax errors?

Run with sh to see detailed errors:

sh -x hello.sh

The -x option shows each command as it executes, helping you find problems.

Celebrating Your Achievement

Take a moment to appreciate what you’ve accomplished! You have:
� Created a script file from scratch � Added proper documentation (comments) � Included a

shebang line � Set execute permissions � Successfully run your first shell script!
This is a significant milestone. You’ve gone from typing individual commands to creating auto-

mated programs. Every complex script follows these same basic steps you’ve just learned.

Practice: Create Another Script

To reinforce what you’ve learned, create a new script called greet.sh that:

1. Has a proper shebang line (##!/bin/sh)
2. Displays a greeting with your name
3. Shows the current day of the week (hint: date +%A shows the day name)
4. Lists files in your home directory

Try it yourself before looking at the solution!

LIGHTBULB Solution

Create the script:

nano greet.sh

Content:

##!/bin/sh

Greeting script

echo "Hello! My name is Zavrak."

echo ""

echo "Today is:"

date +%A

echo ""

echo "Files in my home directory:"

ls ~

Save and exit (Ctrl+O, Enter, Ctrl+X).
Make it executable:

167

PREVIEW
3. Your First Shell Script

chmod +x greet.sh

Run it:

./greet.sh

Expected output:

Hello! My name is Zavrak.

Today is:

Thursday

Files in my home directory:

Documents Downloads Music Pictures Videos scripts

Practice Exercises

Try these exercises to master running shell scripts in different ways:

Exercise 1: Understanding ./ Notation (Beginner)

Question: You’re in /home/user/scripts directory and have an executable script called test.sh.
Explain why each of these commands succeeds or fails:

a) test.sh

b) ./test.sh

c) /home/user/scripts/test.sh

d) sh test.sh

Click to see answer

a) test.sh - FAILS

• Error: command not found

• Why: The current directory (.) is NOT in the PATH
• The shell looks for test.sh in PATH directories but doesn’t find it
• Current directory is deliberately excluded from PATH for security

b) ./test.sh - SUCCEEDS

• Runs the script from the current directory
• Why: ./ explicitly tells the shell “look in the current directory”
• Requires execute permission (chmod +x test.sh)
• Uses the shebang line to determine interpreter

c) /home/user/scripts/test.sh - SUCCEEDS

• Runs the script using its absolute path
• Why: You’re giving the complete path to the file
• Works from any directory
• Requires execute permission
• Uses the shebang line

168

PREVIEW
3.5. Running Your Script

d) sh test.sh - SUCCEEDS

• Runs the script by explicitly calling the shell
• Why: You’re telling sh to interpret the file
• Does NOT require execute permission
• Ignores the shebang line (sh is already invoked)
• Useful for testing scripts before making them executable

Key takeaway: The ./ is necessary because the current directory is not in PATH for security
reasons.

Exercise 2: Troubleshooting Script Execution (Intermediate)

Question: For each error message, identify the problem and provide the solution:

a) $ hello.sh

bash: hello.sh: command not found

b) $./hello.sh

bash: ./hello.sh: Permission denied

c) $./hello.sh

bash: ./hello.sh: No such file or directory

d) $./hello.sh

bash: ./hello.sh: bad interpreter: No such file or directory

Click to see answer

a) Error: command not found

• Problem: Trying to run script without ./ prefix

• Why it fails: Current directory not in PATH

• Solutions:

./hello.sh # Use ./ prefix

Or:

/full/path/hello.sh # Use absolute path

Or:

sh hello.sh # Explicitly call shell

b) Error: Permission denied

• Problem: Script doesn’t have execute permission

• Diagnosis:

ls -l hello.sh # Check permissions

You’ll see: -rw-r--r-- (no x)

• Solution:

169

PREVIEW
3. Your First Shell Script

chmod +x hello.sh # Add execute permission

./hello.sh # Now it runs

c) Error: No such file or directory

• Problem: Script doesn’t exist in current directory
• Diagnosis:

pwd # Where am I?

ls # What's here?

ls -l hello.sh # Does this specific file exist?

• Solutions:
– Check if you’re in the right directory
– Check the filename spelling
– Use find to locate the script: find ~ -name "hello.sh"

– Navigate to the correct directory with cd

d) Error: bad interpreter: No such file or directory

• Problem: Shebang line points to nonexistent interpreter
• Example bad shebang: ##!/bin/shh (typo)
• Diagnosis:

head -n 1 hello.sh # Check shebang

• Solutions:
– Fix shebang to ##!/bin/sh or ##!/bin/bash
– Verify interpreter exists: ls -l /bin/sh

– Edit script to correct the shebang line

Exercise 3: Execution Method Comparison (Intermediate)

Question: You have a script called report.sh that contains:

##!/bin/bash

echo "Script starting....."

echo "Bash version: $BASH_VERSION"

echo "Done"

Predict the output for each execution method:

a) ./report.sh (after chmod +x report.sh)
b) sh report.sh

c) bash report.sh

Click to see answer

a) ./report.sh (with execute permission)

Script starting.....

Bash version: 5.0.17(1)-release

Done

170

PREVIEW
3.5. Running Your Script

• Why: Uses the shebang (##!/bin/bash) to run with bash
• $BASH_VERSION displays the Bash version
• This is the intended way to run the script

b) sh report.sh

Script starting.....

Bash version:

Done

• Why: Runs with sh, not bash
• Ignores the shebang line
• $BASH_VERSION is empty because we’re not running in Bash
• The script runs but Bash-specific features don’t work

c) bash report.sh

Script starting.....

Bash version: 5.0.17(1)-release

Done

• Why: Explicitly runs with bash

• $BASH_VERSION works correctly
• Same result as method (a)
• Shebang is ignored but we’re using bash anyway

Key insight: When you explicitly call an interpreter (sh or bash), the shebang line is ignored.
This can cause different behavior if the shebang doesn’t match the interpreter you’re calling.

Exercise 4: Path-Based Execution (Advanced)

Question: You have a script /home/user/projects/deploy/release.sh that you want to run from
different locations. For each scenario, write the command:

a) You’re in /home/user - run the script
b) You’re in /home/user/projects/deploy - run the script
c) You’re in /tmp - run the script
d) You want to run it from anywhere without remembering the full path

Click to see answer

a) From /home/user:

./projects/deploy/release.sh # Relative path

Or:

/home/user/projects/deploy/release.sh # Absolute path

Or:

~/projects/deploy/release.sh # Using ~ expansion

b) From /home/user/projects/deploy:

./release.sh # Current directory

171

PREVIEW
3. Your First Shell Script

Or:

/home/user/projects/deploy/release.sh # Absolute path still works

c) From /tmp:

/home/user/projects/deploy/release.sh # Must use absolute path

Or:

~/projects/deploy/release.sh # Using ~ expansion

You cannot use a relative path from /tmp because the script is not in a subdirectory of /tmp.
d) From anywhere (make it globally accessible):

Option 1: Add script location to PATH (temporary, current session only):

export PATH="$PATH:/home/user/projects/deploy"

release.sh # Now works from anywhere

Option 2: Create a symlink in a PATH directory:

sudo ln -s /home/user/projects/deploy/release.sh /usr/local/bin/release

release # Now works from anywhere

Option 3: Move or copy to a PATH directory:

sudo cp /home/user/projects/deploy/release.sh /usr/local/bin/release

release # Now works from anywhere

Option 4: Create a shell alias:

alias release='/home/user/projects/deploy/release.sh'

release # Works from anywhere in current session

Best practice for personal scripts: Option 2 or 3 with /usr/local/bin is most common

Exercise 5: Creating and Running a Complete Script (Advanced)

Question: Create a script called syscheck.sh that: 1. Has a proper shebang for POSIX compatibility
2. Displays “System Check Report” as a header 3. Shows the current date 4. Shows the current
directory 5. Shows the script’s full path using realpath $0 6. Lists files in the current directory

Then write the complete sequence of commands to: - Create the script - Make it executable - Run
it - Verify it produces output

Click to see answer
Complete script content (syscheck.sh):

##!/bin/sh

System Check Report Script

Displays system and location information

172

PREVIEW
3.5. Running Your Script

echo "================================"

echo " System Check Report"

echo "================================"

echo ""

echo "Current Date and Time:"

date

echo ""

echo "Current Directory:"

pwd

echo ""

echo "Script Location:"

realpath "$0" 2>/dev/null ||| readlink -f "$0" 2>/dev/null ||| echo "$0"

echo ""

echo "Files in Current Directory:"

ls -lh

echo ""

echo "================================"

echo " Report Complete"

echo "================================"

Complete execution sequence:

Step 1: Create the script

nano syscheck.sh

(Type the content above, then Ctrl+O, Enter, Ctrl+X)

Step 2: Verify it was created

ls -l syscheck.sh

Should show: -rw-r--r-- (not yet executable)

Step 3: Check the shebang is correct

head -n 1 syscheck.sh

Should show: ##!/bin/sh

Step 4: Make it executable

chmod +x syscheck.sh

Step 5: Verify execute permission was added

ls -l syscheck.sh

Should show: -rwxr-xr-x (note the 'x' characters)

Step 6: Run the script

./syscheck.sh

Expected output will show:

173

PREVIEW
3. Your First Shell Script

- Header with "System Check Report"

- Current date/time

- Current working directory

- Script's full path

- List of files including syscheck.sh itself

- Footer with "Report Complete"

Alternative ways to run it:

Using absolute path

/full/path/to/syscheck.sh

Using sh (no execute permission needed)

sh syscheck.sh

From another directory

cd /tmp

/full/path/to/syscheck.sh

Or use ~/scripts/syscheck.sh if that's where it is

Testing tip: Run it from different directories to see how the “Current Directory” output changes,
but “Script Location” stays the same.

Exercise 6: Understanding Script Output and Execution Flow (Beginner)

Question: Given this script test_flow.sh:

##!/bin/sh

echo "A"

date +%H:%M

echo "B"

pwd

echo "C"

ls /nonexistent 2>/dev/null

echo "D"

a) Predict the order of output
b) Will the script stop if the ls /nonexistent command fails?
c) What happens to the error from ls /nonexistent?

Click to see answer

a) Order of output:

A

[current time like 14:30]

B

[current directory path]

C

D

Explanation:

174

PREVIEW
3.5. Running Your Script

• Commands execute top to bottom
• Each command completes before the next starts
• The output appears in the order commands are run

b) Will the script stop if ls fails?

• No, it continues
• By default, scripts continue even when commands fail
• Line “echo D” still executes after the failed ls
• The script only stops if:

– It reaches the end
– You use set -e (exit on error)
– A command explicitly calls exit

c) What happens to the error?

• The 2>/dev/null redirects error messages to /dev/null

• Error output (stderr) is suppressed
• Without 2>/dev/null, you would see:

ls: /nonexistent: No such file or directory

• The redirection silences this error message

Key concepts demonstrated: - Scripts run line by line, top to bottom - Commands execute
sequentially - Failed commands don’t stop the script by default - You can suppress error messages
with redirection (2>/dev/null)

Summary

Key Concepts Learned:

• ./script.sh: Runs a script from the current directory
• PATH: Environment variable containing directories where the system looks for commands
• Absolute path execution: Running a script using its full path from any location
• sh script.sh: Running a script by explicitly calling the interpreter
• Shebang usage: The system reads the shebang line to know which interpreter to use

Practical Skills:

• How to run a script with ./script.sh

• How to run a script using its absolute path
• How to run a script without execute permission using sh script.sh

• How to verify a script is ready to run
• How to troubleshoot common execution problems
• How to understand script output

Execution Methods Comparison:

Method Execute Permission? Shebang Required? When to Use

./script.sh Yes Yes Most common method
/full/path/script.sh Yes Yes Run from anywhere
sh script.sh No No (ignored) Testing, debugging

Essential Workflow:

175

PREVIEW
3. Your First Shell Script

1. Create script file with text editor
2. Add shebang line (##!/bin/sh) as first line
3. Write commands
4. Save file
5. Make executable: chmod +x script.sh

6. Run it: ./script.sh
7. Verify output is correct

Common Execution Issues:

• � “Permission denied” → � Add execute permission with chmod +x

• � “command not found” → � Use ./ before the script name
• � “No such file” → � Verify you’re in the right directory with pwd

• � Wrong output → � Check script contents with cat script.sh

• � Syntax errors → � Run with sh -x script.sh to debug

Why ./ is Necessary:

• Current directory (.) is not in PATH by default
• This is a security feature
• Use ./ to explicitly indicate “current directory”
• Or use the absolute path to the script

Alternative Execution Methods:

./hello.sh # Using relative path (most common)

/home/zavrak/scripts/hello.sh # Using absolute path

sh hello.sh # Calling interpreter directly

bash hello.sh # Explicitly using bash

sh -x hello.sh # Debug mode (shows each command)

What You’ve Accomplished:
You can now create complete, working shell scripts that: - Have proper structure (shebang,

comments, commands) - Have appropriate permissions (executable) - Can be run from the command
line - Automate multiple commands in sequence

POSIX Compliance:

• ✓ All execution methods are POSIX-standard
• ✓ ./script.sh works on all Unix-like systems
• ✓ PATH concept is standardized by POSIX
• ✓ Shebang mechanism is universal

Best Practices:

• Always include a shebang line as the first line
• Use ##!/bin/sh for portable scripts
• Make scripts executable with chmod +x

• Use descriptive filenames with .sh extension
• Add comments explaining what the script does
• Test your script after creating it
• Keep scripts organized in a dedicated directory

What’s Next:
You’ve completed Chapter 5! You now know how to create, configure, and run shell scripts.

In Chapter 6: Variables and Input, you’ll learn how to make your scripts more dynamic by using

176

PREVIEW
3.5. Running Your Script

variables, accepting user input, and working with command-line arguments. This will transform
your scripts from static programs into flexible, interactive tools.

Congratulations on writing and running your first shell script! �

177

PREVIEW

PREVIEWGet the Full Book

What You’ve Just Read

Congratulations! You’ve completed the free preview of POSIX Shell Scripting from Scratch.
In these preview chapters, you’ve learned:
� Chapter 1 - What the command line is and why it matters � Chapter 2 - How to navigate the

filesystem with confidence � Chapter 5 - How to write your first shell script!

What’s in the Full Book

The complete book includes 18 chapters covering everything from basics to production-ready
scripts:

Part I: Command Line Fundamentals

• � Chapter 1: Introduction (preview)
• � Chapter 2: Navigation (preview)
• � Chapter 3: Working with Files
• � Chapter 4: Text Editing

Part II: Introduction to Shell Scripting

• � Chapter 5: First Script (preview)
• � Chapter 6: Variables and Input
• � Chapter 7: Making Decisions

Part III: Control Flow and Loops

• � Chapter 8: Loops
• � Chapter 9: Functions

Part IV: Text Processing

• � Chapter 10: Pattern Matching with grep
• � Chapter 11: Text Transformation with sed & awk

Part V: Intermediate Scripting

• � Chapter 12: Files and Directories
• � Chapter 13: Advanced String Operations
• � Chapter 14: Error Handling

179

PREVIEW
Get the Full Book

Part VI: Advanced Topics

• � Chapter 15: Advanced Pattern Matching
• � Chapter 16: Process Management
• � Chapter 17: Production Scripts & Best Practices

Part VII: Real-World Applications

• � Chapter 18: Automation Projects

– System backup script
– Log analysis tool
– Deployment automation
– File organization system
– System monitoring dashboard

Plus 8 Comprehensive Appendices:

• Installation & setup guides
• Command quick reference
• Common errors & troubleshooting
• POSIX vs Bash comparison
• Learning resources
• Complete glossary
• Detailed index
• Bibliography

Why Get the Full Book?

Complete Learning Path

The preview got you started, but the full book takes you all the way to production-ready scripts
used by professionals.

Real-World Projects

Build 5 complete automation projects you can use immediately: - Automated backup systems - Log
analysis tools - Deployment automation - File management systems - System monitoring

Professional Skills

Learn the techniques used by DevOps engineers, system administrators, and developers world-
wide.

POSIX-First Approach

Write scripts that work everywhere - Linux, macOS, BSD, and more. No other book teaches this
way.

180

PREVIEW
Get the Full Book Now

Get the Full Book Now

� Available at: - Leanpub - Multi-format (PDF, EPUB, MOBI) - Amazon Kindle - For Kindle devices
- Google Play Books - For Android/iOS

� Special Launch Pricing - Limited time offer!

What Readers Are Saying

“The best shell scripting book for beginners. Clear, practical, and comprehensive.” -
Reader Review

“Finally, a book that explains POSIX compliance from the start. Invaluable for writing
portable scripts.” - Technical Review

“The progression from command line basics to production scripts is perfect. Highly
recommended!” - Developer Review

Ready to Continue Your Journey?

You’ve written your first script. Now learn to master shell scripting with:

• � Control flow and loops
• � Text processing tools (grep, sed, awk)
• � Error handling and debugging
• � Production-ready best practices
• � Real automation projects

Get the full book today and become a shell scripting expert!

About the Author

Sultan Zavrak is an Assistant Professor in Computer Engineering at Duzce University, Turkey, with
a Ph.D. in Computer and Information Engineering. With over a decade of experience teaching and
researching in computer systems, networks, and automation, Dr. Zavrak brings both academic rigor
and practical expertise to this comprehensive guide.

Thank you for reading this preview! Get the full book to unlock all 18 chapters and 8 appendices.

181

PREVIEW

	Welcome!
	Who This Book Is For
	What You'll Learn
	How This Book Is Different
	Book Structure
	Comprehensive Appendices
	How to Use This Book
	What You'll Need
	Conventions Used in This Book
	A Note on POSIX Compliance
	Getting Help
	Ready to Begin?
	About the Author
	Acknowledgments
	Copyright and License

	Command Line Fundamentals (Preview)
	Introduction to the Command Line
	What is the Command Line and Why Use It?
	Opening the Terminal
	Your First Commands
	Getting Help

	Navigating the File System
	Understanding Paths and Directories
	Listing Files
	Changing Directories
	Understanding the Directory Tree

	Your First Script! (Preview)
	Your First Shell Script
	What is a Shell Script?
	Creating a Simple Script
	The Shebang Line
	Making Scripts Executable
	Running Your Script

	Appendices
	Get the Full Book
	What You've Just Read
	What's in the Full Book
	Why Get the Full Book?
	Get the Full Book Now
	What Readers Are Saying
	Ready to Continue Your Journey?
	About the Author

