o
<
T
L.
0
T
O

7.
72,
O
o
O
=
o
Ll
an
-
<
O
aa
—
-
al

PHPUnit Ricettario Del Programmatore
Scontroso

Chris Hartjes and Pietro Alberto Rossi

This book is for sale at http://leanpub.com/phpunitricettariodelprogrammatorescontroso

This version was published on 2014-03-24

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2014 Chris Hartjes and Pietro Alberto Rossi

http://leanpub.com/phpunitricettariodelprogrammatorescontroso
http://leanpub.com
http://leanpub.com/manifesto

Indice

Introduzione

Data Provider

Perché dovreste usare un Data Provider
Uno sguardo a tuttiiquestitest
Creare Data Provider e
Esempipitcomplessi
Data Provider Trick e

(52 BN GVRE (O \C R N

Introduzione

Quando ho scritto il libro “The Grumpy Programmer’s Guide To Building Testable Applications
In PHP” il mio obiettivo era di insegnare alle persone come scrivere codice che puo essere
facilmente testato. Ci sono molte informazioni su come usare i vari tools per il testing ma non
ero molto d’accordo con questi.

Utilizzando il vostro motore di ricerca, trovate come risolvere determinati casi, ma ¢ difficile
trovare un posto che vi mostri varie soluzioni se non di basso livello.

Ho fatto molte ricerche. Mi sono iscritto ad un fantastico corso, product development, cominciai
a fare ancora piu ricerche, e ho iniziato a creare una soluzione che ero sicuro avrebbe aiutato le
persone a risolvere la sofferenza nello scrivere test per il loro codice PHP utilizzando PHPUnit.

Il risultato in questo libro. Ho provato a realizzare vari esempi di codice compresivi di spiegazioni
sulle decisioni prese per scriverli.

Non penso che questo sia un libro che leggerete fino alla fine. E* molto piu probabile che finirete
per utilizzarlo un capitolo per volta, imparando le competenze di solo una parte del processo di
testing.

Come sempre, sono benvenuti i vostri feedback via Twitter e App.net (@grmpyprogrammer) o
via email all’indirizzo chartjes@littlehart.net.

Per la versione italiana @sprik89 o mail a pietroalberto.rossi@gmail.com.

© 00 N O O b W N =

=Y
(]

Data Provider

Perche dovreste usare un Data Provider

Uno dei principali obiettivi che ci dovrebbe sempre essere € scrivere il minor codice possibile
per risolvere un determinato problema. Questo non ¢é differente quando si tratta di test, che sono
veramente nulla di piu che codice.

Una delle prime lezioni che ho imparato ¢ che quando ho iniziato a scrivere quello che leggevo
sulle test suite ¢ la ricerca di duplicazioni nei test. Ecco un esempio di una situazione in cui questo
puo accadere.

Molti programmatori avranno familiarita con il problema di FizzBuzz', se non altro perché e
comunemente presentato come un problema da risolvere come parte di un colloquio. In mia
opinione, ¢ un buon problema da presentare perché tocca vari aspetti reali della programmazione

di base.

Quando scrivete test per FizzBuzz, quello che dovete fare € passare un set di valori e verificare
che loro sono “FizzBuzzed” correttamente. 1l risultato € avere test multipli identici ma che
differiscono per il valore con cui li testate. I data provider vi permettono di semplificare questo
processo.

Un data provider € un modo per creare set multipli di dati da testare che possono essere passati
ad un test method come parametro. Voi create un metodo che € disponibile nella classe ed il tuo
test ritornera un array di valori che coincideranno con i parametri che state passando al test.

Lo so, suona molto complicato di quanto realmente lo ¢. Guardiamo un esempio.

Uno sguardo a tutti i questi test

Se non sapete cosa € un data provider, i FizzBuzz test a cosa possono assomigliare!?

<?php
class FizzBuzzTest extends PHPUnit_Framework_Testcase
{
public function setup()
{
$this->fb = new FizzBuzz();
}

public function testGetFizz()
{

'http://en.wikipedia.org/wiki/FizzBuzz

http://en.wikipedia.org/wiki/FizzBuzz
http://en.wikipedia.org/wiki/FizzBuzz

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40

Data Provider 3

$expected = 'Fizz';
$input = 3;
$response = $this->fb->check($input);
$this->assertEquals($expected, $response);
}
public function testGetBuzz()
{
$expected = 'Buzz’;
$input = 5;
$response = $this->fb->check($input);
$this->assertEquals($expected, $response);
}
public function testGetFizzBuzz()
{
$expected = 'FizzBuzz';
$input = 15;
$response = $this->fb->check($input);
$this->assertEquals($expected, $response);
}
function testPassThru()
{
$expected = '1°';
$input = 1;
$response = $this->fb->check($input);
$this->assertEquals($expected, $response);
}
}

Sono sicuro che vedete il pattern:

« multipli valori di input
« test estremamente simili in configurazione ed esecuzione
« stesse asserzioni

Creare Data Provider

Un data provider ¢ un altro metodo nella vostra classe test che ritorna un array di risultati, dove
ogni risultato € un array stesso. PHPUnit converte il risultato di ritorno in parametri di input
che il test accetta.

© 0 N O O & W N =

-
(]

© 00 N O O b W N =

RN
= O

Data Provider 4

<?php
public function fizzBuzzProvider()
{
return array(
array(1, '1'),
array(3, 'Fizz'),
array(5, 'Buzz'),
array(15, 'FizzBuzz')

Il nome della funzione per il provider non importa, ma prende di significato quando il test fallisce
e verra stampato il nome del data provider.

Per utilizzare un data provider, dobbiamo aggiungere I’annotazione alla docblock che precede il
test in modo da dire a PHPUnit di utilizzarlo.

<?php

Vets

* Test for our FizzBuzz object
*

* @dataProvider fizzBuzzProvider
*/
public function testFizzBuzz($input, $expected)

{
$response = $this->fb->check($input);
$this->assertEquals($expected, $response);

Adesso abbiamo solamente un test (meno codice da mantenere) e possiamo aggiungere scenari
via data provider. Dobbiamo anche imparare a capire, mentre analizziamo quello che abbiamo
da testare, quali test abbiamo realmente necessita di scrivere.

Quando utilizziamo un data provider, PHPUnit eseguira il test method ogni volta per ogni set di
dati presenti nel provider. Se il test fallisce vi indichera quale indice nell’array associato & stato
usato per eseguire quel test.

Esempi piu complessi

Non pensate che potreste avere solo semplici data provider. Quello che vi serve fare é ritornare un
array di array, dove per ogni risultato € presente un parametro che il tuo test method si aspetta.

Qui un esempio pitt complesso:

© 0 N O O & W N =

= S
a b W N -~ OO

=N O O b W N -

Data Provider 5

<?php

public function complexProvider()

{
// Read in some data from a CSV file
$fp = fopen("./fixtures/data.csv");
$response = array();

while ($data = fgetcsv($fp, 1000, ",")) {

$response[] = array($data[@], $data[1], $data[2]);
}
fclose($£p);

return $response;

Quindi non pensate che avete bisogno di limitare quello che i vostri data provider possono fare.
L’obiettivo € di creare un sufficiente set di dati da testare scrupolosamente.

Data Provider Trick

Siccome un data provider ritorna un array associativo, potete assegnargli chiavi descrittive
aggiuntive per aiutarvi nel debugging. Per esempio, potete riscrivere il data provider per il nostro
FizzBuzz test cosi:

<?php

return array(
'one' => array(1, '1'),
'fizz' => array(3, 'Fizz'),
"buzz' => array(5, 'Buzz'),

'fizzbuzz' => array(15, 'FizzBuzz')

)

Inoltre, un data provider non ha bisogno di essere un metodo della stessa classe. Potete usare
metodi di altre classi, ricordandosi di definirle di tipo public. Potete utilizzare anche i namespace.
Ecco un esempio:

e @dataProvider Foo::dataProvider

¢ @dataProvider Grumpy\Helpers\Foo: :dataProvider

Questo permette di creare classi di aiuto che sono soltato data provider e ridurre ’'ammontare di
codice duplicato nel test stesso.

	Indice
	Introduzione
	Data Provider
	Perchè dovreste usare un Data Provider
	Uno sguardo a tutti i questi test
	Creare Data Provider
	Esempi più complessi
	Data Provider Trick

