

[image: PHP 7 Upgrade Guide]

 PHP 7 Upgrade Guide

 Your guide to new features, breaking changes, and more.

 Colin O'Dell

 This book is for sale at http://leanpub.com/php7

 This version was published on 2017-11-17

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2015 - 2017 Colin O'Dell

 This book is dedicated to all those who hunger to learn.

 Table of Contents

 	

 	
 Sample

 	
 Preface

 	
 Who is this book for

 	
 Contents

 	
 Other resources

 	
 Acknowledgements

 	
 PHP Wiki and Documentation Content

 	
 Getting Started with PHP 7

 	
 Ubuntu 14.04 and 16.04+

 	
 Debian 8 & 9

 	
 Debian 6 & 7

 	
 CentOS / RHEL

 	
 Mac OS X

 	
 Windows

 	
 phpbrew

 	
 Docker

 	
 Vagrant Image

 	
 Build from Source

 	
 Part 1 - New Features

 	
 Chapter 1: Scalar Type Hints

 	
 Type Checking Modes

 	
 Mixing Modes

 	
 Backwards Compatibility

 	
 Further Reading

 	
 Chapter 3: Combined Comparison (Spaceship) Operator

 	
 Comparing Values

 	
 Sorting

 	
 Sorting by multiple values

 	
 Further Reading

 	
 Chapter 5: Unicode Codepoint Escape Syntax

 	
 Why the {}s?

 	
 Limitations

 	
 Backwards Compatibility

 	
 Further Reading:

 	
 Part 2 - Language Changes & Improvements

 	
 Chapter 15: Performance

 	
 Further Reading

 	
 Part 3 - Deprecations & Removals

 	
 Appendix - Backward Compatibility Breaks

 	
 Language Changes

 	
 Variable handling

 	
 list() behavior

 	
 foreach behavior

 	
 Parameter handling

 	
 Integer handling

 	
 String handling

 	
 Error handling

 	
 Other language changes

 	
 Standard Library Changes

 	
 Other Changes

 	
 Curl

 	
 Date

 	
 DBA

 	
 GMP

 	
 Intl

 	
 libxml

 	
 Mcrypt

 	
 Session

 	
 Opcache

 	
 OpenSSL

 	
 PCRE:

 	
 PDO_pgsql:

 	
 Standard:

 	
 JSON:

 	
 Stream:

 	
 XSL:

 	
 Notes

 Guide

 	
 Begin Reading

Sample

Thanks for downloading this sample of What’s New in PHP 7!

Preface

Who is this book for

This is book is for PHP developers looking to jump into PHP 7. You’ll need previous experience with PHP in order to understand the topics and examples we’ll cover. The more you know about PHP 5 and OOP, the more you’ll understand why some of the changes are important and how they’ll impact your development.

If you’re a manager or leader of a team looking to work in PHP 7, this book will help your developers quickly catch up on all the changes they need to know about, and even expose some new features they can take advantage of for faster, better development.

Contents

Chapter 1 summarizes the addition of scalar type hints. This allows your function parameters to explicitly require scalar types like string, int, float, or bool.

Chapter 2 covers the declaration of function return types, including the scalar types mentioned in chapter 1.

In Chapter 3 we explore the brand new “Spaceship Operator” which drastically simplifies 3-way comparison of two expressions.

Chapter 4 introduces another new operator, the “Null Coalesce Operators”. It’s a lot like ?: but with a built-in isset() check.

Chapter 5 demonstrates how to easily add Unicode characters to strings using a new \u{...} escape sequence.

Chapter 6 reviews how anonymous classes can be used to create classes on-the-fly, which is particularly useful for mocking and implementing simple interfaces (like loggers and observers).

Chapter 7 highlights the new ability to include multiple classes from a namespace with a single use statement.

Chapter 8 introduces the new Closure:call method which drastically simplifies binding your closures to objects at call-time.

Chapter 9 shows how generator can now return final values.

Chapter 10 explores how generators can yield from arrays, iterators, and other generators (insert Xzibit “yo dawg” joke here).

In Chapter 11 we see how PHP 7 drastically simplifies the process of generating strong random numbers for security-critical applications.

Chapter 12 demonstrates how to safely and easily perform integer division.

Chapter 13 unveils the new preg_replace_callback_array function for executing different callbacks per regular expression.

Chapter 14 covers the new IntlChar class, which helps you work with Unicode characters.

Chapter 15 shows how PHP 7 is dramatically faster than previous versions.

Chapter 16 describes how syntax is more consistent and flexible.

Chapter 17 explains how previously-reserved keywords can be used for property, constant, and method names. It contains a full list of such words.

Chapter 18 walks through the new changes to engine errors and exceptions.

Chapter 19 highlights the backwards-compatible improvements to the existing assert() feature.

Chapter 20 touches on how define() now supports array constants.

Chapter 21 demonstrates how to safely unserialize untrusted data by whitelisting which classes can be unserialized.

Chapter 22 talks about configuring session options by passing them into session_start().

Chapter 23 outlines the enhancements made to the Reflection API.

Chapter 24 shows how some integer behavior has changed in PHP 7.

Chapter 25 touches on division by zero, and how it works in the latest version of PHP.

Chapter 26 covers the new JSON library used by PHP, including a couple minor changes it introduces.

Chapter 27 demonstrates the inconsistencies in PHP 5’s foreach loops and how its behavior differs from PHP 7.

Chapter 28 describes some adjustments to the behavior of the list() construct.

Chapter 29 explains some of the changes made to function parameter behavior.

Chapter 30 unveils an old bug with custom session handlers and how PHP 7 resolves it.

Chapter 31 briefly touches on octals and how PHP 7 handles invalid ones.

Chapter 32 discusses the deprecation of PHP 4-style constructors.

Chapter 33 covers why manual salt generation is now deprecated in the password hashing API.

Chapter 34 lists all of the previously-deprecated functionality which has been fully removed from PHP 7.

Chapter 35 talks about the removal of alternative PHP tags.

Chapter 36 describes how several E_STRICT notices have been changed to other types.

Chapter 37 shows how multiple default cases are no longer permitted within a switch block.

Chapter 38 demonstrates PHP 5’s inconsistent handling of hexadecimal strings and why that incomplete functionality was removed.

Chapter 39 lists the SAPIs which are no longer supported or maintained.

Chapter 40 briefly highlights the removal of that annoying timezone warning.

And finally, the last section of the book includes a detailed list of all the breaking changes you’ll need to watch out for when migrating to PHP 7.

Other resources

These official PHP resources were a huge help during the creation of this book, and you may find them useful:

 	PHP Manual: Migrating from PHP 5.6.x to PHP 7.0.x

 	PHP 7 UPGRADING doc

 	PHP 7 Requests for Comments

 	PHPNG (next generation)

There are plenty of other great resources out there too, including some paid and some free ones:

 	Getting Ready for PHP 7

 	What to Expect When You’re Expecting: PHP 7, Part 1

 	What to Expect When You’re Expecting: PHP 7, Part 2

 	Zend: 5 Things You Must Know About PHP 7

 	The PHP 7 Revolution: Return Types and Removed Artifacts

 	PHP 7: 10 Things You Need to Know

 	#php7 on Twitter

 	GoPHP7 Extensions Project

 	Laracasts - PHP 7 Up and Running

(Any commercial products or services listed here have not been tested or endorsed by the author - they are simply provided as a jumping-off point for your continued PHP 7 education.)

Acknowledgements

I’d like to thank the following people for making this book possible:

 	All the programmers, testers, documentation writers, RFC authors, and everyone else who has contributed to the success of PHP. I’d have nothing to write about if it wasn’t for you.

 	The PHP community for sharing knowledge and expertise, thereby creating this amazing ecosystem for all developers.

 	Mike Spinosa, Scott Greenwell, Ben Thomas, and the whole team at Unleashed Technologies for encouraging and promoting my continuous growth.

 	Phil Sturgeon for being the catalyst behind my increased community involvement.

PHP Wiki and Documentation Content

This book includes some content from the PHP wiki, RFCs, and documentation. This content is licensed under CC BY 3.0. All usages (and any modifications) will be noted immediately adjacent to the content within this book.

Getting Started with PHP 7

Builds for PHP 7.0 and 7.1 are now available from both official and community repositories. In most cases, these new versions can be easily installed using your system’s package manager.

 PHP 5 Conflicts

 You may encounter conflicts if you already have PHP 5 installed. If so, make sure to completely remove this older version from your system before installing PHP 7.

 Alternatively, you could use something like phpbrew to safely install multiple versions side-by-side.

Ubuntu 14.04 and 16.04+

Ondřej Surý provides a PPA for installing PHP 7.0 and 7.1. The latest release can be installed using these commands:

sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get install php7.0

(Replace 7.0 with 7.1 if desired)

The full list of available packages can be found here: https://launchpad.net/~ondrej/+archive/ubuntu/php/+packages?field.name_filter=php7.0

Debian 8 & 9

Ondřej Surý also provides PHP 7.0 and 7.1 packages for Debian which can be installed using these commands:

sudo apt-get install apt-transport-https lsb-release ca-certificates
sudo wget -O /etc/apt/trusted.gpg.d/php.gpg https://packages.sury.org/php/apt.gpg
sudo sh -c "echo 'deb https://packages.sury.org/php/ $(lsb_release -sc) main'" >\
 /etc/apt/sources.list.d/php.list
sudo apt-get update
sudo apt-get install php7.0

Debian 6 & 7

PHP 7.0 can be installed using the Dotdeb repository:

Add these two lines to your /etc/apt/sources.list file, replacing <distribution> with either squeeze, wheezy, or jessie:

deb http://packages.dotdeb.org <distribution> all
deb-src http://packages.dotdeb.org <distribution> all

Add the GPG key:

wget https://www.dotdeb.org/dotdeb.gpg
sudo apt-key add dotdeb.gpg

Install PHP 7:

sudo apt-get update
sudo apt-get install php7.0

The full list of available packages can be found here: http://packages.dotdeb.org/pool/all/p/php7.0/

CentOS / RHEL

PHP 7 can be installed using the Webstatic Yum repository:

If you’re using CentOS/RHEL 7.x, run these three commands to add the repository and install PHP 7:

rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm
yum install php70w

If you’re using CentOS/RHEL 6.x, run these two commands to add the repository and install PHP 7:

rpm -Uvh https://mirror.webtatic.com/yum/el6/latest.rpm
yum install php70w

The full list of available packages (including SAPIs and extensions) can be found here: https://webtatic.com/packages/php70/#sapi

Mac OS X

PHP 7 can be installed using homebrew:

brew tap homebrew/dupes
brew tap homebrew/versions
brew tap homebrew/homebrew-php
brew install php70

Or you can install it via Liip’s php-osx tool:

curl -s http://php-osx.liip.ch/install.sh | bash -s 7.0

Windows

PHP 7 distributions for Windows can be found on the windows.php.net website: http://windows.php.net/download#php-7.0

For local development, you could instead use third-party distributions like XAMPP or EasyPHP. Both come with PHP 7, MySQL, and a web server so you can get up-and-running fast.

phpbrew

phpbrew is a wonderful utility which allows you to easily build and switch between different versions of PHP on the same machine.
It supports all modern versions of PHP, including PHP 7.

First we need phpbrew to fetch information about available versions:

phpbrew self-update

We can then install PHP 7.0, 7.1, or any other version:

phpbrew install php-7.0.25
phpbrew use php-7.0.25

Docker

Official Docker images for PHP can be found at https://hub.docker.com/_/php/.

docker pull php:latest

Vagrant Image

Rasmus Lerdorf, the creator of PHP, provides a Vagrant box image on his GitHub: https://github.com/rlerdorf/php7dev

It’s based on Debian 8 and is pre-configured to help develop PHP apps and extensions.

Build from Source

PHP.net also offers source packages for the alpha and beta releases which you can download and compile yourself. The source code can be downloaded from https://downloads.php.net/~ab/

Documentation on compiling PHP 7:

 	https://wiki.php.net/phpng

 	http://www.zimuel.it/install-php-7/

 	http://www.hashbangcode.com/blog/compiling-and-installing-php7-ubuntu

Part 1 - New Features

Perhaps the most exciting part of PHP 7 are the new features! This part of the book covers these features in detail, including examples of useful applications.

Chapter 1: Scalar Type Hints

PHP 5 introduced the ability to require function parameters to be of a certain type. This provides a safeguard against invalid uses, like passing a UNIX timestamp to a method which expects a DateTime object. It also makes it clear to other developers how the function should be used. For example, compare the following method signatures with and without type hints:

// No type hint:
function getNextWeekday($date) { /*...*/ }

// Class type hint (PHP 5):
function getNextWeekday(DateTime $date) { /*...*/ }

These hints were initially limited to just classes and interfaces, but was soon expanded to allow array and callable types too. PHP 7 extends this further by allowing scalar types like int, float, string and bool:

// Scalar type hint (PHP 7):
function getNextWeekday(int $date) { /*...*/ }

Type Checking Modes

PHP’s flexible type system is one of its most-useful features, allowing numeric strings to be used as integers and vice-versa. This tradition is continued in PHP 7 but now you have the option of enabling strict type enforcement like you’d see in other languages (such as Java or C#). This setting can be enabled using the declare construct.

Weak (“Coercive”) Type Checking

“Coercive” mode is the default type checking mode in PHP 7. This is identical to how previous versions of PHP handled scalar type hints for built-in functions. For example, take a look at the method signature for the floor function:

float floor (float $value)

When you pass in numeric strings or integers PHP auto-converts them to a float automatically. This behavior has simply been extended to userland functions as well.

Here’s a table showing which scalar types are accepted in “Coercive” mode based on the declared type:

Allowed types, coercive mode

 	Type declaration
 	int
 	float
 	string
 	bool
 	object

 	int
 	yes
 	yes*
 	yes†
 	yes
 	no

 	float
 	yes
 	yes
 	yes†
 	yes
 	no

 	string
 	yes
 	yes
 	yes
 	yes
 	yes‡

 	bool
 	yes
 	yes
 	yes
 	yes
 	no

 * Only non-NaN floats between PHP_INT_MIN and PHP_INT_MAX accepted.

 † If it’s a numeric string

 ‡ Only if object has a __toString() method

Strong (“Strict”) Type Checking

PHP 7 introduces a new “strict” mode which is enabled by placing declare(strict_types=1); at the top of your script like so:

<?php
declare(strict_types=1);

function welcome(string $name) {
 echo 'Hello ' . $name;
}

welcome('World'); // Prints: Hello World

 Be careful where you place declare

 declare(strict_types=1); must be on the first line or a compiler error will be raised.

This declaration enables strict mode for all uses in the entire file, including built-in PHP function calls and return values (see next chapter). It does not affect any included files nor any other files which include it.

Strict mode essentially requires you to pass in exact types declared. If you don’t, a TypeError will be thrown. For example, in strict mode, you cannot use numeric strings when a float or int is expected (like you can in weak/coercive mode):

 This throws an error in strict mode

<?php
declare(strict_types=1);

function welcome(string $name) {
 echo 'Hello ' . $name;
}

welcome(3);

// Fatal error: Uncaught TypeError: Argument 1 passed to welcome() must be of th\
e type string, integer given

 TypeError

 A TypeError is a new type of “exception” that can be thrown. Technically it extends from the new Throwable interface, which Exception also extends from. You can learn more about this in Chapter 17 - Error Handling.

There’s one exception to this rule though, which is that float declarations can accept int values:

 Scope widening example

<?php
declare(strict_types=1);

function add(float $a, float $b): float {
 return $a + $b;
}

add(1, 2); // float(3)

Allowed types, strict mode

 	Type declaration
 	int
 	float
 	string
 	bool
 	object

 	int
 	yes
 	no
 	no
 	no
 	no

 	float
 	yes*
 	yes
 	no
 	no
 	no

 	string
 	no
 	no
 	yes
 	no
 	no

 	bool
 	no
 	no
 	no
 	yes
 	no

 * Allowed due to widening primitive conversion

Mixing Modes

Because the directive is set per-file, it’s entirely possible to mix modes in your application. For example, your strictly-checked app could use a weakly-checked library (or vice versa) without any issues or complications.

Backwards Compatibility

You may no longer create classes named int, float, string or bool as these would conflict with the new scalar type hints.

Further Reading

 	RFC: Scalar Type Declarations

 	PHP Documentation: Type Hinting

Chapter 3: Combined Comparison (Spaceship) Operator

PHP 7 introduces a new three-way comparison operator <=> (T_SPACESHIP) which takes two expressions: (expr) <=> (expr). It compares both sides of the expression and, depending on the result, returns one of three values:

 	0
 	If both expressions are equal

 	1
 	If the left is greater

 	-1
 	If the right is greater

You may be familiar with this if you’ve worked with existing comparison functions like strcmp before.

It has the same precedence as the equality operator (==, ===, !=, !==) and behaves identically to the existing comparison operators (<, <=, ==, >=, >).

Comparing Values

You can compare everything from scalar values (like ints and floats) to arrays and even objects too. Here are some examples from the relevant RFC:

 PHP RFC examples (licensed under CC BY 3.0)

// Integers
echo 1 <=> 1; // 0
echo 1 <=> 2; // -1
echo 2 <=> 1; // 1

// Floats
echo 1.5 <=> 1.5; // 0
echo 1.5 <=> 2.5; // -1
echo 2.5 <=> 1.5; // 1

// Strings
echo "a" <=> "a"; // 0
echo "a" <=> "b"; // -1
echo "b" <=> "a"; // 1

echo "a" <=> "aa"; // -1
echo "zz" <=> "aa"; // 1

// Arrays
echo [] <=> []; // 0
echo [1, 2, 3] <=> [1, 2, 3]; // 0
echo [1, 2, 3] <=> []; // 1
echo [1, 2, 3] <=> [1, 2, 1]; // 1
echo [1, 2, 3] <=> [1, 2, 4]; // -1

// Objects
$a = (object) ["a" => "b"];
$b = (object) ["a" => "b"];
echo $a <=> $b; // 0

$a = (object) ["a" => "b"];
$b = (object) ["a" => "c"];
echo $a <=> $b; // -1

$a = (object) ["a" => "c"];
$b = (object) ["a" => "b"];
echo $a <=> $b; // 1

// only values are compared
$a = (object) ["a" => "b"];
$b = (object) ["b" => "b"];
echo $a <=> $b; // 0

Sorting

Perhaps the best application of this operator is to simplify sorting, as functions like usort expect you to perform a comparison and return -1, 0, or 1 accordingly:

This simplification is especially apparent when comparing objects by some property value:

class Spaceship {
 public $name;
 public $maxSpeed;

 public function __construct($name, $maxSpeed) {
 $this->name = $name;
 $this->maxSpeed = $maxSpeed;
 }
}

$spaceships = [
 new Spaceship('Rebel Transport', 20),
 new Spaceship('Millenium Falcon', 80),
 new Spaceship('X-Wing Starfighter', 80),
 new Spaceship('TIE Bomber', 60),
 new Spaceship('TIE Fighter', 100),
 new Spaceship('Imperial Star Destroyer', 60),
];

// Sort the spaceships by name (in ascending order)
usort($spaceships, function ($ship1, $ship2) {
 return $ship1->name <=> $ship2->name;
});

echo $spaceships[0]->name; // "Imperial Star Destroyer"

// Sort the spaceships by speed (in descending order)
// Notice how we switch the position of $ship1 and $ship2
usort($spaceships, function ($ship1, $ship2) {
 return $ship2->maxSpeed <=> $ship1->maxSpeed;
});

echo $spaceships[0]->name; // "TIE Fighter"

Without the comparison operator, these functions would be much more complex:

usort($spaceships, function ($ship1, $ship2) {
 if ($ship1->maxSpeed == $ship2->maxSpeed) {
 return 0;
 } elseif ($ship1->maxSpeed < $ship2->maxSpeed) {
 return 1;
 } else {
 return -1;
 }
});

Sorting by multiple values

You can take advantage of the array comparison behavior to easily sort by multiple fields:

// Sort by speed (asc), then by name (asc)
usort($spaceships, function ($ship1, $ship2) {
 return [$ship1->maxSpeed, $ship1->name] <=> [$ship2->maxSpeed, $ship2->name];
});

foreach ($spaceships as $ship) {
 printf("%3d is the max speed of a(n) %s\n", $ship->maxSpeed, $ship->name);
}

// Outputs:
// 20 is the max speed of a(n) Rebel Transport
// 60 is the max speed of a(n) Imperial Star Destroyer
// 60 is the max speed of a(n) TIE Bomber
// 80 is the max speed of a(n) Millenium Falcon
// 80 is the max speed of a(n) X-Wing Starfighter
// 100 is the max speed of a(n) TIE Fighter

Further Reading

 	RFC: Combined Comparison (Spaceship) Operator

 	PHP Manual: Comparison Operators

Chapter 5: Unicode Codepoint Escape Syntax

PHP’s lack of native Unicode support can make things difficult when coding for the web. While libraries like iconv and mbstring have simplified working with strings, there were no simple mechanisms available to create Unicode characters or strings without converting them from an HTML or JSON representation:

 Workaround examples

$char = html_entity_decode('☃', 0, 'UTF-8');
$char = mb_convert_encoding('☃', 'UTF-8', 'HTML-ENTITIES');
$char = json_decode('"\\u2603"');

PHP 7 finally introduces native support for Unicode character escape sequences within strings, just like you’d see in Ruby or ECMAScript 6:

$char = "\u{2603}";

This makes it much easier (and quicker) to embed Unicode characters, especially ones that aren’t easily typed. These can be used in strings alongside other characters too. For example, here’s the U+202E RIGHT-TO-LEFT OVERRIDE character being used to display the string in reverse:

echo "\u{202E}This is backwards"; // displays: sdrawkcab si sihT

 String encoding

 This construct produces the corresponding codepoint as bytes. Don’t forget that PHP strings don’t have specific encodings by default.

You can omit leading 0s if you’d like:

echo "\u{58}"; // "X"
echo "\u{0058}"; // "X"

Why the {}s?

Some other languages (C/C++/Java) use a format without the {} characters: \uXXXX. Unfortunately this limits their use to the Basic Multilingual Plane (U+0000 to U+FFFF). However, Unicode supports other characters beyond 16 bits.

For example, if we wanted to represent the U+1F427 PENGUIN emoji, our escape sequence would look something like this: \u1F427. Most languages would intepret this as U+1F42 GREEK SMALL LETTER OMICRON WITH PSILI AND VARIA plus a 7, which is not what we want. In these languages, you’d have to encode it using two 16-bit sequences like this: \uD83D\uDC27. This isn’t very clear though.

Wrapping with {} characters allows us to easily go beyond that 16-bit limitation without sacrficing clarity: \u{1F427}

Limitations

This feature follows the behavior of all other escape sequences in PHP - they can only be used within double-quoted strings and heredocs:

 Example usage

$foo = "\u{2109}\u{2134}\u{2134}";
// ℉ℴℴ

$bar = <<<EOT
 \u{212C}\u{212B}\u{211D}
EOT;
// ℬÅℝ

And like other sequences such as \t, they will not be expanded when they occur in single-quoted strings or nowdocs:

 These will not work

$foo = '\u{2109}\u{2134}\u{2134}';
// \u{2109}\u{2134}\u{2134}

$bar = <<<'EOT'
 \u{212C}\u{212B}\u{211D}
EOT;
// \u{212C}\u{212B}\u{211D}

Backwards Compatibility

Double-quoted strings and heredocs containing \u{ followed by an invalid sequence will now result in an error. This can be avoided by escaping the leading backslash with another backslash (\\u{).

Further Reading:

 	RFC: Unicode Codepoint Escape Syntax

Part 2 - Language Changes & Improvements

PHP 7 includes several major improvements to the language, as well as some changes to existing features.

Learn about the features and changes which make PHP 7 faster and more flexible than ever!

Chapter 15: Performance

PHP 7 is faster than ever. Most real-world applications will see a 100%+ boost in performance simply by upgrading! Here are some actual benchmarks from the Zend Performance Team1:

 [image: Zend Performance Team Benchmarks]
 Zend Performance Team Benchmarks

This improvement is largely due to the PHPNG (PHP Next-Gen) project which refactored the Zend Engine to be super-performant. Some of the under-the-hood changes include things like:

 	Using more-compact data structures

 	Reducing the number of heap allocations and deallocations

 	Utilizing native thread local storage

The net result is a faster PHP which also uses less memory. These changes also pave the way for future improvements, like JIT compilation, which will make PHP even faster.

Further Reading

 	Zend: Turbocharging the Web with PHP 7

 	Rasmus Lerdorf - PHP Australia Keynote

Part 3 - Deprecations & Removals

PHP 7 deprecates a couple features and removes several others which worked in previous versions of PHP. You’ll want to adjust your code accordingly before upgrading to PHP 7.

Appendix - Backward Compatibility Breaks

If you’re coming from a modern version of PHP (like 5.5 or 5.6), most of your code will probably work fine as-is. Nevertheless, we’ll cover most of the important breaking changes in this section so you’ll be prepared to fix any such issues in your projects.

The majority of these BC breaks were covered in previous chapters. We’ll link back to those sections as needed.

This list comes directly from the php-src UPGRADING document as of 7 November 2015. It may not be exhaustive. Please check https://github.com/php/php-src/blob/PHP-7.0.0/UPGRADING for the latest version.

Language Changes

Variable handling

Left-to-right parsing

Indirect variable, property and method references are now interpreted with
left-to-right semantics. Some examples:

 $$foo['bar']['baz'] // interpreted as ($$foo)['bar']['baz']
 $foo->$bar['baz'] // interpreted as ($foo->$bar)['baz']
 $foo->$bar['baz']() // interpreted as ($foo->$bar)['baz']()
 Foo::$bar['baz']() // interpreted as (Foo::$bar)['baz']()

To restore the previous behavior add explicit curly braces:

 ${$foo['bar']['baz']}
 $foo->{$bar['baz']}
 $foo->{$bar['baz']}()
 Foo::{$bar['baz']}()

 Refer back to Chapter 16 - Uniform Variable Syntax.

Global Keywords

The global keyword now only accepts simple variables. Instead of

 global $$foo->bar;

it is now required to write the following:

 global ${$foo->bar};

 Refer back to Chapter 16 - Uniform Variable Syntax.

Parenthesis influencing behavior

Parentheses around variables or function calls no longer have any influence
on behavior. For example the following code, where the result of a function
call is passed to a by-reference function

 function getArray() { return [1, 2, 3]; }

 $last = array_pop(getArray());
 // Strict Standards: Only variables should be passed by reference
 $last = array_pop((getArray()));
 // Strict Standards: Only variables should be passed by reference

will now throw a strict standards error regardless of whether parentheses
are used. Previously no notice was generated in the second case.

By-reference assignment ordering

Array elements or object properties that are automatically created during
by-reference assignments will now result in a different order. For example

 $array = [];
 $array["a"] =& $array["b"];
 $array["b"] = 1;
 var_dump($array);

now results in the array [“a” ⇒ 1, “b” ⇒ 1], while previously the result
was [“b” ⇒ 1, “a” ⇒ 1];

 Refer back to Chapter 16 - Abstract Syntax Tree.

 Relevant RFCs

 	https://wiki.php.net/rfc/uniform_variable_syntax

 	https://wiki.php.net/rfc/abstract_syntax_tree

list() behavior

Variable assignment order

list() will no longer assign variables in reverse order. For example

 list($array[], $array[], $array[]) = [1, 2, 3];
 var_dump($array);

will now result in $array == [1, 2, 3] rather than [3, 2, 1]. Note that only
the order of the assignments changed, but the assigned values stay the
same. E.g. a normal usage like

 list($a, $b, $c) = [1, 2, 3];
 // $a = 1; $b = 2; $c = 3;

will retain its current behavior.

Empty list assignments

Empty list() assignments are no longer allowed. As such all of the following
are invalid:

 list() = $a;
 list(,,) = $a;
 list($x, list(), $y) = $a;

list() no longer supports unpacking strings (while previously this was only
supported in some cases). The code

 $string = "xy";
 list($x, $y) = $string;

will now result in $x == null and $y == null (without notices) instead of
$x == “x” and $y == “y”. Furthermore list() is now always guaranteed to
work with objects implementing ArrayAccess, e.g.

 list($a, $b) = (object) new ArrayObject([0, 1]);

will now result in $a == 0 and $b == 1. Previously both $a and $b were null.

 Refer back to Chapter 28 - Behavior Changes to list.

 Relevant RFCs

 	https://wiki.php.net/rfc/abstract_syntax_tree#changes_to_list

 	https://wiki.php.net/rfc/fix_list_behavior_inconsistency

foreach behavior

Interaction with internal array pointers

Iteration with foreach() no longer has any effect on the internal array
pointer, which can be accessed through the current()/next()/etc family of
functions. For example

 $array = [0, 1, 2];
 foreach ($array as &$val) {
 var_dump(current($array));
 }

will now print the value int(0) three times. Previously the output was int(1),
int(2) and bool(false).

Array iteration by-value

When iterating arrays by-value, foreach will now always operate on a copy of
the array, as such changes to the array during iteration will not influence
iteration behavior. For example

 $array = [0, 1, 2];
 $ref =& $array; // Necessary to trigger the old behavior
 foreach ($array as $val) {
 var_dump($val);
 unset($array[1]);
 }

will now print all three elements (0 1 2), while previously the second element
1 was skipped (0 2).

Array iteration by-reference

When iterating arrays by-reference, modifications to the array will continue
to influence the iteration. However PHP will now do a better job of
maintaining a correct position in a number of cases. E.g. appending to an
array during by-reference iteration

 $array = [0];
 foreach ($array as &$val) {
 var_dump($val);
 $array[1] = 1;
 }

will now iterate over the appended element as well. As such the output of this
example will now be “int(0) int(1)”, while previously it was only “int(0)”.

Object iteration

Iteration of plain (non-Traversable) objects by-value or by-reference will
behave like by-reference iteration of arrays. This matches the previous
behavior apart from the more accurate position management mentioned in the
previous point.

Iteration of Traversable objects remains unchanged.

 Refer back to Chapter 27 - Behavior Changes to foreach.

 Relevant RFC

 	https://wiki.php.net/rfc/php7_foreach

Parameter handling

Duplicate parameter names

It is no longer possible to define two function parameters with the same name.
For example, the following method will trigger a compile-time error:

 public function foo($a, $b, $unused, $unused) {
 // ...
 }

Code like this should be changed to use distinct parameter names, for example:

 public function foo($a, $b, $unused1, $unused2) {
 // ...
 }

Retrieving argument values

The func_get_arg() and func_get_args() functions will no longer return the
original value that was passed to a parameter and will instead provide the
current value (which might have been modified). For example

 function foo($x) {
 $x++;
 var_dump(func_get_arg(0));
 }
 foo(1);

will now print “2” instead of “1”. This code should be changed to either
perform modifications only after calling func_get_arg(s)

 function foo($x) {
 var_dump(func_get_arg(0));
 $x++;
 }

or avoid modifying the parameters altogether:

 function foo($x) {
 $newX = $x + 1;
 var_dump(func_get_arg(0));
 }

Effect on backtraces

Similarly exception backtraces will no longer display the original value that
was passed to a function and show the modified value instead. For example

 function foo($x) {
 $x = 42;
 throw new Exception;
 }
 foo("string");

will now result in the stack trace

 Stack trace:
 #0 file.php(4): foo(42)
 #1 {main}

while previously it was:

 Stack trace:
 #0 file.php(4): foo('string')
 #1 {main}

While this should not impact runtime behavior of your code, it is worthwhile
to be aware of this difference for debugging purposes.

The same limitation also applies to debug_backtrace() and other functions
inspecting function arguments.

 Refer back to Chapter 29 - Parameter Handling Changes.

 Relevant RFC

 	https://wiki.php.net/phpng

Integer handling

Invalid octal literals

Invalid octal literals (containing digits larger than 7) now produce compile
errors. For example, the following is no longer valid:

 $i = 0781; // 8 is not a valid octal digit!

Previously the invalid digits (and any following valid digits) were simply
ignored. As such $i previously held the value 7, because the last two digits
were silently discarded.

 Refer back to Chapter 31 - Errors on Invalid Octal Literals.

Negative bitwise shifting

Bitwise shifts by negative numbers will now throw an ArithmeticError:

 var_dump(1 >> -1);
 // ArithmeticError: Bit shift by negative number

Left bitwise shifts

Left bitwise shifts by a number of bits beyond the bit width of an integer
will always result in 0:

 var_dump(1 << 64); // int(0)

Previously the behavior of this code was dependent on the used CPU
architecture. For example on x86 (including x86-64) the result was int(1),
because the shift operand was wrapped.

Right bitwise shifts

Similarly right bitwise shifts by a number of bits beyond the bit width of an
integer will always result in 0 or -1 (depending on sign):

 var_dump(1 >> 64); // int(0)
 var_dump(-1 >> 64); // int(-1)

 Refer back to Chapter 24 - Integer Semantics.

 Relevant RFC

 	https://wiki.php.net/rfc/integer_semantics

String handling

Hexadecimal numeric strings

Strings that contain hexadecimal numbers are no longer considered to be
numeric and don’t receive special treatment anymore. Some examples of the
new behavior:

 var_dump("0x123" == "291"); // bool(false) (previously true)
 var_dump(is_numeric("0x123")); // bool(false) (previously true)
 var_dump("0xe" + "0x1"); // int(0) (previously 16)

 var_dump(substr("foo", "0x1")); // string(3) "foo" (previously "oo")
 // Notice: A non well formed numeric value encountered

filter_var() can be used to check if a string contains a hexadecimal number
or convert such a string into an integer:

$str = "0xffff";
$int = filter_var($str, FILTER_VALIDATE_INT, FILTER_FLAG_ALLOW_HEX);
if (false === $int) {
 throw new Exception("Invalid integer!");
}
var_dump($int); // int(65535)

 Refer back to Chapter 31 - Errors on Invalid Octal Literals.

Unicode escape sequence

Due to the addition of the Unicode Codepoint Escape Syntax for double-quoted
strings and heredocs, “\u{“ followed by an invalid sequence will now result in
an error:

 $str = "\u{xyz}"; // Fatal error: Invalid UTF-8 codepoint escape sequence

To avoid this the leading backslash should be escaped:

 $str = "\\u{xyz}"; // Works fine

However, “\u” without a following { is unaffected. As such the following code
won’t error and will work the same as before:

 $str = "\u202e"; // Works fine

 Refer back to Chapter 5 - Unicode Codepoint Escape Syntax.

 Relevant RFCs

 	https://wiki.php.net/rfc/remove_hex_support_in_numeric_strings

 	https://wiki.php.net/rfc/unicode_escape

Error handling

Errors as throwables

There are now two exception classes: Exception and Error. Both classes
implement a new interface Throwable. Type hints in exception handling code
may need to be changed to account for this.

Fatal errors

Some fatal errors and recoverable fatal errors now throw an Error instead.
As Error is a separate class from Exception, these exceptions will not be
caught by existing try/catch blocks.

For the recoverable fatal errors which have been converted into an exception,
it is no longer possible to silently ignore the error from an error handler.
In particular, it is no longer possible to ignore type hint failures.

Parser errors

Parser errors now generate a ParseError that extends Error. Error
handling for eval()s on potentially invalid code should be changed to catch
ParseError in addition to the previous return value / error_get_last()
based handling.

Internal class constructor failures

Constructors of internal classes will now always throw an exception on
failure. Previously some constructors returned NULL or an unusable object.

 Refer back to Chapter 18 - Error Handling and Exceptions.

Reclassification of E_STRICT

The error level of some E_STRICT notices has been changed.

 Refer back to Chapter 36 - Reclassification and Removal of E_STRICT Notices.

 Relevant RFCs

 	https://wiki.php.net/rfc/engine_exceptions_for_php7

 	https://wiki.php.net/rfc/throwable-interface

 	https://wiki.php.net/rfc/internal_constructor_behaviour

 	https://wiki.php.net/rfc/reclassify_e_strict

Other language changes

Static calls to non-static methods

Removed support for static calls to non-static methods from an incompatible
$this context. In this case $this will not be defined, but the call will be
allowed with a deprecation notice. An example:

 class A {
 public function test() { var_dump($this); }
 }

 // Note: Does NOT extend A
 class B {
 public function callNonStaticMethodOfA() { A::test(); }
 }

 (new B)->callNonStaticMethodOfA();

 // Deprecated: Non-static method A::test() should not be called statically
 // Notice: Undefined variable $this
 NULL

Note that this only applies to calls from an incompatible context. If class B
extended from A the call would be allowed without any notices.

 Refer back to Chapter 36 - Reclassification and Removal of E_STRICT Notices.

Reserved words

It is no longer possible to use the following class, interface and trait names
(case-insensitive):

 bool
 int
 float
 string
 null
 false
 true

This applies to class/interface/trait declarations, class_alias() and use
statements.

Furthermore the following class, interface and trait names are now reserved
for future use, but do not yet throw an error when used:

 resource
 object
 mixed
 numeric

 Refer back to Chapter 1 - Scalar Type Hints.

Parenthesis requirement for yield

The yield language construct no longer requires parentheses when used in an
expression context. It is now a right-associative operator with precedence
between the “print” and “⇒” operators. This can result in different behavior
in some cases, for example:

 echo yield -1;
 // Was previously interpreted as
 echo (yield) - 1;
 // And is now interpreted as
 echo yield (-1);

 yield $foo or die;
 // Was previously interpreted as
 yield ($foo or die);
 // And is now interpreted as
 (yield $foo) or die;

Such cases can always be resolved by adding additional parentheses.

 Refer back to Chapter 16 - Abstract Syntax Tree.

Other removals

 	Removed ASP (<%) and script (<script language=php>) tags.
 (RFC: https://wiki.php.net/rfc/remove_alternative_php_tags)

 	Removed support for assigning the result of new by reference.

 	Removed support for scoped calls to non-static methods from an incompatible
 $this context. See details in https://wiki.php.net/rfc/incompat_ctx.

 	Removed support for #-style comments in ini files. Use ;-style comments instead.

 	
$HTTP_RAW_POST_DATA is no longer available. Use the php://input stream instead.

Standard Library Changes

 	
substr() now returns an empty string instead of FALSE when the truncation happens on boundaries.

 	
call_user_method() and call_user_method_array() no longer exists.

 	
ob_start() no longer issues an E_ERROR, but instead an E_RECOVERABLE_ERROR in case an
 output buffer is created in an output buffer handler.

 	The internal sorting algorithm has been improved, what may result in
 different sort order of elements that compare as equal.

 	Removed dl() function on fpm-fcgi.

 	
setcookie() with an empty cookie name now issues an E_WARNING and doesn’t send an empty set-cookie header line anymore.

Other Changes

Curl

 	Removed support for disabling the CURLOPT_SAFE_UPLOAD option. All curl file
uploads must use the curl_file / CURLFile APIs.

Date

 	Removed $is_dst parameter from mktime() and gmmktime().

DBA

 	dba_delete() now returns false if the key was not found for the inifile
handler, too.

GMP

 	Requires libgmp version 4.2 or newer now.

 	gmp_setbit() and gmp_clrbit() now return FALSE for negative indices, making
them consistent with other GMP functions.

Intl

 	Removed deprecated aliases datefmt_set_timezone_id() and
IntlDateFormatter::setTimeZoneID(). Use datefmt_set_timezone() and
IntlDateFormatter::setTimeZone() instead.

libxml

 	Added LIBXML_BIGLINES parser option. It’s available starting with libxml 2.9.0
and adds suppport for line numbers >16-bit in the error reporting.

Mcrypt

 	Removed deprecated mcrypt_generic_end() alias in favor of
mcrypt_generic_deinit().

 	Removed deprecated mcrypt_ecb(), mcrypt_cbc(), mcrypt_cfb() and mcrypt_ofb()
functions in favor of mcrypt_encrypt() and mcrypt_decrypt() with an
MCRYPT_MODE_* flag.

Session

 	session_start() accepts all INI settings as array. e.g. [‘cache_limiter’⇒‘private’]
sets session.cache_limiter=private. It also supports ‘read_and_close’ which closes
session data immediately after read data.

 	Save handler accepts validate_sid(), update_timestamp() which validates session
ID existence, updates timestamp of session data. Compatibility of old user defined
save handler is retained.

 	SessionUpdateTimestampHandlerInterface is added. validateSid(), updateTimestamp()
is defined in the interface.

 	session.lazy_write(default=On) INI setting enables only write session data when
session data is updated.

Opcache

 	Removed opcache.load_comments configuration directive. Now doc comments
loading costs nothing and always enabled.

OpenSSL

 	Removed the “rsa_key_size” SSL context option in favor of automatically
setting the appropriate size given the negotiated crypto algorithm.

 	Removed “CN_match” and “SNI_server_name” SSL context options. Use automatic
detection or the “peer_name” option instead.

PCRE:

 	Removed support for /e (PREG_REPLACE_EVAL) modifier. Use
preg_replace_callback() instead.

PDO_pgsql:

 	Removed PGSQL_ATTR_DISABLE_NATIVE_PREPARED_STATEMENT attribute in favor of
ATTR_EMULATE_PREPARES.

Standard:

 	Removed string category support in setlocale(). Use the LC_* constants
instead.

 	Removed set_magic_quotes_runtime() and its alias magic_quotes_runtime().

JSON:

 	Rejected RFC 7159 incompatible number formats in json_decode string -
top level (07, 0xff, .1, -.1) and all levels ([1.], [1.e1])

 	Calling json_decode with 1st argument equal to empty PHP string or value that
after casting to string is empty string (NULL, FALSE) results in JSON syntax error.

Stream:

 	Removed set_socket_blocking() in favor of its alias stream_set_blocking().

XSL:

 	Removed xsl.security_prefs ini option. Use XsltProcessor::setSecurityPrefs()
instead.

Notes

 Part 2 - Language Changes & Improvements

1https://www.zend.com/en/resources/php7_infographic↩

OEBPS/images/leanpub_bookmark.png

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_external-link.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/benchmark.png
500

450

400

350

H
8

Requests Per Second
8 b
g8 &

15

g

10

8

5

g

°

Drupal

WordPress

Laravel

HPHP 5.6
BHHVM 37

HPHP7

SugarCRM

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
PHP 7

Upgrade Guide

By Colin

Your guide to new features,
breaking changes, and more.

