

PHP Pandas (PHP7!)
The PHP Programming Language for Everyone.

Dayle Rees

This book is for sale at http://leanpub.com/php-pandas

This version was published on 2016-04-29

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2016 Dayle Rees

http://leanpub.com/php-pandas
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Dayle Rees by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I’m learning about PHP and Pandas AT THE SAME TIME. You can too! @
http://leanpub.com/php-pandas #PHPPandas @daylerees

The suggested hashtag for this book is #PHPPandas.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=#PHPPandas

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20learning%20about%20PHP%20and%20Pandas%20AT%20THE%20SAME%20TIME.%20You%20can%20too!%20@%20http://leanpub.com/php-pandas%20%23PHPPandas%20@daylerees
https://twitter.com/intent/tweet?text=I'm%20learning%20about%20PHP%20and%20Pandas%20AT%20THE%20SAME%20TIME.%20You%20can%20too!%20@%20http://leanpub.com/php-pandas%20%23PHPPandas%20@daylerees
https://twitter.com/search?q=%23PHPPandas
https://twitter.com/search?q=%23PHPPandas

Also By Dayle Rees
Laravel: Code Happy

Laravel: Code Happy (ES)

Laravel: Code Happy (JP)

Laravel: Code Bright

Code Happy (ITA)

Laravel: Code Bright (ES)

Laravel: Code Bright (SR)

Laravel: Code Bright (JP)

Laravel: Code Bright (IT)

Laravel: Code Bright (TR) Türkçe

Laravel: Code Bright (PT-BR)

Laravel: Code Bright (RU)

Laravel: Code Smart

PHP Pandas (ES)

PHP Pandas (IT)

PHP Pandas (FR)

PHP Pandas (TR)

http://leanpub.com/u/daylerees
http://leanpub.com/codehappy
http://leanpub.com/codehappy-es
http://leanpub.com/codehappy-jp
http://leanpub.com/codebright
http://leanpub.com/codehappy-ita
http://leanpub.com/codebright-es
http://leanpub.com/codebright-sr
http://leanpub.com/codebright-jp
http://leanpub.com/codebright-it
http://leanpub.com/codebright-tr
http://leanpub.com/codebright-ptbr
http://leanpub.com/codebright-ru
http://leanpub.com/codesmart
http://leanpub.com/php-pandas-es
http://leanpub.com/php-pandas-it
http://leanpub.com/php-pandas-fr
http://leanpub.com/php-pandas-tr

Contents

Acknowledgements . i

Errata . ii

Feedback . iii

Translations . iv

1. Introduction . 1

2. Installation . 3
Linux . 3
Mac OSX . 4
Windows . 5

3. Finding Answers . 7
Developers are robots. 7
The art of Googling . 8

4. Files . 10

5. Basic Arithmetic . 13
Statements . 13
Arithmetic Operators . 15
Procedure . 17

6. Variables & Assignment . 21
Tiny Boxes . 21
Just my type . 24
Advanced Assignment . 26

Acknowledgements
First of all, I would like to thank my girlfriend Emma, for not only putting up with
all my nerdy antics but also for taking the amazing red panda shots for both books!
Love you, Emma!

Thanks to my parents, who have been supporting my interest in these math boxes
for thirty years! Also thanks for buying a billion copies or so of the first book for
family members!

Thank you to everyone who bought my other books Code Happy and Code Bright,
and all of the Laravel community. Without your support, I’d never have had the
confidence to continue writing.

i

Errata
This may be my third book, and my writing will have improved since the last one,
but I assure you that there will be many, many errors.

You can help support the title by sending an email with any errors you have found
to me@daylerees.com1 along with the section title.

Errors will be fixed as they are discovered. Fixes will be released within future
updates to the book.

1mailto:me@daylerees.com

ii

mailto:me@daylerees.com
mailto:me@daylerees.com

Feedback
Likewise, you can send any feedback you may have about the content of the book
or otherwise. You can send an email tome@daylerees.com2 or tweet to@daylerees.

I will endeavour to reply to all mail that I receive.
2mailto:me@daylerees.com

iii

mailto:me@daylerees.com
mailto:me@daylerees.com

Translations
If you would like to translate PHP Pandas into your language, then please send an
email to me@daylerees.com3 with your intentions. I will offer a 50/50 split of the
profits from the translated copy, which will be the same price as the English copy.

Please note that the book is written in markdown format.

3mailto:me@daylerees.com

iv

mailto:me@daylerees.com
mailto:me@daylerees.com

1. Introduction
Well hello there! Aren’t you just themost handsomeAND/ORbeautiful reader on the
planet! Well done you for buying PHP Pandas, and for taking the first step towards
your career as a world-famous web developer.

Who am I? Well, that’s a simple question! My name’s Dayle, and I’ll be your author
for this adventure. I’ve been writing books for beginners for a few years now and
have taken many other charming readers like yourself on adventures to learning
new skills. We’ll make new discoveries together, and all along the journey, rest
assured that I’ll be right by your side.

Why do you write like a crazy person?

Excuse me? Oh, this. Well you see, this is the only way that I know how to write. If
you’re looking for a technical book full of science teacher stern-ness (Is that aword?
I hope that’s a word.) then I’m afraid you’ve come to the wrong place. I write my
books for people. I like to think that we’re buddies, sitting in the pub, talking about
PHP over a pint of Special Bre… Fosters.

The truth is that the beginners that I’ve written for tend to like my writing style.
They’re not looking to gain a maths degree from this book. Instead, they’re looking
to learn a thing or two about PHP, and that, I can promise you!

Oh hey, you’ll also notice that we’re talking right now. You don’t get that from other
authors do you? You see, I have this magic power that will make you talk to me and
ask your questions.

Wait, how did you do tha…

That would be a trade secret. Sorry, we can’t share that just yet, but don’t you feel
glad that you get to be a part of this adventure, and not just an observer?

I guess so… Sure I’ll give it a go.

Excellent.

Well now’s about the time where any other book would be telling you about PHP,
it’s whole history, its application, its author and about a million other things. Well,
we’ve already established that I’m not themost traditional author, and I’m not fond

1

Introduction 2

of such chapters. You’ve bought this book to learn about PHP, so you’ve already built
up a little curiosity about the language. I think this is all you’re going to need.

PHP is a programming language that powers most of the sites out there on the big,
wide ol’ interwebs. It was originally written by a guy called Rasmus Lerdorf, who
can often be seen smiling in prettymuch any image you find of him onGoogle. Now,
Rasmus is a great guy, and in my own way I thank him each and every day for this
language that has given me a trade, but I think that’s all you need to know about
him. Other PHP books would probably be telling you his favorite cereal about now,
but instead, how about we jump in and start learning?

This book is for absolute beginners. This means that if you’ve never tried program-
ming before in your life, then you’re in luck, my friend! If you’ve already tried
programming, then you’ll do just fine. If you’re a PHP expert, then now’s a time
for a refresh of your skills, and maybe you’ll pick up a few tips and tricks along the
way.

I’ve been usingmy girlfriend (no dev experience), my non-technical colleagues, and
random people on the street, forcing my book upon them as guinea pigs to see how
it goes down with folks that have no prior knowledge of PHP. My little guinea pigs
did exceedingly well, so now it’s your turn, squeak squeak!

My goal for this book is for it to become the most fun, factual, and fantastic PHP
book that’s on the market. I want it to be the book that gets recommended when
someone is about to becomeaPHPdeveloper. I’veworkedhard tomake it accessible
to everyone, so if you enjoy this adventure, then please tweet about it, blog about
it, buy copies for your friends and family, or just print it out and slap people in the
face with it as you pass them on the street.

This book is a syntax book for PHP. It’s not going to teach you how tomake websites
(I’m working on the title in the series for this). Instead, it’s the first step that will
build your foundation knowledge of the language so that when you come to build
your first website, you’re gonna be @%Â£ˆ hot, baby!

If you read the book, and you feel like something ismissing, that a certain chapter is
confusing, or there’s anything else bothering you, then please send me an email to
me@daylerees.com to let me know! I’m incredibly responsive (thanks to all mymedia
queries…haha…programmer joke), and Iwant this book to be perfect for everyone.

If you read the book, and you didn’t find anything wrong, well… send me an email
to tell me you enjoyed it! I’d love to hear from you.

Right then, let’s not waste any more time. You’ve got some skills to learn! Flip the
page, imagine the Jurassic Park theme when they open the gates and prepare to
enter the world of development!

2. Installation
Before we begin working with PHP, we must first install it. You see, PHP is an
application like any other. It needs to be installed on our system before it can
process PHP code.

Themethodof installation varies greatly depending on the operating system thatwe
are using. For that reason, I’ve provided three different guides for installing PHP.
The first section will explain how to install PHP on a Linux distribution, namely
Ubuntu due to its popularity. The second section will explain how to install PHP on
an Apple Mac OSX system. Finally, the third section will explain how to install PHP
on the Windows operating system.

We’ll only be installing the console version of PHP. We won’t be setting up a web
server just yet. We’ll get to that in a later title. The console version of PHP is all we
need to get started with our learning process.

Remember, you only need to read the appropriate section for your com-
puter. Once you have PHP installed, go ahead and skip to the next chapter
of the book.

Linux

The best way to install PHP on a unix-based Linux distribution is to use a package
manager. The package manager available depends greatly upon the distribution of
Linux that you have chosen. I’ve decided to provide instructions for installing PHP
on Ubuntu, one of the most popular distributions of Linux.

Ubuntu uses the apt package manager to install its packages. To install the console
version of PHPwe need to install the php5-cli package. Let’s do this now. First, open
a new terminal. You’ll need to type the following instruction.

1 $ sudo apt-get install php5-cli

You don’t need to type the dollar sign; that’s just the terminal prompt to show you
that we’re typing it into the console. Once you hit enter, apt will retrieve the PHP
application package, and install it for you.

That’s it! You’re done. Well, you should be. Let’s check, shall we? Simply type:

3

Installation 4

1 $ php -v

This command is used to show the current version of PHP installed. You should see
something similar to the following.

1 PHP 5.5.13 (cli) (built: Jun 5 2014 19:13:23)
2 Copyright (c) 1997-2014 The PHP Group
3 Zend Engine v2.5.0, Copyright (c) 1998-2014 Zend Technologies

Yours won’t be exactly the same, after all, we’re all different, aren’t we? In the
example above, the PHP version is 5.5.13. Hopefully, your PHP version number
should be 5.4.0 or greater.

If your version isn’t right then, you’ll have to consult the documentation for your
Linux distribution to find out how to install the appropriate version.

Go ahead and skip to the next chapter, you’re done!

Mac OSX

On the Macintosh operating system, PHP comes pre-installed. Go ahead, open up
the Terminal application and type the following to find the version of PHP you’re
using.

1 $ php -v

Don’t type the dollar sign; that’s the terminal prompt! You should see something
similar to the following, but not exactly the same.

1 PHP 5.4.24 (cli) (built: Jan 19 2014 21:32:15)
2 Copyright (c) 1997-2013 The PHP Group
3 Zend Engine v2.4.0, Copyright (c) 1998-2013 Zend Technologies

The PHP version in the example above is 5.4.24. As long as your version of PHP is
greater than 5.4 then you’re fine, and can move to the next chapter.

If yours isn’t, that’s okay. We can use a third party package manager for OSX to
install a newer version of PHP.

We’re going to use a package manager called ‘Homebrew’ or just ‘Brew’ for short.
To install Homebrew, follow the instructions found on the following site:

Installation 5

brew.sh1

I don’t want to copy the instructions here, as they often change between different
releases. Once you have Homebrew installed, it’s time to install a newer version
of PHP. I recommend installing version 5.5. You can do this using the following
command.

1 $ brew install php55

Next, you need to add the location for this version of PHP to your system PATH
variable. Don’t worry, just type the following.

1 $ PATH=~/usr/local/Cellar/php55/5.5.13/bin:$PATH

You may need to update the version number to match the version of PHP that
Homebrew has installed on your system. Now let’s have another go at checking
the version of PHP.

1 $ php -v

Hopefully, this time, you’ll have a version greater than PHP 5.4. Go ahead and skip
to the next chapter.

Windows

Installing PHP on Windows is a little more difficult, at least for me it is. I’ve tested
the instructions below on my Windows 10 machine, but if you have any difficulty
replicating these steps, let me know, and I’ll find someone who’s more Windows-
savvy to rewrite this section.
First, head over to:
http://windows.php.net/download
Here you’ll want to download the latest PHP 5.4 and above zip archive. Once the
archive has been downloaded, you’ll want to extract it to a sensible location. I chose
to extract mine here:

1 C:\Users\Dayle\PHP

You’re going to need a command prompt to execute the scripts that we write in this
book. So here’s a great way of running a command prompt on Windows.
Right click on your desktop, or any folder and choose ‘Create Shortcut’. In the target
box enter:

1http://brew.sh/

http://brew.sh/
http://brew.sh/

Installation 6

1 cmd.exe

Click next, and name your shortcut “PHP”.

Finally, you’ll want to right click your shortcut and click ‘Properties’. On the
‘Shortcut’ tab, change the ‘Start In’ field to match the location where you extracted
the PHP archive. Click ‘OK; when done.

Double click on your PHP shortcut and you should be greeted with a command
prompt. Type…

1 php -v

..and you should be greeted with the PHP version information. Confirm that the
version is greater than or equal to PHP 5.4, and then move to the next chapter.

Once again, sorry for the roughness of this subchapter. I’ve not used Windows as a
development machine for some years now. If anyone has a better way of running
PHP onWindows, kindly email your instructions to receive your 5 minutes of fame
within this chapter!

3. Finding Answers
I know. That’s a kinda fluffy title isn’t it? You’re going to have to trust me when I
say that this is important stuff. This chapter is about your confidence as an up and
coming developer. Learning is hard, but don’t worry; I’m going to help you through
this.

Developers are robots.

Why did you decide to pursue development? No, wait! Let me guess. You saw a
rockstar PHP developer swagger out of a Limousine into one of New York’s hottest
night spots, order five bottles of Cristal and spend the evening chilling with Jay-Z
and the ghost of Tupac.

It’s true; a developers life is a glamorous one. I have to write these chapters within
my 5 hours of sobriety a day. You’ve probably seen a developer writing some code
and thought…

Ohman, that devmust be a robot. They know all of those codewords and
functions and how they all work.

When people without development experience approach developers, they assume
they are genius types with mathematics honour degrees. Perhaps this is true for
some developers, but it’s certainly not true for me. I’d like to think that other
developers would agree.

The truth is, we’re not perfect. We’re not even close to perfect. If you think that
developers know all of these PHP functions and snippets from memory, then you
are fooling yourself into thinking that you will never have the capacity to keep up.

It’s just not true. We don’t memorise everything. In fact, a majority of the code
that we use day to day is from reference. We are Google warriors. There are
functions in PHP that do the most simple things to lines of text, and I look at the
PHP documentation almost every week to find the order of the parameters that I
pass to them.

When I’m completely stuck, I’ll try using Google to see if another developer has
found a similar challenge. Often I’ll find a suitable solution that another developer
has discovered, or enough information to point me to a solution. Of course, this
works both ways, I’ll try and give my solutions back to the community. I’ll post

7

Finding Answers 8

answers on StackOverflow, and I’ll contribute to forums or discussions. Giving back
to the community is important.

So you see, we aren’t robots. We don’t know everything about the language, and we
don’t have a solution to every problem. However, we are fantastic researchers. We
are opportunists. We are resourceful problem solvers. We are developers.

The art of Googling

Whenpeople tell you to Google something, it’s easy to take it as an insult. Or perhaps
sarcasm? It’s not. Google is our homepage for good reason. Let’s learn how we can
find answers to common development issues.

We’re writing a program, and somewhere we need to reverse a sentence so that
‘Pandas rule!’ becomes ‘!elur sadnaP’. We have no idea how to approach this task.
We’re just getting started with PHP.

We know that in PHP a sequence of text is called a ‘string.’ We know this because
we didn’t give up on this crazy book with the Panda examples, and we discovered
this fact in a later chapter. Right?

So we know what we want to do. We would like to reverse a string. Let’s construct
a search query for Google.

1 reverse string

Nope, wait! The problem here is that there are thousands of programming lan-
guages. Seriously, computers have been around for a while!

If we search for ‘reverse string’ then we’re going to get answers for C++, ASP.NET,
Erlang, you name it. Our focus is on PHP.We don’t care about these other languages.
We’ll have time to play with them later when we become PHP masterminds. Let’s
fix this problem by adding the language to the search query.

1 php reverse string

Perfect. Let’s take a look at the results that we get back from our Google search. This
might be a good time to mention that I don’t work for Google, and I’m not working
for commission. Feel free to use Bing if you prefer it, but youmight end up buying a
used horse trailer rather than finding a string reverse function. So where are those
results?

Finding Answers 9

Reverse a string - PHP

http://www.php.net/manual/en/function.strrev.php1

Reverse a string with php - Stack Overflow

http://stackoverflow.com/questions/11100634/reverse-a-string-with-php2

By asking the right question, we receive some useful resources in return. The PHP
Manual (sometimes known as the PHP API docs) and Stack Overflow are two of the
most useful problem-solving resources for PHP available on the internet. I’m not
saying they always have the right answer. There are other great sites too, but I’m
sure you’ll see a pattern in how often your searches result in browsing pages on
these two sites.

Right nowwe’re looking for some tool to reverse a string.We’re not looking to solve
an abstract problem; we know exactly what we want.

Go ahead and click that first link, we’ll be greeted with the lovely PHPmanual page
for a function called strrev(). You don’t need to know what a function is yet. Don’t
worry if this is over your head.

Once you’re up to speed with functions you’ll see that this PHP manual page offers
all that we need to know about using the strrev() function, and examples of how
to use it.

You see by asking the right questionswe received all the helpwe needed to continue
with our work.We had no prior knowledge of the strrev() function, but insteadwe
knew the problem that we had to solve. That was enough to lead us to the solution.
It doesn’t matter if we have to go back to this page later.

Perhaps we don’t use the function frequently enough to need to remember its
usage pattern. Although, you’ll find that if you begin to use the function more and
more, and that you frequent the manual page, then before to long you won’t need
guidance for that problem. You’ll instantly think ‘Hey I should use that strrev()
function that I use all the time, and I know exactly how it works!’. It will become
muscle memory, and will be part of your toolset.

So the lesson that I’m hoping you have learned from this chapter is that you
shouldn’t panic. You don’t need to remember everything, and it’s perfectly natural
to ask for help. In fact, it’s human to ask for help, and it’s human to learn from your
experiences.

Congratulations! You’re a human, not a robot.
1www.php.net/manual/en/function.strrev.php
2http://stackoverflow.com/questions/11100634/reverse-a-string-with-php

www.php.net/manual/en/function.strrev.php
http://stackoverflow.com/questions/11100634/reverse-a-string-with-php
www.php.net/manual/en/function.strrev.php
http://stackoverflow.com/questions/11100634/reverse-a-string-with-php

4. Files
Here’s a shocker for you. PHP code is kept in files. I’m sorry, but it’s true! You are
going to be working with lots and lots of files. Well actually, sometimes one file, but
later you’ll be working with many, many files!

Now that we have that shocking truth out of the way, isn’t it time that you learned
how to create a PHP file.

Dayle, I understand the fundamentals of a computer file system.

Well done buddy! Good for you, but that’s not where we’re going with this. You see,
most PHP files have something in common. I’m talking about the PHP script tag.

Take a close look at this little fellow.

Example 01: PHP tag.

1 <?php

Beautiful isn’t she? What a glossy coat. A fantastic specimen.

I.. erm..

What? Don’t you feel the same about her? Trust me, after many years of develop-
ment in PHP you will find her quite beautiful. You’ll see her when you close your
eyes to go to sleep at night. She’s your best friend. She lets you use PHP.

I always prefer to lead with a practical example, so let’s try something together.
Create a new file, and call it test.php. PHP files usually have the .php extension. In
honesty, we can execute them without it, but you should stick to it because if you
don’t, then the bigger developers will laugh at you, steal your lunch and make you
cry. Just kidding… developers are a friendly bunch, but you really should use the
.php extension.

First of all, let’s write the words…

10

Files 11

Example 02: Some text.

1 Pandas rule!

…into the file, and save it.

Great, now let’s execute the file. We can use this by calling the php application at the
command line or unix shell, and passing the file name as a parameter. For example,
on my Mac, I’ll be typing the following.

Example 03: Executing a PHP file.

1 php test.php

You’ll see the words Pandas rule! outputted to the screen. This is because ev-
erything outside of our beautiful PHP tags is outputted when the application is
executed. Let’s try something else. We are going to use our first PHP tag.

Let’s edit the file so that it reads as follows.

Example 04: PHP segment.

1 <?php
2
3 // Pandas are awesome!
4
5 ?>
6 Pandas rule!

Let’s execute the file again. What’s the output that we get?

Example 05: Output.

1 Pandas rule!

Hey wait! Where’s the rest?

Well spotted, my soon-to-be developer! There’s a section of our file missing. This is
because everything between our PHP tags is treated as PHP code, and is processed
accordingly.

So what are the PHP tags? Well, you’ve met the PHP opening tag already. Do you
remember our beautiful friend <?php. The <?php tag marks the beginning of our
PHP code. So when does it end? Well that’s where the ?> tag comes into play.

Now that you know how the PHP tags work, it’s easy for us to spot the PHP code in
this file. It’s the following line.

Files 12

Example 06: Comment.

1 // Pandas are awesome!

So what does this line do? Nothing. It’s known as a comment. It helps developers to
document their code. Don’t worry. We’ll learn more about comments later.

Well that was a nice short chapter, wasn’t it? Now it’s time for some good news. In
the next chapter, you’ll be writing your first real lines of PHP code.

Excited? Then why wait! Flip that page.

5. Basic Arithmetic
Now I’m sure you’ve heard that programming is all math. Right? Well, it’s time for
math. Let’s get started.

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

a2i

)1/2(n∑
i=1

b2i

)1/2

Now solve for X.

Just kidding. There’s no X in that equation. In fact, it’s not even an equation, so that
was a terrible joke. Hey! They can’t all be side-splitters. The truth is, I have no idea
what that mess does either. We aren’t all math gurus.

Statements

Let’s try something that’s a little bit closer to my level of mathematics. You know
how to make a PHP file, and you know how to open and close PHP tags. So let’s
jump straight into a PHP file. We’ll call it math.php. Here’s the content.

Example 01: Addition.

1 <?php
2
3 3 + 3;
4
5 ?>

Hold on a second. We aren’t going to output anything after our PHP code. Why
bother with the closing tag? The truth is, most PHP developers omit this tag if no
content follows our PHP code. Let’s do that.

13

Basic Arithmetic 14

Example 02: We don’t need a closing tag.

1 <?php
2
3 3 + 3;

Much better!

Right, just in case your math skills aren’t quite as sharp as my own, let me help you
out a little. When you add three to three, you get six. Okay, now you’re ready.

The line 3 + 3; contains a statement. It’s a line of PHP code that will be evaluated
by PHP. They normally end with a semi-colon. It looks like this: ;. You’re going to
forget about them all the time at first, but don’t worry, soon you’ll even be ending
your sentences with them;

Given that you nowunderstand basic addition, what do you thinkwill be the output
when we execute this file?

Seven point five.

Well, special reader, let’s see if you’re right. Go ahead and run php math.php to see
what happens.

Example 03: Output.

1 [nothing here]

Woah! Nothing. This language is stupid. Let’s give up. Okay, I’m kidding again. I
have a cheesy sense of humour, don’t worry, you’ll get used to it.

Why didn’t we get any output? Well, it’s because we didn’t tell PHP to output
anything. PHP is obedient. Let’s go ahead and tell it to give us the answer. We’ll use
echo. It’s a PHP language construct that will allow us to see the result of a statement.

Let’s alter our statement to include echo.

Example 04: The echo statement.

1 <?php
2
3 echo 3 + 3;

There we go. We place echo before the statement that we want to see the result of.
Let’s try running our application again! Here we go…

Basic Arithmetic 15

Example 05: Output.

1 6

Woohoo! Six! NOT SEVEN POINT FIVE! Now that’s what I’m talking about. We get
to see the result of our first statement evaluation with PHP. That’s exciting stuff,
right?

I could have done that on a calculator.

I know, I know. It’s not exactly rocket science. Rocket science will be covered in a
later chapt… Wait, I’ve already told that joke in another book. I need to get some
new material.

Arithmetic Operators

I know that our 3 + 3 example is simple code, but we’ll soon get to bigger and better
things. Did you know that there are more mathematical operators? I’m sure some
of these ring a bell.

1 + Addition
2 - Subtraction
3 * Multiplication
4 / Division
5 % Modulus

Now, I’m sure you’ll have seen some of these operators before. I know that multi-
plication and division look a little different to the signs that you may have learned
about in school. This is common to most programming languages, and you’ll find
that the division sign is easier to type on a keyboard. Don’t let them worry you,
before too long you’ll be completely used to them.

If you’ve not used the ‘Modulus’ operator before, then it’s simple to explain. It can
be used to calculate the remainder of a division. For example, the operation ‘3 % 2’
would result in the figure ‘1’. It’s commonly used to determine whether a number
is odd or even by dividing by two.

Now let’s give PHP something hard to think about, shall we?

Basic Arithmetic 16

Example 06: Harder math.

1 <?php
2
3 echo 4 + 3 * 2 / 1;

So, what’s the result? Well, it can be difficult to calculate in our heads because we
don’t know which order to process the pairs of calculations. Should we add three
to two first? Or maybe divide two by one first. Hmmm. Tricky!

Of course, in mathematics, we learn to use rounded brackets to separate the
concerns of an equation. We can do the same with PHP. Let’s give it a go.

Example 07: Brackets for separation of concerns.

1 <?php
2
3 echo (4 + 3) * (2 / 1);

Nowwe canbe sure that 4 + 3 and 2 / 1 are evaluated first, and the resulting values
are multiplied. Great, we run our script and get the result…

Example 08: Output.

1 14

Awesome, but isn’t that cheating? What would we get without the brackets? Let’s
take them out again.

Example 09: Without brackets.

1 <?php
2
3 echo 4 + 3 * 2 / 1;

So what’s the result? Let’s run our script.

Example 10: Output.

1 10

That’s a totally different figure. Why is that? Well, it’s because PHP isn’t handling
our operators in the same order. Let’s take a little time to learn about the order of
our operators.

Here’s how PHP handles the order of operators.

Basic Arithmetic 17

1 * Multiplication
2 / Division
3 % Modulus
4 + Addition
5 - Subtraction

The operator with the highest priority can be found at the top of the table. So this
means when PHP examines 4 + 3 * 2 / 1 it will first calculate 3 * 2 = 6, then 6 /
1 = 6 and finally 4 + 6 to give us the answer 10.

When I’m writing mathematical lines of code, I like to use brackets to avoid any
confusion. I also find that it helps to clarify the intent of the line, causing it to be
more readable.

Procedure

PHP code is parsed procedurally. This means that it is read and executed on a
statement by statement basis. While it’s possible to put more than one statement
on a line, this is uncommon amongst PHP developers. This means that we can also
approach the code line by line.We can see this in action by addingmore statements
to our PHP file. Let’s try the following.

Example 11: Multiple statements.

1 <?php
2
3 echo 2 + 2;
4 echo 3 + 3;
5 echo 4 + 4;
6 echo 5 + 5;

Now, let’s execute the file…

Example 12: Output.

1 46810

FORTY SIX THOUSAND GIGAWATTS!?

Calm down reader! We only told PHP to output the results, not to place spaces or
newlines into the output. This means that PHP has calculated the values correctly.
If we space out the result that PHP has given us like so…

Basic Arithmetic 18

Example 13: Output with added clarity.

1 4 6 8 10

…then we see that the calculations are in fact correct. It’s just that PHP is very
obedient and has outputted the values directly after one another.

I’ve mentioned many times before that PHP is a flexible and lenient language. Let’s
put that to the test, shall we? Up until now, our statements have a single space
between each ‘word’ (or number). Let’s add some extra spaces in an inconsistent
format to see what happens. Here’s our modified code.

Example 14: White space.

1 <?php
2
3 echo 2 + 2;
4 echo 3 +3;
5 echo 4+4;
6 echo 5+ 5 ;

While it doesn’t look very pretty, if you were to execute the code you’d find that it
will work perfectly. PHP doesn’t care about the amount of white space between the
words within its code. It just deals with it. (Insert dog with shades…)

You’ll notice that some of the arithmetic operations, for example 4+4, don’t require
a space at all. While this is true, it isn’t consistent with all syntax variations. For
example, consider the following snippet.

Example 15: No whitespace after echo.

1 <?php
2
3 echo5 + 5;

If you attempt to execute this script, you’ll find that PHP will throw a notice ‘Use of
undefined constant echo5 - assumed ‘echo5’. This is because it doesn’t know what
the word echo5 is telling it to do. For this reason, it’s always best to place at least one
space between your words.

As for statements, if we were masochistic we could choose to put all of the state-
ments on a single line. Here’s an example.

Basic Arithmetic 19

Example 16: Multiple statements, single line.

1 <?php echo 2 + 2; echo 3 + 3; echo 4 + 4; echo 5 + 5;

This is perfectly valid PHP, but you won’t find many developers doing it. Having a
single statement on each linemakes it much easier to read and understand a source
file. It also causes problems for version control systems!

We’ve seen that PHP doesn’t care if you use multiple spaces in its source code, but
it also considers a newline a whitespace character. This means that the following
snippet is completely legal.

Example 17: One statement, multiple lines.

1 <?php
2
3 echo
4 2
5 +
6 2
7 ;

Don’t believeme? Go ahead and try it! While the code functions as intended, it’s not
exactly the most readable piece of code. If I catch you writing code like this then
you’re due for a spanking!

There is one practical use to breaking a line, however. If the line is exceedingly long,
then it also becomes a readability issue.We can resolve this issue by applying a new
line at an appropriate reading length. Many developers also apply four spaces (or
your current tab setting) to the next line to indicate that it is a continuation. This
is similar to how formal works of text use an indented sentence to indicate a new
paragraph.

Here’s an example of a line break for readability purposes.

Example 18: Clean line-breaking.

1 <?php
2
3 echo (3 * 5) / (7 / 12) * (7 * 6) + (7 % 3)
4 + (6 + 7) * (12 / 3);

That’s some serious math, but hopefully, you will find it much easier to read.

It’s also worth noting that you can also place empty lines within your code to add
clarity. Here’s an example.

Basic Arithmetic 20

Example 19: Extra line breaks for clarity.

1 <?php
2
3 echo 3 + 2;
4
5 echo 7 * 7;
6
7 echo 5;

So you see, PHP can be extremely flexible, but don’t forget to add that end of line
semicolon because it will never forgive you.

EVER;

6. Variables & Assignment
Now we’re getting to the meat and potatoes! Variables are an extremely useful and
well-abused part of the developers toolkit. Let’s get started, shall we?

Tiny Boxes

I’d like you to think of variables as tiny little boxes that we keep things in. Variables
are words that start with a dollar $ sign. Let’s take a look at an example.

Example 01: Basic assignment.

1 <?php
2
3 $three = 3;

If you think of the variable $three as a little box, then we’ve put the value 3 into
it. That’s what the equals sign does. In math we use the equals sign to indicate the
result of an equation, however, in PHP, it’s an entirely different story.

In PHP, the equals = sign is known as the assignment operator. It’s used to set
something. We are telling PHP to set the variable $three to the number 3.

If you execute the script we have created above, you’ll find that PHP doesn’t output
anything at all. This is because assignment is purely assignment. We aren’t telling
PHP to output anything. However, now that we have set the variable $three to the
value 3, we can use the echo construct on it.

Example 02: Echoing a value.

1 <?php
2
3 // Set our variable to the value three.
4 $three = 3;
5
6 // Output the value of our variable.
7 echo $three;

21

Variables & Assignment 22

First, we set our variable, and then we use the echo construct to output the value
that it’s holding. If we execute our code, then we receive 3 as output.

This is great because it means we can give nicknames to things. You know, just
like those mean kids at school. For example, the number ‘3.14159265359’ is a very
beautiful number to lovers of circles, but it’s awfully hard to remember, isn’t it?
Let’s give it a nickname. We’ll call it Pete. No, wait, I have a better idea.

Example 03: An appropriate variable name.

1 <?php
2
3 $pi = 3.14159265359;

There, nowwehave created anewvariable called $pi that holds the value 3.14159265359.
This means that we can use the variable anywhere in our code to perform calcula-
tions. Here are some examples.

Example 04: Using variables in statements.

1 <?php
2
3 // Assign pi to a variable.
4 $pi = 3.14159265359;
5
6 // Perform circumference calculations.
7 echo $pi * 5;
8 echo $pi * 3;

After setting $pi, we can use it in other statements to perform calculations.

We can declare and assign as many variables as we like, but there are some
rules that we need to follow when choosing names. Variable names can contain
numbers, letters, and underscores. However, theymust start with either a letter or
underscore, never a number! They are case sensitive, which means that $panda is
different to $pAnda. Here are a few examples.

Variables & Assignment 23

Example 05: Naming variables.

1 <?php
2
3 $panda = 1; // Legal
4 $Panda = 1; // Legal
5 $_panda = 1; // Legal
6 $pan_da = 1; // Legal
7 $pan_d4 = 1; // Legal
8 $pan-da = 1; // Illegal
9 $4panda = 1; // Illegal

While variable names can contain underscores and start with capitals, it’s a com-
mon practice to use a naming format known as camelCasing. Don’t worry; it doesn’t
require a camel.

camelCased names start with a lowercase character. Variables that are to be named
with multiple words will have the first character of subsequent words capitalized.
Here are some examples.

Example 06: camelCased variable names.

1 <?php
2
3 $earthWormJim = 1;
4 $powerRangers = 1;
5 $spongeBobSquarePants = 1;

Do you remember how our statements return a value? Well, our assignments are
also statements. Can you guess what this means? That’s right; they also return a
value. We can prove this by using our good ol’ friend the echo construct.

Example 07: Statements return a value.

1 <?php
2
3 echo $panda = 1337;

We receive the number 1337 as the output. This is because the assignment of the
$panda variable is performed before it is outputted. This process allows us to use a
clever trick. It’s not something you’re going to use very often, but I think it’s a pretty
cool trick to know. Go ahead and take a look at this example.

Variables & Assignment 24

Example 08: Multiple assignment.

1 <?php
2
3 $firstPanda = $secondPanda = $thirdPanda = 1337;

The snippet above might look a little crazy, but it makes more sense if you read it
from right to left. The $thirdPanda is assigned the value 1337, next the $secondPanda
is assigned the value of $thirdPanda, and finally the $firstPanda is set to the value
of the $secondPanda. This means that all variables are set to the final value. Neat,
right?

Just my type

Until now we have been working with numbers. It would be boring if those were
the only types of values that we can use, right? I think it’s about time we examined
the other possibilities. Here are some of the common values used within PHP
applications.

• integer
• float
• boolean
• string
• null
• array

There are a fewmore, but let’s not complicate matters right away. We need to learn
little by little. You don’t want knowledge overload!

Let’s take a look at these types one by one. First, we have integers. These are whole
numbers; we’ve been using these in our previous examples.

Example 09: Integers.

1 <?php
2
3 $panda = 2;
4 $redPanda = -23;

Floats are floating point numbers. They have decimal points, and thus contain
fractions. They can be used in a similar fashion to integers. In fact, we’ve used
one already. Do you remember our friend $pi? That was a float. Let’s move on to
something new shall we?

Variables & Assignment 25

Example 10: Floats.

1 <?php
2
3 $panda = 2.34;
4 $redPanda = -23.43;

Booleans are binary data types. No, don’t panic! We aren’t going to do any binary
arithmetic. It’s just away of expressing that they can be one of two values. A boolean
can either be true or false. Later on, we’ll take a look at how boolean values can be
used to change the flow of our application.

Example 11: Booleans.

1 <?php
2
3 $panda = false;
4 $redPanda = true;

Next, up we have the ‘string’ value. Strings are used to store a word, a character, or
a sequence of text. Strings are special, so I’ve decided to dedicate a short chapter to
them. We’ll come back to this!

Example 12: Strings.

1 <?php
2
3 $panda = 'Normal Panda';
4 $redPanda = "Red Panda";

Null is a special value. It is nothing. Nil. Zero. Well, it’s not zero. Zero is numeric,
andwe can use an integer for that. Nulls are exactly nothing. Null is the value that a
variable has before assignment has been performed. It’s a useful value, and you’re
going to see a lot of it in the future.

Example 13: Null values.

1 <?php
2
3 $noPanda = null;

Arrays are another special type of value. In fact, this is my favorite one of all. So
much that I’ve decided to dedicate a full chapter to them. For now, all you need
to know is that it’s a value that holds a collection of other values. Woah! Inception
stuff, right?

Variables & Assignment 26

Example 14: Arrays.

1 <?php
2
3 $countThePandas = [1, 2, 3];
4 $morePandas = array(5, 6, 7, 8);

Advanced Assignment

In a previous chapter, we discovered the operators that we can use on variables,
and we’ve mastered the assignment operator. So what happens when we put them
both together?Will it create a new black hole and consume the entire universe? I’m
feeling a little daring, shall we find out?

Example 15: Assignment with addition.

1 <?php
2
3 // Set a value.
4 $panda = 3;
5
6 // Attempt to create a black hole.
7 $panda += 1;
8
9 // Universe withstanding, dump the value.

10 var_dump($panda);

First, we set a variable to the integer value of three. Next, we’ve plopped the
addition operator onto the front of the assignment operator and supplied another
integer value of one.

We can use the function var_dump() (more on functions later!) to interrogate not
only the value held within a variable but also its type!

What did we get back from the dump?

Example 16: Output.

1 int(4)

Awesome! The universe is saved. It looks like we have a four? Well, I suppose that
makes sense.We know that $a + $b returns a value without setting it, and we know

Variables & Assignment 27

that the assignment operator is used to set the value of variables. This does both.
We’re telling PHP to set the value of $panda to its current value plus one.

You can use this syntax with any of the operators that we’ve discovered so far.
There’s only one catch. Don’t place the operator on the other side of the equals
sign. Trust me; I tried it. A portal opened to a dark underworld, half dinosaur, half
human creatures broke through and began to terrorize Cardiff. Only with the aid
of a homemade flamethrower (powered by PHP) was I able to fend off the vicious
creatures. I’d hate to see it happen to you. Please be careful!

Next up, we have the incremental operator. Let’s not forget the decremental
operator too. She tends to get a little less attention. In fact, let’s showcase her
abilities.

I prefer to lead with an example. Consider the following snippet.

Example 17: – After.

1 <?php
2
3 // Set a value.
4 $panda = 3;
5
6 // Decrease the value.
7 $panda--;
8
9 // Dump the value.

10 var_dump($panda);

There in themiddle, do you see her? The beautiful decremental operator.We simply
place two minus signs after the variable. What does it do? Well, here’s the result of
the code snippet.

Example 18: Output.

1 int(2)

As we can see, the value of $panda has been decreased by one. It’s a quick shortcut
to decreasing a value. Likewise, using a ++ can be used to increase a value. Those
are the only two operators that work, though. Don’t you be cheeky and try to use
the multiplication operator. It just won’t work as you expect it to!

I wonder what will happen if we put the operator before the value? Let’s have a go,
shall we?

Variables & Assignment 28

Example 19: – Before.

1 <?php
2
3 // Set a value.
4 $panda = 3;
5
6 // Decrease the value.
7 --$panda;
8
9 // Dump the value.

10 var_dump($panda);

What’s the answer? Aren’t you excited?

Example 20: Output.

1 int(2)

Oh, it’s the same.Well that was rather boring, wasn’t it? I know a little secret. It’s not
the same. Sure, the value we received back looks identical, but my example doesn’t
do it credit.
Let’s craft a different example. We’ll show the state of a value before the operator
is used. We’ll examine the result of the statement when the operation is used, and
finally, we’ll examine the value after the operator is used.We don’t expect the after-
value to be any different.

Example 21: The stages of –.

1 <?php
2
3 // Set a value.
4 $panda = 3;
5
6 // Dump BEFORE.
7 var_dump($panda);
8
9 // Dump DURING.

10 var_dump(--$panda);
11
12 // Dump AFTER.
13 var_dump($panda);

Let’s execute the code. What are the three values we receive?

Variables & Assignment 29

Example 22: Output.

1 int(3)
2 int(2)
3 int(2)

The first value is three. We must have expected that I mean, all we did was set it,
right? The result of the statement using the decremental operator is equal to two.
The resulting value is also two. Thatmeans that the value is decreased on the second
line.

Let’s move the operator to the other side of the value, shall we? Like this:

Example 23: The stages of – part two.

1 <?php
2
3 // Set a value.
4 $panda = 3;
5
6 // Dump BEFORE.
7 var_dump($panda);
8
9 // Dump DURING.

10 var_dump($panda--);
11
12 // Dump AFTER.
13 var_dump($panda);

Look very closely to spot the difference. Let’s take another look at the result.

Example 24: Output.

1 int(3)
2 int(3)
3 int(2)

Hey!? That middle value is different! Why hasn’t it been decreased? Well, by
swapping the operator, we’ve told PHP to decrease the value AFTER the current
line. The result of the operation line is the same value as it was initially.

Let me summarize.

Variables & Assignment 30

1 $value-- - Change value *after* current line.
2 --$value - Change the value on the current line.

Why is this useful?Well, here’s a use for you. I’m sure if you’re creative youwill find
more. Using the operator that changes after the current line, we can set another
variable to its value, and decrease the original value on the same line. Like this:

Example 25: Assign and increase.

1 <?php
2
3 // Set a value.
4 $panda = 3;
5
6 // Assign, and then increase.
7 $pandaFriend = $panda++;

What we’ve done here, is saved a line. It’s a bit of a shortcut. Here’s how it would
look if not for the incremental operator.

Example 26: Incrementing explained.

1 <?php
2
3 // Set.
4 $panda = 3;
5
6 // Assign.
7 $pandaFriend = $panda;
8
9 // Increase.

10 $panda = $panda + 1;

In a later chapter about loops, you’ll find another use for this operator. In the next
chapter, we’ll be taking a closer look at strings.

	Table of Contents
	Acknowledgements
	Errata
	Feedback
	Translations
	Introduction
	Installation
	Linux
	Mac OSX
	Windows

	Finding Answers
	Developers are robots.
	The art of Googling

	Files
	Basic Arithmetic
	Statements
	Arithmetic Operators
	Procedure

	Variables & Assignment
	Tiny Boxes
	Just my type
	Advanced Assignment

