

PHP Pandas (ES)
El lenguaje de programación PHP para principiantes

Dayle Rees y Antonio Laguna

Este libro está a la venta en http://leanpub.com/php-pandas-es

Esta versión se publicó en 2016-01-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2015 - 2016 Dayle Rees y Antonio Laguna

http://leanpub.com/php-pandas-es
http://leanpub.com
http://leanpub.com/manifesto

¡Twitea sobre el libro!
Por favor ayuda a Dayle Rees y Antonio Laguna hablando sobre el libro en Twitter!

El tweet sugerido para este libro es:

I’m learning about PHP and Pandas AT THE SAME TIME. You can too! @
http://leanpub.com/php-pandas #PHPPandas @daylerees

El hashtag sugerido para este libro es #PHPPandas.

Descubre lo que otra gente está diciendo sobre el libro haciendo click en este
enlace para buscar el hashtag en Twitter:

https://twitter.com/search?q=#PHPPandas

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20learning%20about%20PHP%20and%20Pandas%20AT%20THE%20SAME%20TIME.%20You%20can%20too!%20@%20http://leanpub.com/php-pandas%20%23PHPPandas%20@daylerees
https://twitter.com/intent/tweet?text=I'm%20learning%20about%20PHP%20and%20Pandas%20AT%20THE%20SAME%20TIME.%20You%20can%20too!%20@%20http://leanpub.com/php-pandas%20%23PHPPandas%20@daylerees
https://twitter.com/search?q=%23PHPPandas
https://twitter.com/search?q=%23PHPPandas

Índice general

Agradecimientos . i

Errata . ii

Feedback . iii

Traducciones . iv

1. Instalación . 3
Linux . 3
Mac OSX . 4
Windows . 5

2. Encontrando respuestas . 7
Los programadores son robots . 7
El arte de usar Google . 8

3. Archivos . 11

4. Aritmética básica . 14
Sentencias . 14
Operadores aritméticos . 16
Procedimiento . 17

5. Variables y asignaciones . 21
Pequeñas cajas . 21
De mi tipo . 24
Asignación avanzada . 26

Agradecimientos
Antes que nada, me gustaría agradecer a mi novia Emma, no solo por animarme
con todas mis aventuras, ¡si no también por hacer esas increíbles fotos a los pandas
rojos para ambos libros! ¡Te amo Emma!

Gracias a mis padres, ¡que han estado apoyando mis esfuerzos con estas cajas para
hacer números durante 30 años! ¡También gracias por comprar un billón de copias
del primer libro para la familia!

Gracias a todo el que haya comprado mis otros libros, Code Happy y Code Bright, y
a toda la comunidad de Laravel. Sin vuestro soporte nunca habría tenido confianza
en seguir escribiendo.

i

Errata
Este puede ser mi tercer libro y mi escritura puede haber mejorado desde la
última vez, pero te aseguro que habrá muchos, muchos errores. Puedes ayudarme
a apoyar el libro enviándome un correo con cualquier error que encuentres a
sombragriselros@gmail.com¹ junto con el título de la sección.

Los errores serán corregidos conformevayan siendodescubiertos. Las correcciones
serán lanzadas con actualizaciones futuras del libro.

¹mailto:sombragriselros@gmail.com

ii

mailto:sombragriselros@gmail.com
mailto:sombragriselros@gmail.com

Feedback
De lamisma forma, puedes enviarme cualquier feedback que tengas sobre el conte-
nido del libro o lo que quieras, enviando un correo a sombragriselros@gmail.com²
o un tweet a @belelros. Me esforzaré en responder a todo correo que reciba.

²mailto:sombragriselros@gmail.com

iii

mailto:sombragriselros@gmail.com
mailto:sombragriselros@gmail.com

Traducciones
Si quieres traducir PHP Pandas a tu idioma, por favor envíame un correo a
me@daylerees.com³ con tus intenciones. Ofreceré un 50/50 de los beneficios de la
copia traducida, que tendrán el mismo precio que la copia en Inglés.

El libro está escrito en formato markdown.

³mailto:me@daylerees.com

iv

mailto:me@daylerees.com
mailto:me@daylerees.com

Traducciones 1

¡Hola! ¡Estoy seguro de que eres el/la lector más guap@ Y/O bell@ del planeta! Me
alegra que te hayas hecho con PHP Pandas y comiences el camino hacia tu carrera
como programador web de fama mundial.

¿Quién soy? Es una pregunta sencilla. Me llamo Dayle y seré el autor de esta
aventura. He estado escribiendo libros para principiantes durante unos años a estas
alturas y he tomado a otros encantadores lectores como tú en las aventuras de
aprendizaje de nuevas habilidades. Haremos descubrimientos juntos y, durante el
camino, estaré a tu lado.

¿Por qué escribes como una persona que está mal de la azotea?

¿Perdona? Ah eso… Bueno verás, es la única forma en la que sé escribir. Si
buscas un libro técnico con palabras raras, lamento decirte que has venido al
lugar equivocado. Escribo libros para personas. Quiero pensar que somos colegas,
sentados en un bar y hablando sobre PHP con una pinta de cerveza.

Lo cierto es que a los principiantes para los que he escrito antes les gustami estilo de
escritura. No intentan sacarse la carrera dematemáticas con el libro si no aprender
un par de cosas sobre PHP, y eso, ¡te lo puedo prometer!

Oh, te darás cuenta de que estamos hablando ahoramismo. Eso no lo consigues con
otros autores, ¿no? Tengo este podermágico que te hace hablar conmigo y respondo
a tus preguntas.

Espera, ¿cómo haces es…

Eso sería contartemi secreto. Aun no podemos compartir eso pero, ¿acaso no sienta
bien saber que formas parte de la aventura y no eres un mero espectador?

Supongo… Vamos a probar.

Excelente.

Este es el espacio en el que cualquier otro libro te hablaría sobre PHP, su historia, su
aplicación, su autor y unmillón de cosasmás. Ya te he dicho que no soy el autormás
tradicional y esos capítulos no me gustan y me parecen aburridos. Has comprado
este libro para aprender PHP, así que ya tienes algo de curiosidad. Creo que es todo
lo que necesitas.

PHP es un lenguaje de programación que usan la mayoría de los sitios en internet.
Fue escrito originalmente por alguien llamado Rasmus Lerdorf, al cual puedes ver
sonriendo en la mayoría de las fotos que encuentres de él en Google. Rasmus es
un gran tío y le agradezco cada día por este lenguaje pero esto es todo lo que creo

Traducciones 2

que tienes que saber sobre él. Otros libros probablemente te hablarían sobre sus
cereales preferidos para el desayuno, pero ¿comenzamos ya a aprender?

Este libro es para principiantes absolutos. Esto significa que si nunca has progra-
mado antes en tu vida, ¡estás de suerte amigo mío! Si ya has intentado programar
te irá bien también. Si eres un experto en PHP quizá sea hora de refrescar tus
habilidades y quizá descubras algunas cosas nuevas en este camino.

He usado ami novia, amis amigos no-programadores y a gente aleatoria en la calle,
obligándoles a leer el libro como ratas de laboratorio para ver cómo funciona con
gente que no tiene idea alguna de PHP. Mis pequeñas ratas lo han hecho genial,
ahora es tu turno.

La meta de este libro es que se convierta en el libro más divertido, práctico y
fantástico sobre PHP en el mercado. Quiero que sea el libro que se recomienda
cuando alguien comience a aprender PHP. He trabajado duro para hacer que sea
accesible para todos por lo que si disfrutas de esta aventura, te agradecería que
escribieras sobre el libro en Twitter, tu blog o le regales copias a tus amigos y
familiares.

Este libro es un libro de sintaxis para PHP. No te va a enseñar a hacer webs (estoy
trabajando en otro título para esto), es el primer paso que te ayudará a sentar una
buena base de conocimiento del lenguaje para que a la hora de crear tu primera
web, seas bueno.

Si lees el libro y descubres que falta algo, un capítulo en concreto es confuso o hay
algo que temoleste, por favor envíame un correo a me@daylerees.com para hacérmelo
saber. ¡Quiero que el libro sea perfecto para todos!

Si lees el libro y no encuentras nada malo, bueno… mándame un correo y me
cuentas que lo has disfrutado!

No gastemosmás tiempo. ¡Aprendamos algo! Pasa de página e imagina lamúsica de
Jurassic Park en el momento en que se abren las puertas, y prepárate para entrar
en el mundo del desarrollo.

1. Instalación
Antes de empezar a trabajar con PHP, primero tenemos que instalarlo. Como verás,
PHP es una aplicación como otra cualquiera. Necesita ser instalada en nuestro
sistema antes de que pueda procesar código PHP.

El método de instalación varía ampliamente dependiendo del sistema operativo
que estés usando. Por ese mismo motivo, os ofrezco tres guías diferentes para
instalar PHP. La primera sección explicará cómo instalar PHP en una distribución
de Linux, en Ubuntu concretamente debido a su popularidad. La segunda sección
explicará cómo instalar PHPenun sistemaMacOSXdeApple. Finalmente, la tercera
sección explicara cómo instalar PHP en Windows.

Únicamente vamos a instalar la versión de consola de PHP. No vamos a crear un
servidor web aun. Ya llegaremos a eso. La versión de consola de PHP es todo lo que
necesitamos para comenzar con nuestro proceso de aprendizaje.

Recuerda, solo tienes que leer la sección adecuada a tu equipo. Una vez que
tengas PHP instalado, salta al siguiente capítulo del libro.

Linux

La mejor forma de instalar PHP en una distribución de Linux es usar un gestor de
paquetes. El gestor de paquetes disponible depende ampliamente de la distribución
de Linux que tengas. He decidido facilitar instrucciones para instalar PHP en
Ubuntu, una de las distribuciones de Linux más populares hoy en día.

Ubuntu usa el gestor de paquetes conocido como apt para instalar sus paquetes.
Para instalar la versión de consola de PHP, tenemos que instalar el paquete php5-

cli. Vamos a hacerlo. Abre un nuevo terminal antes de nada. Escribe lo siguiente
en la ventana del terminal.

1 $ sudo apt-get install php5-cli

No tienes que escribir el símbolo del dolar $, es simplemente lo que se suele ver
en el terminal y así marcamos que estamos escribiendo en la consola. Una vez que
pulses enter, apt obtendrá el paquete PHP y lo instalará por ti.

¡Ya está! Has terminado. Bueno, o deberías. Vamos a revisar, ¿vale? Escribe simple-
mente…

3

Instalación 4

1 $ php -v

Este comando se usa para mostrar la versión de PHP instalada actualmente. Debe-
rías ver algo similar a esto.

1 PHP 5.5.13 (cli) (built: Jun 5 2014 19:13:23)

2 Copyright (c) 1997-2014 The PHP Group

3 Zend Engine v2.5.0, Copyright (c) 1998-2014 Zend Technologies

La tuya no será exactamente igual, después de todo, somos todos diferentes, ¿no te
parece? En el ejemplo de arriba la versión es 5.5.13. Espero que tu versión de PHP
sea 5.4.0 o superior.
Si la versión no es la correcta, tendrás que consultar la documentación de tu
distribución de Linux para descubrir cómo instalar la versión adecuada.
Ve y salta al próximo capítulo, ¡has terminado!

Mac OSX

En lasmáquinasMac, PHP viene instalado de fábrica. Ve y abre el terminal y escribe
lo siguiente para descubrir la versión de PHP que estás usando.

1 $ php -v

No escribas el símbolo del dolar, ¡es lamarca del terminal! Deberáis ver algo similar
a esto, pero no exactamente lo mismo.

1 PHP 5.4.24 (cli) (built: Jan 19 2014 21:32:15)

2 Copyright (c) 1997-2013 The PHP Group

3 Zend Engine v2.4.0, Copyright (c) 1998-2013 Zend Technologies

La versión de PHP del ejemplo de arriba es 5.4.24. Mientras tu versión de PHP sea
5.4.0 o superior, has terminado y puedes ir al siguiente capítulo.
Si no, vamos a usar un gestor de paquetes de terceros para OSX para instalar una
nueva versión de PHP.
Vamos a usar un gestor de paquetes llamado ‘Homebrew’ o tan solo ‘Brew’. Para
instalarlo, sigue las instrucciones que puedes encontrar en el siguiente sitio:
brew.sh¹
No quiero copiar las instrucciones aquí ya que suelen cambiar con cada nueva
versión. Una vez que tengas Homebrew instalado, es hora de instalar una versión
más nueva de PHP. Recomiendo instalar la versión 5.5. Puedes hacerlo usando el
siguiente comando.

¹http://brew.sh/

http://brew.sh/
http://brew.sh/

Instalación 5

1 $ brew install php55

Luego, tendrás que añadir la ubicación de esta versión de PHP al PATH de tu
sistema. No te preocupes, escribe lo siguiente.

1 $ PATH=~/usr/local/Cellar/php55/5.5.13/bin:$PATH

Puede que tengas que actualizar el número de la versión para que coincida con lo
que Homebrew te ha instalado. Ahora vamos a volver a mirar la versión de PHP.

1 $ php -v

Espero que, esta vez, tengas una versión de PHP más alta que 5.4.0. Ve y salta al
siguiente capítulo.

Windows

Instalar PHP enWindows es un pocomás difícil, al menos lo es parami. He probado
las instrucciones que he escrito en mi máquina con Windows 10, pero si tienes
alguna dificultad replicando estos pasos, házmelo saber y encontraré a alguien que
tenga más experiencia con Windows y reescriba esta sección.

Primero ve a:

http://windows.php.net/download²

Allí descárgate la última versión de PHP, que sea al menos la 5.4 en un archivo zip.
Una vez que se haya descargado el archivo, descomprímelo en un lugar adecuado.
Yo lo puse aquí:

1 C:\Users\Dayle\PHP

Necesitas una línea de comandos para ejecutar los scripts que escribamos en este
libro. He aquí una buena forma de ejecutar una línea de comandos en Windows.

Haz click derecho sobre tu escritorio o cualquier carpeta y elige Crear Acceso Directo.
En la caja que aparece escribe:

²http://windows.php.net/download

http://windows.php.net/download
http://windows.php.net/download

Instalación 6

1 cmd.exe

Haz click en siguiente y nombra el acceso directo como PHP.

Finalmente, dale click derecho sobre el acceso directo y haz click en “Propiedades”.
En la pestaña de “Acceso Directo”, cambia el campo “Comenzar en”, para que
coincida con el directorio donde ubicamos el archivo de PHP. Haz click en “Ok”
cuando termines.

Ahora haz doble click en tu fichero y deberías ver la línea de comandos. Escribe…

1 php -v

…y deberías ver la información sobre la versión de PHP. Confirma que la versión
es igual o superior a PHP 5.4 y pasa al siguiente capítulo.

Lamento las pocas explicaciones en este subcapítulo. No he usado Windows como
máquina para programar en unos cuantos años. Si alguien conoce una mejor
manera de ejecutar PHP en Windows, que me envíe un correo con instrucciones
y me encargaré de actualizarlo.

2. Encontrando respuestas
Lo sé. Es un título un poco raro, ¿no crees? Vas a tener que confiar en mi cuando
digo que esto es importante. Este capítulo es sobre tu confianza como programador
en desarrollo. Aprender es duro, pero no te preocupes; voy a echarte una mano.

Los programadores son robots

¿Por qué decidiste convertirte en programador? ¡No, espera! Déjame adivinar. Viste
bajarse a un programador PHP de una Limusina en uno de los mejores hoteles de
Nueva York, pidió 5 botellas de Champán y pasó la noche relajándose con Jay-Z y el
fantasma de Tupac.

Es cierto, la vida del programador es glamurosa. Tengo que escribir estos capítulos
en las 5 horas de sobriedad que tengo al día. Probablemente has visto a un
programador escribiendo código y pensaste…

Oh dios, ese programador debe ser un robot. Sabe todas esas palabras del
código y funciones y cómo funcionan.

Cuando la gente sin experiencia en programación se acercan a los programadores,
asumen que son genios con matrícula de honor en matemáticas. Quizá esto sea
cierto para algunos programadores, pero ciertamente no lo es para mi. Quiero
pensar que otros programadores están en mi misma situación.

La verdad es, que no somos perfectos. Ni siquiera estamos cercas de serlo. Si piensas
que los programadores saben todas las funciones de PHP y los fragmentos de
memoria, te estás engañando a ti mismo si piensas que nunca podrás hacerlo.

Simplemente, no es cierto. No memorizamos todo. De hecho, la mayoría del código
que usamos día a día es de una referencia. Somos guerreros de Google. Hay
funciones en PHP que hacen cosas sencillas con cadenas de texto y busco en la
documentación de PHP casi cada semana para saber el orden de los parámetros
que tengo que pasar.

Cuando estoy completamente perdido, intento usar Google para ver si otro progra-
mador descubrió un problema similar. A menudo encontraré una solución buena
que otro haya descubierto, o suficiente información para llevarme a una solución.
Por supuesto esto funciona en el otro sentido también, intentaré darmis soluciones

7

Encontrando respuestas 8

a la comunidad. Publicaré respuestas en Stack Overflow y contribuiré en los foros
o discusiones. Es importante colaborar con la comunidad.

Como ves, no somos robots. No lo sabemos todo sobre el lenguaje, y no tenemos
una solución a cada problema. Sin embargo, somos buenos investigadores. Somos
oportunistas. Somos resolutores de problemas conmuchos recursos. Somos progra-
madores.

El arte de usar Google

Cuando la gente te dice que busques algo en Google, es fácil tomárselo como un
insulto. ¿O quizá sarcasmo? No lo es. Google es nuestra página de inicio por un
buen motivo. Vamos a ver cómo podemos encontrar respuestas a problemas de
programación comunes.

Estamos escribiendo un programa, y en algún sitio tenemos que darle la vuelta a
una sentencia por lo que ‘Los pandas molan’ se convierte en ‘nalom sadnap soL’.
No tenemos ni idea de cómo hacerlo. Acabamos de empezar con PHP.

Sabemos que en PHP una secuencia de texto se llama ‘cadena’. Lo sabemos porque
no dejamos de leer este libro con ejemplos de Pandas, y descubrimos esto en otro
capítulo, ¿verdad?

Ahora sabemos lo que queremos hacer. Queremos invertir una cadena. Vamos a
hacer una consulta a Google.

1 invertir cadena

¡No, espera! El problema es que hay miles de lenguajes de programación. Los
ordenadores llevan mucho entre nosotros.

Si buscamos ‘invertir cadena’, vamos a obtener resultados para C++, ASP.NET,
Erlang, lo que sea. Nuestro foco es PHP. No nos importan el resto de lenguajes.
Ya tendremos tiempo de jugar con ellos más tarde cuando nos convirtamos en
cerebritos de PHP. Vamos a arreglar el problema añadiendo el lenguaje a la
consulta.

1 invertir cadena php

Perfecto. Echemos un vistazo a los resultados que obtenemos de Google. Puede ser
un buen momento para mencionar que no trabajo para Google, y no estoy traba-
jando a comisión. Puedes usar Bing si quieres aunque quizá acabes comprando
un trailer para caballos usados antes de encontrar la función que buscas. Así que,
¿dónde están los resultados?

Encontrando respuestas 9

Invierte una string - PHP

http://php.net/manual/es/function.strrev.php¹

Invertir una cadena (string) en PHP | Esteban Novo

http://www.notasdelprogramador.com/2010/09/10/invertir-una-cadena-en-php/²

Haciendo la pregunta adecuada, obtenemos recursos útiles en respuesta. Elmanual
de PHP (a veces conocidos como la documentación de PHP) y Stack Overflow son
dos de los mejores recursos para solucionar problemas de PHP en internet. No digo
que siempre tengan la respuesta adecuada. Hay otros sitios buenos también, pero
estoy seguro de que acabarás visitando esos sitios muchas veces.

N. del T. : Como nota personal, he de añadir que hacer las búsquedas en
inglés, suele llevar a mejores resultados.

Ahora mismo estamos buscando alguna forma de invertir una cadena. No estamos
intentando resolver un problema abstracto, sabemos exactamente lo que quere-
mos.

Ve y prueba el primer enlace, serás recibido por la página del manual del PHP para
la función strrev(). No necesitas saber lo que es una función ahora mismo. No te
preocupes si esto te resulta demasiado.

Una vez que te hayas familiarizado con las funciones, verás que esta página ofrece
todo lo que necesitamos saber para usar la función strrev(), y ejemplos sobre cómo
usarla.

Como ves, haciendo las preguntas adecuadas, hemos recibido toda la ayuda que
necesitábamos para continuar con nuestro trabajo. No teníamos conocimiento
alguno sobre strrev() pero sabíamos el problema que teníamos que resolver. Eso
fue suficiente para llevarnos a una solución. No importa si tenemos que volver a la
página más tarde.

Quizá no usemos la función con la frecuencia necesaria para tener que recordar
cómo usarla. Aunque, te darás cuenta que si comienzas a usar la funciónmás ymás,
y frecuentas la página del manual, antes de que te des cuenta, dejarás de tener que
usar el manual. Pensarás enseguida, ‘Ey, debería usar strrev() que uso siempre y sé
cómo funciona’. Será parte de tu memoria y de tu conjunto de conocimientos.

¹http://php.net/manual/es/function.strrev.php
²http://www.notasdelprogramador.com/2010/09/10/invertir-una-cadena-en-php/

http://php.net/manual/es/function.strrev.php
http://www.notasdelprogramador.com/2010/09/10/invertir-una-cadena-en-php/
http://php.net/manual/es/function.strrev.php
http://www.notasdelprogramador.com/2010/09/10/invertir-una-cadena-en-php/

Encontrando respuestas 10

La lección que espero que hayas aprendido es que no deberías entrar en pánico.
No tienes que recordarlo todo, es perfectamente natural buscar ayuda. De hecho,
es humano, y es humano aprender de tu experiencia.

¡Enhorabuena! Eres un humano, no un robot.

3. Archivos
He aquí una noticia impactante. El código PHP se almacena en archivos. Lo siento,
¡pero es verdad! Vas a trabajar con muchos archivos. Bueno, de hecho, a veces uno
solo pero más tarde trabajarás con muchos, muchos de ellos.

Ahora que te he mostrado la cruda realidad, es hora de que aprendas a crear un
archivo PHP.

Dayle„ entiendo lo fundamental sobre el sistema de ficheros de un
ordenador

¡Bien hecho! Bien por ti, pero no vamos por ahí. Como verás, la mayoría de los
archivos PHP tienen algo en común. Estoy hablando sobre la etiqueta de PHP.

Échale un vistazo:

Ejemplo 01: Etiqueta PHP.

1 <?php

Preciosa, ¿no te parece? Una etiqueta maravillosa. Un especimen absolutamente
fantástico.

Yo… esto…

¿Qué? ¿No sientes lomismo sobre ella? Confía enmi, trasmuchos años de desarrollo
con PHP sentirás lo mismo. La verás cuando cierres los ojos para ir a dormir por las
noches. Es tu mejor amiga. Te permite usar PHP.

Soy de los que prefieren ejemplos prácticos así que intentemos algo juntos. Crea
un nuevo archivo, llámalo prueba.php. Los archivos PHP normalmente tienen la
extensión .php. Para ser sincero, podemos ejecutar PHP sin la extensión, pero
deberías usarla si no quieres que los programadoresmayores se rían de ti, te quiten
lamerienda y te hagan llorar. Solo bromeaba… los programadores son gente afable,
pero deberías usar la extensión.

Lo primero, vamos a escribir las palabras…

11

Archivos 12

Ejemplo 02: Algo de texto.

1 ¡Los pandas molan!

…en el archivo, y guárdalo.

Genial, ahora ejecuta el archivo. Podemos hacerlo llamando a la aplicación php de la
línea de comando y pasando el nombre del fichero como parámetro. Por ejemplo,
en mi Mac, escribiré lo siguiente:

Ejemplo 03: Ejecutando un fichero PHP.

1 php prueba.php

Verás las palabras ¡Los pandas molan! en la pantalla. Esto es porque todo lo que esté
fuera de las etiquetas PHP, es impreso cuando la aplicación se ejecuta. Intentemos
otra cosa. Vamos a usar nuestra primera etiqueta PHP.

Editemos el fichero para que ponga lo siguiente:

Ejemplo 04: Segmento PHP.

1 <?php

2

3 // ¡Los pandas son increíbles!

4

5 ?>

6 ¡Los pandas molan!

Ejecutemos el archivo de nuevo. ¿Qué es lo que vemos?

Ejemplo 05: Salida.

1 ¡Los pandas molan!

¡Ey espera! ¿Dónde está el resto?

¡Bien visto, futuro programador! Hay una sección de nuestro fichero que falta. Esto
es porque todo lo que está dentro de nuestras etiquetas PHP, es tratado como código
PHP y se procesa de manera adecuada.

Así que, ¿qué son las etiquetas pHP? Bueno, ya has visto la etiqueta de apertura
PHP. ¿Recuerdas nuestra amiga <?php?. La etiqueta <?phpmarca el inicio de nuestro
código PHP. Así que, ¿cuándo termina? Es fácil ver el código PHP en este fichero. Es
la siguiente línea.

Archivos 13

Ejemplo 06: Comentario.

1 // ¡Los pandas son increíbles!

Entonces, ¿qué es lo que hace esta línea? Absolutamente nada. Es conocida como
comentario. Ayuda a los programadores a documentar su propio código. No te
preocupes. Aprenderemos más sobre los comentarios más adelante.

Bueno, este ha sido un bonito y corto capítulo, ¿no te parece? Ahora ha llegado
la hora de las buenas noticias. En el siguiente capítulo vas a escribir las primeras
líneas de código PHP reales.

¿Nervioso? ¿¡Entonces por qué esperar?! Pasa al siguiente capítulo.

4. Aritmética básica
Estoy seguro de que has escuchado que la programación es todo matemáticas. ¿No
es cierto? Ha llegado la hora de las matemáticas. Comencemos.

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

a2i

)1/2(n∑
i=1

b2i

)1/2

Ahora, resuelve la X.

Bromeaba de nuevo. De hecho, no hay X en esa ecuación. De hecho, ni siquiera es
una ecuación por lo que ha sido una broma terrible. Lo cierto es, que ni siquiera sé
lo que hace esa ecuación. No somos gurús de las matemáticas (no todos).

Sentencias

Vamos a intentar algo más cercano a mi nivel de matemáticas. Sabes cómo hacer
ficheros PHP y sabes cómo abrir y cerrar etiquetas PHP. Así que saltemos directa-
mente a un fichero PHP. Vamos a llamarlo mates.php. He aquí el contenido.

Ejemplo 01: Suma.

1 <?php

2 3 + 3;

3 ?>

Un momento, espera un segundo. No vamos a imprimir nada tras nuestro código
PHP. ¿Por qué preocuparnos en poner una etiqueta PHP de cierre? Lo cierto es, que
la mayoría de los programadores PHP, omiten esta etiqueta si no hay contenido que
siga al código. Vamos a hacerlo.

Ejemplo 02: No necesitamos etiqueta de cierre.

1 <?php

2 3 + 3;

14

Aritmética básica 15

¡Mucho mejor!

Bueno, en el caso de que tusmatemáticas no sean tan buenas como lasmías, déjame
ayudarte un poco. Cuando sumas tres y tres, te da seis. Vale, ahora estás listo.

La línea 3 + 3; contiene una sentencia. Es una línea de PHP que será evaluada por
PHP. Normalmente terminan con punto y coma. Así es como se ven ;. Al principio
se te olvidará siempre, pero no te preocupes, pronto estarás incluso terminando tus
frases con ellos;

Dado que ahora entiendes la suma básica, ¿qué piensas que pasará cuando ejecu-
temos el fichero?

Siete punto cinco.

Bien, veamos si estás en lo cierto. Ve y ejecuta php mates.php para ver qué ocurre.

Ejemplo 03: Salida.

1 [Nada por aquí]

¡Vaya! Absolutamente nada. Este lenguaje es estúpido. Dejémoslo. Vale, sigo bro-
meando. Tengo un sentido del humor peculiar, no te preocupes, te acostumbrarás.

¿Por qué no vimos nada en la pantalla? Bueno, eso es porque no le dijimos a PHP
que nos mostrara nada. PHP es obediente. Vamos a decirle que nos de la respuesta.
Usemos echo. Es una construcción del lenguaje que nos permite ver el resultado de
una sentencia.

Vamos a alterar la sentencia para incluir echo.

<?php echo 3 + 3;

Allá vamos. Colocamos echo delante de la sentencia de la que queremos ver el
resultado. Vamos a intentar ejecutar nuestra aplicación de nuevo. Allá vamos.

Ejemplo 05: Salida.

1 6

¡Woohoo! ¡Seis! ¡NO SIETE PUNTO CINCO! Hemos conseguido ver el resultado de
nuestra primera sentencia evaluada con PHP. Maravilloso, ¿no te parece?

Podría haber hecho esto en una calculadora

Lo sé, lo sé. No es exactamente ciencia para cohetes. La ciencia para cohetes se
cubre en otro capít…Espera, ya he dicho esa bromaenotro libro. Necesito conseguir
nuevo material.

Aritmética básica 16

Operadores aritméticos

Sé que nuestro ejemplo de 3 + 3 es código sencillo pero pronto nos haremos con
cosas más grandes y mejores. ¿Sabías que hay más operadores aritméticos? Estoy
seguro de que algunos de ellos te suenan de algo.

1 + Suma

2 - Resta

3 * Multiplicación

4 / División

5 % Módulo

Estoy seguro de que habrás visto algunos de esos operadores anteriormente. Sé que
la multiplicación y la división son un poco diferentes a los signos que aprendiste
en el colegio. Esto es común a la mayoría de los lenguajes de programación y
descubrirás que el signo de división es definitivamente más sencillo de escribir
en el teclado. No dejes que te preocupen, antes de que te des cuenta te habrás
acostumbrado a ellos.

Si no has usado el operador ‘Módulo’ anteriormente, es sencillo de explicar. Puede
ser usado para calcular el resto de una división. Por ejemplo, la operación ‘3 % 2’
resultaría en la figura de ‘1’. Se usa normalmente para determinar si un número es
par o impar, dividiéndolo entre dos.

Ahora vamos a darle a PHP algo difícil:

Ejemplo 06: Matemáticas difíciles.

1 <?php

2 echo 4 + 3 * 2 / 1;

Así que, ¿cuál es el resultado? Bueno, puede ser difícil calcularla en nuestra mente
ya que no sabemos en qué orden calcular. ¿Deberíamos sumar primero? ¿O dividir
primero? Hmm. ¡Difícil!

Por supuesto, en matemáticas aprendemos a usar paréntesis para separar las
ecuaciones. Podemos hacer lo mismo con PHP. Vamos a intentarlo.

Ejemplo 07: Paréntesis para separar operaciones.

1 <?php

2 echo (4 + 3) * (2 / 1);

Ahora podemos estar seguros de que 4 * 3 y 2 / 1 son evaluados primero y los
resultados serán multiplicados. Genial, ejecutemos y veamos el resultado…

Aritmética básica 17

Ejemplo 08: Salida.

1 14

Genial, ¿pero eso no es hacer trampas? ¿Qué conseguiríamos sin los paréntesis?
Vamos a quitarlos.

Ejemplo 09: Sin paréntesis.

1 <?php

2 echo 4 + 3 * 2 / 1;

¿Cuál es el resultado? Ejecutémoslo.

Ejemplo 10: Salida.

1 10

Vaya, esto es algo totalmente distinto. ¿Por qué? Bueno, eso es porque PHP no está
gestionando los operadores en el mismo orden. Vamos a ver el orden en que se
gestionan los operadores.
Este es el orden:

1 * Multiplicación

2 / División

3 % Módulo

4 + Suma

5 - Resta

El operador con la prioridad más alta está en la parte de arriba de la tabla. Esto
significa que cuando PHP examina 4 + 3 * 2 / 1, primero calcula 3 * 2 = 6, luego 6

/ 1 = 6 y finalmente 4 + 6 para obtener 10.
Cuando escribo cosas matemáticas, me gusta añadir paréntesis para evitar confu-
siones. También me parece que ayuda a clarificar lo que se pretende hacer con la
línea, haciendo que sea más legible.

Procedimiento

El código PHP se procesa de manera secuencial. Esto significa que se ejecuta
sentencia a sentencia. Aunque es posible poner más de una sentencia en una línea,
es poco común y el resto de programadores no suelen hacerlo así que ejecutemos
el código línea a línea. Podemos ver esto en acción añadiendo más sentencias a
nuestro fichero. Vamos a probar lo siguiente:

Aritmética básica 18

Ejemplo 11: Múltiples sentencias.

1 <?php

2 echo 2 + 2;

3 echo 3 + 3;

4 echo 4 + 4;

5 echo 5 + 5;

Ahora ejecutemos el fichero…

Ejemplo 12: Salida.

1 46810

¿!CUARENTA Y SEIS MIL GIGAQUEEEE!?

¡Cálmate lector! Le dijimos a PHP que mostrara los resultados, nada de espacios
ni nuevas líneas. Esto significa que PHP ha calculado los valores correctamente. Si
añadimos espacios, el resultado que PHP nos ha dado es…

4 6 8 10

…ahora vemos que los cálculos son, de hecho, correctos. Únicamente ocurre que
PHP es muy obediente y ha mostrado los valores uno detrás del otro.

He mencionado con anterioridad que PHP es un lenguaje flexible. Vamos a ver eso,
¿no te parece? Hasta ahora, nuestras sentencias solo tienen un espacio entre cada
‘palabra’ (o número). Vamos a añadir algunos espacios adicionales en un formato
inconsistente para ver qué ocurre. He aquí nuestro código modificado.

Ejemplo 14: Espacios en blanco.

1 <?php

2 echo 2 + 2;

3 echo 3 +3;

4 echo 4+4;

5 echo 5+ 5 ;

Aunque esto no es que sea muy bonito, si ejecutaras el código, descubrirías que el
código funciona a la perfección. A PHP no le importan la cantidad de espacios en
blanco entre las palabras y el código. Símplemente lidia con ellos.

Observarás que algunas de las operaciones aritméticas, por ejemplo 4+4 no ne-
cesitan un espacio para nada. Aunque es cierto, no es consistente en todas las
variaciones. Por ejemplo, considera lo siguiente:

Aritmética básica 19

Ejemplo 15: Sin espacios tras echo.

1 <?php

2 echo5 + 5;

Si intentas ejecutar esto, descubrirás que PHP lanzará un error ‘Use of undefined
constant echo5 - assumed ‘echo5’. Esto es porque PHP no sabe qué es la palabra
echo5 ni lo que debe hacer. Por este motivo, lo mejor es colocar al menos un espacio
entre cada ‘palabra’.

Por otro lado, las sentencias. Si fuéramosmasoquistas, podríamos elegir poner cada
sentencia en la misma línea. He aquí un ejemplo.

Ejemplo 16: Múltiples sentencias, una línea.

1 <?php echo 2 + 2; echo 3 + 3; echo 4 + 4; echo 5 + 5;

Este código es perfectamente válido, pero no verás a muchos programadores ha-
ciéndolo. Tener una sentencia en cada línea, hace el código mucho más sencillo de
leer y entender. También causa problemas con los sistemas de control de versiones.

Hemos visto que a PHP no le importa si usas muchos espacios en el código, pero
también considera una nueva línea como un espacio en blanco. Esto implica que el
siguiente fragmento es completamente legal.

Ejemplo 17: Una sentencia, múltiples líneas.

1 <?php

2 echo

3 2

4 +

5 2

6 ;

¿No me crees? ¡Ve e inténtalo! Aunque el código funciona como se pretende, no es
lo más legible del mundo. Si te pillo escribiendo código así, ¡te daré una azotaina!

No obstante, hay un uso práctico para los saltos de línea. Si la línea que estás escri-
biendo es demasiado larga, también se convertirá en un problema de legibilidad.
Podemos resolver este problema aplicando saltos para que resulte legible. Muchos
programadores también aplican cuatro espacios (o tu elección de tabulación) en la
siguiente línea, para indicar que es una continuación.

He aquí un ejemplo de saltos de línea apropiados.

Aritmética básica 20

Ejemplo 18: Saltos de línea limpios.

1 <?php

2 echo (3 * 5) / (7 / 12) * (7 * 6) + (7 % 3)

3 + (6 + 7) * (12 / 3);

Aquí hay matemáticas serias, pero espero que lo veas más sencillo de leer.

Merece la pena destacar que puedes también dejar líneas en blanco para añadir
claridad. He aquí un ejemplo.

Ejemplo 19: Líneas adicionales por claridad.

1 <?php

2 echo 3 + 2;

3 echo 7 * 7;

4 echo 5;

Así que, como ves, PHP puede ser extremadamente flexible. Pero no te olvides de
añadir un punto y coma al final de la línea, ya que nunca te perdonará.

JAMÁS.

5. Variables y asignaciones
Ahora estamos llegando al quid de la cuestión. Las variables son una parte extre-
madamente útil del conjunto de herramientas del programador. Comencemos, ¿no
te parece?

Pequeñas cajas

Quiero que pienses en las variables como en pequeñas cajas en las que metemos
cosas. Las variables son palabras que comienzan con el símbolo del dolar: $. Veamos
un ejemplo.

Ejemplo 01: Asignación básica.

1 <?php

2

3 $tres = 3;

Si piensas en la variable $tres como en una caja, acabamos de meter el valor 3

dentro. Eso es lo que hace el símbolo de igual. En las matemáticas, usamos el
símbolo de igual para indicar el resultado de una ecuación. No obstante, en PHP
es una historia completamente diferente.

En PHP, el signo igual = es conocido como el operator de asignación. Se usa para
asignar algo. Le estamos indicando a PHP que asigne la variable $tres al número
3.

Si ejecutas el script que hemos creado arriba, verás que PHP no nos muestra nada.
Esto es ya que la asignación es eso, una asignación y nada más. No le estamos
pidiendo a PHP que nos muestre nada. No obstante, ahora que hemos asignado
la variable $tres al valor 3, podemos usar echo sobre la variable.

21

Variables y asignaciones 22

Ejemplo 02: Mostrando un valor

1 <?php

2

3 // Asignamos el valor

4 $tres = 3;

5

6 // Mostramos el valor

7 echo $tres;

Primero asignamos nuestra variable y luego usamos la sentencia echo para mostrar
el valor que contiene. Si ejecutamos nuestro código ahora, veremos un 3 como
salida.

Esto es genial porque significa que podemos ponerles motes a las cosas: ya sa-
bes, igual que a esos molestos gamberros del colegio. Por ejemplo, el número
‘3.14159265359’ es un número precioso para los amantes de los círculos, pero es
difícil de recordar, ¿no te parece? Vamos a ponerle un mote. Vamos a llamarlo…
Pedrín. No espera, tengo una idea mejor.

Ejemplo 03: Un nombre de variable apropiado

1 <?php

2

3 $pi = 3.14159265359;

Ahorahemos creadounanueva variable llamada $pi, que contiene el valor 3.14159265359.
Esto significa que podemos usar la variable en cualquier lugar de nuestro código
para hacer cálculos. He aquí algunos ejemplos.

Ejemplo 04: Usando variables en sentencias

1 <?php

2

3 // Asignando pi a una variable.

4 $pi = 3.14159265359;

5

6 // Realizar cálculos de circunferencias.

7 echo $pi * 5;

8 echo $pi * 3;

Variables y asignaciones 23

Tras asignar $pi podemos usarla en otras sentencias para realizar cálculos.

Podemos declarar y asignar tantas variables como quieras, pero hay varias reglas
que tenemos que seguir al escoger nombres. Los nombres de las variables pueden
contener números, letras y guiones bajos. No obstante, tienen que comenzar por
una letra o un guión bajo, ¡nunca un número!. Son sensibles a mayúsculas y
minúsculas lo cuál significa que $panda es diferente a $pAnda. He aquí un par de
ejemplos.

Ejemplo 05: Nombrando variables

1 <?php

2

3 $panda = 1; // Legal

4 $Panda = 1; // Legal

5 $_panda = 1; // Legal

6 $pan_da = 1; // Legal

7 $pan_d4 = 1; // Legal

8 $pan-da = 1; // Ilegal

9 $4panda = 1; // Ilegal

Aunque los nombres de las variables pueden contener guiones bajos y comenzar
con letras mayúsculas, es una práctica común usar el formato llamado camelCasing.
No te preocupes, no hacen falta camellos.

Los nombres CamelCase, comienzan con un carácter en minúscula. Las variables
que tienen varias palabras, tendrán las primeras letras de estas enmayúsculas. Por
si no queda claro, he aquí algunos ejemplos.

Ejemplo 06: Variables en CamelCase

1 <?php

2

3 $earthWormJim

4 $powerRangers

5 $bobEsponja

¿Recuerdas cómo nuestras sentencias devuelven un valor? Una noticia, nuestras
asignaciones son also sentencias. ¿Puedes adivinar lo que significa? Eso es, también
devuelven un valor. Podemos probar esto usando nuestro viejo amigo echo.

Variables y asignaciones 24

Ejemplo 07: Las sentencias devuelven un valor

1 <?php

2

3 echo $panda = 1337;

Recibimos el número 1337 como la salida. Esto es porque la asignación de la variable
$panda se lleva a cabo antes de que sea mostrada. Este proceso nos permite usar un
astuto truco. No es algo que vayas a usar muy a menudo, pero creo que es un buen
truco a saber. Ve y echa un vistazo a este ejemplo.

Ejemplo 08: Asignación múltiple

1 <?php

2

3 $primerPanda = $segundoPanda = $tercerPanda = 1337;

El fragmento de arriba puede parecer un poco alocado, pero tiene más sentido
si lo lees de derecha a izquierda. El $tercerPanda es asignado al valor 1337, luego
el $segundoPanda es asignado al valor del $tercerPanda, y finalmente el $primerPanda
es asignado al valor del $segundoPanda. Esto significa que todas las variables están
asignadas al valor final. Bonito, ¿no te parece?

De mi tipo

Hasta ahora hemos estado trabajando con números. Sería aburrido si solo pudiéra-
mos trabajar con valores de ese tipo. Creo que es el momento de examinar las otras
posibilidades. He aquí algunos de los valores comunes usados en aplicaciones PHP.

• entero (integer)
• coma flotante (float)
• booleano (boolean)
• cadena (string)
• null
• matriz (array)

Hay unos pocos más pero no vamos a complicarnos por ahora. Tenemos que
aprender poco a poco. ¡No quieres una sobrecarga de conocimiento!

Echemos un vistazo a estos tipos uno a uno. Primero tenemos los enteros. Son
números entero, los hemos estado usando en nuestros ejemplos anteriores.

Variables y asignaciones 25

Ejemplo 09: Enteros

1 <?php

2

3 $panda = 2;

4 $pandaRojo = -23;

Los números de coma flotante son los que tienen decimales, y por ende contienen
fracciones. Pueden ser usados de manera similar a los enteros. De hecho, ya hemos
usado uno. ¿Recuerdas a nuestro amigo $pi? Era uno de ellos. Sigamos, ¿no te
parece?

Ejemplo 10: Coma flotante

1 <?php

2

3 $panda = 2.34;

4 $pandaRojo = -23.43;

Los booleanos, son tipos de datos binarios. ¡No te preocupes! No vamos a hacer
nada de aritmética binaria. Es solo una forma de expresar que pueden contener
dos valores. Un booleano puede ser o true (verdadero) o false (falso). Más tarde,
echaremos un ojo a cómo estos valores pueden ser usados para alterar el flujo de
nuestra aplicación.

Ejemplo 11: Booleanos

1 <?php

2

3 $panda = false;

4 $pandaRojo = true;

Lo siguiente son los valores de ‘cadena’. Las cadenas son usadas para almacenar
una palabra, un caracter, o una secuencia de texto. Las cadenas son especiales por
lo que he decidido dedicarles un capítulo corto. ¡Volveremos a ellas!

Variables y asignaciones 26

Ejemplo 12: Cadenas

1 <?php

2

3 $panda = 'Panda normal';

4 $pandaRojo = "Panda rojo";

Null es un valor especial. Es nada. Cero. Vacío. Bueno, no es cero. El cero es
numérico y podemos usar un entero para eso. Los valores nulls son exactamente
nada. Null es el valor que tiene una variable antes de que se haya asignado. Es un
valor muy útil y lo verás mucho en el futuro.

Ejemplo 13: Valores null

1 <?php

2

3 $noPanda = null;

Las matrices o vectores son otro tipo de valor especial. De hecho, es mi favorito.
Tanto es así que tienen un capítulo completo dedicados. Por ahora, todo lo que
necesitas saber es que es un valor que contiene una colección de otros valores.
¡Vaya! ¡Inception!

Ejemplo 14: Matrices

1 <?php

2

3 $cuentaLosPandas = [1, 2, 3];

4 $masPandas = array(5, 6, 7, 8);

Asignación avanzada

En un capítulo anterior descubrimos los operadores que podemos usar en otras
variables, y aprendimos sobre el operador de asignación. Así que, ¿qué pasa si los
ponemos juntos? Bueno, crearemos un agujero negro y consumiremos el universo
al completo. Me siento aventurero, ¿lo descubrimos?

Variables y asignaciones 27

Ejemplo 15: Asignación con suma

1 <?php

2

3 // Establece un valor

4 $panda = 3;

5

6 // Intenta crear un agujero negro

7 $panda += 1;

8

9 // Mostremos el valor del universo

10 var_dump($panda);

Primero establecemos una variable al valor entero tres. Luego, hemos añadido el
operador de suma frente al operador de asignación y le hemos facilitado el valor
entero de uno.

Podemos usar la función var_dump() (¡pronto veremosmás sobre las funciones!) para
saber no solo el valor de una variable, si no también su tipo.

¿Qué obtenemos de salida?

Ejemplo 16: Salida

1 int(4)

¡Genial! El universo ha sido salvado. ¿Parece que tenemos un cuatro? Supongo que
tiene sentido. Sabemos que $a + $b devuelve un valor sin asignarlo, y sabemos que
el operador de asignación es usado para establecer el valor de las variables. Así que
esto hace ambas cosas. Le estamos diciendo a PHP que establezca el valor de $panda

a su valor actual, más uno.

Puedes usar esta sintaxis con cualquiera de los operadores que ya hemos descu-
bierto. Solo hay una pega. No coloques el operador al otro lado del signo igual.
Confía en mi, lo he intentado. Se abrió un portal a un mundo oscuro, criaturas
mitad dinosaurio, mitad humana aparecieron y empezaron a sembrar el caos en
Cardiff. Solo con la ayuda de un lanzallamas casero (que construí usando PHP) pude
derrotar a las desagradables criaturas. Odiaría ver que te ocurre a ti. ¡Ten cuidado
por favor!

Luego tenemos el operador incremental. De hecho, no nos olvidemos del operador
decreciente. Suele tener menos atención. Ya que estamos, vamos a mostrar sus
habilidades.

Me gusta poner un ejemplo. Pongamos el siguiente:

Variables y asignaciones 28

Ejemplo 17: – Después

1 <?php

2

3 // Establece un valor

4 $panda = 3;

5

6 // Reducimos el valor

7 $panda--;

8

9 // Mostramos el valor

10 var_dump($panda);

Ahí, en el medio, ¿lo ves? El precioso operador decreciente. Colocamos dos signos
de menos tras la variable. Así que, ¿qué hace esto? He aquí el resultado.

Ejemplo 18: Salida.

1 int(2)

Como podemos ver, el valor de $panda ha sido reducido en uno. Es un atajo rápido
para reducir un valor. De manera análoga, podemos usar ++ para aumentar un
valor. No obstante, estos son los dos únicos operadores que funcionan. No intentes
usar el de multiplicación. ¡No funcionará como tú esperas!

Me pregunto qué ocurrirá si colocamos el operador antes del valor. Vamos a
intentarlo, ¿vale?

Ejemplo 19: – Antes.

1 <?php

2

3 // Establece un valor

4 $panda = 3;

5

6 // Reducimos el valor

7 --$panda;

8

9 // Mostramos el valor

10 var_dump($panda);

¿Cuál es la respuesta? ¿¡No estás nervioso!?

Variables y asignaciones 29

Ejemplo 20: Salida.

1 int(2)

Oh, es la misma. Bueno, eso ha sido aburrido, ¿no te parece? Lo cierto es que
conozco un pequeño secreto. No es lo mismo. El valor parece idéntico pero el
ejemplo que he puesto no le hace justicia.

Vamos a elaborar un ejemplo diferente. Mostraremos el estado del valor antes de
usar el operador. Examinaremos el resultado cuando la operación se haya usado, y
finalmente, examinaremos el valor después de que el operador se haya usado. No
esperamos que el valor de después sea diferente.

Ejemplo 21: Las fases de–.

1 <?php

2

3 // Establece un valor

4 $panda = 3;

5

6 // Mostramos ANTES

7 var_dump($panda);

8

9 // Mostramos DURANTE.

10 var_dump(--$panda);

11

12 // Mostramos DESPUES

13 var_dump($panda);

Ejecutemos el código. ¿Cuales son los tres valores que recibimos?

Ejemplo 22: Salida.

1 int(3)

2 int(2)

3 int(2)

Así pues, el primer valor es tres. Deberíamos habernos esperado eso, después de
todo, lo único que hemos hecho ha sido establecerlo, ¿verdad? El resultado de la
sentencia usando el operador es igual a dos. El valor resultante también es dos. Eso
significa que el valor se reduce en la segunda línea.

Vamos a mover el operador al otro lado del valor. Así:

Variables y asignaciones 30

Ejemplo 23: Las fases de – parte dos

1 <?php

2

3 // Establece un valor.

4 $panda = 3;

5

6 // Mostramos ANTES

7 var_dump($panda);

8

9 // Mostramos DURANTE

10 var_dump($panda--);

11

12 // Mostramos DESPUES

13 var_dump($panda);

Ahora echemos un vistazo al resultado. Mira con cuidado para ver la diferencia.

Ejemplo 24: Salida.

1 int(3)

2 int(3)

3 int(2)

¿¡Ey!? ¡El valor de en medio es diferente! ¿Por qué no ha decrecido? Bueno, al
cambiar el operador, le hemos dicho a PHP que reduzca el valor DESPUÉS de
la línea actual. El resultado de la línea de la operación es el mismo que era
inicialmente.

Déjame resumir.

$valor– - Cambia el valor después de la línea. –$valor - Cambia el valor en la línea
actual.

Así pues, ¿para qué nos sirve esto? He aquí un ejemplo de para qué nos sirve. Estoy
seguro de que si eres creativo descubrirás más. Usando el operador que cambia
después de la línea, podemos establecer otra variable a su valor, y reducir el valor
original en la misma línea. Por ejemplo:

Variables y asignaciones 31

Ejemplo 25: Asignar e incrementar.

1 <?php

2

3 // Establece un valor

4 $panda = 3;

5

6 // Asigna, y luego incrementa

7 $pandaFriend = $panda++;

Lo que hemos hecho aquí es ahorrarnos una línea. Es una especie de atajo. He aquí
cómo se vería si no usáramos el operador.

Ejemplo 26: Incrementar explicado.

1 <?php

2

3 // Establece.

4 $panda = 3;

5

6 // Asigna.

7 $pandaFriend = $panda;

8

9 // Incrementa.

10 $panda = $panda + 1;

Más adelante, hablaremos de los bucles y descubrirás otro uso para este operador.
En el próximo capítulo hablaremos de las cadenas.

	Tabla de contenidos
	Agradecimientos
	Errata
	Feedback
	Traducciones
	Instalación
	Linux
	Mac OSX
	Windows

	Encontrando respuestas
	Los programadores son robots
	El arte de usar Google

	Archivos
	Aritmética básica
	Sentencias
	Operadores aritméticos
	Procedimiento

	Variables y asignaciones
	Pequeñas cajas
	De mi tipo
	Asignación avanzada

