

PHP 初學者實務手冊

Jollen Chen

This book is for sale at http://leanpub.com/php-beginner-practice

This version was published on 2013-10-07

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©2013 Jollen Chen

http://leanpub.com/php-beginner-practice
http://leanpub.com
http://leanpub.com/manifesto

Contents

1 PHP基礎教材 . 1
1.1 踏出 PHP的第一步 1
1.2 如何開始撰寫 PHP程式 1
1.3 撰寫程式時的注意事項 3
1.4 PHP程式的副檔名 5
1.5 PHP敘述的結束 6
1.6 PHP與 HTML的換行方式 7
1.7 資料型態與變數 9
1.8 型別轉換 . 12
1.9 字串型態轉數值型態 14
1.10 初始化變數 . 15
1.11 初始化陣列 . 15
1.12 Type Juggling -型態間的戰爭 16
1.13 物件的生成 . 19
1.14 區域變數 . 20
1.15 全域變數 . 21
1.16 $GLOBALS -存放全域變數的陣列 22
1.17 靜態變數 . 23
1.18 以變數為名的變數 24
1.19 變數的變數陣列 25
1.20 讀取 form的資料 26
1.21 圖形的超鏈結 . 29
1.22 HTTP Cookies . 30
1.23 讀取系統的環境變數 30
1.24 常數的定義 . 32

1 PHP 基礎教材

1.1 踏出 PHP 的第一步

本章將帶領讀者進入 PHP 程式語言的世界。對不曾接觸過
PHP的讀者而言，本章是您學習 PHP的最佳教材。如果您早
就熟悉 PHP，也可以瀏覽一下本章的內容，看看是否有學習
上的遺漏。

開始學習前的準備工作：安裝 PHP + Apache + MySQL。
這部份在網路上有非常多資源，請參考相關文件，在
Windows/Ubuntu/Mac上安裝開發環境。

推薦的文章：

• Windows使用者請參考 http://blog.roodo.com/esabear/archives/15069653.html
• Mac使用者請參考 http://www.mamp.info/en/index.html
• Ubuntu 使用者請參考 http://linuxg.net/install-lamp-on-
ubuntu-13-04-raring-ringtail/

測試時， 不會有瀏覽器的相容性問題， 任何瀏覽器
（Chrome/Firefox/Safari/Opera/IE）皆可使用。

1.2 如何開始撰寫 PHP 程式

PHP是一種內嵌於 HTML文件裡的程式語言，因此 PHP的程
式碼必須寫在 HTML的檔案裡，為了能明辨出 PHP的程式碼
與 HTML，因此我們必須加上特製的標籤 (tag)。

當伺服器送出網頁時，會先直譯執行 PHP的程式碼，而使用
者端 (client)所能看到的只有 ** PHP的輸出 **，因此，我們

PHP基礎教材 2

的輸出必須符合 HTML語法的規範，那如何在網頁裡寫 PHP
呢？有 4種格式：

第 1種是正規的寫法。

<?php

echo "Hello! World!";

?>

「」代表的是程式碼的結束，我們就將 PHP的程式碼寫在這
兩個標籤之間。另外，也有人將開始標籤裡的「php」省略，
變成底下第 2種寫法。

第 2種是精簡的寫法。

<?

echo "Hello! World!";

?>

程式碼的部份以包圍住。

第 3種，當我們利用 FrontPage編輯含有 PHP程式的網頁時，
就必須使用這種方式：

<script language="php">

echo "Hello! World!";

</script>

這種寫法可以確保我們的 PHP程式碼不會被 FrontPage或其
它網頁編輯工具重新排版，當我們想要保持原來的程式撰寫
風格時，建議採用這種寫法。

第 4種是 ASP的寫作方式，利用 FrontPage編輯含 PHP程式
碼的網頁時，也可以使用這種方式。

PHP基礎教材 3

<%

echo "Hello! World!";

%>

最後將 PHP的程式檔案存成.php的副檔名即可。

1.3 撰寫程式時的注意事項

使用第一種方法時，必須修改 php.ini 設定檔，設定 short_-
open_tag=On才能使用；如果您以 source code自行編譯來安
裝 PHP，那麼在執行 configure時，必須加上 [[-enable-short-
tags]]的參數。

php.ini設定檔到底在那裡？

1. Linux 環境的使用者：php.ini 設定檔位於 php 安裝目
錄下的 lib/php.ini，以第 1 章的安裝範例來講，就是
/usr/local/php/lib/php.ini。

2. MS-Windows環境的使用者：利用 PHP安裝程式安裝的
話，我們可以在windows\目錄下 (for Windows 95/98/Me)
或是winnt\ (forWindowsNT/2000/XP)目錄下找到 php.ini
設定檔。手動安裝的話也應該將 php.ini 設定檔放到
windows或是 winnt目錄下。###框 (說明)

當我們使用第 4種方法時，必須修改 php.ini設定檔,將 asp_-
tags設定成 On才能使用這種方式。

撰寫 PHP程式碼的方式又稱為「HTML跳離」(HTML escape)。
例如我們有一份 HTML的檔案：

PHP基礎教材 4

<html>

<head>

<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; cha\

rset=big5">

<title>PHP Example.</title>

</head>

<body BGCOLOR="#FFFFFF">

<?

echo "<p>Hello!</p>
";

echo "<p>World...</p>
";

?>

</body>

</html>

PHP所看到的是自 HTML跳離的程式碼：

echo "<p>Hello!</p>
";

echo "<p>World...</p>
";

接下來 PHP瀏覽器只能看到最後的 output：

<html>

<head>

<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; cha\

rset=big5">

<title>PHP Example.</title>

</head>

<body BGCOLOR="#FFFFFF">

<p>Hello!</p>

<p>World...</p>

PHP基礎教材 5

</body>

</html>

當我們利用瀏覽器瀏覽時，看到的畫面是：

圖 1.1：程式範例 example-1-1.php

大多數的開發者，都是採用第 2種形式；若是在 ASP裡撰寫
PHP程式時，請使用第 2或第 4種形式。

1.4 PHP 程式的副檔名

對於 PHP文件而言，其慣用的副檔名為：

1. PHP/FI 2.0副檔名為.phtml
2. PHP 3的副檔名為.php3
3. PHP 4的副檔名為.php
4. PHP 5的副檔名為.php
5. 副檔名.phps表示顯示 PHP程式的原始碼

PHP基礎教材 6

副檔名雖然可藉由修改 apache 的設定檔而自訂，但建議不
要這麼做。因為本書是以 PHP 4/5為主，所以副檔名一律使
用.php，同時請確定 apache的設定是否正確，否則無法正常
處理 PHP檔案。

1.5 PHP 敘述的結束

echo是 PHP的語法，用來做輸出。而整個 echo語法的撰寫
則是一行完整的敘述，敘述結束時必須以分號做結尾，例如
底下的範例：

<?php

echo "Trust me!
";

echo "You can make it.
"

?>

另外，敘述是容許斷行的，請看底下的例子：

<?php

echo "Trust me!

You can make it.
"

?>

PHP程式碼是以分號做為一行敘述的結束，但是最後一行敘
述可省略分號，例如：

<?php

echo "Trust me!
";

echo "You can make it.
" //省略分號
?>

PHP基礎教材 7

1.6 PHP 與 HTML 的換行方式

PHP程式碼本文利用 Enter做的換行動作並不等於在出現在
瀏覽器畫面的換行，瀏覽器輸出畫面的換行必須使用 HTML
語法中的標籤，例如：

<?php

echo "Trust me!
";

echo "You can make it.
"

?>

在瀏覽器裡的輸出為：

Trust me!

You can make it.

如果寫成：

<?php

echo "Trust me!";

echo "You can make it."

?>

則在瀏覽器上看到的畫面就會變成：

Trust me!You can make it.

要記得，我們的輸出必須符合 HTML的語法，才能被瀏覽器
正常顯示。如果使用 ‘\n’控制字元來換行的話，只有 HTML
的內文 (網頁原始碼)才會被影嚮，對於 HTML的輸出則沒有
任何影嚮，例如：

PHP基礎教材 8

<HTML>

<HEAD>

<TITLE></TITLE>

</HEAD>

<BODY>

<?php

echo "Trust me!
";

echo "You can make it.
"

?>

</BODY>

</HTML>

輸出的結果雖然是：

Trust me!

You can make it.

在瀏覽網頁時，如果檢視網頁的原始碼，這份文件的內容其
實是：

<HTML>

<HEAD>

<TITLE></TITLE>

</HEAD>

<BODY>

Trust me!
You can make it.
</BODY>

</HTML>

為了美化 HTML的內文，我們在 PHP裡加上 ‘\n’控制字元，
來做文件內文的換行：

PHP基礎教材 9

<HTML>

<HEAD>

<TITLE></TITLE>

</HEAD>

<BODY>

<?php

echo "Trust me!
\n";

echo "You can make it.
\n"

?>

</BODY>

</HTML>

再檢視網頁原始碼就可以看到較為組織化的內容了：

<HTML>

<HEAD>

<TITLE></TITLE>

</HEAD>

<BODY>

Trust me!

You can make it.

</BODY>

</HTML>

1.7 資料型態與變數

PHP所支援的資料型態 (data types)有 8種：

1. boolean
2. integer
3. floating (double)
4. string
5. array

PHP基礎教材 10

6. object
7. resource
8. NULL

第 1∼4 種型別稱為 scalar types ()，第 5∼6 種稱為 compound
types (複合型別)，最後第 7與第 8種則是特殊型別。

PHP的變數屬鬆散資料型別，雖然支援 8種不同的型態，但
在初始化變數時不必宣告型態，而是在計算時動態 (dynamic)
決定，而非由撰寫程式的人決定。如果要強制設定變數的資
料型別的話，可以利用 settype()函數，或利用 C語言的強迫
轉型方式 (type casting)。

PHP的鬆散資料型別，即我們給定什麼值，該變數即為什麼
型別，或是如何使用該變數，該變數即為適當的型別，例如：

<?php

$foo = "0"; // $foo 為 string (ASCII 48)

$foo++; // $foo 變成 string "1" (ASCII 49)

$foo += 1; // $foo 變成 integer (2)

$foo = $foo + 1.3; // $foo 變成 double (3.3)

$foo = 5 + "10 Little Piggies"; // $foo 為 integer (15)

$foo = 5 + "10 Small Pigs"; // $foo 為 integer (15)

?>

另外還有一點，PHP的變數都是以 $ (dollar sign)開頭，並且
變數名稱有大小寫之分，例如：

$name

$Name

是兩個不同的變數。

當我們指定值 (value)給變數時，事實上我們是指定 expression
最後的值給變數，例如：

PHP基礎教材 11

$a = 5+5*2;

$a的值為 5+5*2最後的結果，即 15。

在 PHP 裡，除了給定值給變數外，還可以給定 reference 給
變數。也就是，該變數為另外一個變數的 reference，reference
的意義很像是 “becomes an alias for” 或是 “points to”，給定
reference的方法為，在原來的變數前加上 & (ampersand)符號，
再指定給另外一個變數。例如：

<?php

$foo = 5; // $foo 為 integer 5

$num = &$foo; // $num 為 $foo 的 reference

?>

上例中，&$foo表示將 $foo的 reference指定給 $num變數，當
我們改變 $num的值，等於改變 $foo的值，也就是：

$num = 10;

echo $foo; // 輸出 10

使用參考時，來源必須是一個變數名稱，例如：

<?php

$foo = 10;

$bar = &$foo; // 正確的寫法
$bar = &(1+2*2); // 錯誤的寫法!!!

function test() {

return 0;

}

$bar = &test(); // 錯誤的寫法!!!

?>

PHP基礎教材 12

1.8 型別轉換

PHP裡要做強迫轉換變數型態的方法有 2種：

1. 使用 C語言的 type casting語法，例如：

$x = 5;

$y = (double) $x; //括弧裡可以有 tab 或空白 (space)

可使用的 cast型別有：

• (int)，(integer) –轉換成 integer型別
• (bool)，(boolean) –轉換成 boolean型別
• (float)，(double)，(real) –轉換成 float型別
• (string) -轉換成 string型別
• (array) -轉換成 array型別
• (object) -轉換成 object型別

type casting型別轉換範例。

範例 1：

<?php

$x = “5”;

$number = (int)$x;

echo $number; //輸出 5

?>

範例 2：

PHP基礎教材 13

<?php

$x = “foo”;

$arr = (array)$x;

echo $arr[0]; //輸出 “foo”
?>

範例 3：

<?php

$x = “foo”;

$obj = (object)$x;

echo $obj->scalar; //輸出 “foo”
?>

1. 使用 settype函數：

int settype(string var, string type);

將 var變數轉換為 type型別，可指定的型別參數有：

• ”boolean”(PHP 4.2.0與之後的版本也可以簡寫成“bool”
)

• “integer” (PHP 4.2.0與之後的版本也可以簡寫成“int”)
• ”float”(PHP 4.2.0與之後的版本才支援)
• “double”
• “string”
• “array”
• “object”
• ”null”(PHP 4.0.8以後的版本才支援)

轉換成功傳回 true，否則傳回 false。當我們不知道某個變數
的值是什麼型別時，也可以利用 gettype()函數來取得。

在 PHP裡和 C語言一樣，非零即為 true，例如 if ($x)等於 if
($x != 0)。

PHP基礎教材 14

1.9 字串型態轉數值型態

當我們給變數的值是利用雙引號括住數值或字串時，就是指
定一個字串給變數，例如：

$a = "Hello!";

$a變數的值就是字串。請看底下的範例：

<?php

$a = "hello!";

echo $a;

?>

輸出結果為：

hello!

PHP有一項特性，就是 PHP的變數是在執行時才決定型態的，
因此字串也可以用來做計算。PHP將字串拿來做運算時，會
依據底下 2個原則設法將字串轉成可以計算的型態：

1. 字串中包括 “.”、”e”或 “E”時轉換成 double型別，否則
轉換為 integer

2. 無法轉換時則為 0

之前曾見過這樣的寫法：

$foo = 5 + "10 Big Pigs";

PHP會將字串 “10 Small Pigs”先轉換成 integer 10，再做加法。
字串轉數值的範例：

PHP基礎教材 15

<?php

$foo = 1 + "10.5"; // $foo 為 double (11.5)

$foo = 1 + "-1.3e3"; // $foo 為 double (-1299)

$foo = 1 + "bob-1.3e3"; // $foo 為 integer (1)

$foo = 1 + "bob3"; // $foo 為 integer (1)

$foo = 1 + "10 Small Pigs"; // $foo 為 integer (11)

$foo = 1 + "10 Little Piggies"; // $foo 為 integer (11);

$foo = "10.0 pigs " + 1; // $foo 為 int (11)

$foo = "10.0 pigs " + 1.0; // $foo 為 double (11)

?>

1.10 初始化變數

PHP的變數都是以 $做為開頭，初始化時直接指定初值即可：

<?php

$name = "Jollen"

$mail = "jollen@o3.net"

$age = 19

?>

1.11 初始化陣列

初始化變數時直接指定陣列與元素即可：

PHP基礎教材 16

<?php

$names[0] = "Jollen"

$names[1] = "Jordan"

$names[2] = "Kitty"

?>

PHP還有另外一個自動設定元素的特異功能：

<?php

$names[] = "Jollen"

$names[] = "Jordan"

$names[] = "Kitty"

?>

這個特異功能等於上面的初始化方法，陣列自動由第 0個元
素開始做配置。要注意的是，PHP和 Perl/C一樣，陣列的元
素都是由 0開始。其中 [] (中括弧)不能省略，省略的話 PHP
會以為這個變數是一個 string。

1.12 Type Juggling - 型態間的戰爭

因為 PHP並沒有精確的精型機制，而是當我們指定什麼樣型
別的值給變數，該變數就是什麼樣的型別，例如：

<?php

$a = 5; //$a 為 integer

$a = "5"; //$a 為 string

?>

變數在做運算時，例如使用 “+”，當 expression包含各種不同
的型態時，就會有 Type Juggling的動作發生，例如：

PHP基礎教材 17

<?php

$foo = "0"; // $foo 為 string "0" (ASCII 48)

$foo++; // $foo 為 string "1" (ASCII 49)

$foo += 1; // $foo 變成 integer (2)

$foo = $foo + 1.1; // $foo 變成 double (3.1)

$foo = 5 + "15 Persons"; // $foo 的運算結果為 integer (20)

$foo = 5 + "10 Big Pigs"; // $foo 的運算結果為 integer (1\

5)

?>

又如：

$a = 5; // $a 的型別為 integer

$a[0] = "Hi!"; // $a 的型別變成 array

這種型別的改變即稱為 “Type Juggling”。

但是，在 PHP裡，這種 type juggling的機制還有一個值得討
論的問題，就是當 type juggling發生在字串轉換成陣列時，會
發生底下這個問題：

$a = "Go"; // $a 為 string

$a[0] = "N"; // $a 是否被轉型別 array？

聰明的讀者應該可以馬上看出， $a[0] 並不一定被轉型成
array，因為 $a[0]也可能代表 $a字串的第一個字元，也就是：

$a[0] = "G";

$a[1] = "o";

當 $a[0] = “N”發生時，可能變成：

PHP基礎教材 18

$a = "No"; // $a 仍為 string

或是：

$a[0] = "N"; // $a 轉型成 array

過去舊版的 PHP（PHP 3）支援字串的字元索引的方法和陣列
元素的索引方式一樣，這是在舊版 PHP版本裡才需要特別提
出的一個問題。舊版 PHP的使用者如果要將 string型別轉換
成 array，可利用 type casting的方式來解這樣的問題：

<?php

$a = "Go";

$a = (array)$a;

echo $a[0]; // 輸出 'Go'

$a[0] = "N";

echo $a[0]; // 輸出 'N'

?>

type juggling還有一個常被忽略的重點就是，++與 –運算子
所做的運算是 ASCII與算術運算，而 +運算子只做算術運算，
看個例子就可以了解是什麼意思了：

<html>

<head>

<title>test</title>

</head>

<body>

<?php

$foo = "01";

echo "<p>\$foo => $foo</p>";

$foo++;

PHP基礎教材 19

echo "<p>\$foo++ => $foo</p>";

$foo = $foo+1;

echo "<p>\$foo = \$foo+1 => $foo</p>";

?>

</body>

</html>

其結果為：

圖 1.2：程式範例 example-1-2.php

注意 $foo = $foo+1的計算結果為 3，而不是 “03”，這就是筆者
所要特別強調的地方，+運算子只做算術運算，這點在其它
語言如 Perl也有類似情況。

1.13 物件的生成

在 PHP裡要生成物件和 C++一樣，首先必須先定義好 class，
然後再利用關鍵字 new來建立物件：

PHP基礎教材 20

<?php

class person {

function who() {

echo "I'm Jollen.";

}

}

$man = new person;

$man->who(); // 輸出 I'm Jollen.

?>

PHP 5新增了許多物件方面的功能。

1.14 區域變數

在 function裡初始化的變數即區域變數。為什麼叫區域變數
呢？因為區域變數只有在 function裡可以被「看見」，請看底
下的範例：

<?php

function sum() {

$a = 1;

$b = 2;

echo $a+$b;

}

sum();

?>

執行結果：

PHP基礎教材 21

3

第 2 個輸出的結果為 0，這是因為 function 裡的 $a 只有在
function 裡才能被看到，在 function 外區域變數就不能被看
見。

1.15 全域變數

在區域變數範圍之外所宣告的變數即全域變數，例如：

<?php

$a = 1;

function sum() {

echo $a;

}

sum();

?>

這段程式碼執行後不會有任何輸出，因為 $a變數是屬於區域
變數。請注意 PHP鬆散資料型別的變數使用前是不需要經過
任何宣告的，包括 printf()、給定初值等。

因為區域變數的可見度會蓋掉全域變數，所以 sum()所 echo
出的 $a變數是一個區域變數，那該如何告訴 function變數是
一個全域變數呢？利用 global關鍵字即可：

PHP基礎教材 22

<?php

$a = 1;

function sum() {

global $a;

$a = $a*100;

}

sum();

echo $a;

?>

執行結果：

100

第一段程式碼其實存在了二個變數，一個是全域變數 $a，另
一個則是區域變數 $a。在第二段程式碼裡，則只有一個全域
變數 $a。

對於全域變數另外一個重點就是，倒底全域變數的範圍為何？
在 PHP裡，全域變數也稱為 page-scoped變數，亦即在同一個
檔案裡的 PHP程式都能看到這個全域變數。

1.16 $GLOBALS - 存放全域變數的陣列

PHP會把全域變數存放在 $GLOBALS的格式化陣列裡，格式
化陣列不同於一般陣列是利用數字索引元素，格式化陣列則
是利用字串來索引元素，例如：

PHP基礎教材 23

<?php

$name = "Jollen";

$mail = "jollen@jollen.org";

function man() {

echo $GLOBALS["name"] . "
";

echo $GLOBALS["mail"] . "
";

}

man();

?>

輸出：

Jollen

jollen@jollen.org

全域變數被存放至 $GLOBALS陣列中，並利用變數的名字來
索引。

1.17 靜態變數

有些程式語言 (例如C)具有一種稱做靜態變數 (static variables)
的型別，PHP也支援靜態變數的寫法。

在 PHP裡，只有區域變數才能、也才需要宣告成靜態變數，
正常的區域變數生命期是在函數執行期間，隨函數的執行結
束而結束，而靜態變數的生命期是隨整個 PHP程式結束而結
束，但可見度只有該函數。

我們可以利用關鍵字 static來宣告靜態變數：

PHP基礎教材 24

<?php

function sum() {

static $a = 1;

if ($a < 10) {

echo $a;

$a++;

sum();

}

}

sum();

?>

輸出結果：

123456789

區域或全域變數都不是靜態變數，因為函數執行結束後，變
數的值並不會被保留。而所謂的靜態變數意思就是說，當函
數執行結束後，該變數的值仍然會被保留，因此第 2次呼叫
該函數時，靜態變數之前的值仍然存在。

1.18 以變數為名的變數

所謂「以變數為名的變數」(variable variables)指的其實就是
「動態變數名稱」(dynamic variable names)，直接來看一個例子
讀者就可以了解什麼是 variable variables了：

PHP基礎教材 25

<?php

$a = "Jollen";

$$a = "Pig!!!";

echo "$Jollen"; // 輸出為 Pig!!!

echo "${$a}"; // 輸出為 Pig!!!

echo "$a"; // 輸出為 Jollen

?>

說的嚴謹一點，就是利用變數的值來做為其它變數的名稱，
像上面這個例子 $$a指的就是利用 $a變數的值做為變數的名
稱，所以說穿了上面這個宣告就等於是：

$a = "Jollen";

$Jollen = "Pig!!!";

另外，在使用 variable varialbe時要特別小心，例如在 echo時：

echo "$a ${$a}";

echo "$a $Jollen";

輸出結果一樣都是：

Jollen Pig!!!

兩者有異曲同工之妙。

1.19 變數的變數陣列

變數變數陣列 (variable variables with arrys)跟 variable variables
其實是相同的東西，但使用變數變數陣列時，有些小地方必
須要特別小心。例如底下是一個錯誤的寫法：

PHP基礎教材 26

$$a[0] = "Kitty!";

這個語法錯誤的地方在於 PHP不曉得 $a和 $a[0]那一個才是
變數，也就是：

$a = "Good";

$a[0] = "Bad";

$$a[0] = "Kitty!";

兩者所代表的意思是很模糊的，PHP分不清楚到底是：

$Good[0] = "Kitty!";

還是：

$Bad = "Kitty!";

才是程式設計師想要的。因此，正確的寫法應該使用一對大
括弧來告訴 PHP我們要的是那一種做法：

${$a[0]) 等於 $Bad = "Kitty!";

${$a}[1] 等於 $Good[1] = "Kitty!";

1.20 讀取 form 的資料

1. 全域變數讀取法

寫過 CGI的朋友都知道，利用網頁的 form可以將 client端的
資料傳送至伺服器端。利用 PHP讀取 form的資料是非常容
易的，而且不像其它程式語言一樣還要判斷並分析這些資料，
由 form傳送過來的資料對 PHP來講就是全域變數，例如：

PHP基礎教材 27

<form action="reg.php" method="post">

E-Mail: <input type="text" name="email">

<input type="submit">

</form>

PHP會將 form傳進來的資料，存放至由 HTML標籤的 name
欄位所指定的變數裡。以上面的 form為例，假設 form傳進
$email=jollen@o3.net，在 PHP裡就等於：

$email = "jollen@jollen.org";

這是一個全域變數，而且可以直接取用。傳送進來的資料也
可以存成陣列，只要在 form 的 name 欄位做一點手腳即可，
利用陣列可以更方便的處理同類型的資料：

<form action="interest.php" method="post">

Name: <input type="text" name="person[name]">

Email: <input type="text" name="person[email]">

Your interest: <select multiple name="interest[]">

<option value="Singing">Singing

<option value="Sleeping">Sleeping

<option value="Sport">Sport

<option value="Reading">Reading

<option value="other">other

</select>

<input type="submit">

</form>

在 PHP裡就可以這樣讀取這些資料：

PHP基礎教材 28

$person["name"];

$person["email"];

$interest[0];

$interest[1];

$interest[2];

$interest[3];

$interest[4];

如果您是使用 FrontPage設計 form，輸入這類的名稱時 (含有
[])會出現錯誤視窗，不過不用擔心，因為這樣的名稱是瀏覽
器可以接受的。

請注意，利用這種方式讀取表單資料是較早期的做法，PHP
會自動將外來的變數註冊成全域變數，但從 PHP 4.2.0開始，
為了安全性與效能考量，預設將不再支援這種做法。

因此，以往的程式若要能在 PHP 4.2.0與之後的版本也能正常
執行，就必須修改 php.ini設定檔，將底下的設定：

register_globals = off

改成：

register_globals = on

如此一來，才能使用全域變數讀取表單資料的使法。

1. track_vars讀取法

PHP的 track_vars功能，經由 POST到 Server的表單資料會存
放在 $HTTP_POST_VARS陣列裡，經由 GET的資料會存放在
$HTTP_GET_VARS陣列裡。

使用 track_vars前必須將此功能打開，方法有 2種：

• 將 php.ini的 track_vars參數打開：

PHP基礎教材 29

track_vars = On

• 在網頁裡加上

PHP 4.0.3 與以後的版本不再提供 track_vars 的設定項目
(php.ini)，以後 PHP 4將永遠打開 track_vars的功能。

1. $_POST與 $_GET讀取法

PHP 4.1.0開始提供經由 $POST與 $_GET陣列存取表單資料的
做法，而前面所介紹的 $HTTP*_VARS讀取方式是以往的寫法，
但仍然可以使用。

例如名稱為 username 的表單資料，經由 POST 方式傳遞時，
存取該表單資料時應寫成：

$_POST[“username”]; // 等於 $HTTP_POST_VARS[“username”\

];

改用 GET方式傳遞時，則要改成：

$_GET[“username”]; // 等於 $HTTP_GET_VARS[“username”];

PHP 4.2.0 與之後的版本讀取系統的環境變數時，預設將不
會自動將環境變數註冊為全域變數，因此請由 $HTTP_ POST
(GET)VARS 或 $ POST(GET) 陣列來讀取或是設定 php.ini 的
register_globals項目 (On)。

PHP 5只能經由 $ POST(GET)陣列來讀取環境變數，以往設
定 register_globals項目與使用 $HTTP_POST(GET)_VARS的做
法將不再支援。

1.21 圖形的超鏈結

在圖形上設定鏈結時，瀏灠器會把滑鼠點選的座標位置傳給
伺服器，並由 PHP做轉換，存放至 var_x與 var_y兩個全域
變數裡。例如底下的 HTML語法：

PHP基礎教材 30

<input type="image" src="image.gif" name="sub">

此時 (x, y)的點選座標將會被存放到 (sub_x, sub_y)裡。

1.22 HTTP Cookies

Cookies是一種可在瀏覽器存放資料的機制，利用 setcookie()
函數設定 Cookies，因為 Cookies 屬於 HTML 的檔頭，所以
setcookie()必須在有任何輸出之前呼叫。

Cookies 的內容會在網頁第一次被瀏覽時，由瀏覽器存放於
client端中的一個檔案，當瀏覽器再次 request該網頁時，再
將 Cookies傳回給伺服器。

關於版本間的差異，特別整理如下：

• PHP 4.1.0與之後的版本改由 $_COOKIE陣列讀取系統環
境變數，但 $HTTP_COOKIE_VARS 的做法仍然可以使
用。

• PHP 4.2.0 與之後的版本讀取系統的環境變數時，預設
將不會自動將環境變數註冊為全域變數，因此請由
$HTTP_COOKIE_VARS或 $_COOKIE陣列來讀取或是設
定 php.ini的 register_globals項目 (On)。

• PHP 5只能經由 $COOKIE陣列來讀取環境變數，以往
設定 register_globals項目與使用 $HTTP_COOKIE_VARS
的做法將不再支援。

在進階的教材裡，會再針對 HTTP Cookies做進一步的說明。

1.23 讀取系統的環境變數

PHP可以將系統的環境變數自動存成 PHP的變數，例如：

PHP基礎教材 31

echo $HOME

表示顯示系統中的 HOME環境變數。有時 PHP的變數會和系
統中的環境變數重覆，為了確保我們讀取的是正確的系統環
境變數，可以利用 getenv來讀取環境變數，利用 putenv存放
環境變數。

在 UNIX系統底下可利用 env命令來查詢系統的環境變數：

linux# env

BASH=/bin/bash

.

.

.

linux# echo $HOME

/root

顯示系統的 HOME環境變數，在 PHP裡也是利用 $HOME變
數來存取環境變數的 HOME：

echo "HOME: ". $HOME . "
";

輸出結果：

HOME: /root

只要在環境變數名稱前加上 $符號即可。

另外一種讀取系統環境變數的做法則是透過 $HTTP_ENV_-
VARS陣列，因此前面的寫法可以改成：

echo $HTTP_ENV_VARS[“HOME”];

關於版本間的差異，特別整理如下：

PHP基礎教材 32

• PHP 4.1.0與之後的版本改由 $_ENV陣列讀取系統環境
變數，但 $HTTP_ENV_VARS的做法仍然可以使用。

• PHP 4.2.0 與之後的版本讀取系統的環境變數時，預
設將不會自動將環境變數註冊為全域變數，因此請
由 $HTTP_ENV_VARS 或 $_ENV 陣列來讀取或是設定
php.ini的 register_globals項目 (On)。

• PHP 5只能經由 $ENV陣列來讀取環境變數，以往設定
register_globals項目與使用 $HTTP_ENV_VARS的做法將
不再支援。

1.24 常數的定義

PHP有 2個特別的常數：FILE與 LINE，分別代表目前正在被
直譯執行的檔案名稱與執行的行數，例如：

<?php

function report_error($file, $line, $message) {

echo "An error occured in $file on line $line: $mes\

sage.";

}

report_error(__FILE__, __LINE__, "Something went wrong!\

");

?>

使用者自定常數可使用 define()函數，這些常數定義後，就不
能再被重新定義。例如我們要定義 PI常數的值為 3.14159：

PHP基礎教材 33

<?php

define("PI", 3.14159);

echo PI; // 輸出為 3.14159

?>

要注意的是，常數也有大小寫之分。除了使用者自定的常數
外，在 PHP 4之後的版本裡，也有一些事先定義好的常數：

• FILE

目前正在被執行的檔案名稱。假如有一個檔案 (例如 test.php)
被 include到另外一個檔案執行 (例如 index.php)，則回報回來
的檔名為 test.php，即被 include的檔案。當我們在為 include
許多檔案的 PHP 4程式除錯時，FILE常數就顯得特別好用。

• LINE

回報正被執行的行位置，如果是被 include的檔案，則和 FILE
一樣，回報的是該被 include的檔案正被執行的行位置。

• PHP_VERSION

PHP的版本常數。

• PHP_OS

作業系統的名稱常數。

• TRUE

布林值的 true。

PHP基礎教材 34

• FALSE

布林值的 false。

• E_ERROR

程式因錯誤而中斷執行。這裡的錯誤指的是無法忽略而且影
嚮 PHP程式繼續執行的錯誤，並非 PHP語法上的錯誤。

• E_WARNING

PHP執行時的小錯誤，這些錯誤屬警告訊息，並不影嚮程式
的執行。

• E_PARSE

PHP的語法有錯。

• E_NOTICE

發生不合法的狀況，但不影嚮程式的執行，例如計算的變數
不存在時。

	Table of Contents
	PHP 基礎教材
	踏出 PHP 的第一步
	如何開始撰寫 PHP 程式
	撰寫程式時的注意事項
	PHP 程式的副檔名
	PHP 敘述的結束
	PHP 與 HTML 的換行方式
	資料型態與變數
	型別轉換
	字串型態轉數值型態
	初始化變數
	初始化陣列
	Type Juggling - 型態間的戰爭
	物件的生成
	區域變數
	全域變數
	$GLOBALS - 存放全域變數的陣列
	靜態變數
	以變數為名的變數
	變數的變數陣列
	讀取 form 的資料
	圖形的超鏈結
	HTTP Cookies
	讀取系統的環境變數
	常數的定義

