

[image: PHP 初學者實務手冊]

 PHP 初學者實務手冊

 Jollen Chen

 This book is for sale at http://leanpub.com/php-beginner-practice

 This version was published on 2013-10-07

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2013 Jollen Chen

Table of Contents

 	
 1 PHP 基礎教材

 	
 1.1 踏出 PHP 的第一步

 	
 1.2 如何開始撰寫 PHP 程式

 	
 1.3 撰寫程式時的注意事項

 	
 1.4 PHP 程式的副檔名

 	
 1.5 PHP 敘述的結束

 	
 1.6 PHP 與 HTML 的換行方式

 	
 1.7 資料型態與變數

 	
 1.8 型別轉換

 	
 1.9 字串型態轉數值型態

 	
 1.10 初始化變數

 	
 1.11 初始化陣列

 	
 1.12 Type Juggling - 型態間的戰爭

 	
 1.13 物件的生成

 	
 1.14 區域變數

 	
 1.15 全域變數

 	
 1.16 $GLOBALS - 存放全域變數的陣列

 	
 1.17 靜態變數

 	
 1.18 以變數為名的變數

 	
 1.19 變數的變數陣列

 	
 1.20 讀取 form 的資料

 	
 1.21 圖形的超鏈結

 	
 1.22 HTTP Cookies

 	
 1.23 讀取系統的環境變數

 	
 1.24 常數的定義

1 PHP 基礎教材

1.1 踏出 PHP 的第一步

本章將帶領讀者進入 PHP 程式語言的世界。對不曾接觸過 PHP 的讀者而言，本章是您學習 PHP 的最佳教材。如果您早就熟悉 PHP，也可以瀏覽一下本章的內容，看看是否有學習上的遺漏。

開始學習前的準備工作：安裝 PHP + Apache + MySQL。這部份在網路上有非常多資源，請參考相關文件，在 Windows/Ubuntu/Mac 上安裝開發環境。

推薦的文章：

	Windows 使用者請參考 http://blog.roodo.com/esabear/archives/15069653.html

 	Mac 使用者請參考 http://www.mamp.info/en/index.html

 	Ubuntu 使用者請參考 http://linuxg.net/install-lamp-on-ubuntu-13-04-raring-ringtail/

測試時，不會有瀏覽器的相容性問題，任何瀏覽器（Chrome/Firefox/Safari/Opera/IE）皆可使用。

1.2 如何開始撰寫 PHP 程式

PHP 是一種內嵌於 HTML 文件裡的程式語言，因此 PHP 的程式碼必須寫在 HTML 的檔案裡，為了能明辨出 PHP 的程式碼與 HTML，因此我們必須加上特製的標籤 (tag)。

當伺服器送出網頁時，會先直譯執行 PHP 的程式碼，而使用者端 (client) 所能看到的只有** PHP 的輸出**，因此，我們的輸出必須符合 HTML 語法的規範，那如何在網頁裡寫 PHP 呢？有 4 種格式：

第 1 種是正規的寫法。

<?php
 echo "Hello! World!";
?>

「」代表的是程式碼的結束，我們就將 PHP 的程式碼寫在這兩個標籤之間。另外，也有人將開始標籤裡的「php」省略，變成底下第 2 種寫法。

第 2 種是精簡的寫法。

<?
 echo "Hello! World!";
?>

程式碼的部份以 包圍住。

第 3 種，當我們利用 FrontPage 編輯含有 PHP 程式的網頁時，就必須使用這種方式：

<script language="php">
 echo "Hello! World!";
</script>

這種寫法可以確保我們的 PHP 程式碼不會被 FrontPage 或其它網頁編輯工具重新排版，當我們想要保持原來的程式撰寫風格時，建議採用這種寫法。

第 4 種是 ASP 的寫作方式，利用 FrontPage 編輯含 PHP 程式碼的網頁時，也可以使用這種方式。

<%
 echo "Hello! World!";
%>

最後將 PHP 的程式檔案存成 .php 的副檔名即可。

1.3 撰寫程式時的注意事項

使用第一種方法時，必須修改 php.ini 設定檔，設定 short_open_tag=On 才能使用；如果您以 source code 自行編譯來安裝 PHP，那麼在執行 configure 時，必須加上 [[-enable-short-tags]] 的參數。

php.ini 設定檔到底在那裡？

	Linux 環境的使用者：php.ini 設定檔位於 php 安裝目錄下的 lib/php.ini，以第 1 章的安裝範例來講，就是 /usr/local/php/lib/php.ini。

 	MS-Windows 環境的使用者：利用 PHP 安裝程式安裝的話，我們可以在 windows\ 目錄下 (for Windows 95/98/Me) 或是 winnt\ (for Windows NT/2000/XP) 目錄下找到 php.ini 設定檔。手動安裝的話也應該將 php.ini 設定檔放到 windows 或是 winnt 目錄下。
###框(說明)

當我們使用第 4 種方法時，必須修改 php.ini 設定檔,將 asp_tags 設定成 On 才能使用這種方式。

撰寫 PHP 程式碼的方式又稱為「HTML 跳離」 (HTML escape)。例如我們有一份 HTML 的檔案：

<html>

<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; cha\
rset=big5">
<title>PHP Example.</title>
</head>
<body BGCOLOR="#FFFFFF">
<?
echo "<p>Hello!</p>
";
echo "<p>World...</p>
";
?>
</body>
</html>

PHP 所看到的是自 HTML 跳離的程式碼：

echo "<p>Hello!</p>
";
echo "<p>World...</p>
";

接下來 PHP 瀏覽器只能看到最後的 output：

<html>

<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; cha\
rset=big5">
<title>PHP Example.</title>
</head>

<body BGCOLOR="#FFFFFF">

<p>Hello!</p>

<p>World...</p>

</body>
</html>

當我們利用瀏覽器瀏覽時，看到的畫面是：

 [image: 圖 1.1：程式範例 example-1-1.php]圖 1.1：程式範例 example-1-1.php

大多數的開發者，都是採用第 2 種形式；若是在 ASP 裡撰寫 PHP 程式時，請使用第 2 或第 4 種形式。

1.4 PHP 程式的副檔名

對於 PHP 文件而言，其慣用的副檔名為：

	PHP/FI 2.0 副檔名為 .phtml

 	PHP 3 的副檔名為 .php3

 	PHP 4 的副檔名為 .php

 	PHP 5 的副檔名為 .php

 	副檔名 .phps 表示顯示 PHP 程式的原始碼

副檔名雖然可藉由修改 apache 的設定檔而自訂，但建議不要這麼做。因為本書是以 PHP 4/5 為主，所以副檔名一律使用 .php，同時請確定 apache 的設定是否正確，否則無法正常處理 PHP 檔案。

1.5 PHP 敘述的結束

echo 是 PHP 的語法，用來做輸出。而整個 echo 語法的撰寫則是一行完整的敘述，敘述結束時必須以分號做結尾，例如底下的範例：

<?php
 echo "Trust me!
";
 echo "You can make it.
"
?>

另外，敘述是容許斷行的，請看底下的例子：

<?php
 echo "Trust me!

You can make it.
"
?>

PHP 程式碼是以分號做為一行敘述的結束，但是最後一行敘述可省略分號，例如：

<?php
 echo "Trust me!
";
 echo "You can make it.
" //省略分號
?>

1.6 PHP 與 HTML 的換行方式

PHP 程式碼本文利用 Enter 做的換行動作並不等於在出現在瀏覽器畫面的換行，瀏覽器輸出畫面的換行必須使用 HTML 語法中的
 標籤，例如：

<?php
 echo "Trust me!
";
 echo "You can make it.
"
?>

在瀏覽器裡的輸出為：

Trust me!
You can make it.

如果寫成：

<?php
 echo "Trust me!";
 echo "You can make it."
?>

則在瀏覽器上看到的畫面就會變成：

Trust me!You can make it.

要記得，我們的輸出必須符合 HTML 的語法，才能被瀏覽器正常顯示。如果使用 ‘\n’ 控制字元來換行的話，只有 HTML 的內文 (網頁原始碼) 才會被影嚮，對於 HTML 的輸出則沒有任何影嚮，例如：

<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY>
<?php
 echo "Trust me!
";
 echo "You can make it.
"
?>
</BODY>
</HTML>

輸出的結果雖然是：

Trust me!
You can make it.

在瀏覽網頁時，如果檢視網頁的原始碼，這份文件的內容其實是：

<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY>
Trust me!
You can make it.
</BODY>
</HTML>

為了美化 HTML 的內文，我們在 PHP 裡加上 ‘\n’ 控制字元，來做文件內文的換行：

<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY>
<?php
 echo "Trust me!
\n";
 echo "You can make it.
\n"
?>
</BODY>
</HTML>

再檢視網頁原始碼就可以看到較為組織化的內容了：

<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY>
Trust me!

You can make it.

</BODY>
</HTML>

1.7 資料型態與變數

PHP 所支援的資料型態 (data types) 有 8 種：

	boolean

 	integer

 	floating (double)

 	string

 	array

 	object

 	resource

 	NULL

第 1~4 種型別稱為 scalar types ()，第 5~6 種稱為 compound types (複合型別)，最後第 7 與第 8 種則是特殊型別。

PHP 的變數屬鬆散資料型別，雖然支援 8 種不同的型態，但在初始化變數時不必宣告型態，而是在計算時動態 (dynamic) 決定，而非由撰寫程式的人決定。如果要強制設定變數的資料型別的話，可以利用 settype() 函數，或利用 C 語言的強迫轉型方式 (type casting)。

PHP 的鬆散資料型別，即我們給定什麼值，該變數即為什麼型別，或是如何使用該變數，該變數即為適當的型別，例如：

<?php
$foo = "0"; // $foo 為 string (ASCII 48)
$foo++; // $foo 變成 string "1" (ASCII 49)
$foo += 1; // $foo 變成 integer (2)
$foo = $foo + 1.3; // $foo 變成 double (3.3)
$foo = 5 + "10 Little Piggies"; // $foo 為 integer (15)
$foo = 5 + "10 Small Pigs"; // $foo 為 integer (15)
?>

另外還有一點，PHP 的變數都是以 $ (dollar sign) 開頭，並且變數名稱有大小寫之分，例如：

$name
$Name

是兩個不同的變數。

當我們指定值 (value) 給變數時，事實上我們是指定 expression 最後的值給變數，例如：

$a = 5+5*2;

$a 的值為 5+5*2 最後的結果，即 15。

在 PHP 裡，除了給定值給變數外，還可以給定 reference 給變數。也就是，該變數為另外一個變數的 reference，reference 的意義很像是 “becomes an alias for” 或是 “points to”，給定 reference 的方法為，在原來的變數前加上 & (ampersand) 符號，再指定給另外一個變數。例如：

<?php
$foo = 5; // $foo 為 integer 5
$num = &$foo; // $num 為 $foo 的 reference
?>

上例中，&$foo 表示將 $foo 的 reference 指定給 $num 變數，當我們改變 $num 的值，等於改變 $foo 的值，也就是：

$num = 10;
echo $foo;		// 輸出 10

使用參考時，來源必須是一個變數名稱，例如：

<?php
$foo = 10;
$bar = &$foo;		// 正確的寫法
$bar = &(1+2*2);	// 錯誤的寫法!!!

function test() {
 return 0;
}

$bar = &test(); // 錯誤的寫法!!!
?>

1.8 型別轉換

PHP 裡要做強迫轉換變數型態的方法有 2 種：

	使用 C 語言的 type casting 語法，例如：

$x = 5;
$y = (double) $x;		//括弧裡可以有 tab 或空白 (space)

可使用的 cast 型別有：

	(int)，(integer) – 轉換成 integer 型別

 	(bool)，(boolean) – 轉換成 boolean 型別

 	(float)，(double)，(real) – 轉換成 float 型別

 	(string) - 轉換成 string 型別

 	(array) - 轉換成 array 型別

 	(object) - 轉換成 object 型別

type casting 型別轉換範例。

範例 1：

<?php
$x = “5”;
$number = (int)$x;
echo $number; //輸出 5
?>

範例 2：

<?php
$x = “foo”;
$arr = (array)$x;
echo $arr[0]; //輸出 “foo”
?>

範例 3：

<?php
$x = “foo”;
$obj = (object)$x;
echo $obj->scalar; //輸出 “foo”
?>

	使用 settype 函數：

int settype(string var, string type);

將 var 變數轉換為 type 型別，可指定的型別參數有：

	”boolean” (PHP 4.2.0 與之後的版本也可以簡寫成 “bool”)

 	“integer” (PHP 4.2.0 與之後的版本也可以簡寫成 “int”)

 	”float” (PHP 4.2.0 與之後的版本才支援)

 	“double”

 	“string”

 	“array”

 	“object”

 	”null” (PHP 4.0.8 以後的版本才支援)

轉換成功傳回 true，否則傳回 false。當我們不知道某個變數的值是什麼型別時，也可以利用 gettype() 函數來取得。

在 PHP 裡和 C 語言一樣，非零即為 true，例如 if ($x) 等於 if ($x != 0)。

1.9 字串型態轉數值型態

當我們給變數的值是利用雙引號括住數值或字串時，就是指定一個字串給變數，例如：

$a = "Hello!";

$a 變數的值就是字串。請看底下的範例：

<?php
 $a = "hello!";
 echo $a;
?>

輸出結果為：

hello!

PHP 有一項特性，就是 PHP 的變數是在執行時才決定型態的，因此字串也可以用來做計算。PHP 將字串拿來做運算時，會依據底下 2 個原則設法將字串轉成可以計算的型態：

	字串中包括 “.”、”e” 或 “E” 時轉換成 double 型別，否則轉換為 integer

 	無法轉換時則為 0

之前曾見過這樣的寫法：

$foo = 5 + "10 Big Pigs";

PHP 會將字串 “10 Small Pigs” 先轉換成 integer 10，再做加法。字串轉數值的範例：

<?php

$foo = 1 + "10.5"; // $foo 為 double (11.5)
$foo = 1 + "-1.3e3"; // $foo 為 double (-1299)
$foo = 1 + "bob-1.3e3"; // $foo 為 integer (1)
$foo = 1 + "bob3"; // $foo 為 integer (1)
$foo = 1 + "10 Small Pigs"; // $foo 為 integer (11)
$foo = 1 + "10 Little Piggies"; // $foo 為 integer (11);
$foo = "10.0 pigs " + 1; // $foo 為 int (11)
$foo = "10.0 pigs " + 1.0; // $foo 為 double (11)

?>

1.10 初始化變數

PHP 的變數都是以 $ 做為開頭，初始化時直接指定初值即可：

<?php
$name = "Jollen"
$mail = "jollen@o3.net"
$age = 19
?>

1.11 初始化陣列

初始化變數時直接指定陣列與元素即可：

<?php
$names[0] = "Jollen"
$names[1] = "Jordan"
$names[2] = "Kitty"
?>

PHP 還有另外一個自動設定元素的特異功能：

<?php
$names[] = "Jollen"
$names[] = "Jordan"
$names[] = "Kitty"
?>

這個特異功能等於上面的初始化方法，陣列自動由第 0 個元素開始做配置。要注意的是，PHP 和 Perl/C 一樣，陣列的元素都是由 0開始。其中 [] (中括弧) 不能省略，省略的話 PHP 會以為這個變數是一個 string。

1.12 Type Juggling - 型態間的戰爭

因為 PHP 並沒有精確的精型機制，而是當我們指定什麼樣型別的值給變數，該變數就是什麼樣的型別，例如：

<?php
$a = 5;		//$a 為 integer
$a = "5";	//$a 為 string
?>

變數在做運算時，例如使用 “+”，當 expression 包含各種不同的型態時，就會有 Type Juggling 的動作發生，例如：

<?php
$foo = "0"; // $foo 為 string "0" (ASCII 48)
$foo++; // $foo 為 string "1" (ASCII 49)
$foo += 1; // $foo 變成 integer (2)
$foo = $foo + 1.1; // $foo 變成 double (3.1)
$foo = 5 + "15 Persons"; // $foo 的運算結果為 integer (20)
$foo = 5 + "10 Big Pigs"; // $foo 的運算結果為 integer (1\
5)
?>

又如：

$a = 5;			// $a 的型別為 integer
$a[0] = "Hi!";	// $a 的型別變成 array

這種型別的改變即稱為 “Type Juggling”。

但是，在 PHP 裡，這種 type juggling 的機制還有一個值得討論的問題，就是當 type juggling 發生在字串轉換成陣列時，會發生底下這個問題：

$a = "Go";		// $a 為 string
$a[0] = "N";	// $a 是否被轉型別 array？

聰明的讀者應該可以馬上看出，$a[0] 並不一定被轉型成 array，因為 $a[0] 也可能代表 $a 字串的第一個字元，也就是：

$a[0] = "G";
$a[1] = "o";

當 $a[0] = “N” 發生時，可能變成：

$a = "No"; 		// $a 仍為 string

或是：

$a[0] = "N";	// $a 轉型成 array

過去舊版的 PHP（PHP 3）支援字串的字元索引的方法和陣列元素的索引方式一樣，這是在舊版 PHP 版本裡才需要特別提出的一個問題。舊版 PHP 的使用者如果要將 string 型別轉換成 array，可利用 type casting 的方式來解這樣的問題：

<?php
$a = "Go";
$a = (array)$a;
echo $a[0]; 	// 輸出 'Go'
$a[0] = "N";
echo $a[0];		// 輸出 'N'
?>

type juggling 還有一個常被忽略的重點就是，++ 與 – 運算子所做的運算是 ASCII 與算術運算，而 + 運算子只做算術運算，看個例子就可以了解是什麼意思了：

<html>
<head>
<title>test</title>
</head>

<body>
<?php
 $foo = "01";
 echo "<p>\$foo => $foo</p>";
 $foo++;
 echo "<p>\$foo++ => $foo</p>";

 $foo = $foo+1;
 echo "<p>\$foo = \$foo+1 => $foo</p>";
?>
</body>
</html>

其結果為：

 [image: 圖 1.2：程式範例 example-1-2.php]圖 1.2：程式範例 example-1-2.php

注意 $foo = $foo+1 的計算結果為 3，而不是 “03”，這就是筆者所要特別強調的地方，+ 運算子只做算術運算，這點在其它語言如 Perl 也有類似情況。

1.13 物件的生成

在 PHP 裡要生成物件和 C++ 一樣，首先必須先定義好 class，然後再利用關鍵字 new 來建立物件：

<?php
class person {
 function who() {
 echo "I'm Jollen.";
 }
}

$man = new person;
$man->who();		// 輸出 I'm Jollen.

?>

PHP 5 新增了許多物件方面的功能。

1.14 區域變數

在 function 裡初始化的變數即區域變數。為什麼叫區域變數呢？因為區域變數只有在 function 裡可以被「看見」，請看底下的範例：

<?php
function sum() {
 $a = 1;
 $b = 2;
 echo $a+$b;
}

sum();
?>

執行結果：

3

第 2 個輸出的結果為 0，這是因為 function 裡的 $a 只有在 function 裡才能被看到，在 function 外區域變數就不能被看見。

1.15 全域變數

在區域變數範圍之外所宣告的變數即全域變數，例如：

<?php
$a = 1;

function sum() {
 echo $a;
}

sum();
?>

這段程式碼執行後不會有任何輸出，因為 $a 變數是屬於區域變數。請注意 PHP 鬆散資料型別的變數使用前是不需要經過任何宣告的，包括 printf()、給定初值等。

因為區域變數的可見度會蓋掉全域變數，所以 sum() 所 echo 出的 $a 變數是一個區域變數，那該如何告訴 function 變數是一個全域變數呢？利用 global 關鍵字即可：

<?php
$a = 1;

function sum() {
 global $a;

 $a = $a*100;
}

sum();
echo $a;
?>

執行結果：

100

第一段程式碼其實存在了二個變數，一個是全域變數 $a，另一個則是區域變數 $a。在第二段程式碼裡，則只有一個全域變數 $a。

對於全域變數另外一個重點就是，倒底全域變數的範圍為何？在 PHP 裡，全域變數也稱為 page-scoped 變數，亦即在同一個檔案裡的 PHP 程式都能看到這個全域變數。

1.16 $GLOBALS - 存放全域變數的陣列

PHP 會把全域變數存放在 $GLOBALS 的格式化陣列裡，格式化陣列不同於一般陣列是利用數字索引元素，格式化陣列則是利用字串來索引元素，例如：

<?php
$name = "Jollen";
$mail = "jollen@jollen.org";

function man() {
 echo $GLOBALS["name"] . "
";
 echo $GLOBALS["mail"] . "
";
}

man();
?>

輸出：

Jollen
jollen@jollen.org

全域變數被存放至 $GLOBALS 陣列中，並利用變數的名字來索引。

1.17 靜態變數

有些程式語言 (例如 C) 具有一種稱做靜態變數 (static variables) 的型別，PHP 也支援靜態變數的寫法。

在 PHP 裡，只有區域變數才能、也才需要宣告成靜態變數，正常的區域變數生命期是在函數執行期間，隨函數的執行結束而結束，而靜態變數的生命期是隨整個 PHP 程式結束而結束，但可見度只有該函數。

我們可以利用關鍵字 static 來宣告靜態變數：

<?php
function sum() {
 static $a = 1;

 if ($a < 10) {
 echo $a;
 $a++;
 sum();
 }
}

sum();
?>

輸出結果：

123456789

區域或全域變數都不是靜態變數，因為函數執行結束後，變數的值並不會被保留。而所謂的靜態變數意思就是說，當函數執行結束後，該變數的值仍然會被保留，因此第 2 次呼叫該函數時，靜態變數之前的值仍然存在。

1.18 以變數為名的變數

所謂「以變數為名的變數」 (variable variables) 指的其實就是「動態變數名稱」 (dynamic variable names)，直接來看一個例子讀者就可以了解什麼是 variable variables 了：

<?php
$a = "Jollen";
$$a = "Pig!!!";
echo "$Jollen";		// 輸出為 Pig!!!
echo "${$a}";		// 輸出為 Pig!!!
echo "$a";		// 輸出為 Jollen
?>

說的嚴謹一點，就是利用變數的值來做為其它變數的名稱，像上面這個例子 $$a 指的就是利用 $a 變數的值做為變數的名稱，所以說穿了上面這個宣告就等於是：

$a = "Jollen";
$Jollen = "Pig!!!";

另外，在使用 variable varialbe 時要特別小心，例如在 echo 時：

echo "$a ${$a}";
echo "$a $Jollen";

輸出結果一樣都是：

Jollen Pig!!!

兩者有異曲同工之妙。

1.19 變數的變數陣列

變數變數陣列 (variable variables with arrys) 跟 variable variables 其實是相同的東西，但使用變數變數陣列時，有些小地方必須要特別小心。例如底下是一個錯誤的寫法：

$$a[0] = "Kitty!";

這個語法錯誤的地方在於 PHP 不曉得 $a 和 $a[0] 那一個才是變數，也就是：

$a = "Good";
$a[0] = "Bad";

$$a[0] = "Kitty!";

兩者所代表的意思是很模糊的，PHP 分不清楚到底是：

$Good[0] = "Kitty!";

還是：

$Bad = "Kitty!";

才是程式設計師想要的。因此，正確的寫法應該使用一對大括弧來告訴 PHP 我們要的是那一種做法：

${$a[0]) 等於 $Bad = "Kitty!";
${$a}[1] 等於 $Good[1] = "Kitty!";

1.20 讀取 form 的資料

	全域變數讀取法

寫過 CGI 的朋友都知道，利用網頁的 form 可以將 client 端的資料傳送至伺服器端。利用 PHP 讀取 form 的資料是非常容易的，而且不像其它程式語言一樣還要判斷並分析這些資料，由 form 傳送過來的資料對 PHP 來講就是全域變數，例如：

<form action="reg.php" method="post">
 E-Mail: <input type="text" name="email">

 <input type="submit">
</form>

PHP 會將 form 傳進來的資料，存放至由 HTML 標籤的 name 欄位所指定的變數裡。以上面的 form 為例，假設 form 傳進 $email=jollen@o3.net，在 PHP 裡就等於：

$email = "jollen@jollen.org";

這是一個全域變數，而且可以直接取用。傳送進來的資料也可以存成陣列，只要在 form 的 name 欄位做一點手腳即可，利用陣列可以更方便的處理同類型的資料：

<form action="interest.php" method="post">
 Name: <input type="text" name="person[name]">

 Email: <input type="text" name="person[email]">

 Your interest: <select multiple name="interest[]">
 <option value="Singing">Singing
 <option value="Sleeping">Sleeping
 <option value="Sport">Sport
 <option value="Reading">Reading
 <option value="other">other
 </select>

 <input type="submit">
</form>

在 PHP 裡就可以這樣讀取這些資料：

$person["name"];
$person["email"];
$interest[0];
$interest[1];
$interest[2];
$interest[3];
$interest[4];

如果您是使用 FrontPage 設計 form，輸入這類的名稱時 (含有 []) 會出現錯誤視窗，不過不用擔心，因為這樣的名稱是瀏覽器可以接受的。

請注意，利用這種方式讀取表單資料是較早期的做法，PHP 會自動將外來的變數註冊成全域變數，但從 PHP 4.2.0 開始，為了安全性與效能考量，預設將不再支援這種做法。

因此，以往的程式若要能在 PHP 4.2.0 與之後的版本也能正常執行，就必須修改 php.ini 設定檔，將底下的設定：

register_globals = off

改成：

register_globals = on

如此一來，才能使用全域變數讀取表單資料的使法。

	track_vars 讀取法

PHP 的 track_vars 功能，經由 POST 到 Server 的表單資料會存放在 $HTTP_POST_VARS 陣列裡，經由 GET 的資料會存放在 $HTTP_GET_VARS 陣列裡。

使用 track_vars 前必須將此功能打開，方法有 2 種：

	將 php.ini 的 track_vars 參數打開：

track_vars = On

	在網頁裡加上

PHP 4.0.3 與以後的版本不再提供 track_vars 的設定項目 (php.ini)，以後 PHP 4 將永遠打開 track_vars 的功能。

	$_POST 與 $_GET 讀取法

PHP 4.1.0 開始提供經由 $POST 與 $_GET 陣列存取表單資料的做法，而前面所介紹的 $HTTP*_VARS 讀取方式是以往的寫法，但仍然可以使用。

例如名稱為 username 的表單資料，經由 POST 方式傳遞時，存取該表單資料時應寫成：

$_POST[“username”]; // 等於 $HTTP_POST_VARS[“username”\
];

改用 GET 方式傳遞時，則要改成：

$_GET[“username”]; // 等於 $HTTP_GET_VARS[“username”];

PHP 4.2.0 與之後的版本讀取系統的環境變數時，預設將不會自動將環境變數註冊為全域變數，因此請由 $HTTP_ POST (GET)VARS 或 $ POST(GET) 陣列來讀取或是設定 php.ini 的 register_globals 項目 (On)。

PHP 5 只能經由 $ POST(GET) 陣列來讀取環境變數，以往設定 register_globals 項目與使用 $HTTP_POST(GET)_VARS 的做法將不再支援。

1.21 圖形的超鏈結

在圖形上設定鏈結時，瀏灠器會把滑鼠點選的座標位置傳給伺服器，並由 PHP 做轉換，存放至 var_x 與 var_y 兩個全域變數裡。例如底下的 HTML 語法：

<input type="image" src="image.gif" name="sub">

此時 (x, y) 的點選座標將會被存放到 (sub_x, sub_y) 裡。

1.22 HTTP Cookies

Cookies 是一種可在瀏覽器存放資料的機制，利用 setcookie() 函數設定 Cookies，因為 Cookies 屬於 HTML 的檔頭，所以 setcookie() 必須在有任何輸出之前呼叫。

Cookies 的內容會在網頁第一次被瀏覽時，由瀏覽器存放於 client 端中的一個檔案，當瀏覽器再次request 該網頁時，再將 Cookies 傳回給伺服器。

關於版本間的差異，特別整理如下：

	PHP 4.1.0 與之後的版本改由 $_COOKIE 陣列讀取系統環境變數，但 $HTTP_COOKIE_VARS 的做法仍然可以使用。

 	PHP 4.2.0 與之後的版本讀取系統的環境變數時，預設將不會自動將環境變數註冊為全域變數，因此請由 $HTTP_COOKIE_VARS 或 $_COOKIE 陣列來讀取或是設定 php.ini 的 register_globals 項目 (On)。

 	PHP 5 只能經由 $COOKIE 陣列來讀取環境變數，以往設定 register_globals 項目與使用 $HTTP_COOKIE_VARS 的做法將不再支援。

在進階的教材裡，會再針對 HTTP Cookies 做進一步的說明。

1.23 讀取系統的環境變數

PHP 可以將系統的環境變數自動存成 PHP 的變數，例如：

echo $HOME

表示顯示系統中的 HOME 環境變數。有時 PHP 的變數會和系統中的環境變數重覆，為了確保我們讀取的是正確的系統環境變數，可以利用 getenv 來讀取環境變數，利用 putenv 存放環境變數。

在 UNIX 系統底下可利用 env 命令來查詢系統的環境變數：

linux# env
BASH=/bin/bash
.
.
.
linux# echo $HOME
/root

顯示系統的 HOME 環境變數，在 PHP 裡也是利用 $HOME 變數來存取環境變數的 HOME：

echo "HOME: ". $HOME . "
";

輸出結果：

HOME: /root

只要在環境變數名稱前加上 $ 符號即可。

另外一種讀取系統環境變數的做法則是透過 $HTTP_ENV_VARS 陣列，因此前面的寫法可以改成：

echo $HTTP_ENV_VARS[“HOME”];

關於版本間的差異，特別整理如下：

	PHP 4.1.0 與之後的版本改由 $_ENV 陣列讀取系統環境變數，但 $HTTP_ENV_VARS 的做法仍然可以使用。

 	PHP 4.2.0 與之後的版本讀取系統的環境變數時，預設將不會自動將環境變數註冊為全域變數，因此請由 $HTTP_ENV_VARS 或 $_ENV 陣列來讀取或是設定 php.ini 的 register_globals 項目 (On)。

 	PHP 5 只能經由 $ENV 陣列來讀取環境變數，以往設定 register_globals 項目與使用 $HTTP_ENV_VARS 的做法將不再支援。

1.24 常數的定義

PHP 有 2 個特別的常數：FILE 與 LINE，分別代表目前正在被直譯執行的檔案名稱與執行的行數，例如：

<?php

function report_error($file, $line, $message) {
 echo "An error occured in $file on line $line: $mes\
sage.";
}

report_error(__FILE__, __LINE__, "Something went wrong!\
");

?>

使用者自定常數可使用 define() 函數，這些常數定義後，就不能再被重新定義。例如我們要定義 PI 常數的值為 3.14159：

<?php
define("PI", 3.14159);
echo PI;			// 輸出為 3.14159
?>

要注意的是，常數也有大小寫之分。除了使用者自定的常數外，在 PHP 4 之後的版本裡，也有一些事先定義好的常數：

	FILE

目前正在被執行的檔案名稱。假如有一個檔案 (例如 test.php) 被 include 到另外一個檔案執行 (例如 index.php)，則回報回來的檔名為 test.php，即被 include 的檔案。當我們在為 include 許多檔案的 PHP 4 程式除錯時，FILE 常數就顯得特別好用。

	LINE

回報正被執行的行位置，如果是被 include 的檔案，則和 FILE 一樣，回報的是該被 include 的檔案正被執行的行位置。

	PHP_VERSION

PHP 的版本常數。

	PHP_OS

作業系統的名稱常數。

	TRUE

布林值的 true。

	FALSE

布林值的 false。

	E_ERROR

程式因錯誤而中斷執行。這裡的錯誤指的是無法忽略而且影嚮 PHP 程式繼續執行的錯誤，並非 PHP 語法上的錯誤。

	E_WARNING

PHP 執行時的小錯誤，這些錯誤屬警告訊息，並不影嚮程式的執行。

	E_PARSE

PHP 的語法有錯。

	E_NOTICE

發生不合法的狀況，但不影嚮程式的執行，例如計算的變數不存在時。

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/figure-1-1.png

OEBPS/images/figure-1-2.png
$foo =>01

$foo++ =>2

$foo = $foo+1 =>3

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg
PHP /)2E E5 T

Jollen Chen #

