el
SECOND EDITION AR,

PRACTICAL
FP IN SCALA

A HANDS-ON APPROACH

GABRIEL VOLPE

Practical FP in Scala

A hands-on approach

Gabriel Volpe

September 13, 2021

Second Edition

Contents

Preface

Acknowledgments
People e

Dependency versions
Prerequisites

How to read this book
Conventions used in thisbook

Chapter 1: Best practices
Strongly-typed functions oL Lo oL
Value classeso
Newtypes o o o o
Refinement types
Runtime validation
Encapsulating state
In-memory counter
Sequential vs concurrent state L.
State Monad
Atomic Ref
Shared state e
Regions of sharing L
Leaky state
Anti-patterns
Seq: a base trait for sequences
About monad transformerso Lo
Boolean blindness
Error handling
MonadError & ApplicativeError L
Either Monad L
Classy prisms L
SUMIMATY v vt et e e e e e e e e e e e e e

ii

Contents

Chapter 2: Tagless final encoding 42
Algebras L 43
Naming conventions L Lo oo 44
Interpreters L 45
Building interpreters L L Lo 45
Programs e 47
Implicit vs explicit parameters oL 50
Achieving modularity L 51
Implicit convenience oo 53
Capability traits e 53
Why Tagless Final? 55
Parametricityo 55
Comparison e e e 56
SUMMATY o o o e e 61
Chapter 3: Shopping Cart project 62
Business requirements Lo Lo o e 63
Third-party payments APL L. 63
Identifying the domain Lo oo 64
Identifying HTTP endpoints 66
Technical stack L 76
A note on Cats Effect 76
SUMMATY oo e e e 78
Chapter 4: Business logic 79
Identifying algebraso 80
Data access and storageo 86
Health check 86
Defining programs 88
Checkout e 88
Retrying effects o 91
Architecture L 96
SUMIMATY . . . o v o e e e e e e e e e e e 97
Chapter 5: HTTP layer 98
A server is a function 99
HTTP Routes #1 o o o s s e 101
Authentication L 106
JWT Auth . . . oo 107
HTTP Routes #2 e 109
Composition of routes L L 120
Middlewares 121
Compositionality 121
HTTP server o e 123

iii

Contents

Entity codecso
HTTP client o e
Payment client Lo
Creatinga client
SUMMATY .« . . . o o e e e e e e

Chapter 6: Typeclass derivation

Standard derivations
JSON codecs e e e

Map codecs
Orphan instances L
Identifiers

GenUUID & IsUUID o e e

Custom derivation
Validation e e
Httpds derivations L
Higher-kinded derivations
SUMMATY © . . v o o e e e e e e e e e

Chapter 7: Persistent layer
Skunk & Doobie
Session Pool
Connection check
Queries e e e
Commands e e
Interpreters L
Streaming & Pagination o oo
Redis for Cats e
Connection e e e
Interpreters
Health check e
Blocking operations
Transactions L e e e
Compositionality
SUMMATY v ottt et e e e e e e e

Chapter 8: Testing
Functional test framework
Generators e
About forall
Application data
Business logic L e
Happy path
Expectations

iv

129
130
133
133
135
137
137
139
141
143
144
146

147
148
148
149
150
151
152
159
166
166
167
174
176
177
177
179

Contents

Empty cart oL 195
Unreachable payment client 0oL 196
Recovering payment cliento 198
Failing orderso 200
Failing cart deletion Lo o oo 202
HTTP . . o e 203
Routes L o 203
Clients o e 207

Law testing e 210
Integration tests 214
Shared resources e 214
Postgreso 217
Redis. o o 221
SUMMATY o o o e e 228
Chapter 9: Assembly 229
Logging e 230
Tracing o e 232
Fcosystemo o 232
Configuration L 234
Modules o e 239
Resources L 247
Main e e 251
SUMIMATY v ot et e e e e e e e e e e e e 254
Chapter 10: Ship it! 255
Docker image L e 256
Optimizing image L 257
Runitlocally 258
Continuous Integration L L 259
Dependencies Lo 259
Clbuild 260

Nix Shell o o 261
Furthermore 262
SUMMATY v ottt et e e e e e e e 264
Bonus Chapter 265
MTL (Monad Transformers Library) 266
Managing state 266
Accessing contexto 268
Optics . .« . o e 270
Lenses e 270
Prismso 271

Contents

Aspect Oriented Programming 274
Tofu’'s Mid o o 274
CONCUITENCY .+« v v o o e e e e e e e e e e e e e e e e 278
Producer-Consumer L L L Lo 278
Effectful streams 279
Interruption 281
Multiple subscriptionso oo 284
(Un)Cancelable regions 285
Resource safety 286
Finite State Machine oL 289
SUMIMATY o o e e e s e e e e e e e e 292

vi

Preface

Scala is a hybrid language that mixes both the Object-Oriented Programming (OOP)
and Functional Programming (FP) paradigms. This allows you to get up-and-running
pretty quickly without knowing the language in detail. Over time, as you learn more,
you are hopefully going to appreciate what makes Scala great: its functional building
blocks.

Pattern matching, folds, recursion, higher-order functions, etc. If you decide to continue
down this road, you will discover the functional subset of the community and its great
ecosystem of libraries.

Sooner rather than later, you will come across the Cats' library and its remarkable
documentation. You might even start using it in your projects! Once you get familiar
with the power of typeclasses such as Functor, Monad, and Traverse, I am sure you will
love it.

As you evolve into a functional programmer, you will learn about functional effects and
referential transparency. You might as well start using the popular I0 Monad present in
Cats Effect? and other similar libraries.

One day you will need to process a lot of data that doesn’t fit into memory; a suitable
solution to this engineering problem is streaming. While searching for a valuable can-
didate, you might stumble upon a purely functional streaming library: Fs22. You will
quickly learn that it is also a magnificent library for control flow.

A requirement to build a RESTful API* will more likely come down your way early on
in your career. Http4s® leverages the power of Cats Effect and Fs2 so you can focus on
shipping features while remaining on functional land.

You might decide to adopt a message broker as a communication protocol between
microservices and to distribute data. You name it: Kafka, Pulsar, RabbitMQ, to mention
a few. Each of these wonderful technologies has a library that can fulfill every client’s
needs.

"https://typelevel.org/cats
Zhttps:/ /typelevel.org/cats-effect
https://fs2.io
“https://restfulapi.net/

Shttps:/ /httpds.org/

https://typelevel.org/cats
https://typelevel.org/cats-effect
https://fs2.io
https://restfulapi.net/
https://http4s.org/

Preface

Unless you have taken the stateless train, you will need a database or a cache as well.
Whether it is PostgreSQL, ElasticSearch, or Redis, the Scala FP ecosystem of libraries
has got your back.

So far so good! There seems to be a wide set of tools available to write a complete purely
functional application and finally ditch the enterprise framework.

At this point, you find yourself in a situation where many programmers that are en-
thusiastic about functional programming find themselves: needing to deliver business
value in a time-constrained manner.

Answering this and many other fundamental questions are the aims of this book. Even
if at times it wouldn’t give you a straightforward answer, it will show you the way. It
will give you choices and hopefully enlighten you.

Throughout the following chapters, we will develop a shopping cart application that
tackles system design from different angles. We will architect our system, making both
sound business and technical decisions at every step, using the best possible techniques
I am knowledgeable of at this moment.

Acknowledgments

One can only dream of starting writing a book and making it over the finish line. Yet,
I managed to do this twice! Though, this would have been an impossible task without
the help of many people that had supported me over time, as well as many open-source
and free software I consider indispensable.

I am beyond excited and can only be thankful to all of you.

Acknowledgments

People

I consider myself incredibly lucky to have had all these great human beings influencing
the content of this book one way or another. This humble piece of work is dedicated:

To my beloved partner Alicja for her endless support in life.

To my friend John Regan for his invaluable feedback, which has raised the bar on
my writing skills to the next level.

To the talented @impurepics!, author of the book’s cover.

To Jakub Koztowski for reviewing almost every pull request of the book and the
Shopping Cart application.

To my OSS friends, Fabio Labella, Frank Thomas, Luka Jacobowitz, Michael
Pilquist, Oleg Nizhnik, Olivier Mélois, Piotr Gawry$, Rob Norris, and Ross A.
Baker, both for their priceless advice and for proofreading some of the drafts.

To the +1500 early readers who supported my work for the extra motivation and
the early feedback.

To all the amazing volunteers that have provided incredible reviews in this second
edition: Adianto Wibisono, Barig Yiiksel, Bartlomiej Szwej, Bjorn Madsen, Mark
Mynsted, Pavels Sisojevs, and Sinan Pehlivanoglu.

Last but not least, this edition is dedicated to all the people that make the Typelevel
ecosystem as great as it is nowadays, especially to the maintainers and contributors of
my two favorite Scala libraries: Cats Effect and Fs2. This book wouldn’t exist without
all of your work! #ScalaThankYou

Although the book was thoroughly reviewed, I am the sole responsible for all of the
opinionated sentences, and any remaining mistakes are only mine.

Thttps:/ /twitter.com/impurepics

https://twitter.com/impurepics

Acknowledgments
Software

As a grateful open-source software contributor, this section is dedicated to all the free
tools that have made this book possible.

e NeoVim?: my all-time favorite text editor, used to write this book as well as to
code the Shopping Cart application.

e Pandoc?: a universal document converter written in Haskell, used to generate
PDFs and ePub files.

o LaTeX*: a high-quality typesetting system to produce technical and scientific doc-
umentation, as well as books.

https://neovim.io/
3https://pandoc.org/
“https://www.latex-project.org/

https://neovim.io/
https://pandoc.org/
https://www.latex-project.org/

Acknowledgments
Fonts

This book’s main font is Latin Modern Roman®, distributed under The GUST Font
License (GFL)®. Other fonts in use are listed below.

« JetBrainsMono” for code snippets, available under the SIL Open Font License 1.1%
 Linux Libertine® for some Unicode characters, licensed under the GNU General
Public License version 2.0 (GPLv2)! and the SIL Open Font License!!.

Shttps:/ /tug.org/FontCatalogue/latinmodernroman /
Shttps://www.ctan.org/license/gfl
"https://www.jetbrains.com/lp/mono/
Shttps://github.com/JetBrains/JetBrainsMono/blob/master/OF L.txt
“https:/ /sourceforge.net /projects/linuxlibertine/
Ohttps://opensource.org/licenses/gpl-2.0.php
"https://scripts.sil.org/cms /scripts/page.php?item_ id=OFL

https://tug.org/FontCatalogue/latinmodernroman/
https://www.ctan.org/license/gfl
https://www.jetbrains.com/lp/mono/
https://github.com/JetBrains/JetBrainsMono/blob/master/OFL.txt
https://sourceforge.net/projects/linuxlibertine/
https://opensource.org/licenses/gpl-2.0.php
https://scripts.sil.org/cms/scripts/page.php?item_id=OFL

Dependency versions

At the moment of writing, all the standalone examples use Scala 2.13.5 and sbt 1.5.3, as
well as the following dependencies defined in this minimal build.sbt! file.

ThisBuild / scalaVersion := "2.13.5"

lazy val root = (project in file("."))
.settings(
name := "minimal",
libraryDependencies += Seq(
compilerPlugin(
"org.typelevel" %% "kind-projector" % "0.12.0"
cross CrossVersion.full

),

"org.typelevel" %% "cats-core" % "2.6.1",

"org.typelevel" %% "cats-effect" % "3.1.1",

"org.typelevel" %% "cats-mtl" % "1.2.1",

"co.fs2" %% "fs2-core" % "3.0.3",

"dev.optics" %% "monocle-core" % "3.0.0",

"dev.optics" %% "monocle-macro" % "3.0.0",

"io.estatico" %% "newtype" % "0.4.4",

"eu.timepit" %% "refined" % "0.9.25",
"eu.timepit" %% "refined-cats" % "0.9.25",
"tf.tofu" %% "derevo-cats" % "0.12.5",
"tf.tofu" %% "derevo-cats-tagless" % "0.12.5",
"tf.tofu" %% "derevo-circe-magnolia" % "0.12.5",
"tf.tofu" %% "tofu-core-higher-kind" % "0.10.2"

),
scalacOptions ++= Seq(
"-Ymacro-annotations", "-Wconf:cat=unused:info"

)

The sbt-tpolecat plugin is also necessary. Here is a minimal plugins.sbt file.

addSbtPlugin("io.github.davidgregory084" % "sbt-tpolecat" % "0.1.17")

Thttps://gist.github.com/gvolpe/04b31a5caa875{8f16bcd 1d12b72face

https://gist.github.com/gvolpe/04b31a5caa875f8f16bcd1d12b72face

Dependency versions

Please note that Scala Steward? keeps on updating the project’s dependencies on a daily
basis, which may not reflect the versions described in this book.

Zhttps:/ /github.com/fthomas/scala-steward

https://github.com/fthomas/scala-steward

Prerequisites

This book is considered intermediate to advanced. Familiarity with functional program-
ming concepts and basic FP libraries such as Cats and Cats Effect will be of tremendous
help even though I will do my best to be as clear and concise as I can.

Both Scala with Cats! and Essential Effects?, in that order, are excellent books to learn
these concepts. The official documentation of Cats Effect? is also a great resource.

The following list details the topics required to understand this book.

o Higher-Kinded Types (HKTs)*.
o Typeclasses®.
« 10 Monad®.

« Referential Transparency”.

Unfortunately, these topics are quite lengthy to be explained in this book, so readers are
expected to be acquainted with them. However, some examples will be included, and
this might be all you need.

If the requirements feel overwhelming, it is not because the entire book is difficult, but
rather because some specific parts might be. You can try to read it, and if at some point
you get stuck, you can skip that section. You could also make a pause, go to read about
these resources, and then continue where you left off.

Remember that we are going to develop an application together, which will help you
learn a lot, even if you haven’t employed these techniques and libraries before.

"https://underscore.io/books/scala-with-cats/

Zhttps:/ /essentialeffects.dev/

3https:/ /typelevel.org/cats-effect/
“https://typelevel.org/blog/2016,/08/21 /hkts-moving-forward.html
Shttps:/ /typelevel.org/cats/typeclasses.html

Shttps:/ /typelevel.org/blog/2017/05/02/io-monad-for-cats.html
"https://en.wikipedia.org/wiki/Referential _transparency

https://underscore.io/books/scala-with-cats/
https://essentialeffects.dev/
https://typelevel.org/cats-effect/
https://typelevel.org/blog/2016/08/21/hkts-moving-forward.html
https://typelevel.org/cats/typeclasses.html
https://typelevel.org/blog/2017/05/02/io-monad-for-cats.html
https://en.wikipedia.org/wiki/Referential_transparency

How to read this book

For conciseness, most of the imports and some datatype definitions are elided from the
book, so it is recommended to read it by following along the two Scala projects that
supplement it.

o pfps-examples!: Standalone examples.
« pfps-shopping-cart?: Shopping cart application.

The first project includes self-contained examples that demonstrate some features or
techniques explained independently.

The latter contains the source code of the full-fledged application that we will develop
in the next ten chapters, including a test suite and deployment instructions.

Bear in mind that the presented Shopping Cart application only acts as a guideline. To
get a better learning experience, readers are encouraged to write their own application
from scratch; getting your hands dirty is the best way to learn.

There is also a Gitter channel® where you are welcome to ask any kind of questions
related to the book or functional programming in general.

Thttps://github.com/gvolpe/pfps-examples
https://github.com/gvolpe/pfps-shopping-cart
Shttps://gitter.im/pfp-scala/community

10

https://github.com/gvolpe/pfps-examples
https://github.com/gvolpe/pfps-shopping-cart
https://gitter.im/pfp-scala/community

How to read this book
Conventions used in this book

Colored boxes might indicate either notes, tips, or warnings.

Notes

A note on what’s being discussed

Tips

A tip about a particular topic

Warning

Claim or decision based on the author’s opinion

If you are reading this on Kindle, you won’t see colors, unfortunately.

Chapter 1: Best practices

Before we get to analyzing the business requirements and writing the application, we
are going to explore some design patterns and best practices. A few well-known; others
not so standard and biased towards my preferences.

These will more likely appear at least once in the application we will develop, so you
can think of this chapter as a preparation for what’s to come.

12

Chapter 1: Best practices
Strongly-typed functions

One of the most significant benefits of functional programming is that it lets us rea-
son about functions by looking at their type signature. Yet, the truth is that these
are commonly created by us, imperfect humans, who often end up with weakly-typed
functions.

For instance, let’s look at the following function.
def lookup(username: String, email: String): F[Option[User]]
Do you see any problems with it? Let’s see how we can use it.

$ lookup("aeinstein@research.com", "aeinstein")
S lookup("aeinstein", "123")
$ 'Lookup(ull, ||||)

See the issue? It is not only easy to confuse the order of the parameters but it is also
straightforward to feed our function with invalid data! So what can we do about it? We
could make this better by introducing value classes.

Value classes

In vanilla Scala, we can wrap a single field and extend the Anyval abstract class to avoid
some runtime costs. Here is how we can define value classes for username and email.

case class Username(val value: String) extends AnyVal
case class Email(val value: String) extends AnyVal

Now we can re-define our function using these types.

def lookup(username: Username, email: Email): F[Option[User]]
Notice that we can no longer confuse the order of the parameters.

S lookup(Username("aeinstein"), Email("aeinstein@research.com"))
Or can we?

$ lookup(Username("aeinstein@research.com"), Email("aeinstein"))
S lookup(Username("aeinstein"), Email("123"))
$ lookup(Username(""), Email(""))

Fine, we are doing this on purpose. However, in a statically-typed language, we would
expect the compiler to help prevent this but it cannot due to lack of information. A way
to communicate our intentions to the compiler is to make the case class constructors
private only expose smart constructors.

13

Chapter 1: Best practices

case class Username private(val value: String) extends AnyVal
case class Email private(val value: String) extends AnyVal

def mkUsername(value: String): Option[Username] =
(value.nonEmpty) .guard[Option].as(Username(value))

def mkEmail(value: String): Option[Emaill =
(value.contains("@")).guard[Option].as(Email(value))

Smart constructors are functions such as mkUsername and mkEmail, which take a raw value
and return an optional validated one. The optionality can be denoted using types such
as Option, Either, Validated, or any other higher-kinded type.

So let’s pretend that these functions validate the raw values properly and give us back
some valid data. We can now use them in the following way.

(
mkUsername("aeinstein"),
mkEmail("aeinstein@research.com")

).mapN {
case (username, email) = lookup(username, email)

F

But guess what? We can still do wrong. ..

(
mkUsername("aeinstein"),
mkEmail("aeinstein@research.com")
) .mapN {
case (username, email) =
lookup (username.copy(value = ""), email)

F

Unfortunately, we are still using case classes, which means the copy method is still there.
A proper way to finally get around this issue is to use sealed abstract case classes.

sealed abstract case class Username(value: String)
sealed abstract case class Email(value: String)

Or sealed abstract classes, where we need to add the val keyword to make value
accessible from the outside.

sealed abstract class Username(val value: String)
sealed abstract class Email(val value: String)

Having this encoding in combination with smart constructors will mitigate the issue at
the cost of boilerplate and more memory allocation.

14

Chapter 1: Best practices

Newtypes

Value classes are fine in most cases, but we haven’t talked about their limitations and
performance issues. In many cases, Scala needs to allocate extra memory when using
value classes, as described in the article Value classes and universal traits'. Quoting the
relevant part:

A value class is actually instantiated when:

e a value class is treated as another type.
e a value class is assigned to an array.
e doing runtime type tests, such as pattern matching.

The language cannot guarantee that these primitive type wrappers won'’t actually allo-
cate more memory, in addition to the pitfalls described in the previous section.

Thus, my recommendation is to avoid value classes and sealed abstract classes completely
and instead use the Newtype? library, which gives us zero-cost wrappers with no runtime
overhead.

This is how we can define our data using newtypes.

import io.estatico.newtype.macros._

@newtype case class Username(value: String)
@newtype case class Email(value: String)

It uses macros, for which we need the macro paradise compiler plugin in Scala versions
below 2.13.0, and only an extra compiler flag -Ymacro-annotations in versions 2.13.0 and
above.

Despite eliminating the extra allocation issue and removing the copy method, notice how
we can still trigger the functionality incorrectly.

Email("foo")

This means that smart constructors are still needed to avoid invalid data.

Newtypes do not solve validation; they are just zero-cost wrappers

Newtypes can also be constructed using the coerce method in the following way.

"https://docs.scala-lang.org/overviews/core/value-classes.html
Zhttps://github.com/estatico/scala-newtype

15

https://docs.scala-lang.org/overviews/core/value-classes.html
https://github.com/estatico/scala-newtype

Chapter 1: Best practices

import io.estatico.newtype.ops._

"foo".coerce[Emaill]

Though, this is considered an anti-pattern, and its use is highly discouraged when we
know the concrete type. The only reason for its existence is so we can write polymorphic
code for newtypes, which we will rarely ever need.

Refinement types

We have seen how newtypes help us tremendously in our strongly-typed functions quest.
Nevertheless, it requires smart constructors to validate input data, which adds boilerplate
and leaves us with a bittersweet feeling. Still, do not give up hope as we have one last
card to play: refinement types, provided by the Refined? library.

Refinement types allow us to validate data at compile time as well as at runtime. Let’s
see an example.

import eu.timepit.refined.types.string.NonEmptyString

def lookup(username: NonEmptyString): F[Option[User]]

We are saying that a valid username is any non-empty string; though, we could also say
that a valid username is any string containing the letter ‘g’, in which case, we would need
to define a custom refinement type instead of using a built-in one like NonEmptyString.
The following example demonstrates how we can do this.

import eu.timepit.refined.api.Refined
import eu.timepit.refined.collection.Contains

type Username = String Refined Contains['g']

def lookup(username: Username): F[Option[User]]

By saying that it should contain a letter ‘g’ (using string literals), we are also implying
that it should be non-empty. If we try to pass some invalid arguments, we are going to
get a compiler error.

import eu.timepit.refined.auto._

$ lookup("") // error
S lookup("aeinstein") // error
$ lookup("csagan") // compiles

Shttps://github.com/fthomas/refined

16

https://github.com/fthomas/refined

Chapter 1: Best practices

Refinement types are great and let us define custom validation rules. Though, in many
cases, a simple rule applies to many possible types. For example, a NonEmptyString
applies to almost all our inputs. In such cases, we can combine forces and use Refined
and Newtype together!

@newtype case class Brand(value: NonEmptyString)
@newtype case class Category(value: NonEmptyString)

val brand: Brand = Brand("foo")

These two types share the same validation rule, so we use refinement types, but since they
represent different concepts, we create a newtype for each of them. This combination is
ever so powerful that I couldn’t recommend it enough.

Another feature that makes the Refined library very appealing is its integration with
multiple libraries such as Circe?, Doobie’, and Monocle®, to name a few. Having support
for these third-party libraries means that we don’t need to write custom refinement types
to integrate with them as the most common ones are provided out of the box.

Runtime validation

Up until now, we have seen how refinement types help us validate data at compile time,
as well as combining them together with newtypes. Yet, we haven’t talked much about
runtime validation, which is something we need in the real world.

Almost every application needs to deal with runtime validation. For example, we can
not possibly know what values we are going to receive from HTTP requests or any other
service, so compile-time validation is not an option here.

Refined gives us a generic function for this purpose, which is roughly defined as follows.

def refineV[P]: RefinePartiallyApplied[P] =
new RefinePartiallyApplied[P]

final class RefinePartiallyApplied[P] {
def apply[TI(t: T)(
implicit v: Validate[T, P]
): Either[String, Refined[T, P]]
}

It is not a coincidence that the type parameter is named P, which stands for predicate.

In the following example, pretend str represents an actual runtime value.

“https://github.com/circe/circe
®https://github.com/tpolecat/doobie
Shttps://github.com/optics-dev/Monocle

17

https://github.com/circe/circe
https://github.com/tpolecat/doobie
https://github.com/optics-dev/Monocle

Chapter 1: Best practices

import eu.timepit.refined._
val str: String = "some runtime value"

val res: Either[String, NonEmptyString] =
refineV[NonEmpty] (str)

Most refinement types provide a convenient from method, which take the raw value and
returns a validated one or an error message. For example, the following example is
equivalent to the one above.

val res: Either[String, NonEmptyString] =
NonEmptyString.from(str)

It also helps with type inference so it is recommended to use from over the generic refineV.
We can add the same feature to any custom refinement type too.

import eu.timepit.refined.api.RefinedTypeOps
import eu.timepit.refined.numeric.Greater

type GTFive = Int Refined Greater[5]
object GTFive extends RefinedTypeOps[GTFive, Int]

val number: Int = 33

val res: Either[String, GTFive] = GTFive.from(number)

Summarizing, Refined lets us perform runtime validation via Either, which forms a
Monad. This means validation is done sequentially. It would fail on the first error en-
countered during multiple value validation. In such cases, it is usually a better choice to
go for cats.data.Validated, which is similar to Either, except it only forms an Applica-
tive.

In practical terms, this means it can validate data simultaneously and accumulate errors
instead of validating data sequentially and failing fast on the first encountered error.
A common type for such purpose is ValidatedNel[E, Al, which is an alias for vali-
dated[NonEmptyList[E], A]. We can convert those refinement results to this type via the
toValidatedNel extension method.

case class MyType(a: NonEmptyString, b: GTFive)

def validate(a: String, b: Int): ValidatedNel[String, MyTypel =
(
NonEmptyString.from(a).toValidatedNel,
GTFive.from(b).toValidatedNel
) .mapN(MyType.apply)

18

Chapter 1: Best practices

Evaluating this function with a = *” and b = 3 yields the following result.

Invalid(
NonEmptyList(Predicate isEmpty() did not fail.,
Predicate failed: (3 > 5).)

)

We could get to the same result via toEitherNel + parMapN instead.

def validate(a: String, b: Int): EitherNel[String, MyTypel] =
(
NonEmptyString.from(a).toEitherNel,

GTFive.from(b).toEitherNel
) .parMapN(MyType.apply)

Evaluating this function with the previous inputs yields a similar result.

Left(
NonEmptyList(Predicate isEmpty() did not fail.,
Predicate failed: (3 > 5).)

)

Except it returns Left instead of Invalid.

Behind the scenes, what makes this work is the cats.Parallel instance for Either and
Validated, which abstracts over monads which support parallel composition via some

related Applicative.

implicit def ev[E: Semigroup]: Parallel.Aux[Either[E, *], Validated[E, *]] =

new Parallel[Either[E, *]1] { ... }

We are able to accumulate errors because of the Semigroup constraint on E. In our exam-

ples, E = String.

Furthermore, since we generally use newtypes together with refinement types, there is
something else to consider. Let’s look at the following Person domain model.

type UserNameR = NonEmptyString
object UserNameR extends RefinedTypeOps[UserNameR, String]

type NameR = NonEmptyString
object NameR extends RefinedTypeOps[NameR, String]

type EmailR = String Refined Contains['@']
object EmailR extends RefinedTypeOps[EmailR, Stringl]

@newtype case class UserName(value: UserNameR)

19

Chapter 1: Best practices

@newtype case class Name(value: NameR)
@newtype case class Email(value: EmailR)

case class Person(
username: UserName,
name: Name,
email: Email

)

To perform validation, we will need an extra map to lift the refinement type into our
newtype, in addition to toEitherNel. E.g.

def mkPerson(

u: String,
n: String,
e: String
): EitherNel[String, Person] =
(

UserNameR.from(u) .toEitherNel.map(UserName.apply),
NameR.from(n) .toEitherNel.map(Name.apply),
EmailR.from(e).toEitherNel.map(Email.apply)

) .parMapN(Person.apply)

It gets the job done at the cost of being repetitive and maybe a bit boilerplatey. Now
what if I told you this pattern can be abstracted away and reduced down to this?

import NewtypeRefinedOps._

def mkPerson(

u: String,
n: String,
e: String
): EitherNel[String, Person] =
(

validate[UserName] (u),
validate[Name](n),
validate[Email] (e)

) .parMapN(Person.apply)

Interesting, isn’t it? This is one of the exceptional cases where I think resorting to the
infamous Coercible” typeclass, from the Newtype library, is more than acceptable.

object NewtypeRefinedOps {
import io.estatico.newtype.Coercible

"https://github.com /estatico/scala-newtype#coercible

20

https://github.com/estatico/scala-newtype#coercible

Chapter 1: Best practices

import io.estatico.newtype.ops._

final class NewtypeRefinedPartiallyApplied[A] {
def apply[T, Pl(raw: T)(implicit
c: Coercible[Refined[T, P], AI,
v: Validate[T, P]
): EitherNel[String, A] =
refineV[P](raw).toEitherNel.map(_.coerce[A])

def validate[A]: NewtypeRefinedPartiallyApplied[A] =
new NewtypeRefinedPartiallyApplied[A]
h

We could also make it work as an extension method of the raw value, though, this
requires two method calls instead.

(

u.as[UserName] .validate,
n.as[Name].validate,
e.as[Email].validate

) .parMapN(Person.apply)

You can refer to the source code for the implementation. We will skip it because it is
very similar to the validate function we’ve seen above.

I hope it was enough to convince you of the benefits of this ever powerful duo! Through-
out the development of the shopping cart application, we will get acquainted with this
technique, as it will be ubiquitous.

21

Chapter 1: Best practices
Encapsulating state

Mostly every application needs to thread some kind of state, and in functional Scala, we
have great tools to manage it properly. Whether we use MonadState, StateT, MVar, or Ref,
we can write good software by following some design guidelines.

One of the best approaches to managing state is to encapsulate state in the interpreter
and only expose an abstract interface with the functionality the user needs.

Our interface should know nothing about state

By doing so, we control exactly how the users interact with state. Conversely, if we
use something like MonadState[F, AppState] or Ref[F, AppStatel] directly, functions can
potentially access and modify the entire state of the application at any given time (unless
used together with classy lenses, which are a bit more advanced and less obvious than
using plain old interfaces).

In-memory counter

Let’s say we need an in-memory counter that needs to be accessed and modified by other
components. Here is what our interface could look like.

trait Counter[F[_1] {
def incr: F[Unit]
def get: F[Int]

}

It has a higher-kinded type F[_], representing an abstract effect, which most of the time
ends up being I0, but it could really be any other concrete type that fits the shape.

Next, we need to define an interpreter in the companion object of our interface, in this
case using a Ref. We will talk more about it in the next section.

import cats.Functor
import cats.effect.kernel.Ref
import cats.syntax.functor._

object Counter {
def make[F[_]: Functor: Ref.Make]: F[Counter[F]] =
Ref.of[F, Int](0).map { ref =
new Counter[F] {
def incr: F[Unit] ref.update(_ + 1)
def get: F[Int] = ref.get

22

Chapter 1: Best practices

F

By exposing a smart constructor as above, we make it impossible for the Ref to be
accessed outside of it. This has a fundamental reason: state shall not leak. If we had
instead, taken the Ref as an argument to our smart constructor, it could be potentially
misused in other places.

Furthermore, since the creation of a Ref is effectful (it allocates a mutable reference),
the constructor returns F[Counter[F]], which needs to be flatMaped at call site to create
and access the inner Counter[F].

Remember that a new Counter will be created on every flatMap call

Moreover, notice the typeclass constraints used in the interpreter: Functor and Ref.Make.
This is all we need, though, both constraints could be subsumed by a single Sync con-
straint, if we wanted that. However, it is preferred to avoid hard constraints that enable
FFI (Foreign Function Interface), i.e. side-effects.

We could also create the interpreter as a class, e.g. LiveCounter, instead of doing it via
an anonymous class in the smart constructor. This is how it was done in the first edition
of this book but my preferences have shifted towards the former over time. See below.

object LiveCounter {
def make[F[_]: Sync]: F[Counter[F]] =
Ref.of[F, Int](0).map(new LiveCounter[F](_))

class LiveCounter[F[_]] private (
ref: Ref[F, Int]
) extends Counter[F] {
def incr: F[Unit] = ref.update(_ + 1)
def get: F[Int] = ref.get
h

This is up to you; go with the one you favour the most and be consistent about it.
However, be aware that in such cases, we need to make the interpreter’s constructor
private. Otherwise, we would be allowing its construction with arbitrary instances of a
Ref constructed somewhere else.

Moving on, it’s worth highlighting that other programs will interact with this counter
solely via its interface. E.g.

23

